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Abstract. By its very nature, artificial intelligence is concerned with investigating topics that are ill-defined and
ill-understood. This paper describes two approaches to expanding a good but incomplete theory of a domain.
The first uses the domain theory as far as possible and fills in specific gaps in the reasoning process, generalizing
the suggested missing steps and adding them to the domain theory. The second takes existing operators of the
domain theory and applies perturbations to form new plausible operators for the theory. The specific domain
to which these techniques have been applied is high-school algebra problems. The domain theory is represented
as operators corresponding to algebraic manipulations, and the problem of expanding the domain theory becomes
one of discovering new algebraic operators. The general framework used is one of generate and test—generating
new operators for the domain and using tests to filter out unreasonable ones. The paper compares two algorithms,
INFER* and MALGEN, examining their performance on actual data collected in two Scottish schools and conclud-
ing with a critical discussion of the two methods.
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1. Introduction

Programming is frequently used by AI workers as a means of making a particular domain
theory more explicit. The investigator programs that part of the domain that he believes he
understands, and then contrasts the program's results on a predefined set of tasks with the
expected performance. A thorough analysis of the discrepancies between the actual and
anticipated performance (as well as the cases not covered) frequently helps the investigator
see where the domain theory needs refinement. If such a theory is insufficient to solve the
predefined tasks, it is said to be incomplete, and the theory needs to be extended. In the
context of instruction (the application domain for this paper), a domain theory is incomplete
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if it does not have a complete set of rules to cover all student errors. Thus a set of rules
that are only sufficient to solve tasks correctly still constitutes an incomplete theory, since
it will never cover an errant "solution."

We assume the use of the state-space paradigm for problem solving and theory representa-
tion. A domain theory is thus a set of operators, and if relevant operators are missing, the
domain theory is incomplete and some tasks will not be solvable.' In this paper, we address
the issue of having the system infer missing operators from the initial formulation of the
domain theory. We describe two systems that differ in their response to this issue. One
(INFER*) is used when operators are found to be missing during problem solving (when
the system fails to solve a task). The other (MALGEN) produces a (more) complete set
of operators before problem solving begins, expanding the initial domain theory before
attempting to solve a task.

The domain in which these issues are explored is the modeling of student solutions of
high-school algebra problems. An algebra equation is viewed as a state, and algebraic man-
ipulations, perhaps including incorrect manipulations, are operators that transform one state
(algebra problem) to another. The problem posed to the student is the initial state, and
the final answer given by the student is the goal state. The problem of modeling a student's
solution of an algebra problem thus becomes finding the sequence of operator applications
that transform the posed problem, the initial state, to the student's answer, the goal state.
Failure to model a student's solution demonstrates incompleteness in the domain theory,
signaling the need for the generation of new operators.

When viewed in the state-space paradigm, problem solving is the process of finding a
sequence of operator applications that transform an initial state into a goal state. The search
for such operators can be viewed in a generate and test framework, as depicted in Figure 1.
An operator proposer generates new operators; this generator may be constrained to limit
the types of operators it produces. The candidate operators generated by the proposer are
then tested by a static filter, which eliminates those that are not feasible. The set of new
operators that pass through the filter, together with the existing operators, are used by the
problem solver to solve future cases.2

This view of creating new operators does not constrain a priori the type of operators
generated. For example, the new operators could be macro-operators, generated by compos-
ing existing operators. Heuristics used in this combinatorially explosive search include Iba's
[1985] peak-to-peak heuristic. Often the number of macro-operators created is too large,
and one needs some filter mechanism, such as that in Minton's [1985] MORRIS, to decide
which should be retained. However, the present work focuses on the generation of missing
operators that expand a domain theory: the INFER* and MALGEN systems. Because the

Figure 1. Framework for discovering new domain operators.
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domain theory is viewed as operators in our framework, the task becomes one of implement-
ing operator proposers and appropriate filters to remove some of the wilder proposals.

In the following section, we review some related work on extending domain theories,
including earlier work in the area of student modeling. In Section 3, we describe PIXIE,
the student modeling system that acts as the performance system in our studies. Sections
4 and 5 describe INFER* and MALGEN, two systems that extend PIXIE's domain theory
for algebra to let it handle unexpected behavior. The following section evaluates the perfor-
mance of the two approaches, and Section 7 summarizes the main points of the work, and
discusses possible extensions.

2. Related work on extending domain theories

The use of domain expertise is central to many AI systems, and this has led to a variety
of techniques for dealing with incomplete domain knowledge. For instance, knowledge
engineering [Davis, 1979] involves querying the user for missing elements and interactively
debugging the knowledge base by running a series of examples. In contrast, nonmonotonic
reasoning works around missing information by using default rules [Reiter, 1980], circum-
scription [McCarthy, 1980], or default values [Minsky, 1975]. A third approach uses analogy
[Carbonell, 1986] to reason from past solutions, letting one solve new problems to which
domain knowledge cannot be directly applied.

However, this paper is concerned primarily with automated methods for acquiring domain
expertise. One such approach uses inductive learning methods to generate domain rules
from positive and negative instances, but most work in this area [for example Larson and
Michalski, 1977; Quinlan, 1986] has started with little or no domain knowledge. Our
approach differs in that it assumes one starts with a partial domain theory and extends
this to account for new observations. Below we review two classes of systems that have
taken this general approach.

2.1, Student modeling systems

When an intelligent tutoring system attempts to correct the errant behavior of a student,
it requires some representation of the student's current mastery of the domain. This is the
problem addressed by student modeling systems, forming models of the student's ability
based on the observed behavior of a student, which is usually in the form of student solutions
to a set of known tasks. These models are built out of primitives provided to the system,
and when they are insufficient to accurately model a student's behavior, the set of primitives
must be extended. This is the task addressed by this paper.

Langley and Ohlsson's [1984] ACM is an example of a student modeling system. It starts
with a set of operator-selection rules with overly general conditions. For each student the
conditions are refined, so that the operators which are selected at any time are consistent
with the student's behavior. This is done by exhaustively searching for a solution path that
gives the same solution as the particular student. ACM then uses those operators lying
on the path as positive instances of the various selection rules, and operators lying one
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step off the path as negative instances. The conditions on each rule are then refined using
an ID3-like algorithm [Quinlan, 1986]. Hence ACM is altering existing rules rather than
generating new ones.

VanLehn's [1987] SIERRA is a computational model that combines the essential aspects
of both his Repair and Step theories. Repair theory seeks to give an explanation for students'
ability to complete tasks, even when all the necessary procedures have not been learned;
VanLehn postulates the existence of domain-independent repairs. Step theory attempts to
explain how students learn incomplete rules when they are presented with correctly worked
examples. Like Sleeman [1984], he argues that the student infers incorrect or incomplete
rules from these worked examples. Further, he assumes that only one new subgoal is
presented to the student at any time, thus simplifying the learning task.

Notice that ACM and SIERRA have very different objectives. The former produces a
diagnostic model of an individual student's strategy, whereas the latter models the way
in which a student learns.

2.2. Failure-driven learning systems

If an AI system lacks essential knowledge, it will be unable to solve its task. At least two
learning systems have addressed this problem by using details of the system's failure to
determine the additional information necessary to solve the task. These systems thus use
failure-driven learning to extend their theories.

Hall's [1988] PA system works in the domain of digital circuit design. His precedent
analysis technique uses existing design rules to partially explain a given design, and proposes
a new rule that would allow the completion of the design. Hall uses a hill-climbing approach
for finding the smallest gap in completing a design, so that his technique need not address
the problem of multiple possible completions. (As discussed later, INFER* instead finds
all possible completions.) Hall also employs a rule reanalysis process to determine whether
rules learned earlier can be simplified in terms of rules learned later (cf. Section 7).

Wilkins' [1987] ODYSSEUS learning apprentice attempts to explain actions taken by a
domain expert using the knowledge of an existing expert system.3 When it cannot create an
explanation, the system forms new rules that will enable the underlying expert system to rep-
licate the action when acting on its own. Rules must take on one of a fixed number of forms,
and ODYSSEUS uses this knowledge to determine all explanations that could potentially
exist. The explanation missing only one piece of knowledge is taken as the correct one, with
an ordering on predicates determining which to select if there is more than one such explana-
tion. ODYSSEUS uses a confirmation theory as its filtering process that determines whether
the inferred rule is indeed correct and should be added to the knowledge of the expert system.

3. An overview of PIXIE

Before examining the INFER* and MALGEN systems in detail, we will describe in outline
the PIXIE student modeling system4 and the principal domain in which it has been used—
high-school algebra. The goal of PIXIE is to model a student's problem-solving ability
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Table 1. Typical student protocols: one correct (A) and two incorrect (B, C) protocols (student solution traces)
for the task 3X + 5 = 23.

A

3X + 5 = 23
i

3X = 23 - 5
1

3X = 18
i

V — 18/A —

3I

X = 6

B

3X + 5 = 23
i

3X = 23 + 5
I

3X = 28
1

X = 28/3

I
X = 91/3

C

3X + 5 = 23
I

8X = 23
i

x = 23/8
i

X = 2/8

and to provide appropriate remediation to improve the student's performance. Ideally, the
system will respond to a student's input in well under a second. However, the model gen-
eration phase is computationally expensive, and thus potential student models are created
during an off-line phase. When the student is interacting with the on-line system, the answer
provided by the student is simply compared against a precomputed answer list.

PIXIE represents its domain operators as rules, some of which may be incorrect operators
called mal-rules. The off-line sub-system generates a model space for each type of predefined
problem—using correct rules, previously encountered mal-rules, and other information about
the domain provided by the investigator. This set of rules can be viewed as PIXIE's domain
theory, and through the remainder of this paper, we will use the terms domain theory, domain
rules, and rule set interchangeably.

The main applications of PIXIE have focused on the domain of high-school algebra.
For example, Table 1 shows the solutions to the problem 3X + 5 = 23 for three different
students. Protocol A represents a correct solution; B is a solution in which the student moved
an integer to the other side of the equation without changing the sign; and C is a case
in which the student introduced a major error of combining an X-term with an integer.
PIXIE can only classify answers if the appropriate rules have been encoded for use in the
model generation phase. If the system lacks the appropriate rules, it is unable to produce
a model for the student.

In our earlier work we found mal-rules like those representing the errors above by carrying
out detailed clinical interviews—a very labor-intensive process. The mal-rules encountered
in this way include:

where

where

where

where m, n, p, and q are all integers, and where the first two mal-rules represent the errors
noted in B and C in Table 1.5 The objective of the systems described in the following sections
is to partially automate the process of discovering these missing rules.
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4. The INFER* system

The idea behind INFER* is that when a complete operator sequence from initial state to
goal state cannot be found, one should propose a rule that would fill the gap. The system
applies rules forward from the initial state, and backward from the student's answer, at-
tempting to connect each node generated in the forward direction with the closest node(s)
generated in the backward direction. It removes the assumption taken by its predecessor,
INFER (Sleeman, 1982), that missing rules always occur as a first step in the student's
solution path. As originally used, INFER applied reverse forms of rules to a student's answer,
until either a form similar to the initial problem was reached or no further rules could
be used, at which point its rule-inference step tried to form a rule to complete the missing
last step. As INFER* uses a bi-directional search, it generates a larger number of nodes.
For each pair of nodes generated in this space, it uses a rule-inference sub-algorithm to
see whether a viable mal-rule between the two nodes can be generated.

This process can be stated more formally: T-nodes (target nodes) are generated by ap-
plying forward operators to the initial task, whereas S-nodes (source nodes) are generated
by applying operators backwards from the student's answer. The S-nodes and T-nodes created
for a given initial state and goal state along with the connections between them is referred
to as the S-T graph. INFER* compares T-nodes with S-nodes, and calls the rule-inference
sub-algorithm to look for all possible connections between heuristically selected S-T pairs.
Figure 2 shows an abstract S-T graph.

4,1. An introductory example of the INFER* system

For ease of experimentation, the INFER* system includes a set of system parameters.
Specifically, it is possible to run the system either with or without the forward rule set.
In the absence of this rule set, INFER* generates a series of nodes by working backwards
from the student answer and then attempting to form new rules between those S-nodes
and the original target equation. In this mode, the algorithm behaves exactly as the older
INFER system (Sleeman, 1982). For the sake of clarity we will first discuss an initial run
of the system using this degenerate mode.

figure 2. A schematic S-T graph.
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Table 2. Using INFER* to learn a mal-rule given the task 3X + 5 = 6 and the pupil's response X = -2.

a)

b)

c)

d)

e)

X = -2
4

X=[-2-n] + [n]
I

X = 6 - 8
i

X + 8 = 6
i

3X + 5 = 6

BS1 [AddSub]

Instantiate to RHS of target equation

B[NtoRHS]

Rule-inference step

Table 2 shows a successful path created by INFER* for inferring a mal-rule cited earlier,
namely:

where

As can be seen from the table, this process involves four basic steps:

1. Using domain rules in the backward direction, to transform an equation to something
potentially closer to the initial problem. For example, B[NtoRHS], used between steps
C and D in Table 2, is the use of NtoRHS in the backward direction, where NtoRHS
is a rule that moves an integer from the left-hand side to the right-hand side of an equation
and changes its sign.

2. Using backward symbolic rules that replace a number in a state by a symbolic expression.
For example, between steps A and B, the -2 is replaced by [-2 - n] + [n]. In this
case the responsible rule is BS1 [AddSub], where AddSub is a forward rule used to add
or subtract two integers.

3. Using a series of heuristics to transform the symbolic expressions generated by backward
symbolic rules into numerical expressions. The heuristics select values based on the
numbers that actually occur on the left-hand and right-hand sides of the target equation.
The rule applied between steps B and C is an example of such a heuristic.

4. Attempting to create a rule to complete the path when none of the above actions succeed.
Such a rule is created between steps D and E in the table; we refer to this as the rule-
inference step.

The current system incorporates 12 heuristics and backward-symbolic rules. Table 3 presents
a selection of them.

These symbolic rules are necessary since there are an infinite number of integer pairs
that sum to any given integer, and a method is needed for selecting the most suitable pairs.
More generally, arithmetic operators can usually be applied in reverse in an infinite number
of ways, but only a limited number of them are reasonable. Instead of the rule applying
the reverse of an arithmetic operator to an integer i to get two numbers a and b, the reverse
application results in a symbolic form that must be instantiated with specific numbers, which
is left as a separate task. This latter task is performed by a heuristic rule, which is applied
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Table 3. Simplified versions of a selection of backward-symbolic rules. "Target" is short for the target equation,
such as 3X + 5 = 6 in Table 2, and eqn is short for the current equation, which in Table 2 is initially X = —2.

BSJ[AddSub]:
IF Ihs(eqn) * Ihs(target)

AND rhs(eqn) ^t rhs(target)
AND rhs(eqn) = i

THEN replace (i,[i - "n"] + ["n"]

BS2[AddSub]:
IF 1hs(eqn) = iX

AND contains(lhs(target),7'A: + kX)
THEN replace (i,([/ - "n"] + ["«"]))

BSl[Mult]:
IF Ihs(eqn) * 1hs(target)

AND rhs(eqn) * rhs(target)
AND rhs(eqn = i

THEN replaced',(i, x "n"]/["/i"])

to select the appropriate instantiation for n in a symbolic expression, such as — 2—n or
n, based on information in the target state (Step 3 above). The heuristic rules Instantiate
to RHS of target equation and Instantiate to LHS of target equation both select values for
n based on the numbers on one of the sides of the initial equation posed to the student.
Thus instead of an infinite number of integer pairs that satisfy the relationship a + b — i,
the set is usually reduced to only a few plausible pairs.

In addition, the conditions on BS1 [AddSub] and BS2[AddSub] result in selective appli-
cation of the backward rules so they are not applied to every integer in the state. These
rules should be contrasted with the Instantiate to RHS of target equation and Instantiate
to LHS of target equation heuristics.

Notice also that Table 2 only shows a successful path for inferring a new rule. In general,
several rules are satisfied by a particular state; for example, both BS1 [AddSub] and
BS1 [Mult] are satisfied by A. Also, a rule can be instantiated in several ways; for example
B[NtoRHS] can be used at C to move either the 6 or -8. Both factors can lead to con-
siderable search6 which INFER* organizes using a breadth-first search algorithm.

In the rule-inference step in Table 2 we saw that INFER* learns the mal-rule

where

However, as the algorithm notes which symbols have remained unchanged, it is possible
to infer that the substantive change is

where

Neves [1978] reports using a similar approach to deduce the essential features of rules
given the several steps of a solution culled from an algebra text. For the moment we
simply report the result of the rule-inference step; Section 4.3 gives some details of
its execution.
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Table 4. Part of the search tree working backwards from X = 8 to 5X + 3X = 24.

1

V 8A — 0

i

5X = 40
i

5X = 24 + 16
i

5X - 16 = 24

2

X = 8
i

3X = 24

3

X = 8
i

2X = 16
1

2X = 24 -8
i

2X + 8 = 24
i

X + X + 8 = 24
1

5X + 3X = 24

4

X = 8
1

3X = 24

5

X = 8
1

X = 24 - 16

i
X + 16 = 24

4.2. Using INFER* without a forward rule set

In general, a range of focusing heuristics are applicable and hence the algorithm usually
generates multiple mal-rules. Table 4 shows part of the search required for inference of
the mal-rule

or its more general form

string 1 string 1,
where

given the initial task of 5X + 3X = 24 and the student solution X = 8. The table shows
several paths, only one of which (path 3) is successful. In this example, the focus is on
the general nature of the heuristic used to transform the student's solution into the second
node on the respective paths, and hence the level of detail is less than those of earlier traces,
such as Table 2.

The first path starts by multiplying both sides of the equation by the coefficient of one
of the X-terms in the target equation (in this case 5). This fails when a form similar to
the target equation is reached and INFER* is unable to find a new rule for the final step.
Paths 2 and 4 are identical; however, the first results from multiplying both sides of the
equation by the other coefficient of the X-terms in the target equation (this time 3) and
the second results from multiplying both sides of the equation by the factor

right-hand side of target
right-hand side or student equation

Further progress halts on both paths for lack of an appropriate operator. Path 5 starts with
the combined applications of BS1 [AddSub] with Instantiate to RHS of target equation, but
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fails to find any rules for its final state.7 Finally, the third column shows the successful
path that starts by multiplying both sides of the equation by the number of X-terms in the
target equation.

4.3. Constraints on the rule inference step

The rule-inference algorithm forms a rule only if a numerical relationship can be found
between the coefficients of the target and current equations, that is, the T and S nodes.
As there are an infinite number of numerical relationships between any set of integers,
the initial search has been constrained such that:

1. each operand can occur at most once; and
2. the division of any two integers is rejected if the result is not an integer.

The first constraint can be relaxed so that operands may be used more than once, if no
relationships are found under the constraints. There is no restriction on the number of times
a particular operator may be used.

These constraints rule out a number of unlikely combinations. For instance, if one wished
to find all combinations of 3 and 4 that make 7, then one might consider

and so forth. However, the constraints given earlier would exclude all but the first combina-
tion, that is all the unreasonable ones. There are situations, though, where one may need
to relax these constraints considerably. For example, we have seen students solve tasks as

From interviewing students, we know that they worked the task — m X n as m X n — m.
To enable INFER* to discover this we would have to allow m to be used twice.8 Deciding
which constraints to use is a complex process that is based on considerable knowledge.
We hope to capture this expertise; the constraints listed earlier are a first pass. Some more
complex modes of the system are discussed in the next subsection.

4.4. Using INFER* with a forward rule set

The original INFER algorithm [Sleeman, 1982] assumed that the inference step is always
the first one in the student's solution path. As the student protocol in Table 5 illustrates,
this does not always hold; in such cases the INFER algorithm would be unable to determine
the unknown mal-rule. This was a major motivation for INFER* which uses all known
rules (both correct and incorrect) forward from the initial task, together with the backwards-
chaining approach discussed above.
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Table 5. Sample of a protocol with a mal-rule used at the fourth step of the solution (mX = n -> X = n - m).

20X = 3[2X + 5]
1

20X = 6X + 15
i

20X - 6X = 15
i

14X = 15
1

X = 1

Tables 6,7,8, and 9 show all the reconstructed protocols created by INFER* from the orig-
inal task 20X = 3(2X + 5), given the student's answer X = 1. In each protocol FORWARD
marks the states reached using forward operators from the initial task, and BACKWARD
marks the states reached using backward operators from the student's solution. In all four
protocols of Table 6, INFER* worked back from the student's answer X = 1 to 20X =
—1 + 21X; no rules were applied in the forward direction. The rule inference sub-algorithm
then created four mal-rules between the new node and the original equation 20X = 3(2X + 5).

Table 6. Protocols for inferring potential mal-rules for a problem 20X - 3(2X + 5), given the solution X =
1. No forward rules were applied.

FORWARD:
a)

BACKWARD:

FORWARD:
b)

BACKWARD:

FORWARD:
c)

BACKWARD:

FORWARD:
d)

BACKWARD:

20X = 3(2X + 5)
20X = (3/(2 - 5)) + (3 x (5 + 2))X
20X = -1 +21X
20X - 21X = -1
-IX = -1
X = 1

20X = 3(2X + 5)
20X = ( 2 ( 3 - 5)) + (3 x (5 + 2))X
20X = -1 +21X
20X - 21X = -1
-1X = -1
X = 1

20X = 3(2X + 5)
20X = (2 - 3) + (3 x (5 + 2))X
20X = -1 +21X
20X - 21X= -1
-1X = -1
X = 1

20X = 3(2X + 5)
20X = (5 - (2 x 3)) + (3 x (5 + 2))X
20X = -1 +21X
20X - 21X = -1
-1X = -1
X = 1

(Suggested inference step)

(Suggested inference step)

(Suggested inference step)

(Suggested inference step)
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This set of inferred rules suggested how the student might have transformed 20X = 3(2X
+ 5) into 20X = —1 + 21X. This can be written more generally as

where and either

In Table 7, the original task is expanded forward to 20X — 6X = 15 by means of two
correct domain rules and the backward rules transform the student solution to X + 14 =
15. The system finds a single relationship between these two nodes, resulting in a single
mal-rule. Tables 8 and 9 show the forward solution of the task being taken several steps
further and to mal-rules subsequently being inferred that are essentially the same as that
derived in Table 7. In this example, mal-rules cannot be formed for any other pair of S
and T nodes because there are no other combinations of the available numbers that can
be permuted to give 1.

Table 7. Protocol for inferring potential mal-rule for the problem 20X = 3(2X + 5), given the solution X = 1.
Two forward rules were applied in this case.

20X = 3(2X + 5)
20X = 6X + 15

FORWARD: 20X - 6X = 15
X + 20 - 6 - 15 (Suggested inference step)

BACKWARD: X + 14 = 15
X = 15 - 14
X = 1

Table 8. Protocol for inferring potential mal-rule for the problem 20X = 3(2X + 5), given the solution X = 1.
Three forward rules were applied here.

20X = 3(2X + 5)
20X = 6X + 15
20X - 6X = 15

FORWARD: 14X = 15
BACKWARD: X + 14 = 15 (Suggested inference step)

X = 15 - 14
X = 1

Table 9. Protocol for inferring potential mal-rule for the problem 20X = 3(2X + 5), given the solution X = 1.
In this run, four forward rules were applied.

20X = 3(2X + 5)
20X = 6X + 15
20X - 6X = 15
14X = 15
14x/14 = 15/14

FORWARD: X = 15/14
X - 15 - 14 (Suggested inference step)

BACKWARD: X = 1
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The technique of working in both directions and filling in gaps focuses the system's atten-
tion, and hence, in a sense, acts as a constrained generator. However, even this mechanism
has the potential for generating many new rules for each problem. Thus the method of
finding reasonable numerical relationships between states is used additionally to filter out
some implausible rules.

In the current system, all the remaining mal-rules are presented to the investigator, who
decides which are plausible and which are not. In the case of Table 6, the straightforward
criterion of simplicity of the mal-rule would have been sufficient to rule out the mal-rules
produced, but in general this may not be true. We view the formulation of a body of exper-
tise (constraints on rules or meta-knowledge) to reject potential mal-rules as an important
next step in this project; this topic is discussed in Section 7.

As noted elsewhere [Sleeman, 1987], individual student errors are unfortunately not always
stable. However, mal-rules that occur several times with either a single student or within
the population are given greater credence than ones that only occur once.

5. The MALGEN system

Earlier work in intelligent tutoring systems has demonstrated that incorrect problem-solving
performance can be represented as variations on correct behavior. Examples are Carr and
Goldstein's [1977] overlays, in which incorrect behavior is viewed as omitting parts of correct
behavior, as well as Sleeman and Smith's [1981] mal-rules and Brown and Burton's [1978]
procedural nets, in which correct performance is modified to represent incorrect behavior.
This is the approach MALGEN takes, attempting to form new problem-solving operators
that represent incorrect problem-solving performance by modifying existing operators.

The new operators are formed by performing simple perturbations on existing operators.
The perturbations themselves can be viewed as operators working in a space of possible
domain operators. New perturbation operators can be added and old ones can be removed
in much the same way that domain operators can be defined. Perturbations can be applied
to the newly generated operators, generating more operators, continuing the process as
long as desired.

5.7. Rule representation

To enable perturbations to be somewhat domain independent, MALGEN uses a robust
representation for problem-solving operators. An operator is represented as a rule with
four parts: a pattern, correctness conditions, actions, and a result. A state must match a
rule's pattern if the rule is to be considered for use on the given state. If the pattern matches
the state, the variables in the pattern are assigned values for use in the rest of the rule.
If the pattern matches the equation, correctness conditions are checked to determine if
this is the appropriate operator to apply. The actions carry out local computations that
generate the new state, and the result specifies the state to be returned after the actions
have been completed. The effort has been to make a robust representation that is capable
of handling varying domains in the same, consistent manner.
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Table 10. The rule ADD, an algebra operator that takes two numbers surrounding a " + " and correctly adds them.

ADD:
pattern:

the equation matches
(?STRING1 ?NUM1 + ?NUM2 ?STRING2)

where ?NUM1 and ?NUM2 are numbers
correctness conditions:

?STRING1 does not end with x, and
?STRING1 does not end with /, and
?STRING1 does not end with a -, and
?STRING2 does not start with x , and
?STRING2 does not start with /, and
7STRING2 does not start with a variable

actions:
?NUM3 «- ?NUM1 + ?NUM2

result:
(?STRING1 ?NUM3 ?STRING2)

To illustrate this representation, Table 10 presents the rule for ADD, an operator that
correctly adds two numbers. The rule is only relevant if two numbers in the state—the
algebra equation—can be added. Thus the pattern for ADD is that "?NUM1 + ?NUM2"
appears in the equation, where "?NUM1" and "?NUM2" are pattern-match variables that
must bind to numbers. ADD's correctness conditions check precedence relations to make
sure the rule is being applied in the correct situation, and its actions compute the actual
sum of the two numbers bound in the pattern. Finally, the result of ADD is the original
equation with some new "?NUM3" replacing "?NUM1 + ?NUM2", where "?NUM3"
was computed in the actions as the sum of "?NUM1" and "?NUM2".

As a further example, Table 11 presents the rule NtoRHS, which subtracts a number
from both sides of an equation, moving a number across the "=" and switching its sign.
The pattern for this rule checks if a ?7SIGN ?NUM" occurs on the left side of the "="

Table 11. Rule NtoRHS, an operator that moves a number across an equals sign and switches its sign.

NtoRHS:
pattern:

the equation matches
(?STRING1 ?SIGN ?NUM ?STRING2 = ?RHS)

where ?SIGN is + or -, and ?NUM is a number
correctness conditions:

?STRING1 has balanced parenthesis, and
7STRING1 does not end with x, and
?STRING1 does not end with a /, and
?STRING2 does not begin with x , and
?STRING2 does not begin with /, and
?STRING2 does not begin with a variable

actions:
?NEWSIGN <- switch sign of ?SIGN

result:
(7STRING1 ?STRING2 = ?RHS ?NEWSIGN ?NUM)
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in the equation, where "?SIGN" is a "+" or a "-", and "?NUM" is a number. In a similar
way, the rule's correctness conditions make sure it is correct to move the number across
the "=" sign. The variable "?SIGN" gets negated to "?NEWSIGN" in the actions, and
the new equation—the original equation with "?NEWSIGN ?NUM" appended to the right-
hand side and "?SIGN ?NUM" removed from the left-hand side of the equation—is returned.
The condition of any rule can be a full Boolean expression, with any combination of con-
junctions, disjunctions, and negations.

5.2. MALGEN's perturbations

As described in the previous subsection, operators are rules with four parts: pattern, correct-
ness conditions, actions, and result, with all but the first open to deviation by MALGEN.
Incorrect versions of correct operators will have the same pattern as the original operator
and differ in one or more of the other three parts. This section describes the perturbations
used by MALGEN.

MALGEN keeps a list of rules pending perturbation, and separately perturbs the correct-
ness conditions, the actions, and the result, each resulting in a new rule. The system checks
each of these newly-generated rules against the existing rules, and only retains those that
are distinct. Thus, if an incorrect operator can be generated in two different manners, only
one copy is saved, and if a perturbation results in a correct rule, MALGEN does not retain
the duplicate copy. New rules are placed at the end of the list of rules pending perturbation,
and the system stops when no further rules are pending.

5.2.1. Perturbing correctness conditions. Incorrect operators that differ in correctness con-
ditions cause the specified actions to occur at an incorrect time or place. For example,
an incorrect application of ADD might be to change "2 + 3 x 4" to "5 x 4", ignoring
precedence of arithmetic operators. Another example is "—2 + 3" to "—5", where the
minus sign is handled incorrectly. In both these examples a valid action is applied to an
incorrect state. The correct rule for ADD would check for these circumstances, and rules
representing the incorrect versions above would be similar to the correct ADD, but with
correctness conditions that deviate from the correct ones.

With this in mind, MALGEN first perturbs the correctness conditions for all rules by
negating them. If the conditions contain a disjunction "A 1 V A2 V.. .V An", where the
Ai are arbitrary Boolean expressions, it would be negated to give "~vl| A -i/A2 A.. .A
-An,". However, given a conjunction "A1 > A2 A.. .An !„", the negation mechanism
generates n new conditions, and hence n new incorrect rules, namely " -<A1 A A2 A . . . A
An". "A1 A -i/A2 A.. .A An",..., through "A1 A A2 A.. .A ->An", with each new rule
representing a different way the original rule can fail. Further, the negation mechanism
works recursively on each of the conjuncts, generating even more possibilities if there are
nested conjunctions. Table 10 shows a simplified version of ADD, the rule to add two
numbers, and Table 12 shows an incorrect version of this operator, generated by perturbing
the correctness conditions.9

Note that the mechanism of negating conditions has the same effect as removing con-
juncts. Both allow a perturbed rule to apply in the same situations as the original rule,
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Table 12. The rule M1ADD, which adds two numbers that should not be added, due to precedence of operators.
It is generated by perturbing the correctness conditions of the operator that adds numbers correctly .

M1ADD:
pattern:

the equation matches
(?STRING1 ?NUM1 + ?NUM2 ?STRING2)

where ?NUM1 and ?NUM2 are numbers
correctness conditions:

?STRING1 does not end with x, and
?STRING1 does not end with /, and
7STRING1 does not end with a -, and
?STRING2 does start with x , and
?STRING2 does not start with /, and
?STRING2 does not start with a variable

actions:
?NUM3 - ?NUM1 + ?NUM2

result:
(?STRING1 ?NUM3 ?STRING2)

and additionally in new situations in which the deleted conjunct would have caused the
original rule to fail. However, by negating the conjunct rather than removing it, the new
situations in which the rule would have failed are isolated and addressable independently.
As a result, the new rules created by perturbing the correctness conditions of a single rule
are mutually exclusive.

5.2.2. Perturbing actions. MALGEN incorporates three forms of action perturbations:
changing actions, changing arguments, and removing actions. The first of these uses a list
of primitive actions, each with a list of other primitive actions that can be used as
replacements in creating new rules. The replace perturbation of Table 14 gives a simplified
form of this perturbation operator. MALGEN then forms new rules by copying a rule and
switching all primitives to similar ones, one at a time. Changing arguments, the second
form of perturbation, simply takes existing actions and switches their arguments, as shown
in the switch arguments perturbation in the table. The last perturbation, removing actions,
takes primitives with one argument and replaces them with the IDENTITY primitive, one
whose value is just the argument itself. This is shown in a simplified form as the remove
perturbation in Table 14. For example, it would perturb the operator NtoRHS (Table 11)
to generate a new operator, MINtoRHS (Table 13), that moves a number across the "="
but neglects to switch its sign.

5.2.3. Perturbing results. Perturbation of results takes the general form of the returned answer
and modifies it slightly. The motivation for this technique comes directly from the observed
performance of high-school algebra students, who sometimes write the result incorrectly.
For example, some students transform the algebra problem 4x = 2 into x = 4/2. The final
switch perturbation rule of Table 14 switches the two arguments of a binary operation,
generating the domain rule just described.

Note that these perturbations differ from those involving actions, which create new
operators that represent miscalculations; here the perturbations create new operators that



EXTENDING DOMAIN THEORIES 27

Table 13. The rule MINtoRHS, which moves a number across the " = " sign like NtoRHS, but neglects to
switch its sign. It is generated by switching the negate action to the identity action.

MINtoRHS:
pattern:

the equation matches
(?STR1NG1 ?SIGN ?NUM ?STRING2 = ?RHS)

where ?SIGN is + or - , and ?NUM is a number
correctness conditions:

?STRING1 has balanced parenthesis, and
?STRING1 does not end with x, and
?STRING1 does not end with /, and
?STRING2 does not begin with x , and
?STRING2 does not begin with /, and
?STRING2 does not begin with a variable

actions:
?NEWSIGN «- ?SIGN

result:
(?STRING1 ?STRING2 = ?RHS ?NEWSIGN ?NUM)

Table 14. Perturbations to replace an action with a similar action, to switch the arguments of an action, to remove
an action, and to rewrite an equation with a binary operation incorrectly.

Replace:
IF

?ACTION is used in the actions, and
?ACTION2 is similar to ?ACTION

THEN
replace ?ACTION with ?ACTION2

Switch Arguments:
IF

?ACTION is used in the actions, and
?ACTION has two arguments, and
?ACTION is not commutative

THEN
switch the arguments of ?ACTION

Remove:
IF

?ACTION is used in the actions, and
?ACTION has only one argument

THEN
replace ?ACTION with the identity action

Switch
IF

the result matches
(?STRING1 ?OPERAND1 ?OP ?OPERAND2 ?STRING2)

and ?OP is binary
THEN

rewrite the result as
(?STRING1 ?OPERAND2 ?OP ?OPERAND1 ?STRING2)
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represent incorrect manipulations. Thus MALGEN could generate two operators, one that
would compute x = 2/4 and give the result x = 2 by calculating division incorrectly, and
another that would convert 4x = 2 to x = 4/2 by doing the algebraic manipulations incor-
rectly. Both will result in the same final answer, yet the underlying errors are substantially
different: one is an incorrect calculation, and the other is an incorrect manipulation.

5.3. Discussion of MALGEN

Algebra is a domain in which domain operators can be partitioned into groups of operators
that are similar. MALGEN formalizes this notion by using perturbation operators to specify
the differences between similar operators and to form new domain operators from existing
operators. The more general form of this approach is to apply transformations that form
plausible new domain operators from existing ones. MALGEN perturbs operators, but one
might codify other higher-level simularities as transformations and use them in the same
manner. As such, the problem is related to analogy, in which similarities between some
domain operators are codified in operators and then applied to new domain operators. It
also resembles Lenat's [1983] use of mutation operators in AM and EURISKO to explore
a space of concepts by modifying existing concepts.

MALGEN only uses "reasonable" perturbations, and so only reasonable operators are
produced. This makes MALGEN a constrained generator of new operators, when viewed
in terms of generate and test. Furthermore, when the system generates a new operator it
queries the user about whether to proceed further with that operator. Thus the user serves
as a filter for MALGEN. However, an automated filter would prove useful, especially if
the perturbations used were less reasonable, such as randomly deleting elements in operators,
since this would create a space too large for a user to filter. Generating many implausible
operators could pay off if it produced one new missing operator that would not otherwise
be discovered, and if the implausible operators generated could be filtered out automatically.

An early goal of this work, which has not been met, was to generate incorrect operators
when needed. When the modeling system that uses the domain rules failed to find a solution
path for a given problem, MALGEN was to suggest a new operator [Hirsh, 1985]. This
requires a means of generating new operators ordered by some measure of their value to the
modeling system. In one method that was considered, the strength of a perturbation operator
was updated when one of its results proved useful in the modeling system; new operators
would be created using perturbation operators of higher strength. Unfortunately, the domain
of perturbations proved more difficult to formalize than algebra, and the credit-assignment
problem was not as easy as it first appeared. This remains an area for future research.

6. Experimental assessment

INFER* and MALGEN have been used to automate the process of expanding incomplete
operator sets for high-school algebra. Prior to this work, a researcher would analyze proto-
cols that PIXIE was unable to model and suggest new operators that would allow a successful
explanation of the protocol. Thus, evaluation of INFER* and MALGEN requires comparing
their performance to that of the human they are meant to replace.
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Table 15. A breakdown of the unmodeled errors.

School

LL
PP

Tasks

58
25

Mai-rule

14.5
4

Copy

4
2

Arithmetic

20.5
9.5

Guess

19
4.5

Arith/Mal-rule

2
7

Total

60
27

6.1 Data and evaluation procedure

We collected data by using PIXIE with groups of 21 and 29 students from two different
schools, which we will refer to as LL and PP. The students from school LL were divided
into three subgroups: model-based remediation, reteaching, and control; those from school
PP were divided into subgroups for model-based remediation and reteaching. Sleeman [1987]
provides the details of such experiments. For the purposes of this paper we have analyzed
in detail PIXIE's response to the model-based remediation groups. For school LL, this
subgroup consisted of 8 students who were presented with 392 tasks; due to the reworking
of 4 tasks, 396 solutions were generated. Of these, 278 (70.20%) were worked correctly,
29 (7.32%) were not attempted, and 89 (22.47%) tasks were worked incorrectly. Of those
worked incorrectly, 31 (7.82 %) were modeled by PIXIE's current collection of mal-rules
and 58 tasks (14.64%) were unmodeled. In school PP, 15 students were in the model-based
remediation group; they were given 591 tasks, of which 3 were reworked, giving a total
of 594 solutions. Of these 536 (90.24%) were worked correctly, 4 (0.67%) were not at-
tempted, and 54 tasks (9.09%) were worked incorrectly. Of these 54, PIXIE modeled 29
(4.88%) and failed to model 25 (4.21%).

Table 15 shows the breakdown of the unmodeled errors for both the data sets. One inves-
tigator (Sleeman) suggested that for both the LL and PP sets, 2 errors were made on 2
items, thus making the number of errors occurring in sets LL and PP 60 and 27, respec-
tively. When the investigator was unable to decide whether the error was due to a mal-rule
or an arithmetic error, 0.5 was assigned to each class, hence the decimal entries in Table
15. A detailed look at the data shows that the investigator suggested the error might be
due to a mal-rule in 16 cases for the data from school LL and only 5 times for school
PP.10 The mal-rules and sign dropping (coded as Arith/Mal-rule) account for 30.0% (18/60)
and 44.4% (12/27) of the total errors for groups LL and PP, respectively.

For INFER* we simply need to determine whether, when given the student's answer
and the original task, the system proposes a set of mal-rules that include the one proposed
by the investigator. Since MALGEN does not take problems as input, its evaluation is based
on whether it would generate from an existing rule the mal-rule proposed by the investiga-
tor. Detailed examples will be taken from the data for school PP, shown in Table 16. This
table contains all the unmodeled errors for school PP which the investigator thought were
due to a mal-rule or a sign being dropped. Each row specifies a task, the answer given
by the student, and the analysis given by the investigator.

6.2. Experimental results for INFER*

Before giving the results of the experiments with INFER* we would like to highlight features
of the INFER* system that are relevant to experimentation. As noted earlier, one can run
the system in a variety of modes, including:
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Table 16. Mai-rules proposed by investigator for data from school PP.

Task

P3 2X + 3 = 8
P4 7X = 2(5X + 6)
P5 5X = 8(4X + 6)
P6 3X + 4 = 19
P7 5X = 2(3 - 2)
P8 2X = 3(2 + 3)
P9 IX = 2(5X + 6)
P10 6X = 10(9X + 5)
P15 6X = 10(9X + 5)
P19 6X = 10(9X + 5)

Student's
Answer

x= 3/2
X= 22/7
x = 48/7
X = 11/3

X = -2/5
x = %
X = 4

X = 50/84
X = 42/25

X = 50/84

Investigator's
Mai-rule

Arith: 8 - 3 -> 3, or Mai-rule: mX + n = p - > X = n/m
Mai-rule: 2(5X + 6) -> 10 + 12
Mai-rule: 5X - 32X -> 27X
Arith: 19 - 4 = 11, or Mai-rule: 3X + 4 = 19 -> 3X = 19 - 4 - 4
Arith: 6 - 4 = -2
Mai-rule: 3(2 + 3) -» 6X + 9 and Arith: 2X - 6X = 4X
Arith: 7X - 10X = 3X
Arith: 6X - 90X -» 84X
Mai-rule: 6X - 90X -» 84X and 42X = 25 - X = 42/25
Mai-rule: (-aX = b -> X = b/a)

• using only the backward rule set (cf INFER), or using both forward and backward rule sets;
• using complete rule sets with all previously encountered mal-rules, partial rule sets, or

only correct rules; and
• using operands only once or a prespecified number of times in an expression.

Experimentation was done using INFER* with three different rule sets: backward and correct
only, backward and forward with correct rules only, and complete backward and forward
(including all mal-rules discovered prior to the development of INFER*). In all cases
operands were used only once.

Table 17 presents detailed results for the shorter dataset, from school PP; later we give a
summary of analogous data for the larger dataset. Three statistics are given for each of the
three execution modes: the size of the search space generated, the number of mal-rules pro-
posed, and the number of spurious mal-rules created (those that were not substantially the
same as the investigator's mal-rule). Note that decisions about the equivalence of two mal-
rules is somewhat subjective. Further, the number of spurious rules also needs some explana-
tion: for most tasks several mal-rules are generated from several different parts of the graph.

Table 17. Performance of INFER* on data for school PP.

Backward and
Correct Rule Set

Task

P3
P4
P5
P6
P7
P8
P9

P10
P15
P19

Search
Space

14
13
12
14
5
4
43
12
48
12

#
Rules

0
1
0
0
3
0
5
0
0
0

#
Spur.

0
0
0
0
2
0
5
0
0
0

Both Directions:
Correct Rule Set

Search
Space

102
121
104
134
67
68

287
92
98
92

#
Rules

0
3
1
0
3
0
6
1
0
1

#
Spur.

0
0
0
0
2
0
5
0
0
0

Both Directions:
Complete Rule Set

Search
Space

5613
23928
23842
3842
2067
1879

42449
22190
22324
22190

#
Rules

11
9
5
14
7
6

57
2
1
2

#
Spur.

11
5
3
9
6
6

55
0
0
0
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In reality, there are many fewer distinct mal-rules; one could argue that the count should
focus on distinct classes of mal-rules. However, such a classification remains subjective;
Sleeman and Ellery (1988) give a complete listing of mal-rules inferred for the PP dataset.

Looking at the results of these experiments, the INFER* algorithm with only the back-
ward rule set generated two of the suggested twelve mal-rules, whereas the backward and
forward correct rule set generated six, and the complete backward and forward rule set
generated nine of the mal-rules. However, note the very considerable increase in the size
of the search spaces and the corresponding increase in the number of spurious mal-
rules produced.

The mal-rule for the first task (P3) in Table 16 is strange, as it involves using only some
of the coefficients in the original equation; this error could be alternatively explained
by an arithmetic slip. The other mal-rules that were missed were those in P8, where the
investigator suggested there were two mal-rules. Had INFER* been able to cope with
multiple missing rules, then both rules would have been found, as both mal-rules had been
found when they occurred singly. Note that the investigator also suggested two mal-rules
for task P15. With the complete rule set, one of the mal-rules inherent in P15 is already
encoded, and so only one remains to be found. (The other modes fail to find either of
these mal-rules.)

For the 10 tasks included in the tables, INFER* suggested 114 mal-rules when running
with the complete backward and forward rule sets. In addition to the tasks given in the
tables above, on 4 additional tasks the system proposed acceptable mal-rules where the
investigator originally proposed none. For example, with the backward and forward com-
plete rule set for tasks P14 and P17, INFER* proposed the protocols and mal-rules shown
in Table 18.

In summary, INFER* has produced acceptable mal-rules for all but tasks P3 and P8.
Had these new mal-rules been included in the rule base, PIXIE would have diagnosed a
further 8 of the previously undiagnosed tasks. Thus of the 54 tasks that students of school
PP worked incorrectly, 37 (as opposed to 29) or 6.23% would have been diagnosed and
17 (as opposed to 25) or 2.86% would have remained undiagnosed. This is a change of
just 1.35% when compared to all tasks worked, but it represents a 32.00% reduction in
the number of undiagnosed tasks, and moreover represents a 37/39 (94.87%) diagnosis of
tasks worked incorrectly because of mal-rules; the investigator suggested that 15 out of
the 54 errors were due to guessing, copying, or arithmetic errors.

Table 18. Mal-rules suggested by INFER* for tasks P14 and P1 7.

Task:

Problem:
Solution:
Proposed Protocol:

Proposed Mal-rules:

P14

4+6X = 22
X = 6
4 + 6X = 22
10x = 22
X = 11/5
X = 6

X = b/a->X = b - a

p17

7X = 5X + 17
X = 2
7X = 5X + 17
X + 1 = 5X + 17
X = 5X + 10
X = 10/5
X = 2

X = aX + b - X = b/a
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Table 19. Number of mal-rules diagnosed by PIXIE with new rule sets from INFER*.

LL
PP

original
rule set only

31/48 = 64.58%
29/39, = 74.35%

original plus
inferred from LL

45/48 =93.75%
34/39 = 87.18%

original plus
inferred from PP

33/48 = 68.75%
37/39 = 94.87%

original plus
both LL and PP

45/48 = 93.75%
37/39, =94.87%

For the more extensive dataset for school LL we will merely present a summary:

1. There were 16 mal-rules and 2 dropped signs noted by the investigator. For one task
2 mal-rules were deemed necessary, and in another a mal-rule and an arithmetic error
was required.

2. Of the 18 possible mal-rules, INFER* with the backward correct rule set inferred 7
mal-rules, with the backward and forward correct rule set it formed 13 mal-rules, and
with the complete backward and forward rule sets it formed 14 mal-rules.

3. One of the mal-rules not inferred involved using an operand twice (for 3X = 5 -+ X
= 8/5); the other two tasks involved multiple errors, in one case two mal-rules, in the
other a mal-rule and an arithmetic slip.

4. For 13 other tasks where the investigator had not suggested a mal-rule, INFER* proposed
mal-rules that were accepted as plausible by the investigator, as well as suggesting plausi-
ble alternative mal-rules for many of the other tasks.

If all the mal-rules produced by INFER* for the LL school been included in PIXIE's
rule-set when it was diagnosing the protocols from school PP, then a further 5 of the pre-
viously undiagnosed tasks would have been covered. This represents an increase of just
0.84% over all tasks worked, but it constitutes a 20% (5/25) reduction in the number of
undiagnosed tasks. Moreover, since we estimated that only 39 of the tasks could be attri-
buted to mal-rules (the others being copying errors, guesses, etc.), this represents a 87.18%
(34/39) diagnosis for errors involving mal-rules. Table 19 summarizes the diagnostic per-
formance of PIXIE with a variety of rule sets.

6.3. Experimental results for MALGEN

Unlike INFER* MALGEN can only form new rules that are similar to existing rules.
However, it generates all but four of the mal-rules from Table 16, failing to create the mal-
rules for P3, P4, P6, and the first of the two for P8. The reason for this is clear: the ones
missed are sufficiently far from an existing rule that they are outside of MALGEN's current
search space. For task P3 the mal-rule is not similar to any existing rule, and indeed drops
one of the operands. Similarly, P4 necessitates using 2 instead of 2 X 6, again dropping
an operand. In P6 and P8 additional terms are added, in one case by repeating an operand,
and in the other by adding an X. Such dropping and adding of terms is not included in
the perturbation set of MALGEN, and thus such mal-rules cannot be generated.

As noted earlier, the perturbations are merely a set of operators, and one could include
others for doing such addition and deletion of terms. However, such operators create much
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Table 20. Number of mal-rules diagnosed by PIXIE with the new rule set from MALGEN

LL
PP

original only

31/48 = 64.58%
29/39 = 74.35%

original plus rules
generated by MALGEN PP

40/48 = 83.33%
35/39 = 89.74%

larger search spaces and, as was the case for INFER* result in a more complex and costly
search. New perturbation operators would require the development of filters to rule out
most of the unreasonable proposed rules.

The situation with school LL is similar to that of school PP. In eight of the tasks, the
mal-rules proposed by the investigator could not be generated by MALGEN. In one case
this was due to the fact that an operand is used twice, and in the remaining seven cases
an operand, such as an X, is dropped. In all the other cases the necessary mal-rule is similar
to an existing rule or mal-rule, and can thus be generated by MALGEN. Table 20 shows
the improvement in diagnostic ability using the expanded rule set. Thus MALGEN, as
reported above, finds a high proportion of the missing mal-rules but does not do as well
as INFER* when it uses both forward and backward rules.

7. Conclusions

Further work on INFER* should focus on the processes of finding a gap for a given task
and creating a rule to fill such a gap. A better assessment of closeness between S-nodes
and T-nodes would help constrain generation of mal-rules. Another improvement would
use other techniques besides pattern matching—such as analogy—to determine whether
there is a connection between two nodes; this would let the system use additional domain-
specific knowledge.

From Table 16 it is clear that a previously undiscovered mal-rule can occur several times
in a data set, as in P9, P10, and P15. Thus INFER* would be more effective if, as soon
as it created a new mal-rule, all outstanding protocols were checked to see if they too could
be explained by the new mal-rule. The system would then only need to process those that
were still unexplained.

INFER* currently uses only the initial task and the student's answer. In some cases, the
system's performance could be greatly enhanced if it were also given intermediary steps
in the student's protocol; such information would greatly reduce the size of the search space.
For example, consider the protocol:
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Figure 3. A solution trace from the original task, T, to the solution, S, where the use of two unknown rules,
U1, and U2, leads to the formation of a composite rule.

It would be simple for INFER* to decide that the steps from 35X = 3 + 8X + 10 to the
student's answer were error-free, and merely to look for errors between the first two steps.

When INFER* determines a gap to which it should apply the rule-inference step, it gen-
erates only a single rule that covers the gap. This means that even when a combination
of rules would better explain a protocol, the inference step will only generate a single
composite rule. However, once discovered, a new rule can then be included in the forward
and backward rule sets, making INFER* progressively better at analyzing complex proto-
cols. Indeed, reanalyzing earlier protocols after later rule discoveries could let INFER*
decompose composite rules, as in Hall [1988]. To clarify this point, Figure 3 shows a solu-
tion path between the task, T, and the solution, S. In this case there are two unknown rules
in the path. Node names are given above the nodes, and rules that apply between nodes
are given under the link. INFER* works in both directions, back from S to node 7, and
forward from T to node 3, attempting to infer a new rule to cover the gap from node 3
to node 7 (which would include rules R4 and R10). However, if one of the unknown mal-
rules, say U1, is inferred from a later problem—that is, in another protocol in which it
is the only unknown rule—it should be possible to return to this protocol and infer U2,
since knowing U1 would let INFER* work forward from node T to node 6.

A further possibility for a static filter for INFER* is motivated by the development of
the half-order theory in Meta-DENDRAL [Buchanan & Feigenbaum, 1978]. A researcher
provided a set of constraints on which bonds in a molecule can and cannot break to Meta-
DENDRAL, and they were used to limit the possible cleavage rules generated. A similar
approach can be used more generally. We have formulated two components of such a half-
order theory for this domain. First, from our extensive observations of students' algebra,
we believe students do have a strong idea of the acceptable form of an algebra answer.
Thus, although we have seen many types of errors, we have never seen tasks of the form
mX = n changed to either X = n/ or X = /m. This suggests one possible type of filter,
formalizing the notion of well-formed equations. One difficulty in this approach is that
rules such as those implied above apply to the description of states rather than operators.
Before such a filter could be used, it is necessary to determine which operators have the
potential for creating a state that would fail the given condition. The second component
suggested by the two pairs of possible algebra rules proposed in section 4.4 is that of sim-
plicity. In both instances the new rule supported by (clinical) interviews was the simpler
of the two hypotheses. However, a consistent definition of simplicity can be difficult to
determine, and it may not always be appropriate. Thus, this approach to formalizing a static
filter requires inspection of new rules proposed by the generator, and needs criticism of
the rules by experts to suggest why certain rules are not acceptable. This knowledge then
needs to be captured and represented as constraints.

Although the techniques used in INFER* are quite general, certain portions of the system
could be made even more task independent. All the domain-specific information has been
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included in the knowledge base for the algebra domain. However, the algorithm that currently
seeks to establish a (semantic) relationship between elements of the T- and S-nodes looks
merely for a numerical relationship between the entities (that is, the coefficients). This
function is probably domain specific, and in general INFER* will need to establish different
types of relationships, such as the relationship between toenail and arm or the relationship
between chlorine and halogen (Chisholm & Sleeman, 1979).

Finally, an improvement in the efficiency of these systems can be achieved by segmenting
the rule set and only working with the relevant subset at any time.

This paper has demonstrated the use of several techniques to extend a domain's operator
set or theory. INFER* proposes new operators to bridge gaps during the reasoning process.
On the other hand, MALGEN proposes new operators by modifying existing operators,
using a set of perturbation rules. Although applications to date have focussed on algebra,
we believe these techniques are applicable in other domains. With other knowledge bases,
one might use MALGEN to generate an initial set of mal-rules and use INFER* to create
the more rarified, idiosyncratic ones not suggested by the former, as MALGEN is computa-
tionally less demanding than INFER*. We predict that these techniques will become increas-
ingly more important as knowledge bases in intelligent systems become larger and—virtually
by definition—more inconsistent and incomplete.
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Notes

1. This is not to say that the only form of incompleteness is missing operators. For example, a state description
language that lacks relevant attributes can also cause incomplete performance.

2. This framework is only part of a more general scheme that includes a dynamic filter, to filter possibilities
during problem solving, and filter compilation [Bennett & Dietterich, 1986], Iba [1989] uses a similar framework
in his work on macro-operator learning, and some of the terminology used here is taken from his paper.



36 D. SLEEMAN, H. HIRSH, I. ELLERY AND I.Y. KIM

3. ODYSSEUS has also been used as a student modeling mechanism that attempts to explain the behavior of
a student when compared to an existing expert system. Both applications of ODYSSEUS have been explored
in the domain of medicine.

4. See Sleeman [1983] for a detailed discussion of LMS, the precursor to PIXIE, and the underlying algorithm.
5. For a more complete list of mal-rules for the domain of high-school algebra, see Sleeman [1985],
6. Some of this branching could be avoided if the backward form of NtoRHS were made more sophisticated

by allowing it to access the target equation; that is, using a heuristic form that is applied selectively, c.f.,
BSl[AddSub].

7. INFER* will not create a state that is more complicated (that is, involves more terms or symbols) than the
target equation.

8. However, allowing 3 and 4 to be used twice to obtain 7 increases the number of possible combinations obtained
from one to ten.

9. The M preceding operator names is taken form Sleeman's [1983] method of prefixing incorrect mal-rules
with the letter M.

10. For the LL data, some 13 were unambiguous and 3 were ambiguous, hence a score in Table 15 of 14.5 (13
+ 3 x 0.5), corresponding to 16 potential mal-rules. For the PP data, 3 were unambiguous and 2 were ambig-
uous, hence a score in Table 15 of 4 (3 + 2 x 0.5), which corresponds to 5 potential mal-rules.
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