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Abstract. Recent work by Mingers and by Buntine and Niblett on the performance of various attribute selection
measures has addressed the topic of random selection of attributes in the construction of decision trees. This
article is concerned with the mechanisms underlying the relative performance of conventional and random at-
tribute selection measures. The three experiments reported here employed synthetic data sets, constructed so as
to have the precise properties required to test specific hypotheses. The principal underlying idea was that the
performance decrement typical of random attribute selection is due to two factors. First, there is a greater chance
that informative attributes will be omitted from the subset selected for the final tree. Second, there is a greater
risk of overfitting, which is caused by attributes of little or no value in discriminating between classes being
"locked in" to the tree structure, near the root. The first experiment showed that the performance decrement
increased with the number of available pure-noise attributes. The second experiment indicated that there was
little decrement when all the attributes were of equal importance in discriminating between classes. The third
experiment showed that a rather greater performance decrement (than in the second experiment) could be ex-
pected if the attributes were all informative, but to different degrees.
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1. Introduction

The induction of decision trees for noisy domains has received fresh attention in the last
few years, partly as a result of the somewhat belated recognition of the statistical work
carried out by Breiman, Friedman, Olshen, and Stone (1984) on classification trees and
partly as a result of work appearing in the machine learning literature by authors such as
Quinlan (1986).

More recently, Mingers (1989a) made the surprising claim that random selection of attri-
butes, followed by pruning, can achieve the same level of classification accuracy as the use
of any of a variety of orthodox measures followed by pruning. He ran experiments with
four data sets in which he tested various measures (including information gain, x2, the G
statistic, the Gini index of diversity, and gain ratio) against a purely random selection method.
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In each case, the resulting tree was pruned using Breiman's error complexity method. The
results appeared to show that there was no significant difference in the classification per-
formance, whichever method was used.

Subsequently, Buntine and Niblett (1992) refuted this claim with more carefully con-
structed experiments and suggested reasons for the disparity between their respective results.

However, their contribution does not exhaust the topic. The remainder of this article
seeks to investigate the decrement expected in classification accuracy when random at-
tribute selection is employed and to examine factors that might be expected to influence
the magnitude of this decrement.

The following experiments test specific hypotheses in this area and, because of the fact
that data sets with particular, precisely defined characteristics were required, synthetic data
sets were used, rather than the real data sets employed by the previous investigators quoted.

2. Experimental techniques

The experiments described later in this article use a number of techniques, some of which
may not be familiar to researchers in the machine learning field. Brief descriptions of these
are given below.

2.1. Attribute selection

A number of measures have been reviewed comprehensively by Mingers (1989a). Breiman
et al. (1984) also describe various methods in detail. The method used in this article is
sometimes known as transmitted information (HT) and sometimes as information gain. This
method was chosen more for reasons of tradition (because of the origin of the study of
inductive systems in computer science and the use of communication theory and informa-
tion theory in that discipline) than because of any intrinsic superiority in the measure. The
definition is given in Mingers (1989a). (Note that, if logarithms to base 2 are used, then
the information gain is actually measured in bits.)

This method is contrasted with purely random attribute selection, as used by Mingers
(1989a).

2.2. Binary splitting

One awkward problem with a completely general approach to the construction of classifica-
tion trees is that there are many possible types of attribute. First, attributes may belong
to any of four levels of measurement, as described originally by Stevens (1946) and men-
tioned briefly by Mingers (1989a). A further problem with ordered variables (i.e., those
measured on either an ordinal or an interval scale of measurement) is that they may have
tied scores, i.e., the scores may be grouped into categories. As an example, consider a
large database of hospital patients. If each patient's age is recorded in years, then there
will generally be more than one person at each age level—at least for the more commonly
occurring ages in such a population. Statisticians sometimes refer to such variables as ordered
categorical.
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One way of dealing with a wide variety of variables in a classification problem is to
reduce them to a common denominator by employing a binary branching technique on
all the attributes, regardless of type. This approach has been used by a number of researchers,
including Breiman et al. (1984), Kononenko, Bratko, and Roskar (1984), Quinlan (1988),
White (1987), and White and Liu (1990). All attributes that are not originally binary are
converted into "pseudo-binary" attributes by the technique of optimal splitting, as described
below. Continuous attributes can be dealt with by splitting the initial attribute between every
possible pair of adjacent values (in a sense of numerical order) to yield a number of de-
rived binary variables as candidates to replace the initial non-binary attributes. Consider-
ing a pair of adjacent values of a continuous attribute, x1 and x2, the average of these two
values, x12, is regarded as a splitting point. All other values of this attribute are either less
than or equal to (<) x12 or greater than (>) x12. In this way, the derived variable is ob-
viously binary. During the construction of the tree, if the original attribute has m distinct
values present at the node currently under consideration, this would mean generating
m — 1 candidate binary variables. The best of these m — 1 variables, as judged by some
appropriate criterion (which may or may not be the same as that used for attribute selec-
tion), then becomes the pseudo-binary attribue that is used in place of the original attribute.
In more detail, suppose that HT is the criterion employed, each of the m - 1 derived
variables is cross-tabulated against class for all the cases at the node, and a HT value is
calculated for each of them. The variable with the largest HT is chosen as the pseudo-
binary attribute to represent the original attribute.

For categorical attributes, a different variant of the same technique is employed. However,
this is not relevant here because ordered attributes are used in all the experiments described.

Perhaps it should also be mentioned that the binary splitting technique allows the possibility
that a multi-valued attribute may legitimately be branched on more than once (at different
cutting points) in the same path of the decision tree.

2.3. Pruning

Pruning methods are employed to cut back a full-size tree to a smaller one that is likely
to give better classification performance. These techniques have been mentioned by Breiman
et al. (1984), Niblett and Bratko (1987), White (1985, 1987), White and Liu (1990), and
Liu and White (1991). A comprehensive review of pruning methods for decision trees has
been given by Mingers (1989b), and for this reason, only a brief mention is made of them
here.

The pruning approach is more commonly used in this field and, indeed, there is a good
reason to prefer it to a simple stopping rule applied to the growth phase of tree construc-
tion. This is because situations can arise in which, at the stage the tree is being grown,
it can appear that all significant attributes have been exhausted. However, if growth is allowed
to continue, further attributes can show up as important. The simple explanation for this
is that the growing tree has uncovered a multiplicative relationship between two (or more)
attributes and class.

Pruning methods can be implemented using statistical significance tests. Thus, a
significance test is used to determine when to stop "undoing" the branching process. Pruning
by significance testing was used in the simulation experiments described later in this article.
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2.4, Cross-validation and dynamic path generation

The fair estimation of predictive accuracy is of central importance in the assessment and
comparison of classification technique when noise is present. A particularly thorough way
of doing this is to employ the technique of cross-validation, in which each case is tested
under a model derived from all the remaining observations. Cross-validation is described
in detail by Breiman et al. (1984). Of course, in the case of decision trees, the model in-
volved is the tree derived from all the observations except the one being tested.

One problem with cross-validation is the feet that it is computationally expensive. However,
the computing time required can be reduced substantially by combining cross-validation
with a technique called dynamic path generation (White, 1987). Briefly, this involves
generating just the path required for classifying the case currently under consideration,
rather than the entire tree. Thus, in order to cross-validate a data set of Meases, it is only
necessary to generate N paths. All the cross-validation results reported in the experiments
described in this article were derived using this approach.

2.5. Statistical techniques

The experiments reported in this article employed various experimental designs, each of
which is associated with a corresponding analysis of variance (ANOVA). Descriptions of
these various designs may be found in Keppel (1973). ANOVA summary tables are reported
for all designs with more than one factor, and F tests for single factor designs are reported
in the text. By their very nature, F tests are multi-sided in terms of the hypotheses that
they test. However, for the applications quoted here, it should be clear from inspection
of the corresponding means where the important differences lie. Two-tailed t tests were
also employed for parts of the analyses. These test whether or not there is a significant
difference in either direction between two sets of results. This approach is more statistic-
ally conservative than the use of one-tailed tests and is the method generally employed.

3. Experiment I

3.1. Introduction

As stated in the previous section, Mingers (1989a) asserts that the choice of goodness of
split measure is unimportant in determining the accuracy of predictive performance of prob-
abilistic classification trees, even to the extent that a purely random attribute selection
measure will perform as well as any of the orthodox methods.

In the general case, this cannot be true and, indeed, Buntine and Niblett (1992) showed
that it was not, even for the data sets that Mingers himself used. It is instructive to consider
why. Provided that a full-sized tree is not being used, i.e., that the tree contains only a
proper subset of the available attributes, then it would seem to be important which attributes
are selected for membership of this subset. Suppose that some variables contain more in-
formation about class membership than others. Clearly, variables that are high in class
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information are more important to include in the subset of variables used for branching
than variables that are low in class information. For the purposes of demonstration, this
argument can be taken a stage further. Suppose that only one of the attributes contains
information about class and that the remaining attributes are pure noise variables. In this
situation, it is obviously of vital importance that the informative variable is included in
the branching subset. It is also important (although perhaps not quite as obviously) that
as few of the pure noise variables as possible are branched on, because their presence will
degrade the true classification accuracy of the induced tree.

Thus, if an effective attribute selection method is being used, then the number of available
pure noise attributes should have little effect on classification performance. On the other
hand, if a random selection method is employed, then classification performance should
decline as the number of available pure noise variables is increased. This is for two reasons.
First, the greater the number of pure noise variables available, the smaller the chance
of a genuinely informative variable being included in the tree, because of the pressure of
competition. Second, as mentioned in the previous paragraph, the more noise variables
included in the final tree, the more classification performance will be degraded. The per-
formance with the random method should always be poorer than that obtained from using
an orthodox measure, but the difference would be expected to be greater as more pure
noise variables are available for inclusion in the tree.

From the foregoing argument, it is obvious that the choice of orthodox selection measure
should not be of critical importance. Transmitted information was chosen for this experi-
ment more for traditional reasons than for any more fundamental motive.

3.2. Method

A Monte Carlo simulation experiment was designed in which two different measures of
attribute selection were tested. One was transmitted information (HT), and the other was
a purely random selection criterion. Six different conditions were employed. For each con-
dition, 100 different data sets were generated. Each data set consisted of 100 cases. Each
case contained a binary class variable and a number of continuous independent variables
(attributes). The class variable was generated so as to have 50 cases of each class.

Two different types of independent variable were employed. One type (termed signal
variables) incorporated information about class membership. The other type (noise variables)
was produced so as to contain no information about class. All the noise variables were
generated as samples from the standard normal distribution (i.e., a normal distribution
with zero mean and unit standard deviation), using a random number generator. Signal
variables were derived from noise variables by the simple method of adding twice the class
variable. (This would result in an expected difference of 2 in the mean scores on a signal
variable between the two classes). This ensured that the signal variable contained informa-
tion about class membership.

Each of the six conditions employed just one signal variable. However, the conditions
differed in the number of noise variables. The arrangements were as follows:

1. 1 signal variable plus 1 noise variable;
2. 1 signal variable plus 5 noise variables;
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3. 1 signal variable plus 10 noise variables;
4. 1 signal variable plus 20 noise variables;
5. 1 signal variable plus 40 noise variables;
6. 1 signal variable plus 80 noise variables.

Since the independent variables were continuous, the binary splitting approach (described
earlier) was used. It was implemented using transmitted information. Thus, during the tree
construction phase, at each node, each attribute was split at a value that would maximize
the information that it provided about class membership. Attribute selection was then made
from among the pseudo-binary attributes thus derived, according to the attribute selection
measure employed in that part of the experiment (HT or random). For reasons of speed,
the method of dynamic path generation (described earlier) was employed. In classifying
each case, path growth was continued until a pure terminal node was reached, i.e., one
with cases from only one class.

This was followed by a pruning phase, which was implemented using the x2 statistic
and the associated probability from the Chi-square distribution. The threshold value was
set at a probability of 0.1. Thus, for any given path, pruning was continued until a signifi-
cant association between class and the current attribute was uncovered, i.e., one in which
the associated x2 probability fell below the threshold value. Pruning of this path was then
terminated at this point, without undoing the branching at the node at which the probabil-
ity fell below the threshold value.

A split-plot experimental design (Keppel, 1973, pp. 433-437) was employed, in which
the data set was the basic unit of replication. For each of the six conditions (described
earlier), both attribute selection methods were applied to the same data sets. Thus, in the
language of experimental design, conditions were varied between data sets, whereas the
attribute selection method was varied within data sets. One hundred different data sets were
used for each condition, i.e., 100 Monte Carlo trials were carried out for the simulation.
(Each trial involved assessing the classification performance on 100 cases, by dynamic
path generation.) For each data set, the number of cases correctly classified under cross-
validation was recorded for each selection criterion.

3.3. Results and discussion

The results of the experiment are summarized in table 1 and are displayed graphically in
figure 1. It can be seen that, whereas the classification performance using HT was hardly
changed as the number of noise variables was increased, performance using the random
selection measure declined markedly. As a first step in checking the statistical significance
of these findings, a split-plot analysis of variance (ANOVA) was performed on the results.
This is summarized in table 2. It can be seen that both main effects and the interaction
were highly significant. This step was followed by a two-tailed matched-pairs t test be-
tween the results for the two different measures on the first condition (i.e., one noise
variable). This showed that, although the results for the different measures were close
(77.98% for HT, as opposed to 77.00% for the random method), there was nevertheless
a significant difference between them (t = 2.19; df = 99; p < 0.05). Since the differences
for the other conditions were far larger, there seemed little point in testing these for statis-
tical significance.
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Table 1. Classification performance in experiment I.

Experimental Condition

1 signal and 1 noise

1 signal and 5 noise

1 signal and 10 noise

1 signal and 20 noise

1 signal and 40 noise

1 signal and 80 noise

Attribute Selection Method

Random Selection

77.00
(5.11)
68.43
(4.14)
63.10
(5.21)
57.03
(5.04)
53.18
(4.51)
52.66
(4.95)

HT

77.98
(5.13)
77.59
(5.00)
77.15
(5.71)
76.82
(5.96)
76.05
(6.86)
75.59
(8.06)

Note: Results are expressed in terms of mean percentage of correct classifica-
tions, for each experimental condition and attribute selection method. Correspond-
ing standard deviations are parenthesized.

Figure 1. Cross-validated classification performance of the induced trees, expressed as percentage of correct
classifications as a function of the number of noise variables. Points marked by triangles represent performance
using HT, and points marked by squares represent performance using the random selection procedure.
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Table 2. ANOVA summary table for Experiment I.

Source

Condition
Dataset (condition)

Measure
Condition x Measure
Measure X Dataset

Total

SS

27170.3
22181.9

67170.4
18966.3
14676.3

150165.2

df

5
594

1
5

594

1199

MS

5434.1
37.3

67170.4
3793.3

24.7

F

145.5

2718.6
153.5

P

< 0.001

< 0.001
< 0.001

Turning to the highly significant interaction between selection measure and number of
noise variables found in the split-plot ANOVA, it was decided to perform two one-way
analyses of variance (one for each selection measure) in order to locate the locus of the
effect. Not surprisingly, the result for the random selection method was highly significant
(F = 390; df = 5,594; p < 0.001). Performance declined from 77.00% to 52.66% over
the conditions employed in the experiment. The corresponding results for HT were quite
different. Performance showed a very modest decline (from 77.98% to 75.59%), which
did not reach statistical significance (F = 2.15; df = 5,594; p > 0.05).

These results confirm absolutely the expectations stated in the introduction to this experi-
ment. If an effective attribute selection method is employed, then the number of available
pure noise attributes has little effect on performance. Constrastingly, if a random selection
method is used, then classification performance declines steeply as the number of noise
variables is increased. From the results, it looks as if performance using the random selec-
tion method is tending towards an asymptote of 50%. Even when only a single pure noise
variable was used, performance was significantly poorer with random attribute selection.

3.4. Subsidiary analysis on branching order

In order to determine more exactly the loci of these effects, some subsidiary analyses were
carried out on the branching order in the classification paths.1 First of all, the branching
behavior was examined to determine whether or not the signal variable was branched on
in the various conditions. The results were very clear. For selection by HT, the signal
variable was branched on at the root for every case in every data set, for every experimen-
tal condition. By contrast, the random attribute selection method produced a quite dif-
ferent picture. Table 3 shows that, as the number of noise variables increases, the mean
number of cases in each data set for which the classification path branches on the signal
variable decreases monotonically from 49.78 to 1.67. This result was found to be highly
significant on a one-way ANOVA (F = 6480; df = 5,594; p < 0.001). Clearly, this factor
is of great importance in determining the level of classification performance because, if
the signal variable were not branched on in a particular classification path, then the ex-
pected classification performance could only be that which would be expected by chance.
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Table 3. Summary statistics for the number of cases within each dataset that branch
on the signal variable under random attribute selection.

Experimental Condition

1 signal and 1 noise
1 signal and 5 noise
1 signal and 10 noise
1 signal and 20 noise
1 signal and 40 noise
1 signal and 80 noise

Mean

49.78
17.23
9.71
5.20
2.31
1.67

St. dev.

3.06
3.62
2.06
1.69
0.90
0.79

Range

42-55
9-25
5-15
2-9
1-4
0-3

In order to determine whether there was another effect operating due to overfitting,
a further analysis was performed on the subset of cases derived by extracting just those
cases whose classification paths under random attribute selection branched on the signal
variable. The classification performance on this subset of the data for both criteria is shown
in table 4. It can be clearly seen that, for random attribute selection, there is a marked
performance decrement as the number of noise variables, was increased. In fact, for the
condition with one noise variable, classification performance was only slightly less than
that for the orthodox measure. With 80 noise variables, classification performance was
not much better than chance.

A split-plot ANOVA (similar to that used for the main part of the experiment) was ap-
plied to the performance data arising from this subset. Because one of the data sets for
the condition with 80 noise variables did not branch on the signal variable for any of the
cases, subset performance could be assessed for only 99 data sets in this condition. As
a result, the design was slightly unbalanced. For this reason, the regression approach for

Table 4. Classification performance for signal branching subset in Experiment I.

Experimental Condition

1 signal and 1 noise

1 signal and 5 noise

1 signal and 10 noise

1 signal and 20 noise

1 signal and 40 noise

1 signal and 80 noise

Attribute Selection Method

Random Selection

77.33
(6.69)
68.98

(12.3)
64.22

(16.7)
51.31

(23.3)
53.58

(36.6)
57.24

(42.9)

HT

77.87
(6.84)
78.00

(10.9 )
76.10

(15.3)
79.86

(18.8)
79.83

(29.4)
76.94

(36.9)

Note: Results are expressed in terms of mean percentage of correct classifications
for each experimental condition and attribute selection method. Corresponding
standard deviations are parenthesized. See text for further explanation.
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the attribution of variance components was used. This method attributes to each term only
that portion of the variance that is unique to that particular source and is the approach
generally favored by statisticians for dealing with unbalanced designs. The summary table
is shown in table 5. All the effects were found to be highly significant. However, of par-
ticular interest is the feet that the interaction term was significant, providing statistical support
for the idea that increasing the number of noise variables had little effect on classification
performance under HT but produced a performance decrement on classification by ran-
dom attribute selection even for those cases for which the classification path branched on
the signal variable. To be absolutely clear about the source of this effect, one-way ANOVAs
were performed on each measure separately. For random attribute selection, the perfor-
mance decrement was highly significant (F = 14.2; df = 5,593; p < 0.001). By contrast,
classification of the same cases by HT showed no significant dependence on the number
of noise variables (F = 0.46; df = 5,593; p > 0.5).

Thus, there are clearly two quite separate effects in operation for classification by ran-
dom attribute selection, each of which contributes to the increasing under-performance
as the number of noise variables is increased. First, the probability of the signal variable
being branched on decreases. Second, even when the signal variable is branched on, in-
creasing the number of noise variables available tends to increase the number of noise var-
iables branched on above the signal variable in the classification path. This degrades classi-
fication performance through overfitting.

4. Experiment II

4.1. Introduction

The results from Experiment I suggested that the under-performance of random attribute
selection was due to the tree construction algorithm branching on noise variables and pro-
ducing a suboptimal tree. It was further suggested that the under-performance was due
to two distinct factors—first, a reduced likelihood of informative attributes being included
in the final tree, and second, a degree of overfitting caused by noise variables being locked
into the tree, near the root.

Table 5. ANOVA summary table for subsidiary analysis of performance on signal branching subset of the data.
See text for further explanation.

Source

Condition
Dataset (condition)

Measure
Condition x Measure
Measure x Dataset

Total

SS

27141.3
421505

76563.7
29038.2

285586

834377

df

5
593

1
5

593

1197

MS F

4348.3 6.12
710.8

76563.7 159
5807.6 12.1
481.6

P

< 0.001

< 0.001
< 0.001
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Now, if these explanations are correct, then it follows that, if all the variables in the
attribute set are equally important in discriminating between classes, then it should not
matter which attributes are selected for branching. Neither should the order of branching
matter.

Hence, it was hypothesized that, in a probabilistic classification task, if all the attributes
contain equal levels of information concerning class membership, then there should be no
difference in cross-validated classification performance between HT and a random method
of attribute selection. Experiment II was designed to test this hypothesis.

4.2. Method

Just as in Experiment I, Experiment II involved a Monte Carlo simulation using the same
measures of attribute selection—HT and the random method. Only one experimental con-
dition was employed, using 100 different data sets of 100 cases each, generated in a similar
manner to that described for Experiment I.

The only difference was that 11 attributes were used, which were all generated to con-
tain equal levels of information about class membership. Each attribute was derived by
simply adding the binary class variable (0 or 1) to a random sample drawn from the stan-
dard normal distribution.

Binary splitting and cross-validation by dynamic path generation were employed in the
same way as described for Experiment I. As before, the percentage of correct classifica-
tions, for each selection method, was recorded for each data set.

4.3. Results and discussion

The mean levels of accuracy for the two measures were 76.61% (random) and 77.84%
(HT). The corresponding standard deviations were 4.08 and 5.27, respectively. A two-
tailed matched-pairs t test was performed on the results, which indicated a significant dif-
ference in fevor of selection using HT (t = 2.15; df = 99; p < 0.05).

This result was not quite as anticipated, because it was expected that the advantage of
using an orthodox measure of attribute selection over a random method would disappear
when all the available attributes contained the same level of information about class member-
ship. Although the performance difference found between the measures was small (i.e.,
of the order of one percentage point), it was nevertheless statistically significant.

A possible explanation for this finding, is that, even though the attributes were arranged
to be of equal importance at the root of the classification tree, this does not guarantee
that they will be of equal importance at every intermediate node in the classification path.
Random variation will tend to produce some degree of inequality in importance between
the attributes at the intermediate nodes in the classification paths, for some of the cases.
This means that, if an orthodox method of attribute selection is being used, then the
algorithm will operate on these small differences in importance to produce marginally
superior classification performance, compared with that given by random attribute selection.
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The argument just stated carries the implication that, if two attributes are available for
selection at a node then, if they are not of equal importance in discriminating between
classes, choosing the less important attribute could be suboptimal (i.e., lead to poorer cross-
validated classification performance).

If this explanation is correct, then it should certainly be possible to observe the same
effect if the attributes are not of equal importance to begin with, i.e., if they all contain
different amounts of information concerning class membership.

5. Experiment III

5.1. Introduction

The previous experiment showed that using an orthodox measure of attribute selection will
yield only a small improvement in classification performance over that obtainable by using
a random selection method in the same situation, when the attributes are equally infor-
mative. An argument presented in the discussion for that experiment suggested that this
small difference in performance may have been due to inequities between attributes in the
information concerning class membership appearing at the intermediate nodes in the tree,
as a result of the binary splitting and branching processes. If this argument is correct, then
it should also be possible to demonstrate the predictive superiority of an orthodox measure
for attribute selection (over that expected with a random method) if the attributes each
possess information about class membership to begin with, but to different degrees. It could
also be argued that such a situation is more representative of the sort of situation likely
to be found in real classification problems in noisy domains. Of course, it is to be expected
that the difference in cross-validated classification performance between an orthodox and
a random measure of attribute selection would be greater in this situation than in the one
simulated in the previous experiment. Experiment III was designed to test this hypothesis.

5.2. Method

The experimental design was very similar to that employed in the previous experiment.
Just as before, a single experimental condition was employed, using 100 different data sets
of 100 cases each.

Ten attributes were used. They were generated so that they each contained different
amounts of information about class membership. Each attribute was derived by adding k
times the binary class variable to a standard normal random variable. Ten different values
of A: were used—one for each attribute. The values of k ranged from 0.2 to 2 in equal steps.

Binary splitting and cross-validation by dynamic path generation were used, just as in
the two previous experiments. As before, the percentages of correct classification for both
the HT and random selection methods were recorded for each data set.
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5.3. Results and discussion

The mean levels of accuracy for the two measures were 82.36% (random) and 86.62%
(H-f). The corresponding standard deviations were 4.04 and 4.63, respectively. A two-tailed
matched-pairs t test was performed on the results, indicating a highly significant difference,
showing HT as providing superior performance (t = 7.62; df = 99; p < 0.001).

This result was as expected. Thus, it seems reasonable to say that, unless it can be
guaranteed that all the attributes are of exactly equal importance at a node (as regards
the information they convey about class membership), then it is a better strategy to employ
an orthodox measure of attribute selection, rather than a random one.

5.4. Subsidiary analysis on branching order

In order to check that the more important attributes were indeed branched on closer to
the root of the tree when HT was used for attribute selection than when random attribute
selection was employed, a subsidiary analysis was performed on data derived from the
branching order.2 As explained earlier, the technique of dynamic path generation was
employed in these experiments, in combination with cross-validation. Thus, for the
classification of each case, only the path actually needed for classifying the case concerned
was generated. For each case in each data set for each of the two attribute selection methods,
the attributes branched on in the classification path were recorded, together with their
respective positions in the classification path.

The attributes were labeled with integers from 1 to 10, denoting their level of impor-
tance. Thus, the attribute derived by using a value of k of 0.2 was given an importance
level of 1, while the attribute produced with k = 2 had an importance level of 10. Positions
in the classification path were also represented by integers, denoting the number of steps
below the root of the node concerned. Thus, the root itself was given a position number of
0, a node one step below the root had a position number of 1, and so on. So, for each case,
the branching information was recorded as two sequences of number pairs, one sequence
for each method of attribute selection. Each number pair consisted of an importance level
and a position number. Each sequence of number pairs traced the final classification path
down from the root to the terminal node, after pruning.

Simple examination of the resulting information showed a marked difference in mean
path length between the two attribute selection methods, with path length for the random
selection method being longer on average. Path length ranged from 1 to 7 steps, with a
mean of 2.640, for selection by HT. On the other hand, the random selection method gave
a range from 0 to 14, with a mean of 3.867. (A path length of zero simply means one
that has been pruned back to the root.) The difference between the two sets of path lengths
was tested with a two-tailed matched-pairs t test. The result was highly significant (t =
67.2; df = 9999; p < 0.001).

In order to test for differences in the branching order, the technique used was based
on examining differences in importance level as a function of position, between the two
selection methods. Only position numbers from 1 to 6 were used, because of the shorter
path length given by selection with HT. This resulted in a two-way factorial experimental
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design (Keppel, 1973, pp. 195-196). Thus, one factor was the attribute selection method
and the other was the position number. The independent variable was the importance number.
Replication was provided by the multiple cases and data sets, giving 10,000 classification
paths for each condition. However, it should be made clear that the design was necessarily
unbalanced, because not all classification paths were of the same length.

The mean importance levels for the various conditions are shown in table 6. This infor-
mation is also displayed graphically in figure 2. It can be seen quite clearly that, for attri-
bute selection by HT, mean importance level declines steeply as a function of increasing
position number. Thus, under this condition, there is a strong tendency for the more infor-
mative attributes to be branched on closer to the root. For random attribute selection, on
the other hand, the picture is quite different. Here, position number has little influence
on mean importance level, with the latter staying close to the expected importance level of 5.5.

The difference in behavior between the two selection measures was tested with a two-
way factorial ANOVA (Keppel, 1973, pp. 195-196). The unbalanced nature of the design
was handled by using the regression approach for the attribution of the variance components,
as used earlier for the subsidiary analysis in Experiment I. The summary table is given
in table 7. Here, the effect of interest is the interaction term, which was found to be highly
significant, showing that there was a definite tendency for the graphs to be different for
the different selection measures.

A minor point of interest is that, for random attribute selection, mean importance level
is slightly greater than the value of 5.5, which would be expected under a simple theory.
Furthermore, the results seem to show a slight increase with position number. This would
appear to be due to the fact that the method of pruning employed tends to ensure that the
final branch in the pruned classification path is based on an attribute of high importance,
even when random attribute selection has been used to construct the path originally.

Table 6. Results for branching order analysis in Experiment III.

Position

1

2

3

4

5

6

Attribute Selection Method

Random Selection

5.552
(2.954)
5.652

(2.961)
5.747

(2.915)
5.785

(2.870)
5.828

(2.818)
5.775

(2.809)

HT

9.424
(0.794)
7.650

(1.872)
5.964

(2.589)
4.455

(2.520)
3.336

(2.605)
2.231

(1.966)

Note: Results are expressed in terms of mean importance level for the
first six positions in the classification path for orthodox and random at-
tribute selection. Corresponding standard deviations are parenthesized.
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Figure 2. Mean importance level for the first six positions in the classifiction path for orthodox and random
attribute selection in Experiment III. Points marked by triangles represent performance using HT, and points
marked by squares represent performance using the random selection procedure.

Table 7. ANOVA summary table for analysis of branching order in experiment III.

Source

Position
Condition
Position x Condition
Error
Total

SS

35681
52482
45439

404320
537922

df

5
1
5

63824
63835

MS

7442
51

9088
6

F

1174.82
8.03

1434.54

P

< 0.001
0.005

< 0.001

The results of this subsidiary analysis are entirely as expected. Thus, there is a very
strong tendency for the more important attributes to be branched on earlier when an or-
thodox measure of attribute selection is employed, but not when attributes are selected
randomly.

6. Conclusions

From an intuitive point of view, the conclusions drawn from each of the three experiments
are hardly surprising. It is only to be expected that an orthodox measure of attribute selec-
tion should outperform a random one in most situations. It is instructive to consider why
this should be so.



40 W.Z. LIU AND A.P. WHITE

The reason appears to lie in the nature of the tree-building process itself, including the
pruning phase. Clearly, it matters a great deal which attributes are selected for branching
on, near the root. Furthermore, the closer to the root the branching is taking place, the
more it matters. This is because of the problems of overfitting and the practice of pruning
used to counteract it. Pruning removes excessive branching (i.e., branching on noise, which
causes overfitting). However, the important point is this: The pruning technique used here
tends to remove the lower nodes on the classification path. To put things another way, pruning
starts at the terminal node and proceeds towards the root, until a significant class-attribute
association is encountered. At this point, pruning of the current branch is terminated. This
means that if there has been any branching on noise above this point, then it cannot be
undone by pruning. Consequently, any "noisy branching" near the root is locked in and
cannot be removed by the pruning process. This, in turn, can produce suboptimal perfor-
mance because of overfitting.

This line of argument suggests that, with most data sets, random attribute selection would
tend to produce decision trees with poorer classification performance than those constructed
using orthodox attribute selection measures. This is entirely in accordance with the find-
ings of Buntine and Niblett (1992) on a range of empirical data sets.

The remaining puzzle is how Mingers (1989a) managed to come to different conclusions
in his work, particularly since 3 of the 4 data sets that he employed were also used by
Buntine and Niblett in their investigations.

Of course, Mingers' results for the unpruned trees do not present a problem because,
in such a situation, all the available noise will be included in the tree and, for predictive
purposes, it does not matter where in a tree the noisy branching occurs. Mingers' results
for the pruned trees are more difficult to explain.

Now, Buntine and Niblett discuss this matter at length. Perhaps the most important point
that they make is that Mingers used the test set in the pruning phase to select the best pruned
tree. They explain why this is methodologically unsound, and it is unnecessary to repeat
their explanation here.

There is also something strange about the statistical analysis that Mingers applied to his
data. For 3 out of the 4 data sets that he used, the error rate on the pruned tree for random
attribute selection was, in fact, higher than for any of the orthodox measures. For example,
with the breast cancer data, the conventional measures yielded error rates of between 21.5%
and 25.4%, whereas the random measure produced an error rate of 27.5%. The failure
of these results to achieve statistical significance might well have been due to the use of
an inappropriate model for the ANOVA. Unfortunately, Mingers did not present ANOVA
summary tables for his analyses, nor does he quote degrees of freedom when he reports
F ratios. It is thus somewhat difficult to be sure exactly what he did do. However, Buntine
and Niblett state that Mingers performed his analysis of variance "on the matrix of error
averages". Mingers' paper does not actually say this, but the critical F values quoted are
certainly consistent with this approach having been taken. Such an approach is really not
the best way to analyze the data. A more sensitive analysis should have been performed
by employing a split-plot model, using the error rates for each data set (not the averages)
as the basic scores, just as was done for Experiment I reported in this article. This reflects
the fact that measures were varied within test sets, rather than between them (i.e., each
test set was tested using each of the measures, instead of an independent test set being
used each time).
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In conclusion, it should be clear that it is of great importance that the method used for
attribute selection should branch preferentially on those attributes that convey information
about class membership. An extension of the same argument requires that, at every stage
of the branching process, an optimal attribute selection measure should select the most
informative attribute on which to branch. Any other approach would, in the general case,
yield suboptimal results.

Notes

1. The idea of performing an additional analysis on branching order was suggested by an anonymous referee.
2. The idea of performing an additional analysis on branching order was suggested by an anonymous referee.
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