
Machine Learning, 21,235-267 (1995)
© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

An Integration of Rule Induction and Exemplar-Based Learning
for Graded Concepts

JIANPING ZHANG jianping@zhang.cs.usu.edu
Department of Computer Science, Utah State University, Logan, Utah 84322-4205

RYSZARD S. MICHALSKI michalski@aic.gmu.edu
Artificial Intelligence Center, George Mason University, Fairfax, VA 22030

Editor: John Grefenstette

Abstract. This paper presents a method for learning graded concepts. Our method uses a hybrid concept
representation that integrates numeric weights and thresholds with rules and combines rules with exemplars.
Concepts are learned by constructing general descriptions to represent common cases. These general descriptions
are in the form of decision rules with weights on conditions, interpreted by a similarity measure and numeric
thresholds. The exceptional cases are represented as exemplars. This method was implemented in the Flexible
Concept Learning System (FCLS) and tested on a variety of problems. The testing problems included practical
concepts, concepts with graded structures, and concepts that can be defined in the classic view. For comparison,
a decision tree learning system, an instance-based learning system, and the basic rule learning variant of FCLS
were tested on the same problems. The results have shown a statistically meaningful advantage of the proposed
method over others both in terms of classification accuracy and description simplicity on several problems.
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1. Introduction

In real world applications, many concepts are defined in an inherently imprecise manner.
Such concepts are referred to as flexible concepts (Michalski, 1990). The imprecision can
be due to undefined boundaries (as in prototype representations), boundaries defined only
within some range, graded boundaries (as in fuzzy sets), context-dependent boundaries,
or a combination of the above. This paper concentrates on the representation of flexible
concepts with graded boundaries or graded degrees of membership (Smith & Medin, 1981;
Barsalou, 1985). Such concepts are called graded concepts in the rest of this paper. The
basic ideas of our method have a direct link to the original work and existing papers on
flexible concepts (Michalski, 1990; Bergadano, Matwin, Michalski, & Zhang, 1992). This
paper presents a new approach and a significant extension of earlier ideas.

Examples of graded concepts are usually not all equivalent. They may be characterized
by a degree of typicality in representing the concepts, which can be viewed as the degree
to which an example shares the common concept properties (Rosch and Mervis, 1975).
Concept representations used in many learning systems, e.g. decision trees (Quinlan, 1986)
and logic-type representations such as decision rules (Michalski, 1983), are not appropriate
for describing these concepts. This is partly because they represent a concept through a
single symbolic description. Using such a single description makes it difficult to capture
the graded nature of a concept. This problem was well recognized by Michalski, Mozetic,
Hong, & Lavrac (1986) and Quinlan (1987). This paper presents a method for learning
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graded concepts. This method was implemented in the Flexible Concept Learning System
(FCLS).

FCLS employs a novel hybrid representation for describing graded concepts. The hy-
brid representation is a simple but powerful form of a two-tiered concept representation
(Michalski, 1987; 1990). This representation integrates weights and thresholds into rules
and combines rules with exemplars. Each rule consists of a conjunction of weighted con-
ditions and a threshold. A rule in FCLS is called a Weighted Threshold Rule, or WTR. The
conditions of a WTR explicitly describe the central tendency of a graded concept, while a
partial matching method and the threshold extend the WTR to describe less typical cases
of the concept. WTRs can be viewed as generalized exemplars that cover common cases of
a concept, whereas specific examples may be stored as exemplars to describe exceptions.
FCLS can estimate a concept member's degree of typicality. In general, our hybrid repre-
sentation consists of three elements: a symbolic element (conditions), a numeric element
(weights and thresholds), and an exemplar element.

The FCLS inductive learning algorithm generates a concept description as a set of WTRs
and/or a set of zero or more exemplars. It learns in batch mode. In the process of learning
it adjusts both the symbolic (conditions) and numeric (weights and thresholds) aspects of
the hybrid representation to achieve the best fit between a concept description and given
concept examples. It also adjusts the distribution between WTRs and exemplars.

The ideas in FCLS were developed from POSEIDON (Bergadano, et al., 1992), a system
that learns flexible concepts, and exemplar-based learning methods (Aha, Kibler, & Albert,
1991; Salzberg, 1991). Both FCLS and POSEIDON utilize two-tiered concept representa-
tions and perform partial matching. FCLS departs from POSEIDON in two aspects. First,
rules in POSEIDON do not have weights and thresholds, and its partial matching procedure
is predefined. In FCLS, each rule is associated with a set of weights and a threshold, and the
partial matching procedure is adjustable during learning. Second, learning in POSEIDON
is divided into two steps. The first step applies AQ15 (Michalski, et al., 1986) to generate
a complete and consistent concept description. The second step optimizes the complete
and consistent description generated in the first step by removing some of its components
(disjuncts or conjuncts). Thus, the final concept descriptions generated by POSEIDON
depend on the descriptions generated by AQ15. In FCLS, each time a rule is generated,
the rule is optimized by calculating weights of conditions and the threshold. Details and
experimental results of the comparison of these two approaches are discussed in Section 7.

Exemplar-based learning (Smith & Medin, 1980; Bareiss, 1989; Aha, et al., 1991;
Salzberg, 1991; Zhang, 1992) was proposed to learn graded concepts. FCLS can be viewed
as an extension of exemplar-based learning. First, a WTR actually is a generalized exemplar.
Second, specific exemplars may be stored as a part of a concept description.

FCLS was tested on a variety of problems. These problems included learning practical
concepts such as congressional voting and lymphatic cancer, graded concepts such as n-of-
m concepts, and concepts that are represented as DNF functions. To see how the method
compares with others, the decision tree learning system C4.5 (Quinlan, 1987), an instance-
based approach (Aha, et al., 1991), and an AQ-like rule learning system (Michalski, et
al., 1986; Clark & Niblett, 1989) were applied on the same problems. FCLS was also
empirically compared with POSEIDON and NGE, an exemplar-based learning method
(Salzberg, 1991). The results have shown a statistically significant advantage of FCLS
over the other methods both in terms of classification accuracy and description simplicity
in graded concepts. Improvements have also been achieved on real problems.
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2. Concept Representation

The hybrid concept representation used in FCLS consists of a set of decision rules, a set of
exemplars, and a similarity measure. Each decision rule is represented as a WTR, which
consists of both a symbolic and a numeric element. The symbolic element is a conjunction
of conditions that explicitly describes the central tendency of a graded concept. The numeric
element consists of a set of weights and a threshold. The weight of a condition reflects its
degree of necessity, while the threshold defines the boundary of the WTR. Exemplars are
specific examples. The similarity measure determines the similarity between an example
and a WTR (or an exemplar). The following subsections describe each of the components
in depth.

2.1. Weighted Threshold Rule (WTR)

A WTR is composed of a conjunction of conditions called a disjunct, a set of weights and
a threshold. A disjunct is represented as a VL1 complex (Michalski, 1983). Each complex
is a conjunction of selectors (conditions), each of which is a relational expression:

where A is an attribute, and V is a value or a disjunction of values from the domain of A.
Each condition is associated with a weight. Its value ranges from 0 to oo. A larger

weight means a more necessary condition. A condition with a 0 weight is irrelevant and
can be ignored, while a condition with a oo weight is a necessary condition. Any value
other than 0 and infinity reflects the relative necessity of the condition in comparison with
other conditions in the same WTR. For example, if the weights of all conditions of a WTR
are equal, then all conditions are equally important regardless of the value of these weights.
Weights are computed during learning.

In addition to weights, each WTR has a threshold that is a real number between 0 and 1
inclusive. A threshold defines the boundary of a WTR. An example is covered by a WTR
if its similarity to the WTR is larger than or equal to its threshold. When the threshold is
equal to 1, all the conditions of the WTR must be satisfied in order to match the WTR.
Thresholds are adjusted during learning.

2.2. Similarity Measure

The similarity measure determines the similarity between an example and a WTR (or an
exemplar). It maps an example and a WTR to a real value between 0 and 1. The similarity
of an example e and a WTR is defined as the inverse function of their distance normalized
by the largest possible distance between an example in the example space and the WTR.
Specifically, it is calculated as:
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where e 1 , . . . , en are all the examples in the example space. Distance (e, WTR) is a weighted
Manhattan distance between e and WTR:

where WTR_ci, is a condition of WTR, weight(WTR_ci) is the weight of the condition
WTR_ci, and Distance(e, WTR_ci) is the distance between e and WTR_ci. Conditions with
a oo weight are ignored when calculating Distance(e, WTR). Similarity(e, WTR) is set to
0 if there exists some oo weighted condition that is not satisfied by e.

The distance between an example and a condition depends on the type of the attribute
involved in the condition. An attribute can be either nominal or linear. A nominal condition
relates a nominal attribute to a single or an internal disjunction of values. This distance is
0 when the example's attribute value matches one of these values and is otherwise 1. A
linear condition relates a linear attribute to a range of values or an internal disjunction of
ranges (e.g., [height = 1... 3 v 6... 9]). A satisfied condition returns the value of distance
0. The distance between an example and an unsatisfied condition is the difference between
the example's attribute value and the nearest end-point of the interval of the condition,
normalized by the largest possible distance between the attribute values and the condition.
For example, if the domain of x is [0... 10], the value of x for the example e is 4, and the
condition c is [x = 7. . . 9], then Distance(e, c) = ^ = |.

We use a different similarity measure from the one used in AQ15 (Michalski, et al., 1986)
for two reasons. First, the measure in AQ15 does not calculate distances. Second, selectors
are not weighted in AQ15.

2.3. Exemplars

An exemplar is an example of the concept to be learned, and can be represented as a WTR.
The disjunct of the WTR is the example itself, and the threshold and weights are set to 1.
An exemplar can be partially matched (see Section 3).

2.4. Examples of the Hybrid Representation

To illustrate the idea of the hybrid representation, let us consider a simple imaginary concept
R-ball (Michalski, 1990). The meaning of the concept R-ball is defined as three disjuncts:

(SHAPE = round) & (BOUNCES = yes) or

(SHAPE = round) & (SIZE = medium v large) or

(BOUNCES = yes) & (SIZE = medium v large)

By using the hybrid representation, these three disjuncts merge into one WTR:

[SHAPE = round:!]

[BOUNCES = yes: 1]

[SIZE = medium v large: 1]

Threshold = ^ = 0.67
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The number following a condition is its weight. This WTR includes three conditions:

[SHAPE = round] & [BOUNCES = yes] & [SIZE = medium v large],

which represent the central tendency of the concept R-ball. Each condition is equally
important. The meaning defined by the WTR is that an object that satisfies any two or more
of the three conditions is a R-ball, otherwise it is not. Balls that satisfy all three conditions
are the typical ones, while those that only satisfy two of the three conditions are less typical.

Now suppose the meaning of the concept R-ball changes a bit and all R-balls must be
round. The new meaning of the concept is now defined by two disjuncts:

(SHAPE = round) & (BOUNCES = yes) or

(SHAPE = round) & (SIZE = medium v large)

These two disjuncts are combined into one WTR:

[SHAPE = round: oo]

[BOUNCES = yes: 1]

[SIZE = medium v large: 1]

Threshold = - = 0.5

In this WTR, the condition [SHAPE = round] is a necessary condition and must be satisfied
by all R-balls. The other two conditions are not necessary conditions; only one of them
must be satisfied.

Suppose that the attribute SIZE is linear and the order of its values is small, medium, and
large. The WTR representing R-ball becomes:

[SHAPE = round: 0]

[BOUNCES = yes: 1]

[SIZE = large:1]

Threshold = - = 0.25
4

An R-ball with a large size is more typical than an R-ball with a medium size. For example,
consider four R-balls: Rbl (round yes large), Rb2 (round yes medium), Rb3 (round yes
small), and Rb4 (round no medium). Their similarities to this WTR are:

so Rbl is more typical than Rb2, which is more typical than Rb3, which is more typical
than Rb4.
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Figure 1. An illustration of the hybrid concept representation.

Figure 1 graphically shows how a graded concept is described by this concept represen-
tation. In this figure, the area inside the irregular shape is the space covered by the graded
concept that is described by one WTR (the circle) and 6 exemplars (+). The rectangle inside
the circle is the disjunct of the WTR that describes the central tendency of the concept.

3. Partial Matching

A two-step partial matching method was implemented in FCLS to match an example with
a WTR. In the first step, an example is covered by a WTR if its similarity to the WTR is
not smaller than the WTR's threshold. The examples covered by no WTR are referred to
as no-match examples, while the examples covered by more than one WTR are referred
to as multiple-matched examples. The first step of the partial matching method fails to
classify no-match and multiple-matched examples. To classify no-match and multiple-
matched examples, the second step was proposed. In the second step, the classification
of a no-match or a multiple-matched example is determined by its relative similarity to
WTRs of all concept descriptions. An example is classified to a concept if its relative
similarity to one of the WTRs of the concept description is the largest among WTRs of all
concept descriptions. The relative similarity between a WTR and an example e is defined
as follows:

Relative_Similarity(e, WTR)

where WTR_t is WTR's threshold and covered(WTR) is the set of all examples covered
by WTR. When WTR_t = 1 and e is covered by WTR, e satisfies all WTR's conditions
so Relative_Similarity (e, WTR) = 1. The relative similarity of an example to a WTR that
covers it is between 0 and 1 inclusive. The relative similarity of an example to a WTR that
does not cover it is between 0 (exclusive) and -1 (inclusive). Therefore, a covered example
always has a larger relative similarity than an uncovered example.
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Another important reason for proposing the two-step partial matching method is that
exemplars can be partially matched. Because the threshold of an exemplar is 1, an exemplar
cannot be partially matched if only the first step is applied. When the second step is applied,
an exemplar can be partially matched.

4. The FCLS Learning Algorithm

The learning task of FCLS is to generate a concept description for each given concept
from a set of examples. Each concept description is a disjunction of WTRs and/or a set of
exemplars. This section describes the FCLS learning algorithm.

4.1. The FCLS Learning Algorithm

Table 1 shows the FCLS learning algorithm. The input of FCLS includes a set of exam-
ples with their concept memberships and a number of parameter values. The output is a
disjunction of WTRs and/or a set of exemplars for each given concept.

The parameter Max.-Err.Rate is the maximum error rate that a WTR (or a descrip-
tion) is allowed to have. The error rate of a WTR (or a description) is the ratio of the
number of negative examples covered to the total number of examples covered by the
WTR (or the description). The parameter Min-Coverage is the minimum fraction of all
positive examples that a WTR must cover. A Max-Err_Rate of 0 forces FCLS to pro-
duce consistent and complete descriptions. Max-Err_Rate is useful for tolerating noise.
Min-Coverage controls the distribution of a concept description between WTRs and exem-
plars. A larger value of Min-Coverage favors exemplars, while a smaller one favors WTRs.
When Min-Coverage = 0, no exemplar is generated and concept descriptions include only
generalized WTRs. When Min-Coverage = 1, the concept description includes only exem-
plars so that the learning algorithm becomes pure exemplar-based learning. The parameters
Beam-Width and Max-Tries are discussed in Sections 4.2 and 4.3, respectively. We now
define acceptable WTRs.

Table 1. The FCLS learning algorithm.

FCLS(Examples, Max-Err-Rate, Min-Coverage, Beam-Width, Max.Tries)
1 . Descriptions <- Empty
2. Repeat

2.1 Current-Concept <- Select-Current-Concept(Descriptions, Examples)
2.2 WTRS <- WTR-Generating(Current-Concept, Examples, Max-Err-Rate,

Min-Coverage, Beam-Width).
2.3 WTR <- WTR-Optimizing(Current-Concept, Examples, WTRS, Max-Err-Rate,

Min-Coverage, Max-Tries, Beam_ Width).
2.4 If WTR <> NULL then Descriptions <- Descriptions + WTR
Until Error-Rate(Descriptions) < Max-Err-Rate or WTR = NULL

3. While Error_Rate(Descriptions) > Max_Err_Rate
3. 1 Current-Concept <- Select-Current-Concept(Descriptions, Examples)
3.2 Descriptions <- Descriptions + Select-One-Exemplar(Current_Concept, Examples).

4. Return Descriptions



242 J. ZHANG AND R.S. MICHALSKI

A WTR is acceptable if:

(1) -£— > Min-Coverage and

(2) -j^ < Max-Err-Rate,

where p(n) is the number of positive (negative) training examples covered by the WTR,
and ptotal is the total number of positive training examples.

FCLS works in an iterative fashion. In each iteration the concept description with the
largest error omission is selected by the function Select_Current_Concept as the current
concept. The current concept is then generalized. Generalization in FCLS consists of two
iterative processes: WTR generation and exemplar selection. The WTR generation process
generates a disjunction of acceptable WTRs for each concept, while the exemplar selection
process selects a set of exemplars. Each iteration of the WTR generation process tries
to generate an acceptable WTR for the selected concept: Current-Concept. The function
Select-Current-Concept selects the concept with the largest error of omission (i.e., the
percentage of uncovered positive examples) as Current-Concept. The WTR generation
process is composed of two algorithms: WTR generating and WTR optimizing. The WTR
generating algorithm generates a set of WTRs with unitary weights and thresholds, and
performs neither weight learning nor threshold adjusting. The WTR optimizing algorithm
optimizes the WTRs generated by the WTR generating algorithm through learning weights
and adjusting thresholds. If an acceptable WTR is generated, then the WTR optimizing
algorithm returns it, and otherwise it returns NULL.

WTR generation is an iterative process that is repeated until either no acceptable WTR can
be generated or the error rate of the descriptions generated is not larger than Max_Err _Rate.
The error rate of descriptions is the fraction of all training examples that are not correctly
classified by the two-step partial matching method.

If the error rate of generated descriptions is larger than Max_Err_Rate, then FCLS selects
a set of exemplars to reduce the error rate. The algorithm for selecting exemplars is similar
to IB2 (Aha, et al., 1991). Each iteration of the exemplar selection algorithm selects an
incorrectly classified example as an exemplar of the selected concept Current-Concept, then
reclassifies all remaining incorrectly classified examples. This process is repeated until the
error rate is no longer larger than Max_Err_Rate.

4.2. The WTR Generating Algorithm

The WTR Generating algorithm first generates a set of most general disjuncts whose error
rate is not larger than Max_Err_Rate. These disjuncts are then converted to WTRs by setting
all weights and thresholds to 1. Table 2 summarizes the WTR generating algorithm.

This algorithm is similar to the AQ algorithm (Michalski, 1983) and performs a general-
to-specific beam search. The beam width is specified by Beam-Width. Current-Disjuncts
stores Beam-Width disjuncts that have the highest potential for improvement and is ini-
tialized to the most general disjunct, which covers the entire example space. During each
cycle, the error rate of each disjunct in Current-Disjuncts is tested. If the error rate of a dis-
junct is not higher than Max_Err_Rate, then the disjunct is added into Consistent-Disjuncts.
Otherwise, the disjunct is specialized by removing a value from one of its conditions. This
specialization is repeated for each condition of the disjunct. The value to be removed from
a condition is chosen to maximize the number of negative examples and minimize the num-
ber of positive examples excluded from the disjunct. This value is chosen by the function
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Table 2. The WTR generating algorithm.

WTR-Generating(Current_Concept, Examples, Max_Err_Rate, Min_Coverage, Beam_Width)
1. Current-Disjuncts <- {Most_General_Disjunct}
2. Consistent.Disjuncts <- empty.
3. Repeat

3.1 New_Disjuncts <- Empty
3.2 For each Disjunct in Current-Disjuncts

if error_rate(Disjunct) < Max.Err_Rate,
then Consistent_Disjuncts <- Consistent_Disjuncts + Disjunct
else For each condition [A = v \ - - - v n ] o f Disjunct, if n > 1 then

i. V <- Select_Value({vi «„}, Disjunct, Current_Concept, Examples)
ii. if V<>NULL

then Disjunct <- Remove V from [A = v1 • • • vn] of Disjunct
Disjunct_Potential_Quality (Disjunct)
New-Disjuncts <- New_Disjuncts + Disjunct

3.3 Current_Disjuncts <- Select_Best_Disjuncts(New-Disjuncts, Beam-Width)
Until Current_Disjuncts = empty

4. Consistent_Disjuncts <- Select_Best_Disjuncts(Consistent_Disjuncts, Beam-Width)
5. Return Convert_Disjuncts_To_WTRs(Consistent-Disjuncts)

Select-Value. If only one value is involved in a condition, then Select-Value returns NULL.
This iteration yields several new disjuncts, each of which covers fewer negative examples.
Each new disjunct is evaluated for its potential quality by the Disjunct Potential Qual-
ity Evaluation Function. Select-Best-Disjuncts selects Beam-Width new disjuncts with the
highest potential qualities and stores them in Current-Disjuncts. When Current-Disjuncts is
empty, the Beam-Width disjuncts with the highest potential quality in Consistent-Disjuncts
are converted to WTRs by setting their weights and thresholds to 1 and are returned.

The potential quality of a disjunct consists of two parts: current quality and potential
improvement. Current quality is computed based on the completeness and consistency of
a disjunct, while potential improvement is an estimate of how much improvement can be
achieved on the basis of the disjunct's current quality. A disjunct with a low current quality
is probably not worth being improved, even though it has a high potential improvement. A
disjunct with a low potential improvement has little chance for further improvement.

The current quality of a disjunct is computed based on the number of positive and negative
examples covered by the disjunct. The potential improvement of a disjunct is computed
based on the distribution of the covered positive examples and negative examples. Some
distributions make a disjunct much easier to be improved than the others. For example,
Fig. 2 shows two disjuncts DNT1 and DNT2 that cover the same number of positive and
negative examples; they have the same current quality. However, DNT1 is much easier to
improve than DNT2 because the positive examples covered by DNT2 are scattered, while
the positive examples covered by DNT1 are concentrated. A disjunct with dispersed covered
positive examples is hard to improve, so it has a low potential improvement. A disjunct with
concentrated covered positive examples can be easily specialized to a consistent disjunct,
so it has a high potential improvement.

The Disjunct Potential Quality evaluation function is defined as a product of two parts:
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Figure 1. Illustration of the difference between the quality and potential improvement of disjuncts: DNT1 and
DNT2 have the same quality, but DNT1 has a higher potential improvement than DNT2.

where d is the disjunct to be evaluated, p is the number of positive examples covered by
d, and ptotal is the total number of positive examples. Disjunct_Potential_Improvement(d)
includes two aspects: consistency and the distribution of the covered positive and negative
examples.

Assume that the disjunct d is represented as:

where A1 to An are all attributes. For each attribute Ai- (1 < i < n), its importance to d
Importance(Ai, d) is computed as follows:

where p_cvd(d) is the set of all positive examples covered by d, cvd(d) is the set of
all examples covered by d, and Eik is the set of all examples whose value of Ai is vik .

J^^Ql < Importance(Ai,-d) < 1. When qik = ^™ for * = 1,. . . . im, covered
positive and negative examples are equally distributed over all values of the attribute Ai.
Thus, Importance(A, d) takes the smallest value: 'fc^ff. When qik is either 1 or 0 for
k = I , . . . ,im, both covered positive and negative examples are highly concentrated so
Importance(Ai, d) = 1. In such a case, d can be specialized to a consistent disjunct by
removing all values of Ai with qik = 0.

Disjunct_Potential_Improvement(d) is defined as the probabilistic sum of Importance-
(A i ,d)for( l < i < m). The probabilistic sum of Importance(A1, d) and Importance(A2, d)
is defined as follows:

Disjunct_Potential _Improvement(d) = Importance(A1, d) + Importance(A2, d)

—Importance(A1, d) * Importance(A2, d)

One characteristic of the probabilistic sum is that if one of Importance(Ai, d) (1 < i < m)
is equal to 1, then Disjunct_Potential _Improvement(d) = 1.
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4.3. The WTR Optimizing Algorithm

The WTR optimizing algorithm optimizes WTRs by adjusting their weights and thresholds
to best fit training examples. The boundary of a WTR is defined by its threshold. Decreasing
the threshold increases the WTR's coverage. To decrease the threshold of a WTR without
increasing its error rate, the similarities of nearly covered negative examples must be re-
duced. A nearly covered example of a WTR is an example whose similarity to the WTR is
in the range of WTR_t (the threshold of WTR) and WTR.r - A. A is a function of all the
weights of WTR1. One way to reduce the similarities of nearly covered negative examples
is to specialize the disjunct of a WTR by removing some values of a condition. The value
chosen for specialization occurs on many nearly covered negative examples and few nearly
covered positive examples. Thus, a WTR is optimized by specializing its disjunct and
decreasing its threshold.

The WTR optimizing algorithm is similar to the WTR generating algorithm in that
it also performs a general-to-specific beam search. In this algorithm, the threshold is
decreased, while the disjunct is specialized. Thus, a WTR is often generalized although its
disjunct is specialized. Another major difference involves the different negative examples
that these two algorithms try to exclude. The WTR generating algorithm reduces the
number of covered negative examples, whereas the WTR optimizing algorithm reduces the
number of nearly covered negative examples. This difference is reflected in their different
potential quality evaluation functions and their methods for selecting values of a condition
for specialization. The potential quality of a disjunct is computed solely based on the
covered examples, while the potential quality of a WTR is computed based on covered
and nearly covered examples. In the WTR generating algorithm, the value of a condition
that occurs most frequently on covered negative examples and least frequently on covered
positive examples is selected for specialization, while in the WTR optimizing algorithm,
the value of a condition that occurs most frequently on nearly covered negative examples
and least frequently on nearly covered positive examples is selected for specialization.

After a threshold decreases, some nearly covered examples may become covered. There-
fore, a WTR with many nearly covered positive examples has a higher improvement potential
than a WTR with many nearly covered negative examples. In Fig. 3, the two circles are the
boundaries of two distinct WTRs, and examples (+ for positive and — for negative) inside
the boundary of each WTR are its covered examples, while examples outside and near the
boundary of each WTR are its nearly covered examples. WTR1 has a quality higher than
WTR2, because WTR1 covers no negative examples. However, WTR1 has little potential

Figure 3. Illustration of the potential improvement of a weighted threshold rule (WTR): WTR2 has a lower
quality than WTR 1, but a higher potential improvement.
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improvement, because all its nearly covered examples are negative examples. In contrast,
WTR2 has a lower quality, but a larger potential improvement.

The potential quality of a WTR is computed based on both covered and nearly covered
examples.

WTRpos (WTRneg) is the sum of C _Values (Coverage Values) of positive examples (negative
examples). The C_Value of a covered example is 1. The C-Value of a nearly covered
example ranges from 0.5 to 1, depending on the distance to the threshold. The closer to
the threshold it is, the higher its C_Value. WTRpos_covered (WTRneg_Covered) is the set of
all positive (negative) examples covered WTR. WTRpos_nearly-covered (WTRneg_nearly-covered)

is the set of all nearly covered positive (negative) examples. WTRcovered is all examples
covered and WTRnearly-covered are all examples nearly covered.

Table 3 shows the WTR optimizing algorithm. Current-WTRs is a list of length
BEAM-WIDTH of WTRs to be improved and is initialized to the WTRs generated by the
WTR generating algorithm. These initial WTRs are optimized by computing their weights
and thresholds. Best.WTR stores the WTR with the highest quality and is initialized to the
acceptable WTR with the highest quality in Current-WTRs.

As in most inductive learning systems, the quality of a WTR is evaluated based on its
completeness and consistency with regard to the training examples. Generally, one can
gain completeness at the expense of consistency, or one can gain consistency by sacrificing
completeness. They are two competing criteria. For this reason, the quality evaluation func-
tion is defined as the product of these two parts: normalized completeness and normalized
consistency.

Quality(WTR) = Normalized_Completeness(WTR) * Normalized_Consistency(WTR)

Normalized_Consistency (WTR)

Normalized_Completeness (WTR)

where ptotal represents the total number of positive examples, and p and n are the number
of positive and negative examples covered by WTR, respectively. When the completeness
of a WTR is not larger than Min_Coverage, the WTR is not acceptable. In such cases,
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Table 3. The WTR optimizing algorithm.

WTR-Optimizing(Current-Concept, Examples, Initial.WTRs, Max_Err_Rate,
Min-Coverage, Beam.Width, MAX-TRIES)

1. Current_WTRs <- Initial_WTRs
Best-WTR <- Empty

2. For each WTR in Current.WTRs
WTR <- Weight_Learning(WTR)
WTR <- Threshold _Adjusting(WTR)
if Acceptable(WTR) and (Best-WTR = Empty or Quality(WTR) > Quality(Best.WTR))
then Best_WTR <- WTR

3. Repeat
3.1. NEW.WTRs <- empty
3.2. For each WTR in Current_WTRs

For each condition [A = v1 . . . vn} of WTR, if n > 1 then
i. V <- Select-Value({v1 vn},WTR, Current-Concept, Examples)

ii. if V<>NULL
then WTR <- Remove V from [A = v1, . . . vn] of WTR

WTR <- Weight-Learning(WTR)
WTR <- Threshold-Adjusting(WTR)
WTR_Potential_Quality (WTR)
if Acceptable(WTR, Max_Err_Rate, Min_Coverage) and

Quality(WTR) > Quality(Best.WTR)
then Best-WTR <- WTR

No .Improvement <- 0
else No_Improvement <- No_Improvement + 1
New_WTRs <- New_WTRs + WTR

3.3. Current_WTRs <- Select-Best.WTRs(New_WTRs, Beam-Width)
Until No-Improvement > MAX-TRIES or Current_WTRs = empty

4. Return Best_WTR

Normalized_Completeness(WTR) = 0 and Quality(WTR) = 0. When the inconsistency of
a WTR is larger than or equal to Max_Err_Rate, the WTR is not acceptable. In such cases,
Normalized_Consistency(WTR) = 0 and Quality(WTR) = 0. This means that the quality
of an unacceptable WTR is equal to 0.

Like the WTR generating algorithm, this algorithm repeats the beam search until the
stop condition is satisfied. In each cycle of the loop, a set of new WTRs is generated.
Each newly generated WTR is evaluated by two functions: the Quality Evaluation Func-
tion and the WTR Potential Quality Evaluation Function. The acceptable WTR with the
highest quality replaces Best.WTR, if its quality is higher than or equal to Best_WTR's.
The Beam.Width new WTRs with the highest potential qualities are selected for further
improvement. MAX-TRIES is an integer parameter that controls the execution of the loop.
If Best_WTR has not been improved in MAX_TRIES steps, then the algorithm stops.

4.4, Weight Learning and Threshold Adjustment

In computing the weight of a condition, the algorithm counts the number of positive and
negative examples that do not match the condition. This weight learning algorithm is similar
to the one used in STAGGER (Schlimmer, 1987). Specifically, the weight of a condition c
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is calculated as:

where p(unmatched | NEG) and p(unmatched | POS) are the fraction of negative and
positive examples that do not match with the condition c. When c is satisfied by all positive
examples, p(unmatched | POS) = 0 so weight(c) = oo and c is necessary. When c is
satisfied by all negative examples, p(unmatched | NEG) = 0 so weight(c) = 0. This case
seldom occurs, because such a condition is rarely generated by the learning algorithm.
The fewer negative examples that satisfy c, the larger p(unmatched | NEG) and weight(c).
The more positive examples that satisfy c, the smaller p(unmatched | POS), therefore the
larger weight(c). When both p(unmatched | NEG) and p(unmatched | POS) are equal to
0, weight(c) is set to 1.

The decrease in a threshold is divided into a number of steps; the threshold is decreased
by a fixed quantity S in each step. After each decrease, the coverage of the WTR is checked
to see if it covers more examples. If not, its threshold is again decreased by S. This process
is repeated until the WTR covers more examples. Afterwards, the WTR is evaluated to
check if it has improved. If it has not improved in MAX_TRIES times, then the adjustment
of the threshold stops, and the threshold on which the WTR achieves the highest quality is
the threshold of the WTR. The quantity S decreased in each step for WTR is determined as
follows:

where e 1 , . . . , en are the training examples.

4.5. Time Complexity of FCLS

FCLS consists of two iterations: WTR generation and exemplar selection. WTR generation
is much more time consuming than exemplar selection, so we ignore the complexity of
exemplar selection. WTR generation repeats the WTR generating and the WTR optimizing
algorithms. Each iteration generates one WTR. The following subsections discuss the time
complexities for the WTR generating and WTR optimizing algorithms. Let n be the size
of the training set, a be the number of attributes, v be the maximum number of values of
an attribute, and b be Beam-Width.

4.5.1. Time Complexity of the WTR Generating Algorithm. Because each iteration of the
WTR generating algorithm removes a value from a condition of a disjunct, the maximum
number of iterations (the Repeat Loop in Step 3 in Table 2) is a • v. The For Loop in Step
3.2 in Table 2 repeats b times. The else part of Step 3.2 in Table 2 executes at most a times.
The time taken to select a value of an attribute for specialization (the function Select-Value)
is O(n • v), plus the time taken to evaluate the potential quality of the disjunct, which is
O(a-n-v). Finally the time taken to select b best disjuncts from b • a disjuncts (the function
Select-BestJDisjuncts) is O(a • b • log(a • b)). Therefore, the overall time for the WTR
generating algorithm is O(a3 • b • n • v2).
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4.5.2. Time Complexity of the WTR Optimizing Algorithm. Similar to the WTR gener-
ating algorithm, the maximum number of iterations of the WTR optimizing algorithm (the
Repeat Loop of Step 3 in Table 3) is a • v. The outside For Loop of Step 3.2 in Table 3
repeats b times and the inside For Loop of Step 3.2 executes at most a times. The time taken
to generate a WTR (3.2.i and 3.2.ii in Table 3) is the sum of the time taken to select a value
of an attribute for specialization, to evaluate the potential quality and quality of the WTR,
to calculate weights, and to adjust the threshold. The time to select a value of an attribute is
O(v • n). Both the time to evaluate the potential quality and the time to evaluate the quality
are O(a • n • v). The time for weight learning is O(a • n • v). Each time the threshold is
adjusted, the potential quality and quality of the WTR are reevaluated. The time to match
a WTR and an example is the time to calculate the distance between the example and the
WTR. Its time complexity is O(a). The distance between an example and the WTR is fixed
during threshold adjusting. Therefore, we can cache all distances between all examples
and the WTR, so that we do not have to measure the distances each time the threshold is
adjusted. The time for threshold adjusting is O(n). The time taken to select b best WTRs
from b • a WTRs is O(b • a • log(b • a)). Finally, the overall time for the WTR optimizing
algorithm is O(a3 • b • n • v2).

4.5.3. Summary. We now give the time complexity of the FCLS algorithm. The Repeat
Loop of Step 2 in Table 1 executes at most n times, because each WTR covers at least one
example that is not covered by other WTRs. Therefore, the time complexity of FCLS is
0(a 3 . b .n 2 . v2).

4.5.4. Comparison with CN2 and C4.5. When all attributes are binary, the time complex-
ity2 of CN2 is O(a3 • b • n2). For binary attributes, the overall time for FCLS is the same
as that of CN2. According to (Utgoff, 1989), the time for constructing a tree (no pruning)
is O(a2 • n + 2a) for binary attributes. The actual run time of FCLS is larger than C4.5 and
CN2. This is caused by the weight learning, threshold adjusting, distance measuring, and
evaluation functions.

5. An Example Illustrating the FCLS Algorithm

Consider again the concept R-ball used in Section 2.4. In addition to the three attributes:
SHAPE, BOUNCE and SIZE, an irrelevant attribute COLOR that takes the values white
and black is added to the problem. Each object in the domain is now described by four
attributes. Table 4 shows all training examples. Examples 1 to 6 are positive examples, and
examples 7 to 12 are negative examples.

In this example, weight learning is ignored. Beam-Width, Max_Err_Rate, and Min_Cover-
age are set to 1, 0 and 0 respectively. First, the FCLS algorithm calls the WTR generating
algorithm, which starts with the most general disjunct:

[SHAPE = round V square] [BOUNCE = yes V no]

[SIZE = large V medium v small] [COLOR = white v black]

For each of the four conditions, the WTR generating algorithm chooses one value to
remove and generates four more specific disjuncts. For example, it chooses the value
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Table 4. Positive and negative examples of the concept R-ball.

#

1
2
3
4
5
6
7
8
9

10
11
12

SHAPE

round
round
square
round
round
square
square
round
square
square
round
square

BOUNCE

yes
yes
yes
no
yes
yes
no
no
yes
no
no
yes

SIZE

large
small
medium
large
small
medium
small
small
small
large
small
small

COLOR

white
black
black
white
white
black
black
black
white
white
white
black

CLASS

positive
positive
positive
positive
positive
positive
negative
negative
negative
negative
negative
negative

square to remove for the first condition, because removing the value square excludes more
negative examples (7,9,10 and 12) and fewer positive examples (3 and 6) from the disjunct
than removing the value round. This yields the following four new disjuncts:

[SHAPE = round][BOUNCE = yes V no][SIZE = large V medium v small]

[COLOR = white v black]

Examples Covered: 1,2,4,5, 8, 11

[SHAPE = round V square][BOUNCE = yes][SIZE = large v medium v small]

[COLOR = white v black]

Examples Covered: 1,2, 3,5, 6,9, 12

[SHAPE = round V square] [BOUNCE = yes V no] [SIZE = large v medium]

[COLOR = white v black]

Examples Covered: 1,3,4, 6, 10

[SHAPE = round V square] [BOUNCE = yes V no] [SIZE = large v medium V small]

[COLOR = black]

Examples Covered: 2,3, 6,7, 8, 12

Assuming a beam width of one, one of the four disjuncts is selected based on its potential
quality for further improvement. For simplicity, we choose the most consistent disjunct:

[SHAPE = round V square] [BOUNCE = yes v no]

[SIZE = large v medium][COLOR = white v black]

This disjunct covers four positive examples and one negative example, and has higher
consistency than the other three disjuncts. Repeating the same process, the following four
new disjuncts are generated:

[SHAPE = round] [BOUNCE = yes v no] [SIZE = large v medium]

[COLOR = white V black]
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Examples Covered: i, 4

[SHAPE = round v square] [BOUNCE = yes] [SIZE = large v medium]

[COLOR = white V black]

Examples Covered: 1, 3, 6

[SHAPE = round v square] [BOUNCE = yes v no] [SIZE = medium]

[COLOR = white V black]

Examples Covered: 3,6

[SHAPE = round v square] [BOUNCE = yes v no] [SIZE = large v medium]

[COLOR = black]

Examples Covered: 3, 6

All of these four disjuncts cover no negative examples, but they cover different num-
bers of positive examples. The second disjunct, which covers the largest number of pos-
itive examples, is chosen as the output of the WTR generating algorithm. The following
disjunct:

[BOUNCE = yes][SIZE = large V medium]

Threshold = 1

serves as the initial WTR for the WTR optimizing algorithm. This initial WTR is first
optimized by decreasing its threshold. Table 5 shows the distances and similarities of all
examples to the above WTR. S, the quantity to decrease in the threshold, is 0.01. The
threshold adjustment algorithm continues to reduce the threshold by 0.01 until more exam-
ples are covered (i.e., Threshold = 0.5). The 0.5 threshold does not improve the quality of
the WTR, so the threshold remains 1.

The WTR optimizing algorithm optimizes this WTR by specializing its disjunct and
decreasing its threshold. The way to specialize its disjunct is the same as in the WTR
generating algorithm (i.e., by removing a value from a condition). Because no value can be
removed from the condition [BOUNCE = yes], only three new WTRs are generated. The

Table 5. Distances and similarities of examples to [BOUNCE = yes][SIZE = large v medium].

Examples

1
2
3
4
5
6
7
8
9
10
11
12

Distance

0
1
0
1
1
0
2
2
1
1
2
1

Similarity

1
0.5
1
0.5
0.5
1
0
0
0.5
0.5
0
0.5
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following WTR is the best one of the three new WTRs:

[SHAPE = round] [BOUNCE = yes] [SIZE = large v medium]

Threshold = 1

This WTR is then optimized by reducing its threshold. Finally, the following WTR is
returned.

[SHAPE = round] [BOUNCE = yes] [SIZE = large V medium]

Threshold = 0.67

This WTR covers all six positive examples, none of the negative examples and is the final
description for the concept R-ball.

6. Empirical Evaluation

To evaluate FCLS, a number of experiments were conducted on various problems with
FCLS, C4.5 (Quinlan, 1993), and IB3 (Aha, et al. 1991). Seven problems were used in
the evaluation. Three of them were designed to involve graded concepts so that FCLS was
expected to perform well on them. The remaining four problems were 11-multiplexor, 4-
term 3DNF, congressional voting records, and lymphatic cancer and used to test the FCLS's
applicability. In addition to the above experiments, some experiments were conducted to
evaluate the performance when exemplars were used in the hybrid representation and when
data contained noise.

6.1. Design of Experiments

In our experiments, we ran FCLS under three modes: learning DNF (DNF mode), learning
threshold rules (without weight learning, TR mode), and learning weighted threshold rules
(with weight learning, WTR mode). The algorithm for learning DNF is the WTR generating
algorithm described in Section 4.2. This algorithm generates a set of disjuncts as a concept
description, and it provides the performance baseline for TR and WTR modes. The TR
mode is the FCLS algorithm with only threshold adjusting but without weight learning. The
WTR mode is the FCLS algorithm with both threshold adjusting and weight learning. In
our experiments, we varied values of several parameters of C4.5 and the best results were
presented. We used rules generated by C4.5. C4.5 provides another performance baseline
for the FCLS method.

The performance was evaluated for two dependent variables: classification accuracy and
description complexity. Classification accuracy was measured as the percentage of correct
classifications made by the concept description on a set of test examples. The testing set
was either the entire space of examples or a set of randomly selected examples that were
not in the training set. Description complexity was measured by the numbers of rules (or
WTRs) and conditions involved in a description.

In all experiments, FCLS was run on training sets of various sizes. For each training set
size, FCLS was run on ten different randomly generated training sets. The final descriptions
produced from these ten runs were tested for accuracy on a set of test examples, and
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measured for complexity respectively. The results reported are the average of the ten
runs. Beam-Width was set to three for all experiments. Max-Tries was set to five. Both
Min.Coverage and Max_Err_Rate were set to 0 for the experiments reported in Sections
6.2, 6.3 and 6.4, so the descriptions generated by FCLS were complete and consistent. The
experimental results with varying values of Min_Coverage are reported in Section 6.5.

6.2. Experiments on Designed Problems

The experiments described in this subsection were performed on three specially designed
problems, called designed problem I to III. These problems were designed to test the novel
features in FCLS. All test sets included 1000 randomly selected examples and were disjoint
with all training sets.

Designed Problem I is an m-of-n concept and contains ten nominal attributes with four
values each: 0, 1,2, and 3. The target concept has the general form of "at least k of n
conditions are satisfied." Specifically, the concept is "if and only if any five or more of
the first seven attributes of an example have value 0 or 1, then the example belongs to the
concept." This description can be compactly represented by one WTR:

where the number following a ":" is the weight of the condition. In a DNF representation,
21 disjuncts are needed to represent the concept.

Designed Problem II consists of eight linear attributes each of which has four values: 0,
1, 2 and 3. The target concept is described by six conditions, two of which are twice as
important as the other four conditions. Specifically, the concept is expressed by one WTR:

This problem is more complicated than designed problem I because all attributes are linear
and the weights of all conditions are not equal.

Designed Problem III contains 15 binary attributes. The target concept can be described
by two WTRs, each of which consists of 6 conditions, two of which are twice as important
as the other four. The target concept is described by the disjunction of the following two
WTRs:

Tables 6, 7, and 8 show the detailed results of the experiments with the three designed
problems, respectively. Each table contains five columns: Training Set Size, Learning
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Table 6. Results from Designed Problem I.

Training set size

100

200

300

400

Learning method

C4.5
FCLS

C4.5
FCLS

C4.5
FCLS

C4.5
FCLS

RULE
DNF
TR
WTR
RULE
DNF
TR
WTR
RULE
DNF
TR
WTR
RULE
DNF
TR
WTR

Accuracy

74% ± 2%
78% ± 2%
89% ± 4%
91% ± 4%
76% ± 3%
80% ± 1%
99% ± 2%
98% ± 2%
79% ± 2%
82% ± 1%
99% ± 1%
99% ± 1%
78% ± 2%
84% ± 1%
99% ± 2%
98% ± 2%

#Rules

6.2 ± 0.7
8.0 ±0.5
3.5 ±0.7
2.7 ± 0.5
8.6± 1.1

12.5 ± 0.6
2.6 ± 0.7
2.8 ±0.7

10.9 ± 1.0
16.7 ± 1.3
2.6 ±0.8
2.4 ± 0.4

12.3 ± 1.1
20.9 ± 1.3

3.7 ± 1.9
3.4± 1.1

#Conds

8.9 ± 1.6
40.3 ± 4.5
23.6 ±4.3
20.2 ±2.1
14.8 ±3.0
74.8 ± 6.0
19.5 ± 6.5
21.5 ±4.9
20.8 ± 3.2

104.4 ± 10.9
19.4 ± 6.6
18.8 ±3.7
25.0 ±3.1

133.5 ± 11.1
29.1 ± 16.5
27.7 ± 10.1

Table 7. Results from Designed Problem II.

Training set size

100

200

400

Learning method

C4.5
FCLS

C4.5
FCLS

C4.5
FCLS

C4.5
FCLS

RULE
DNF
TR
WTR
RULE
DNF
TR
WTR
RULE
DNF
TR
WTR
RULE
DNF
TR
WTR

Accuracy

79% ± 1%
77% ± 2%
82% ± 2%
83% ± 2%
82% ± 2%
79% ± 2%
85% ± 1%
88% ± 2%
82% ± 1%
82% ± 2%
86% ± 2%
91% ± 1%
82% ± 1%
82% ± 1%
87% ± 1%
93% ± 2%

#Rules

4.1 ±0.8
9.2 ± 0.6
5.7 ±0.5
5.0 ± 0.4
5.5 ± 0.9

15.9 ±0.7
9.8 ± 1.1
7.8 ± 1.2
5.2 ± 1.0

20.8 ± 1.5
12.0 ± 1.4
9.0 ± 1.2
5.6 ± 0.5

26.3 ± 1.7
17.8 ±0.8
8.9 ±2.0

#Conds

9.5 ±2.4
46.3 ± 3.3
35.5 ± 3.9
32.3 ± 3.2
12.9 ±3.1
89.7 ± 5.3
62.7 ± 7.2
52.6 ±7.1
12.1 ±3.0

120.7 ± 9.6
87.4 ± 10.1
69.3 ±9.3
13.0 ±3.6

160.1 ± 11.6
122.4 ± 6.5
75.5 ± 12.8

Method, Accuracy, # rules, and #conds. Training Set Size is the size of a training set.
Accuracy is the percentage of correctly classified test examples. #rules and #conds are
the number of rules (WTRs) and conditions involved in concept descriptions generated,
respectively. All results are accompanied by a 95% confidence interval calculated using a
Student t-test.

In all three problems, significant improvements were achieved on both accuracy and
complexity by the TR and WTR modes over the DNF mode at all training set sizes. The TR
and WTR modes obtained significantly higher accuracies than C4.5. C4.5 generated fewer
rules and conditions than the TR and WTR modes in Designed Problems II and III. This is
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Table 8. Results from Designed Problem III.

Training set size

100

200

300

400

Learning method

C4.5
FCLS

C4.5
FCLS

C4.5
FCLS

C4.5
FCLS

RULE
DNF
TR
WTR
RULE
DNF
TR
WTR
RULE
DNF
TR
WTR
RULE
DNF
TR
WTR

Accuracy

80% ± 3%
79% ± 2%
82% ± 2%
85% ± 2%
80% ± 2%
81% ± 1%
84% ± 2%
86% ± 1%
82% ± 2%
83% ±1%
86% ± 2%
90% ± 2%
82% ± 2%
84% ±1%
87% ± 1%
92% ± 2%

#Rules

4.6 ± 0.8
13.5 ± 1.0
7.9 ± 0.7
6.1 ± .0
5.4 ± .3

22.9 ± 0.8
13.5 ± .1
10.1 ± .4
6.4 ± .2

28.6 ± .4
18.3 ± .5
13.2 ± 1 .5
5.8 ± .3

37.4 ± 2.3
23.6 ±1.6
15.5 ± 1.0

#Conds

9.9 ± 3.2
59.2 ±5.8
57.9 ± 5.3
50.7 ± 8.9
12.7 ±4.2

11 2.4 ±7.0
103.0 ±7.8
85.4 ± 10.1
16.5 ± 4.5

151.3 ± 10.5
140.7 ± 12.5
120.8 ± 13.7

13.8 ±3.8
210.5 ± 18.4
187.9± 18.0
144.6 ± 9.8

because C4.5 simplified the rules generated and allowed inconsistency and incompleteness
in rules. Rules generated in the TR and WTR modes were consistent and complete. The
majority of these rules cover only a small number of examples and may be removed without
significantly degrading accuracy. It is almost always true that the average number of
conditions in a rule generated by the TR or WTR mode is larger than the average number
of conditions in a rule generated by the DNF mode. This result is due to the fact that
a TR or WTR often contains a highly specialized disjunct. The results from Designed
Problem I show that the TR and WTR modes have very similar performances. This was
expected because all conditions of the target concept are equally important, and weights
play no role.

The WTR mode outperformed the TR mode in Designed Problem II and Designed Prob-
lem III. These improvements are due to the weight learning in the WTR mode. Conditions
of target concepts in these two problems are weighted differently. The TR mode does not
perform weight learning, so it fails to capture different weights of conditions. The accu-
racies in these two problems are not as high as those in Designed Problem I. This can be
explained as follows. In the WTR mode, weights are adjusted based on training examples.
It is almost impossible to learn the exact weights of target concepts, thus the descriptions
generated in these two problems are only approximations of the target concept descriptions.
Linear attributes in Designed Problem II and disjunction in Designed Problem HI increase
learning difficulty.

FCLS generated descriptions for both concepts, one for the positive concept and one
for the negative concept. In Designed Problems I and II, FCLS generated one WTR for
the positive concept in the most cases, but generated more than one WTR for the negative
concept. Most errors were introduced by the description of the negative concept. FCLS
needs to be improved so that it generates rules for positive examples only.

We claimed that FCLS can estimate the degree of typicality of members of concepts.
This claim is consistent with the experimental results that show a more typical example gets
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a higher relative similarity to the concept description. For instance, in our experiments,
the relative similarity of the example (0010001 103) in the Designed Problem I is 1,
while the relative similarity of the example (1 1 2 3 1 1 0 2 3 3) is 0.05. (0 0 1 0 0 0 1 1 0 3) is
a typical example, because its first seven values are either 0 or l. (112311023 3) is a
boundary example, because only five of its first seven values are either 0 or 1.

6.3. Experiments on 11-Multiplexor and 4-Term 3DNF

This section describes the experiments on the 11 -multiplexor and a 4-term 3DNF. The hybrid
representation has no advantage over logic representations in representing the concepts
involved in these two problems. Adversely, the hybrid representation complicates these
tasks because it necessitates searching a larger hypothesis space. During testing, the entire
event space was used as the test set in the 11-multiplexor problem, and 1000 testing events
were used for the 4-term 3DNF problems.

11-Multiplexor. The Multiplexor is a family of tasks in which an object consists of n
address bits and 2" data bits. An object belongs to the positive concept if the particular
data bit indicated by the address bits is on. A member of this family of tasks is named by
the total number of bits (number of address bits + number of data bits) involved. F11 has
three address bits and eight data bits. The size of the instance space is 2048. Each of the
two target concept descriptions (positive and negative) consists of eight disjuncts and 32
conjuncts.

4-Term 3DNF Boolean Function. A l-term kDNF boolean function (Pagallo and
Haussler, 1988) consists of 1 disjunctive terms of at most k conjuncts each. The 4-term
3DNF boolean function used in the experiments consists of four disjuncts, each of which
has exactly three conjuncts. No attribute is shared by two disjuncts, and the total number
of attributes in this problem is 16.

The results from these two problems are reported in Tables 9 and 10, respectively. In
the 11-multiplexor problem, the DNF mode performed better than the TR mode when the
training set size was 100. It achieved about the same performance as the TR mode when
the training set sizes were 200, 300 and 400. Both the DNF and the TR modes significantly
outperformed the WTR mode when the training set sizes were 100, 200 and 300. All three
modes performed at about the same level when the training set size was 400. The target
of 11-multiplexor is a DNF expression, so the DNF representation is the most appropriate
representation. The TR representation enforces less representational bias than the DNF
representation, while the WTR representation enforces less representational bias than the
TR representation. Therefore, more examples are needed for the WTR mode to converge
to the target concept than for the TR and DNF modes. C4.5 achieved higher accuracy than
the WTR mode, but lower than the DNF and TR modes. The results achieved by C4.5 were
similar to the results reported in (Quinlan, 1993).

As shown in Table 10, the accuracy of the WTR mode is worse than that of the DNF and
TR modes. Similar to 11-multiplexor, the TR mode achieved about the same accuracies as
the DNF mode when the training set sizes were 200, 300, and 400. Actually, the TR mode
obtained slightly higher accuracies than the DNF mode when the training set sizes were 300
and 400. In some trials, the DNF and TR modes generated exactly the same descriptions.
This interesting result shows that the TR mode succeeds in adjusting its representation for
a given problem, but the WTR mode does not.
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Table 9. Results from 1 1 -multiplexor.

Training set size

100

200

300

400

Learning method

C4.5
FCLS

C4.5
FCLS

C4.5
FCLS

C4.5
FCLS

RULE
DNF
TR
WTR
RULE
DNF
TR
WTR
RULE
DNF
TR
WTR
RULE
DNF
TR
WTR

Accuracy

67% ± 3%
77% ± 5%
69% ± 4%
71% ±2%
88% ± 4%
96% ± 2%
95% ± 2%
82% ± 3%
96% ± 4%
99% ± 1%
99% ± 1%
93% ± 2%

100% ± 0%
100% ± 0%
100% ± 0%
99% ± 1%

#Rules

12.4 ± 1.5
19.3 ±0.8
17.2 ±0.9
13.5 ±2.5
18.6 ± 1.3
20.9 ± 1.2
18.5 ± 1.5
23.9 ± 1.0
18.3 ±0.9
21.5 ± 1.2
22.0 ± 1.2
24.2 ± 1.9
16.8 ±0.7
20.8 ± 1.1
20.8 ± 1.2
21.5 ± 1.4

#Conds

42.9 ±6.1
93.4 ± 4.4

112.9 ±7.1
104.2 ±6.2
74.1 ± 6.0
91.7 ± 10.3

112.9 ±7.1
157.3 ± 10.9
74.6 ±4.1
95.8 ± 8.0
99.6 ± 8.3

143.1 ± 127
67.2 ± 0.7
90.8 ± 7.3
89.4 ± 6.5

112.4± 10.0

Table 10. Results from the 4-term 3DNF boolean function.

Training set size

100

200

300

400

Learning method

C4.5
FCLS

C4.5
FCLS

C4.5
FCLS

C4.5
FCLS

RULE
DNF
TR
WTR
RULE
DNF
TR
WTR
RULE
DNF
TR
WTR
RULE
DNF
TR
WTR

Accuracy

73% ± 4%
89% ± 4%
74% ± 3%
75% ± 2%
94% ± 6%
95% ± 1%
93% ± 3%
85% ± 2%
98% ± 1%
96% ± 1%
99% ± 1%
88% ± 2%

100% ± 0%
98% ± 1%

100% ± 0%
92% ± 1%

#Rules

9.7 ± 1.8
11.6 ±0.6
9.9 ± 1.3
9.3 ±1.0

10.6 ± 1.0
14.5 ± 0.4
14.5 ± 1.0
13.3 ±0.4
12.8 ±0.9
15.3 ± .3
15.3 ± .9
17.6 ± .0
15.5 ± .5
16.7 ± 1 .0
14.7 ±2.3
20.1 ±0.8

#Conds

29.9 ± 7.8
44.3 ± 3.5
78.7 ±9.2
75.9 ± 6.2
32.6 ± 1.9
59.0 ± 5.0

102.9 ± 8.7
103.5 ±2.3
40.3 ± 4.0
63.3 ± 8.0

111.5 ± 12.7
143.1 ± 10.6
51. 8 ±7.3
69.8 ± 6.0

107.4 ±21.6
160.0 ± 6.5

6.4. Experiments on Two Practical Problems

In addition to artificial domains, two practical domains, congressional voting records and
lymphatic cancer, were also used to test FCLS. The data regarding the U.S. Congressional
voting records were the same as the ones used by Lebowitz (1987) in his experiments
on conceptual clustering. The data represent the 1981 voting records of 100 selected
representatives, each of which is characterized by 19 attributes. The problem was to learn
descriptions discriminating between the voting records of Democrats and Republicans. Ten
training sets for each of the four training sizes (20, 40, 60, 80) were formed by randomly
drawing examples from the 100 examples. All test sets were the remaining examples. The
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Table 11. Results from the congressional voting records.

Training set size

20

40

60

80

Learning method

C4.5
FCLS

C4.5
FCLS

C4.5
FCLS

C4.5
FCLS

RULE
DNF
TR
WTR
RULE
DNF
TR
WTR
RULE
DNF
TR
WTR
RULE
DNF
TR
WTR

Accuracy

79% ± 2%
78% ± 5%
79% ± 3%
77% ± 3%
80% ± 3%
79% ± 4%
85% ± 3%
82% ± 5%
81% ±5%
81% ±4%
86% ± 4%
86% ± 3%
76% ± 6%
80% ± 5%
87% ± 2%
86% ± 4%

#Rules

2.9 ±0.6
2.7 ± 0.6
2.0 ± 0.0
2.4 ± 0.5
3.5 ±0.6
4.5 ± 1.0
2.3 ± 0.5
3.1 ± 0.8
3.7 ± 0.4
6.4 ± 0.6
3.2 ± 0.9
4.0 ± 0.5
3.4 ± 0.7
8.1 ± 1.0
4.1 ± 1.0
5.3 ± 0.6

#Conds

3.3 ± 0.9
7.6 ±3.2
7.5 ± 2.8
8.3 ± 3.4
5.0 ± 1.7

22.5 ± 5.4
17.4 ±4.6
19.2 ± 5.5
5.4 ± 0.9

36.8 ± 4.8
27.9 ± 5.9
33.0 ± 3.9
5.8± 1.6

52.0 ± 8.5
38.9 ±7.7
47.6 ±7.8

Table 12. Results of the lymphatic cancer.

Training set size

25

50

75

100

Learning method

C4.5
FCLS

C4.5
FCLS

C4.5
FCLS

C4.5
FCLS

RULE
DNF
TR
WTR
RULE
DNF
TR
WTR
RULE
DNF
TR
WTR
RULE
DNF
TR
WTR

Accuracy

70% ± 5%
71% ±5%
68% ± 5%
70% ± 6%
74% ± 4%
76% ± 3%
80% ± 3%
81% ±3%
76% ± 4%
79% ± 4%
83% ± 4%
82% ± 3%
78% ± 5%
82% ± 4%
86% ± 4%
82% ± 3%

#Rules

6.0 ± 1.1
6.0 ± 0.5
4.0 ± 0.0
4.8 ± 0.6
8.1 ± 1.5
7.9 ±0.8
5.3 ± 0.6
5.7 ±0.7
8.5 ± 1.4
9.3 ±0.6
6.9 ±0.6
6.9 ± 0.4

10.3 ±0.7
7.1 ± 0.7
7.0 ± 0.6

#Conds

10.0 ± 2.2
19.2 ±2.0
20.4 ± 3.5
18.6 ± 1.7
14.7 ±3.7
32.1 ±3.8
32.8 ±5.4
31.6 ±4.8
15. 8 ±3.6
45.2 ± 6.3
46.3 ± 3.4
46.9 ± 3.2
15.2 ± 3.0
55.0 ±3.8
54.9 ± 6.2
53.4 ± 6.2

results are reported in Table 11. Both the WTR and the TR modes significantly improved
the accuracy over the DNF mode at the training set sizes 20,40, and 60. The WTR and TR
modes performed similarly.

The lymphatic cancer data is characterized by 18 attributes and 4 diagnostic classes. Data
of 148 patients were available. 25, 50, 75, and 100 examples were randomly selected for
learning respectively, the remaining 48 examples were used as the test set. The results are
shown in Table 12. Both the WTR and TR methods attained higher accuracy except at the
size of 25. The description generated by the WTR and TR methods are simpler than the
DNF mode.
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Table 13. Results from the congressional voting records for varying values of MIN _COVERAGE.

MIN_COVERAGE

0.00

0.05

0.10

0.15

0.20

Learning method

TR
WTR
TR
WTR
TR
WTR
TR
WTR
TR
WTR
Exemplar-based

Accuracy

87% ± 2%
86% ± 4%
88% ± 4%
85% ± 3%
90% ± 3%
87% ± 4%
87% ± 5%
88% ± 4%
85% ± 4%
86% ± 6%
84% ± 7%

#Rule

4.1± 1.0
5.3± 0.6
4.0± 0.7
4.5± 0.6
3.4± 0.4
3.5± 0.5
2.8± 0.4
2.8± 0.3
2.5± 0.4
2.6± 0.0
0.0± 0.0

#Exemplar

0 ± 0
0 ± 0

1.0 ±0.4
1.0 ±0.7
1.7 ± .1
3.2 ± .3
2.9 ± .0
3.5 ± .0
3.2 ± .6
3.9 ± .3

17.0 ± .5

Table 14. Results of the lymphatic cancer for varying of MIN_COVERAGE.

MIN_COVERAGE

0.00

0.05

0.10

0.15

0.20

Learning method

TR
WTR
TR
WTR
TR
WTR
TR
WTR
TR
WTR
Exemplar-based

Accuracy

86% ± 4%
82% ± 3%
88% ± 3%
84% ± 4%
90% ± 4%
85% ± 5%
89% ± 3%
83% ± 4%
88% ± 2%
83% ± 4%
78% ± 4%

#Rule

7.1 ±0.7
7.0 ± 0.6
6.4 ± 0.5
6.6 ± 0.5
5.2 ±0.3
5.3 ±0.5
4.4 ± 0.4
4.5 ± 0.4
4.3 ± 0.4
4.2 ± 0.3
0.0 ± 0.0

#Exemplar

0 ± 0
0 ± 0

0.3 ± 0.4
0.8 ±0.8
4.0 ± 1.2
4.0 ± 1.7
5.8 ± 1.9
6.7 ± 2.5
6.3 ± 1.6
7.6 ± 2.9

26.8 ± 2.6

6.5. Experiments with Varying MIN_COVERAGE VALUES

We also conducted some preliminary experiments to evaluate the use of exemplars in FCLS
on these two practical problems. We ran FCLS in the TR and WTR modes with varying
values of the parameter MIN_COVERAGE. The larger the value of MIN_COVERAGE, the
more exemplars may be included in the final descriptions. Tables 13 and 14 show the results
from congressional voting records and lymphatic cancer, respectively. The results obtained
from these two problems are very similar. When some exemplars were included to replace
some small TRs or WTRs, the accuracies increased. After too many TRs or WTRs were
replaced by exemplars, the accuracies decreased. More experiments need to be conducted
to thoroughly evaluate the use of exemplars.

6.6. Experiments on Instance-Based Learning

Instance-based learning (IBL) algorithms are closely related to the FCLS algorithm and
are used to learn concepts with graded structures. The major difference between IBL and
FCLS is that FCLS generates generalized instances. This section discusses the experi-
ments conducted to empirically compare IBL with FCLS. IB3 (provided by D. Aha) was
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Table 15. Results of IB3, the TR mode, and the WTR mode.

Problem

DPI

DPII

DPIII

Training set
size

200
400
200
400
200
400

IB3
Accuracy

79% ± 1
80% ± 1
77% ± 3
79% ± 4
77% ± 2
78% ± 3

#ins

180 ±8
372 ± 10
160 ± 16
330 ± 26
151 ± 18
321 ± 33

TR

Accuracy

99% ±2
99% ± 2
85% ± I
87% ± 1
84% ± 2
87% ± 1

#Rules

3± 1
4 ± 2

10 ± 1
18± 1
14 ± 1
24 ±2

WTR

Accuracy

98% ± 2
98% ± 2
88% ±2
93% ± 1
86% ± 1
92% ± 2

#Rule

3± 1
3± 1
8± 1
9 ± 2

10 ± 1
16 ± 1

run on the three designed problems (DP I, DP II, and DP III) and the results are shown
in Table 15. We varied values of several important parameters (Suggested by Dr. Aha)
in these experiments and selected the best results. FCLS performed significantly better
than IB3 on all the three problems. The significant improvement achieved by FCLS is
partly due to the generalization. When a graded concept is highly disjunctive, IBL may
perform better than FCLS. For example, the least improvement achieved by FCLS on
these problems was on the Designed Problem III in which the concept is described by two
WTRs.

6.7. Experiments on Noisy Data

We have not yet addressed the issue of handling noisy data. FCLS can be extended to
be noise tolerant to some degree. First, the parameter Max_Err_Rate provides a means of
coping with noisy data. When Max_Err_Rate is larger than 0, the description generated by
FCLS is allowed to be inconsistent. That is, it can cover some noisy negative examples.
Second, exceptional cases in FCLS are represented as exemplars. Noisy examples are
similar to exceptional cases. Therefore when the data is noisy, we can turn off the exemplar
selection module so that.no exceptional cases are stored as exemplars. This is controlled by
the parameter Min_Coverage. This section describes the experiments conducted to evaluate
the noise handling ability of FCLS.

The problem used in these experiments was the Designed Problem I with 200 training
examples and 1000 test examples. We ran FCLS on the 200 training examples containing
different levels of noise with varying values of Max_Err_Rate and Min_Coverage. Noisy
data were generated by switching the class membership of randomly selected examples.
For simplicity, Max_Err_Rate and Min_Coverage were always set to the same value. It is
not necessary to set Max_Err_Rate and Min_Coverage to the same value. In fact, better
results may be obtained from other combinations of Max_Err_Rate and Min_Coverage
values. FCLS was run under the TR mode. For comparison, C4.5 and IB3 were also run on
the same data sets with different settings of parameters. Table 16 shows the experimental
results, where Acc represents accuracy.

The results were consistent with what we expected. Accuracy and simplicity of concept
descriptions decreased as the noise level increased. Accuracy increased as the values of the
two parameters increased. At the noise levels of 5% and 10%, accuracy began to drop when
Max_Err_Rate and Min_Coverage became too large. Simplicity of concept descriptions was
improved with increasing noise levels. One difficulty with this noise handling method is
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Table 16. Experimental results on noisy data.

Noise

level

0%

5%

10%

15%
20%

0.00

Acc%

99 ±2

8 I ± 2

76 ±2

7 1 ± 2
68 ±2

#Rules

3± 1

10 ±1

10 ± 1

15 ±1
16 ± 1

0.05

Acc%

89 ±3

83 ±2

78 ±3

73 ±3

#Rules

6± 1

9± 1

11± 1

12 ± 1

FCLS(TR mode)

0.10

Acc%

91 ±2

86 ±2

79 ±2
73 ±2

#Rules

4 ± 1

5± 1

7 ± l
8± 1

0.15
Acc%

87 ±3

88 ±2

82 ±5

77 ±3

#Rules

3 ± 1

3 ± 1
4± 1
5± 1

0.20

Acc%

87 ±3

86 ±2

85 ±2

80±4

#Rules

2 ± 0

3±0

2±0

3± 1

C4.5

Acc%

76 ±3

74 ±4

76 ±3

72 ±5
68 ±8

#Rules

9± 1

10 ±2

11 ± 1

12 ±2
2 4 ± 2

IB3
Acc%

79 ±

76 ±

76 ±

77 ±

76 ±

#ins

180 ± 8

13 ± 1

13 ± 1
13 ±2

13 ±2

the determination of Max_Err_Rate and Min_Coverage values. Generally speaking, higher
values are required for Max_Err_Rate and Min_Coverage for higher noise levels.

From Table 16, it can be observed that both C4.5 and IB3 are highly noise tolerant,
since their accuracies did not degrade much with noisier data. For noisy data, the highest
accuracy for IB 3 was obtained when the parameter storeall, which determines the number
of instances stored, was set to off. For nonnoisy data, IB3 achieved the highest accuracy
when storeall was set to on.

6.8. Summary

FCLS worked significantly better on graded concepts than other learning methods, such
as C4.5, IB3, and AQ-like methods. The WTR mode achieved accuracies higher than the
TR mode on concepts with weighted conditions, but the differences were not substantial.
The TR mode performed as well as the DNF mode and C4.5 on concepts such as DNF
and Multiplexor, when enough training examples were available. This occurred because
the TR mode can adjust its representation to adapt concepts to be learned. In contrast,
the WTR mode failed to adjust its representation, so that it did not perform well on these
classically defined concepts. Improvements were achieved if exemplars were added to the
hybrid representation. More experiments need be conducted in order to reach a conclusion.
Finally, the noise handling capabilities of FCLS have been empirically evaluated. The
results show that this method did improve the performance on a noisy domain, but the
problem of how to specify the values of those two parameters exists. The noise handling
method of FCLS needs to be improved.

7. Related Work

This section relates FCLS to some other works, which include Schlimmer's STAGGER
(1987), Bergadano, et al.'s POSEIDON (1992), Salzberg's NGE (1991), and Murphy and
Pazzani's GS (1991).

FCLS is similar to STAGGER in that they both utilize hybrid representations that combine
a numeric representation with a symbolic representation, and they both perform partial
matching to classify examples. In STAGGER, each pattern is associated with a pair of
weights that capture the relative importance of the pattern to the overall description of the
concept. Patterns can consist of Boolean functions of attribute values. Weights in FCLS
are associated only with conditions (attribute values) of a WTR and reflect the relative
importance of the conditions to the WTR. If a pattern in STAGGER is a boolean function
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of attribute values, then no weight is associated with the attribute values of the pattern. The
degree of match between an example and a concept description in STAGGER is measured
using a Bayesian approach, whereas it is evaluated by a distance measure and an adjustable
threshold in FCLS. When attributes are nominal, the difference between these two measures
is minor.

In addition to the differences of representations and matching procedures, the FCLS
learning algorithm differs from STAGGER'S. In STAGGER, the weights of the current
patterns are first computed from the training examples, and then are used to classify the
examples in an approach similar to a Bayesian classifier. If this does not work well, then new
patterns are constructed and the weights of these new patterns are computed. STAGGER
begins with a simple concept description and performs a search towards more complex
descriptions, which can take a great deal of time. FCLS instead uses a simpler general-to-
specific beam search that should allow it to learn many complex concepts more quickly.
STAGGER performs constructive induction and learns incrementally, while FCLS cannot.
In general, FCLS combines exemplar-based learning and rule learning, while STAGGER
combines a statistical learning approach and a rule-learning approach.

POSEIDON (Bergadano, et al., 1992) generates two-tiered concept descriptions. The
first tier, called Base Concept Representation, explicitly captures basic concept properties
and is created in two phases. In phase 1, AQ15 is used to induce a complete and consistent
concept description from supplied examples. In phase 2, this description is optimized by
removing some disjuncts and conjuncts. This optimization process is guided by a domain-
dependent quality criterion. The second tier, called Inferential Concept Interpretation (ICI),
characterizes allowable concept modifications and context dependency, and consists of a
procedure for partial matching and a set of inference rules. The partial matching procedure
is predefined and the inference rules are supplied by human experts based on the explanation
of exceptional cases (which are generated by the system).

In FCLS, a disjunct of a concept description is generated in one step by performing
a general-to-specific beam search. In the second phase of POSEIDON, a disjunct can
never be specialized. Therefore, if AQ15 generates some overgeneralized disjuncts, then
POSEIDON has no way to improve them. For this reason, POSEIDON cannot learn n-of-m
concepts. In POSEIDON, the partial matching procedure is predefined, while the partial
matching procedure in FCLS is adjustable during learning by modifying its weights and
the threshold. Moreover, FCLS's partial matching procedure is different among disjuncts.
FCLS does not include inference rules in its partial matching procedure. In general, FCLS
representation reduces the number of rules used to represent concepts. However, its rules
are more complex and the evaluation of rules is more complex. POSEIDON should be
applied when conceptual interpretation of concepts is important. FCLS should be applied
when a bias for graded behavior is useful.

POSEIDON was experimentally applied on two different problems: labor management
contracts and congressional voting data (Bergadano, et al., 1992). To empirically compare
FCLS with POSEIDON, FCLS was run on these two problems with the same training and
testing data. Table 17 shows the results which were the average of two runs. The training set
and test set of the labor contract data consisted of 27 and 30 examples, respectively. Both the
training set and test set of the congressional voting data included 50 examples. In Table 17,
#rules (#conds) is the number of disjuncts (conjuncts) involved in the descriptions generated.

POSEIDON achieved higher accuracy in the problem of labor management contracts,
while FCLS attained higher accuracy than POSEIDON in the problem of congressional
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Table 17. Results from two domains used in POSEIDON.

POSEIDON

FCLS
DNT
TR
WTR

Labor contract

Accuracy
90%

83%
85%
86%

#Rules
9

7
2
2

#Conds
12

19
13
13

Congressional voting

Accuracy
92%

89%
96%
93%

#Rules
10

5
2
3

#Conds
21

29
26
20

voting records. The higher accuracy achieved by POSEIDON in the problem of labor
management contracts is because it was given the ICI rules by a human expert. POSEI-
DON's descriptions included three rules provided by human experts. Without these rules,
POSEIDON'S accuracy was only 83%, which is lower than FCLS's. The major reason
for the higher accuracy obtained by FCLS is that FCLS can capture the graded structure
of concepts. In the domain of congressional voting records, most of the sixteen attributes
are relevant to distinguish republicans from democrats, but only some of the conditions
involved in these relevant attributes need to be satisfied in order to distinguish a republican
congressman from a democratic congressman. In other words, the target concept in this
problem is similar to an n-of-m concept and has a graded structure. In both problems (except
the WTR mode in Congressional Voting), FCLS generated only one WTR for each concept.

Salzberg (1991) described an exemplar-based learning approach called nested general-
ized exemplar (NGE) approach. There are several similarities between FCLS and NGE.
First, both algorithms allow examples to be generalized. Second, both algorithms combine
the uses of rules (generalized examples) with specific examples. Third, both algorithms dy-
namically adjust their distance functions by modifying the weights of attributes (conditions
in FCLS). FCLS and NGE also differ on several aspects. First, NGE uses a single set of
weights on its attributes, whereas FCLS learns a different weight for a condition depending
on which rule it is in. Second, each WTR in FCLS is associated with a threshold that
defines the boundary of the WTR, whereas each hyperrectangle in NGE is associated with
a weight that changes the boundary of the hyperrectangle. Third, the learning algorithms
of the two approaches are different. A hyperrectangle in NGE is generalized from specific
examples, whereas a WTR in FCLS is generated by performing a general-to-specific beam
search. NGE learns incrementally, whereas FCLS does not. NGE is strongly dependent
on the order of examples presented. Finally, FCLS can estimate the typicality of concept
members, but NGE cannot. In general, NGE was not designed for concepts with graded
structures, therefore it is not appropriate for tasks involving graded concepts. To empiri-
cally demonstrate this claim, we ran NGE (provided by D. Aha) on the designed problems I
and II. Aha (1995) helped us in running this experiment and we varied values of important
parameters of NGE. Table 18 shows the results. NGE stored more instances than FCLS
did; this result is due to the greater degree of generalization performed by FCLS. Because
of the generalization performed by NGE, it stored fewer instances than IB3. NGE achieved
about the same accuracy as IB3 on designed problem I, but much lower accuracy than IB3
on designed problem II.

GS was designed to learn m-of-n concepts. In GS, m-of-n concepts are learned by
creating new terms corresponding to m-of-n concepts during induction of decision trees.
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Table 18. Results of NGE, IB3, and the WTR mode.

Training set
Problem

DPI

DPII

size

200
400
200
400

NGE

Accuracy

78% ± 1
78% ± 1
59% ± 3
61% ±6

#Ins

10± 1
12±2
99 ±6

154 ±18

IB3

Accuracy

79% ± 1
80% ± 1
77% ± 3
79% ± 4

#Ins

180 ±8
372 ± 10
160 ± 16
330 ± 26

WTR

Accuracy

98% ±2
98% ± 2
88% ± 2
93% ± 1

#Rule

3± 1
3± 1
8± 1
9 ± 2

A m-of-n term is represented as a list of relevant attributes and their values and an in-
teger threshold. Each m-of-n term is generated by conducting a hill-climbing search.
Two operators are applied to generate new m-of-n hypotheses. The first one adds an
attribute-value pair to the relevant attribute list without increasing the threshold, and the
second one adds an attribute-value pair to the relevant attribute list and increases the
threshold by 1. The evaluation function of m-of-n hypotheses was not clearly given in
(Murphy & Pazzini, 1991). The m-of-n terms generated are embedded in a decision tree
as nodes, therefore GS can generate a disjunct of m-of-n terms as a concept descrip-
tion. GS and FCLS are similar in that both algorithms use a similar search method (beam
search in FCLS and hill-climbing search in GS) to generate a m-of-n terms. Also, simi-
lar operators (adding attribute-value pair and adjusting the threshold in GS and removing
attribute-value pair and adjusting the threshold) are used in search. The major differ-
ence between GS and FCLS is that the threshold in GS is an integer between 1 and n,
while the threshold in FCLS is a real value between 0 and 1. Because of this difference,
FCLS's representation is more powerful than that of GS and can represent different kind
of graded concepts. While FCLS can process numeric attributes, GS was designed for
use with only nominal attributes. GS does not have attribute weights, and it can only
learn standard n-of-m concepts. The advantage of GS over FCLS is its simpler learning
algorithm.

8. Conclusion and Future Work

The experiments presented in Section 6 demonstrate that FCLS can effectively learn con-
cepts with graded structures. This result is first attributed to the hybrid concept represen-
tation used in FCLS. The hybrid representation combines a symbolic representation with a
numeric one. The symbolic part of the representation is composed of rules, and the numer-
ical part consists of weights on conditions and thresholds of rules. Unlike NGE, weights
are assigned to conditions rather than attributes. That is, an attribute may have different
weights depending on conditions in a given rule. The central tendency or the basic principle
of a graded concept is explicitly described by the symbolic part, whereas the numerical part,
together with a similarity measure, extends the symbolic part to describe less typical cases
of graded concepts.

The hybrid representation can also be viewed as an extension of the exemplar-based
representation. First, a WTR can be considered as a generalized exemplar. Second, specific
exemplars may be stored as a part of a concept description to describe exceptions. Because
a WTR is often a highly generalized exemplar, concept descriptions represented by the
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hybrid representation are useful for understanding concepts, comparing different concepts,
identifying exceptions, and efficiently storing and using concept descriptions.

Although partial matching methods have been known for several decades, the two-step
partial matching method used in FCLS is novel. The first step is a partial matching between
an example and a WTR defined as a function of both their similarity and the WTR's
threshold. FCLS dynamically adjusts the first step partial matching through weight learning
and threshold adjustment. The second step measures the relative similarity between an
example and a WTR. The first step of the partial matching method decides the coverage
of a WTR, while the second step allows us to classify examples that do not match with
any WTR and examples that match more than one WTR. The experimental results show
that this two-step partial matching significantly improved classification accuracy in most
problems that we tested.

Concept descriptions represented in our hybrid representation capture typicality infor-
mation. An example with a larger relative similarity to a WTR is more typical than an
example with a smaller relative similarity to a WTR.

Another accomplishment is the development of a technique for generating concept
descriptions represented in the hybrid representation. This technique generates a concept
description by adjusting the distribution between the symbolic and numeric representa-
tions, and between the generalized descriptions and the exemplars to achieve the 'best'
performance for a given problem.

A number of problems need to be addressed in the future. The similarity measure in
FCLS only measures the syntactic similarity of an example to a concept description. An
interesting problem is to augment the current syntactic similarity measure with a knowledge-
based semantic similarity measure. The semantic similarity measure will include a set of
inference rules and defines the similarity between an example and a WTR based on the
semantics. An approach similar to those used in POSEIDON (Bergadano, et al., 1992) and
Protos (Bareiss, 1989) may be used as the augmented similarity measure.

Another related future research topic is constructive induction. In general, constructive
induction can produce descriptions that are easier to understand, and capture the salient
features of concepts. It would be useful to apply constructive induction to generate rules
that capture the principles of concepts.

One of the limitations of FCLS is that it cannot learn incrementally. Incremental learning
in FCLS involves not only generalizing and/or specializing current descriptions, but also
adjusting the distribution between the symbolic and numeric representation and the distri-
bution between the generalized descriptions and specific exemplars. When a new example
is not correctly classified by the current description, some WTRs need to be generalized or
specialized. For instance, if the new example is not covered by any WTR, then the weights
and thresholds of the WTRs that are close to the new example are adjusted so that the new
example can be covered by one of the WTRs. If the new example is still not covered after
the weights and thresholds of some WTRs are adjusted, then the new example is stored
as an exemplar. After a certain number of exemplars are accumulated, some new WTRs
may be generated. WTRs surrounded by exemplars need to be relearned. The problem of
incremental learning in FCLS merits further investigation.

Finally, the FCLS algorithm, especially the quality functions, is too complicated. We
believe that it can be simplified without significantly degrading its performance. Currently,
we are designing a simpler algorithm in which some of the features mentioned above are
being incorporated.
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Notes

1. For a detailed definition of nearly covered examples, see (Zhang, 1990).

2. Clark & Niblett (1989) reported that the time complexity of CN2 is O(a2 • b • n2). They claimed that the
overall time for a single specialization step is 0(a • b • n), but we think that it should be O(a2 • b • n) because
each step generates a • b new complexes, each of which needs to be evaluated and evaluation of each complex
takes time 0(a • n).
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