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Abstract. This article studies self-directed learning, a variant of the on-line (or incremental) learning model in
which the learner selects the presentation order for the instances. Alternatively, one can view this model as a
variation of learning with membership queries in which the learner is only "charged" for membership queries
for which it could not predict the outcome. We give tight bounds on the complexity of self-directed learning
for the concept classes of monomials, monotone DNF formulas, and axis-parallel rectangles in {0, 1, . . .,
n — l}d. These results demonstrate that the number of mistakes under self-directed learning can be surprisingly
small. We then show that learning complexity in the model of self-directed learning is less than that of all other
commonly studied on-line and query learning models. Next we explore the relationship between the complexity
of self-directed learning and the Vapnik-Chervonenkis (VC-)dimension. We show that, in general, the VC-dimension
and the self-directed learning complexity are incomparable. However, for some special cases, we show that the
VC-dimension gives a lower bound for the self-directed learning complexity. Finally, we explore a relationship
between Mitchell's version space algorithm and the existence of self-directed learning algorithms that make few
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1. Introduction

This article studies self-directed learning, a variant of the on-line (or incremental) learning
model in which the learner selects the presentation order for the instances. As in the stan-
dard on-line model, the learner answers a sequence of yes/no questions with immediate
feedback provided after each question. The learner strives to discover the correct classifica-
tion rule while making as few mistakes as possible. Clearly, the performance of the learner
depends on the order in which the questions are presented. Although typically the assumption
made is that an adversary selects the order of the questions, here we allow the learner
to select this order. Alternatively, one can view this model as a variation of learning with
membership queries in which the learner is only "charged" for membership queries for
which it could not predict the outcome. We apply this variant of the on-line learning model
to problems from the area of concept learning. That is, when the learner chooses the in-
stance sequence, how many incorrect predictions are made before the target concept is
uniquely specified?

This article is organized as follows. In the next section, we motivate the self-directed
learning model. In section 3, we give some preliminary definitions that set the framework
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for the self-directed learning model. Then in section 4 we formally describe the model
of self-directed learning (as originally defined by Goldman, Rivest, & Schapire, 1993).
In section 5, we briefly discuss some related work. In section 6, we give tight bounds on
the complexity of self-directed learning for the concept classes of monomials, monotone
DNF formulas, and axis-parallel rectangles in {0, 1, • • •, n — 1}d. These bounds
demonstrate that the number of mistakes can be surprisingly small. Then in section 7 we
prove that the model of self-directed learning is more powerful than all other commonly
used on-line and query learning models. In particular, we show that this model is more
powerful than all the models considered by Maass and Turan (1992). Next, in section 8,
we study the relationship between the optimal mistake bound under self-directed learning
and the Vapnik-Chervonenkis (VC-)dimension. We first show that the VC-dimension can
be arbitrarily larger than the complexity of self-directed learning. We then give a family
of concept classes for which the complexity of self-directed learning is larger than the VC-
dimension. Next we show that for concept classes of VC-dimension 1, the self-directed
learning complexity is 1. We also show that for any maximum1 class, the VC-dimension
provides a lower bound for the self-directed learning complexity. In section 9, we explore
a relationship between Mitchell's version-space algorithm (1982) and the existence of self-
directed learning algorithms that make few mistakes. Finally, in sections 10 and 11, we
consider some alternative models, summarize the results of this article, and suggest some
directions for future research, including a succinct combinatorial characterization of one
of our open problems.

2. Motivation

In this section, we explain why we feel the self-directed learning model is an interesting
one to study.

2.1. Example: the allergist

We begin by reviewing the allergist example from the original paper on self-directed learn-
ing (Goldman, Rivest, & Schapire, 1993).

Consider an allergist with a set of patients to be tested for a given set of allergens. Each
patient is either highly allergic, mildly allergic, or not allergic to any given allergen. The
allergist may use either an epicutaneous (scratch) test in which the patient is given a fairly
low dose of the allergen, or an intradermal (under the skin) test in which the patient is
given a larger dose of the allergen. The patient's reaction to the test is classified as strong
positive, weak positive, or negative. Figure 1 describes the reaction that occurs for each
combination of allergy level and dosage level. Finally, we assume a strong positive reac-
tion is extremely uncomfortable to the patient, but not dangerous.

What options does the allergist have in testing a patient for a given allergen? He could
just perform the intradermal test (option 0). Another option (option 1) is to perform an
epicutaneous test, and if it is not conclusive, then perform an intradermal test. (See figure
2 for decision trees describing these two testing options.) Which testing option is best?
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Figure 1. Summary of testing reactions for allergy testing example.

Figure 2. The testing options available to the allergist.

If the patient has no allergy or a mild allergy to the given allergen, then testing option
0 is best, since the patient need not return for the second test. However, if the patient is
highly allergic to the given allergen, then testing option 1 is best, since the patient does
not experience a bad reaction. Let us assume that the inconvenience of going to the allergist
twice is approximately the same as having a bad reaction. That is, the allergist has no
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preference for one sort of error over the other. While the allergist's final goal is to deter-
mine each patient's allergies, we consider the problem of learning the optimal testing op-
tion for each combination of patient and allergen.

The allergist interacts with the environment as follows. In each "trial," the allergist is
asked to predict the best testing option for a given patient/allergen pair. He is then told
the testing results, thus learning whether the patient is not allergic, mildly allergic, or highly
allergic to the given allergen. In other words, the allergist receives feedback as to the cor-
rect testing option.

Observe that to model this situation, we want an on-line model. There is no training
phase here; the allergist wants to predict the correct testing option for each patient/allergen
pair. How should we judge the performance of the learning algorithm? For each wrong
prediction made, a patient is inconvenienced with either making a second trip or having
a bad reaction. Since the learner wants to give all patients the best possible service, he
strives to minimize the number of incorrect predictions made. Thus we want to judge the
performance of the learning algorithm by the number of incorrect predictions made during
a learning session in which the learner must eventually test each patient for each allergen.

Since the allergist has no control over the target relation (i.e., the allergies of his pa-
tients), it makes sense to view the feedback as coming from an adversary. However, do
we really want an adversary to select the presentation order for the instances? It could be
that the allergist is working for a cosmetic company and, due to restrictions of the Food
and Drug Administration and the cosmetic company, the allergist is essentially told when
to test each person for each allergen. In this case, it is appropriate to have an adversary
select the presentation order. Typically, however, the allergist chooses the order in which
to perform the testing so that he can make the best predictions possible. In this case, we
want to allow the learner to select the presentation order.

Clearly, the model of self-directed learning is also appropriate for other similar testing
situations. The important features are a need to perform a set of tests, in which the out-
come of previously performed tests can be used to help select the best method for perform-
ing the remaining test. Furthermore, since all tests must eventually be performed, there
is no need to minimize the total number of queries (or tests) performed; rather, the goal
is to minimize the number of incorrectly predicted instances.

2.2. Self-directed learning as a variation of standard models

Another way to view the self-directed learning model is as a modification of the standard
model of learning with membership queries (as introduced by Angluin, 1988), in which
the learner aims to achieve exact identification using membership queries, except that in
our case the learner is only "charged" for a membership query if it incorrectly predicts
the classification. Thus, it is not at all surprising that the self-directed learning complexity
will always be less than or equal to the number of membership queries needed to obtain
exact identification. The interesting question is how much less the self-directed learning
complexity can be than the minimum number of membership queries needed for exact iden-
tification. While the self-directed learning model provides a measure of the minimum number
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of mistakes that the learner makes (versus a measure of the minimum number of queries
made), it is important to understand how this new learning model relates to the standard
on-line learning model and the various models of learning with queries.

We will consider this question right after providing a crisp formal definition of self-directed
learning.

3. Preliminary definitions

We now formally describe the on-line (or incremental) learning model. The basic goal
of the learner is to accurately predict whether each of a given set of objects (or instances)
is a positive or negative instance of the target concept. Let the instance space X denote
the set of instances to be classified, and let the concept class be C £ 2X. (Typically, X
and C are parameterized according to some size measure n. In this case, we will write
C = (Cn, Xn). For a concept c € C and instance x € X, c(x) denotes the classification of
c on instance x. That is, c(x) = 1 if and only if x € c. We say that AC is a positive instance
of c if c(x) = 1 and x is a negative instance of c if c(x) = 0. Finally, a hypothesis h for
C is a rule that given any x € X outputs in polynomial time a prediction for c(x).

We are now ready to define the absolute mistake-bound variant of the on-line learning
model (Haussler, Littlestone, & Warmuth, 1988; Littlestone, 1988). An on-line algorithm
(or incremental algorithm) for C is an algorithm that runs under the following scenario.2

A learning session consists of a set of trials. In each trial, an adversary3 presents the learner
with an unlabeled instance x € X. The learner uses its current hypothesis to predict whether
x is a positive or negative instance of the target concept c* € C, and then the learner is
told the correct classification of x. If the prediction is incorrect, the learner has made a
mistake. The goal of the learner is to minimize the number of mistakes made over the learn-
ing session.

We now define the Vapnik-Chervonenkis dimension (Vapnik & Chervonenkis, 1971).
Let X be any instance space, and let C be a concept class over X. A finite set Y <= X is
shattered by C if {cDY | c € C} = 2Y. In other words, Y c X is shattered by C if for
each subset Y' cr Y, there is a concept c € C that contains all of Y', but none of the in-
stances in Y — Y'. The Vapnik-Chervonenkis dimension of C, denoted vcD(C), is defined
to be the smallest d for which no set of d + 1 points is shattered by C. Blumer et al.
(1989) have shown that this combinatorial measure of a concept class characterizes the
number of examples required for learning any concept in the class under the distribution-
free or PAC model of Valiant (1984).

Related to the VC-dimension are the notions of maximal and maximum concept classes
(Floyd, 1989; Weizl, 1987). A concept classis maximal if adding any concept to the class
increases the VC-dimension of the class. Define
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If C is a concept class of VC-dimension d on a finite set X with |X| = m, then the car-
dinality of C is at most $Jim) (Sauer, 1972; Vapnik & Chervonenkis, 1971). A concept
class C over X is maximum if for every finite subset Y £ X, the class C, when restricted
to be a class over Y, contains $d(|y|) concepts.

Finally, we describe membership and equivalence queries as originally defined by Angluin
(1988).

• A membership query is a call to an oracle that on input x for any x € X classifies x as
either a positive or negative instance according to the target concept c* € C.

• An equivalence query is a call to an oracle that on input c € C either replies that the
target concept c* is equivalent to c or provides an instance x € X such that c and c*
classify x differently. That is, the oracle either replies that the conjectured concept is
correct or provides a counterexample to it.

• A generalized equivalence query is just like an equivalence query except that the conjec-
tured hypothesis can be any element of 2X.

4. The self-directed learning model

An important contribution of the on-line learning model is that it applies to problems in
which the learner must predict the classification of unseen instances. Sometimes this learn-
ing model appropriately captures the interaction between the learner and its environment;
yet as indicated by the allergist example, sometimes it does not. In studying the problem
of learning binary relations, Goldman, Rivest, and Schapire (1993) introduced the model
of self-directed learning, in which the learner selects the order in which the instances are
presented to the learner.

The focus of this article is studying this learning model when applied to the standard
problems of concept learning. That is, we shall apply the model of self-directed learning
to some commonly studied concept classes and compare this learning model to other on-
line and query learning models that have been studied.

The self-directed learning model is defined as follows. Note that these definitions only
apply to finite instance spaces (and, of course, to countable sequences of finite instance
spaces). We define a query sequence to be a permutation IT = (x1, x2, . . . , x\x\) of the
instance space X, where x, is the instance the learner will predict at the tth trial. The learner
may build its query sequence in an on-line manner. Namely, for the tth trial, xt may be
selected by any polynomial time algorithm that takes as input the set of labeled examples
obtained in the first t — 1 trials. Note that by the definition of a query sequence, x, must
be an instance that the learner has not yet considered. Furthermore, if, after the comple-
tion of the tth trial, the learner knows with certainty the classification of all instances from
X that have not yet been queried (i.e., jc,+1, . . . , x\x\), then we say the learning session
is completed. The mistake bound for learning concept c with a given self-directed learning
algorithm is the number of incorrect predictions made during the learning session. In other
words, it is the number of incorrect predictions that are made by the self-directed learning
algorithm until the point at which the target concept is uniquely specified. For any nonempty
concept class C and any self-directed learning algorithm, we define the mistake bound of
the learning algorithm for C to be the maximum of the mistake bound for each concept c € C.



THE POWER OF SELF-DIRECTED LEARNING 277

The optimal mistake bound for the self-directed learning of concept class C, denoted
opt(C), is the minimum over all self-directed learning algorithms for C of the mistake bound.
We define the self-directed learning complexity of a concept class C, written as SDC(C),
to be opt(C).

5. Previous work

We now briefly discuss some relevant previous work. As we have mentioned, Goldman,
Rivest, and Schapire (1993) use the self-directed learning model (described in section 4)
to study the problems of learning binary relations and total orders. In particular, for a binary
relation over n objects with m attributes per object, they describe an efficient self-directed
learning algorithm that makes at most km + (n — k) [ Ig k J mistakes, where k is the number
of distinct objects.4 Furthermore, this bound is shown to be asymptotically tight. For the
concept class of a total order over n objects, they give an efficient self-directed learning
algorithm that achieves an optimal mistake bound of n - 1 mistakes.

Maass and Turan's (1992) work comparing the complexity of learning under the com-
monly studied on-line and query learning models is quite useful. In addition to comparing
previously defined models, they defined a new learning model of partial equivalence queries,
in which for the instance space X the learner can present a hypothesis h : X -» {0, 1, *},
and is then either told that all specified instances are correct or is given an x € X such
that h(x) € {0, 1} and x is misclassified by h. We will add to their results by showing how
the model of self-directed learning fits into their hierarchy relating various on-line and query
learning models.

6. Self-directed learning complexity for various concept classes

In this section, we compute bounds on the self-directed learning complexity for the con-
cept classes of monotone monomials, monotone DNF formulas, axis-parallel rectangles
in {0, 1, •'•, n - \}d, and multiples in N. As we shall show, the learner can perform ex-
tremely well for these concept classes.

6,1. Monomials

We first compute the self-directed learning complexity of monotone monomials, and then
we generalize our results to arbitrary monomials.

Theorem 1. SDC(monotone monomials) = 1.

Proof. The learner uses the following query sequence, always predicting that the instances
are negative, and stopping when the first mistake occurs. First, consider the instance in
which all variables are 0. Next, consider the n instances in which a single variable is 1.
Then consider the f "1 instances in which two variables are 1, and so on. (See figure 3.)
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Figure 3. Learner-selected query sequence for learning the monotone monomial x^x-^. Note that the last in-
stance is the first one incorrectly predicted by the learner.

Let c* be the target monomial, and let c be the monomial consisting of the variables
that are 1 in the incorrectly predicted instance x. We now prove that c = c*. Clearly, any
variable in c* must also be in c—if variable v is in c*, then v must be 1 in any positive
example. Suppose that some irrelevant variable v is 1 in the incorrectly predicted instances,
yet it is not in c». Consider the positive instance x', which is the same as x except that
v is 0. Clearly, x' must precede x in the query sequence defined above. Since the learner
reaches the instance x, it follows that x' must be a negative instance, giving the desired
contradiction. •

We now modify these ideas to handle the situation in which some variables in the monomial
may be negated.

Theorem 2. SDC(monomials) = 2.

Proof. The algorithm used here is a simple modification of the algorithm for learning
monotone monomials. Suppose that the learner knew the sign of each variable. Then the
learner can use the algorithm for learning monotone monomials where setting a variable
to 0 (respectively, 1) is interpreted as setting the variable so that the corresponding literal
is false (respectively, true).

We then use a standard trick to learn the sign of each variable at a cost of only one mistake
(Littlestone, 1988). For arbitrarily chosen instances, predict that each one is negative until
a mistake is made. Let x be the positive instance obtained on the first mistake. The sign
of each relevant variable is given by its assignment in x.

Finally, observe that the adversary can force the learner to make two mistakes—intuitively,
one to learn the sign of the variables and one to determine which variables are relevant. •
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6.2. Monotone DNF formulas

In this section, we consider learning monotone DNF formulas under self-directed learn-
ing. We obtain our algorithm for learning monotone DNF formulas of m terms by extend-
ing the algorithm of theorem 1 to handle the conjunction of m monotone monomials.

Theorem 3. SDC(monotone DNF) < m where m is the number of terms in the target DNF
formula.

Proof sketch: The algorithm used here is a modification of that described in theorem 1.
The query sequence selected is like the one shown in figure 3, except that an instance x
is predicted as positive if the monomial corresponding to any incorrectly predicted instance
predicts that x is positive. Using the same technique as in the proof of theorem 1, one can
show that the target formula is just the disjunction of the monomials corresponding to the
incorrectly predicted instances. •

6.3. Axis-parallel rectangles in {0, 1, • • • , n — l}d

Finally, in this section we consider the concept class BOX^ of axis-parallel rectangles in
{0, 1, • • •, n - \}d. (This class has previously been studied by Maass and Turan (1992)
for other learning models.)

Theorem 4. SDC(BOX^) = 2.

Proof. We begin by describing a self-directed learning algorithm for BOX^ that makes only
two mistakes. Select two opposing corners of the space {0, 1, •••, n — \}d. Let L be the
line through these two opposing corners. Our query sequence finds each corner of the target
box by approaching it with a hyperplane perpendicular to L. That is, for each opposing
corner, query the following set of instances, predicting that each is negative. (See figure
4.) So dovetailing is used to find each corner. See figure 5 for an example of the portion
of the query sequence for learning one corner of a box in two-dimensional space.

Figure 4. The algorithm for finding a corner of the box.
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Figure 5. The query sequence for learning a concept from BOXJJ. The filled circles in the figure represent cor-
rectly predicted negative instances. The unfilled circles represent the instances on the frontier. Finally, note that
in the last figure the querying stops when a mistake is made, predicting that the corner of the box is a negative
instance.

At the first mistake, a corner point of the box has been found. Since the target box is
approached with a hyperplane perpendicular to the axis between the two corner points of
the space, the first point of the box queried must be the corner point. Then, the second
corner is found in the same manner.

Finally, we argue that the adversary can force the learner to make at least two mistakes.
Clearly, the learner cannot exactly determine the target concept until two opposing corners
of the target box have been found. Furthermore, the learner can be forced to make a mistake
in finding each corner. •

6.4. Multiples of integers

As one more example, consider a concept class C = (Xn, Cn) where the self-directed learn-
ing complexity is 1 for each Cn, but the VC-dimension grows monotonically with n. Let
the instances space Xn be the natural numbers less than or equal to n, and let the concept
class be all multiples of i for each i 6 N. This class has VC-dimension of roughly In n/ln
In n (Helmbold, Sloan & Warmuth, 1992)5. Nevertheless, we now show that SDC(MULTIPLES)
= 1. The learner predicts the instance x (initially 1) is a negative instance. If a mistake
is made, then the target is just all multiples of x. Otherwise, increment x and repeat the
above procedure. Clearly, this procedure finds the target concept while making only a single
mistake. Thus, we have the following.6

Theorem 5. The concept class of multiples (of natural numbers bounded by n) has a con-
stant self-directed learning complexity of 1.

7. Relation to other on-line and query learning models

In this section, we build on the results of Maass and Turan (1992) by showing that the
model of self-directed learning is more powerful than all the on-line and query learning
models that they considered. This result is not so surprising, since the model of self-directed
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learning uses a different system of charging for errors than all other models. We first infor-
mally describe the models that they studied. (See their paper for formal definitions.)

LC The model of learning with standard equivalence queries that must come
from the concept class. (Or, equivalently, the standard on-line learning model
in which the adversary selects the instances and the learner predicts accord-
ing to some concept in the concept class.)

LC-ARB The model of learning from generalized equivalence queries. (Or, equiva-
lently, the standard on-line learning model in which the adversary selects
the instances.)

LC-PARTIAL The model of partial equivalence queries in which the learner can present
a hypothesis h : X -* {0, 1, *}, and is then either told that all specified
instances are correct or is given an x € X such that h(x) 6 {0, 1} and x is
misclassified by h.

MEMB The model of learning from membership queries.
LC-MEMB The model of learning from membership queries and equivalence queries

that must come from the concept class.
LC-ARB-MEMB The model of learning from membership queries and generalized equivalence

queries.

Mass and Tura'n (1992) showed that the LC-PARTIAL learning model is more powerful
than all of the other learning models. That is, for all concept classes, the complexity under
LC-PARTIAL is strictly less than the complexity under any of the other models. Further-
more, there exists a concept class such that the complexity of LC-PARTIAL is exponentially
less than that of any other model. We now show that the model of self-directed learning
is even more powerful than the model of learning with partial equivalence queries.

Theorem 6. For any concept class C, SDC(C) < LC-PARTIAL(C). Furthermore, there is
a concept class C' such that SDC(C') < LC-PARTIAL(C').

Proof. Let LC-PARTIAL(C) = m, and let algorithm A be an algorithm using partial
equivalence queries that achieves this bound. We now use algorithm A to create a self-
directed learning algorithm A' that demonstrates that SDC(C) < m. For each partial
equivalence query made by algorithm A, algorithm A' simulates it as shown in the algorithm
in figure 6.

Figure 6. Algorithm to simulate a partial equivalence query under the model of self-directed learning.
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If the answer to the partial equivalence query is "yes," then no mistakes will be made
by A'. However, if there is a counterexample to the partial equivalence query, then A' will
find one while only making a single mistake. Thus, the number of mistakes made by A'
is at most the number of partial equivalence queries made by A.

Finally, note that we showed that soc(BOxf) = 2, whereas LC-PARTIAL(BOX^) = Q(d log
n) (Maass & Turan, 1989). Combined with the results of Maass and Turan (1992), this
proves that the model of self-directed learning is strictly more powerful than all of the learn-
ing models mentioned above. •

8. Relation to the Vapnik-Chervonenkis dimension

In this section, we study the relationship between the VC-dimension and the self-directed
learning complexity. We have already seen three concept classes for which the VC-dimension
can be arbitrarily larger than the self-directed learning complexity. In particular, we have
seen that SDC(monotone monomials) = 1, yet VCD(monotone monomials) = n where n
is the number of variables, and SDC(BOXf) = 2, whereas VCD(BOX^) = 2d for all large
enough n, and SDC(MULTIPLES) = 1, whereas VCD(MULTIPLES) grows logarithmically in n,
where n is the largest integer allowed. Observe that for all concept classes considered so
far, SDC(C) < VCD(C). We now describe a concept class for which the optimal mistake
bound under self-directed learning is in fact greater than the VC-dimension.

Theorem 7. There exists a family of concept classes C — (Xn, Cn) with SDC(Cn) = 3 and
VCD(Cn) = 2.

Proof sketch. We begin by describing concept classes induced by simple planar arrangements
as defined in Floyd's thesis (1989). A simple planar arrangement G is the dissection of
the plane into cells by a finite set of lines with the property that no two lines may be parallel
and no three lines can intersect at a single point. A simple planar arrangement can be seen
as a concept class C with VCD(C) = 2. The m lines x\, ..., xm in the arrangement G
correspond to the m instances, and each cell in the arrangement corresponds to a concept
in C. The classification for an instance is obtained as follows: each line xt defines two
halfspaces in the plane for which all cells on one side of the halfspace classify xt as
positive, and all cells on the other side classify xt as negative. We now define the concept
class Cn of an n-gon. For any odd n > 3, the concept of an n-gon is defined by taking
the linear arrangement obtained by extending the line segments forming a regular n-gon.
Assume that the halfspaces are oriented so that all instances are negative in the interior
of the n-gon. See figures 7 and 8 for geometric and tabular representations of a 5-gon.
Observe that the number of cells in the linear arrangement is $Jjn), and thus Cn is a max-
imum class of VC-dimension 2.

We now sketch the proof that for odd n > 5, SDC(n-gon) = 3. First, we will describe
a self-directed learning algorithm that makes only three mistakes. The learner predicts ac-
cording to the concept corresponding to the interior of the n-gon (all instances negative)
until the first mistake occurs. Let xi- be the instance for which the first mistake occurs.
(So without loss of generality, assume that a mistake is made on the first prediction.) We
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Figure 7. The concept class of a 5-gon drawn geometrically.
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Figure 8. The tabular representation of a 5-gon. Concept ci corresponds to region i in figure 7.

now number the remaining lines according to the order in which they cross xi. (For ease
of exposition, orient the planar arrangement so that xi lies on the x-axis and the n-gon lies
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below the x-axis. Thus, after the first mistake, we can restrict our attention to above the
;x-axis.) Let tlt ..., %(n-\)n be the first (n - l)/2 lines that crossxt moving right from -oo.
Thus 11 forms the leftmost crossing. Likewise, let rb . . . . r(n_1)/2 be the first (n - l)/2
lines that cross xt moving left from +00. The learner now performs the predictions accord-
ing to the algorithm given in figure 9.

Let C' C C be the hypotheses that remain after this second mistake has occurred. (If
the above procedure makes no mistakes, then only a single concept remains.) Without loss
of generality, suppose this mistake occurred when predicting (/,, 0). Note that the
hypotheses in C' correspond to the regions in the portion R of the arrangement between
/,-_! and /, that are above the *-axis. (See figure 10.) The key observation needed here is
that there are no intersections in the interior of R. There may be lines passing through
R (in fact, the lines passing through R are what define the regions corresponding to the
concepts in C') but these lines do not intersect in the interior of R. Thus by considering
the concepts in C' according to the order in which they occur when moving through .R
starting at the x-axis, the learner can ensure that a single concept remains after the next
prediction mistake.

Now we must argue that SDC(n-gon) > 3. We will show how an adversary can force
the learner to make at least three mistakes. Assume without loss of generality that the
learner's first prediction is for x1. Regardless of the learner's prediction, the adversary in-
forms the learner that it has made a mistake.

If the learner predicted X] negative, then let £, and r, be as in the part of the proof showing
that SDC(n-gon) < 3. The adversary selects £,- = 0 and r, = 0 for 0 < j< (n-l)/2 - 1
(i.e., the learner is billed for a mistake on those lines if and only if it predicts positive).
This allows all four possible combinations of the regions defined by £(n_n/2 and r(n_lV2,
so whatever the learner predicts for each of those two lines will be called a mistake by
the adversary.

If the learner predicted that xl was positive, then find the line *,• such that x\ is t\ with
respect to XJ. Now the same argument as before holds, with Xj serving the place ofX1, and
the initial mistake being predicting ^ positive. •

While, in general, the VC-dimension and the self-directed learning complexity are in-
comparable, there are two special cases in which VC-dimension is a lower bound for the
self-directed learning complexity. We begin by considering the special case in which the
VC-dimension is 1.

Figure 9. The second phase of the self-directed learning algorithm for learning rc-gons. The algorithm for finding
a corner of the box.
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Figure 1O. The shaded region corresponds to the portion of the arrangement that remains after prediction mistakes
are made on (*,, 0) and (£4, 0).

Theorem 8. For any concept class C over a finite instance space for which vco(C) = 1,
SDC(C) = 1.

Proof. Since vco(C) = 1, the concept class C must have at least two distinct concepts, and
thus it immediately follows that snc(C) > 1. We now show that soc(C) < 1. Any class
C of VC-dimension 1 can be embedded in a maximum class C' such that vco(C') = I.7
Consider the 1-inclusion graph for C' that consists of a node for each concept in C' and
an edge (with label x) between two nodes whose corresponding concepts differ only in
the classification of*. For a maximum concept class of VC-dimension 1 over a finite in-
stance space, the 1-inclusion graph is a tree, and every instance x appears exactly once
as a label on an edge (Floyd, 1989; Wenzl & Woeginger, 1986). The learning algorithm
will select the next instance to predict as follows. Select an example x that is a label to
an edge adjacent to a leaf node. Let / be the classification of x by the concept c associated
with the leaf node. The learner makes the prediction (x, I). If this prediction is wrong,
then the target concept is c. Otherwise, c and its edge are removed from the tree, and this
process can be repeated. •

We now show that for any maximum class, the VC-dimension is a lower bound for the
self-directed learning complexity. This result reveals an interesting connection between the
self-directed learning model and Floyd's (1989) work on space-bounded learning. Before
giving this result, we briefly discuss data compression schemes. A data compression scheme
of size k for concept class C consists of a compression function/and a reconstruction func-
tion g. The compression function/maps every set of m > k labeled examples to a subset
of at most k labeled examples. The reconstruction function g maps every possible subset
of at most k labeled examples to a hypothesis c on X. (This hypothesis is not required to
be in C.) Finally, for a data compression scheme, it is required that for any set Sm of
labeled examples, the hypothesis g(f(Sm)) must be consistent with Sm.
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Theorem 9. For any maximum class C over a finite instance space, SDC(C) > VCD(C).

Proof. Let d = VCD(C). If C is a maximum class of VC-dimension d on the set X, then
there is a data compression scheme of size d for C (Floyd, 1989). For any concept c € C,
let Sc be the set of labeled examples obtained by applying the compression function to the
entire instance space labeled according to c. For ease of exposition, let Xc denote the
unlabeled sample obtained by removing the labels from Sc. Now, since C is a maximum
class, it follows from theorem 3.6 of Floyd (1989) that for any labeling t of the 2d possi-
ble labelings of Xc, there is a concept in C with the instances in Xc labeled with ( and
all instances in X — Xc labeled as in c. Thus, any learning algorithm can be forced to make
d mistakes in identifying this concept. •

Remark. If we extend our definition of self-directed learning to allow infinite instance spaces,
then theorem 9 still holds for maximum concept classes over infinite instance spaces. (For
this case, the proof would use theorem 3.7 of Floyd's (1989) thesis.)

9. Relation to Mitchell's version space algorithm

We have demonstrated that the number of mistakes made under self-directed learning may
be quite small. Is there some characterization for the situations in which the learner can
perform so well? As a partial answer to this question, we describe a relation between this
work and Mitchell's (1982) version space algorithm.

We begin by describing Mitchell's version space algorithm. The version space with respect
to a given sample and concept class C is the set of all concepts c € C that are consistent
with the sample.8 The hope is that the version space will shrink over time until it contains
only one concept, which must be the target concept.

The set G contains all the most general (maximal) concepts in the version space. The
set 5 contains all the most specific (minimal) concepts in the version space. Hence, S and
G together delimit the "borders" of the version space in the lattice of all concepts with
respect to the subset relation (see figure 11.) The main idea of the version space algorithm

Figure 11. The rule space.
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is as follows. Initially, let G contain only the concept containing all instances, and let 5
contain only the empty concept. Then, for each example, both G and 5 are appropriately
updated. See Haussler (1987, 1988), and also Rivest and Sloan (in press) for a discussion
of connections between Mitchell's version space algorithm and the distribution-free learn-
ing model.

We now describe a relation between the version space algorithm and situations in which
the learner can perform well under self-directed learning. Consider a concept class C such
that, given any set of instances labeled according to some concept in C, there is a unique
most specific concept (i.e., \S\ = 1). We now define the notion of a spanning set. A span-
ning set of a concept c € C with respect to the class C is a set / c c having the property
that c is the unique most specific concept consistent with the instances in /. (This generalizes
the notation of a spanning set of an intersection-closed class given by Helmbold, Sloan,
and Warmuth (1990)). Finally, we define /(C) for concept class C as follows:

7(C) = max{|7c : Ic is a minimal spanning set for c with respect to C}.
«=C

To provide some intuition for our more general result, we first consider the simple case
for which /(C) = 1 and the concept class C has a unique most specific concept consistent
with any sample. For example, the class of monotone monomials9 has the property that
the set 5 never contains more than one hypothesis (Bundy, Silver, & Plummer, 1985). Fur-
thermore, for any monomial c, any minimal spanning set Ic is just the single instance for
which all the variables in c are 1 and the rest are 0. Thus, for the class of monotone
monomials, 7(C) = 1.

We now describe a self-directed learning algorithm that makes a single mistake. The
algorithm goes through all the concepts from most general to most specific (i.e., goes through
the layers of the lattice from top to bottom), and for each concept c it predicts that the
instance Ic is negative. We claim that when the first mistake is made, the target concept
is the single concept in S. Clearly, if the first mistake is made on the prediction (IC, 0),
then the target is c or a generalization of c. However, since the concepts are considered
from most general to most specific, all concepts that are generalizations of c must already
have been eliminated from the version space. Thus, the target concept must be c, which
is the concept in S. Observe that this general technique when applied to the class of monotone
monomials yields exactly the algorithm described in theorem 1.

Figure 12 describes an algorithm that generalizes the above algorithm for the case in
which 7(C) > 1. We now prove the correctness of this algorithm. We first argue that if
a mistake occurs on all predictions made in step 2b in figure 12, then it follows that all
instances in lc are positive. Since c € G, it follows that c is consistent with all previously
seen instances, and thus all instances in 7C that have previously been queried are positive.
Furthermore, since a mistake occurs on all predictions made in step 2b, the remaining
instances in Ic are also positive.

Now by the definition of a spanning set, it follows that the single most specific concept
consistent with the previously seen examples must be the target or a generalization of the
target. Finally, since the concepts are considered from most general to most specific, all
concepts that are generalizations of the target must have already been eliminated, and thus
the algorithm is correct.
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Figure 12. Self-directed learning algorithm for the case in which \S\ = 1.

Without any further constraints on the selection of the minimal spanning sets, this
algorithm could potentially make |C|(/(C) - 1) + 1 mistakes, since I(C) - 1 mistakes
could occur on the concepts that are generalizations of the target and 7(C) mistakes could
be made on the target. (Observe that the learner makes this many mistakes only if every
concept has a spanning tree of size 7(C).) Let P be the set of previously seen positive in-
stances during the execution of the algorithm described in figure 12. A sufficient property
to obtain a good mistake bound is that for each concept c in G, there exists a minimal
spanning set for c that contains all instances in P. Given that this additional condition can
be met, we obtain the following result.

Theorem 10. If for concept class C there is always a unique most specific concept consis-
tent with any set of examples (i.e., we always have \S\ = 1), and for each concept c 6 G
there exists a minimal spanning set for c with respect to C that contains all previously seen
positive instances, then there exists a self-directed learning algorithm that makes at most
I(C) mistakes.

Proof. The self-directed learning algorithm that achieves the I(C) mistake bound is the
algorithm shown in figure 12, where the spanning set selected in step 2a meets the condi-
tions of the theorem. We have already argued that the algorithm is correct. Thus, we need
just argue that it makes at most 7(C) mistakes. Observe that when the learner correctly
predicts an instance, the current concept being considered is eliminated from the version
space and the learner then considers some concept cc € G. By the condition placed on
the selection of the minimal spanning sets, if any mistakes were previously made, then
those instances must be in IC(,. Thus it can easily be shown by induction that this algorithm
makes at most 7(C) mistakes.
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As an application, observe that for axis-parallel rectangles in {0, 1, • • • , « - \}d this
theorem applies where, for all c € C, Ic contains the pair of positive instances from two
opposing corners. (Note that it is essential that the same two opposing corners are used
for each concept.) This algorithm is like the algorithm described in theorem 4, except that
it interleaves the steps described for learning the two corners.

We conjecture that the condition required in theorem 10 holds for all intersection-closed
concept classes. Combined with the result from Helmbold, Sloan, and Warmuth (1990),
the fact that 7(C) < VCD(C) would give the following.

Conjecture 11. For all intersection-closed concept classes, SDC(C) < VCD(C).

We now extend theorem 10 to concept classes that are made of the disjunction of con-
cepts from a concept class for which it currently applies.

Theorem 12. Let C be a concept class for which theorem 10 applies. Then a concept of
the form c1 V c2 V • • • Vfor c\, ..., ck € C can be learned with at most k • I(C) mistakes
under self-directed learning.

Proof sketch. The algorithm used here is a modification of the algorithm given in figure
12. Let the learner's hypothesis h initially be empty. The algorithm used here proceeds
just as the above algorithm except that if for instance x the hypothesis h classifies x as
positive, then the learner (correctly) predicts that x is positive. Finally, in step 2c, if a
mistake is made on all predictions, then the concept in S is added to h and then it returns
to the start of the second step. Now using the same technique as in the proof of theorem
10, we can show that the target formula is just the disjunction of the concepts correspond-
ing to the incorrectly predicted instances. Thus, at most I(C) mistakes are made when
placing any new concept in h. Furthermore, at most k, concepts are put in h. Thus, w
get the desired mistake bound. •

e

Applying the result of Bundy, Silver, and Plummer (1985) to this theorem, we get the
result of theorem 3.

Finally, all the results we have described relating the number of mistakes made under
a learner-selected query sequence to Mitchell's version space algorithm can be modified
to give the dual results for when \G\ = 1.

10. Alternate definitions and variations on the model

Before concluding, we would like to discuss briefly some of the choices we made in defin-
ing our model, and some variations that we believe are worthy of further study.

10.1. Extension to infinite instance spaces

By modifying the definition of query sequence, one could, of course, define the self-directed
learning complexity for any concept class over an arbitrary instance space. We had several
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reasons for not doing so. First of all, this seems contrary to the spirit of the model. When
first introducing this model, Goldman, Rivest, and Schapire (1993) applied it to a concept
class with a polynomial-sized instance space. Furthermore, the learner was expected to
eventually query each instance, so there was no concern about the number of correctly
predicted queries. (Although we do allow the learner to stop the learning session once the
learner knows the classification of all instances that have not yet been queried.) Our goal
in this article has been to apply this learning model to the more usual case of concept classes
in which the instance space is super-polynomial. This may be a stretch, since the learner
has to have some interaction with all of the instances, but this question still seems interesting
if we are at least limited to a finite number of instances.

It is also the case that we would get odd results from allowing infinite instance spaces.
Were we to go all the way and allow uncountable instance spaces, then there would be
many geometry-based instance spaces with infinite self-directed learning complexity. For
example, let X be the interval [0, 1] and let C be the class of all closed initial segments,
i.e., C = {[0, r] : 0 < r < 1}. It is easily seen that for this class, SDC(C) = oo, since
there is no way to make the queries "in the right order" to avoid making infinitely many
mistakes in the worst case.

While at first it may appear that restricting X to be countable would correct this diffi-
culty, observe that even if we let Xbe the rationals in [0, 1], the self-directed learning com-
plexity is still infinite.10

10.2. Restricting the learner's queries

Given that the learner is restricted to use polynomial time in selecting the next query for
the query sequence, is it reasonable to allow the learner to make a super-polynomial number
of correctly predicted queries? This question suggests an interesting variation of the self-
directed learning model that we do not explore here, namely, how does the self-directed
learning complexity change if we restrict the learner to use only polynomial time and make
only a polynomial number of queries? In this variation of the model, the learning com-
plexity would still be the number of incorrectly predicted queries, but learning algorithms
must be designed to limit the total number of queries to be polynomial.

10.3. A subset-based model

Another interesting variation on the basic model is to allow an all-powerful adversary to
select some finite subset S of X. Then the learner must choose queries from the subset
5, on-line, in such a manner that all instances in 5 are eventually queried (or at least enough
are queried so the learner knows the correct classification of all the instances in 5). Here
too, the learner will be charged only for incorrectly predicted queries. The learning com-
plexity would then be the worst-case taken over all target concepts and all finite subsets
S ofX. The key differences here are that the learner cannot make any queries on instances
not in S, and the learner need not obtain exact identification, but should only minimize
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the number of mistakes on the given subset of instances. Observe that under this variation
of the model, the VC-dimension of the concept class is now a lower bound for the learning
complexity, since the adversary can choose S to be some shattered set. As we have seen,
such behavior does not occur in the original model of self-directed learning—there are con-
cept classes for which the self-directed learning complexity is much less than the VC-
dimension. While this is an interesting variation to study, restricting the learner to only
query instances in 5 greatly reduces the learner's power by taking away a key feature of
both the self-directed learning model and membership query model—the learner no longer
has the capability of learning the classification of some "important" instance. Nevertheless,
this is an interesting variation to study and fits in well with the allergist example in the
situation in which the allergist cannot test some patients for some allergens.

11. Conclusions and open problems

We have demonstrated that the model of self-directed learning is quite powerful. In par-
ticular, we have shown the self-directed learning complexity is less than the learning com-
plexities of most other commonly studied models. Given that the learner is only charged
for incorrectly predicted queries, the "power" of this model is really no surprise. However,
as we have shown for several well-studied concept classes, a surprisingly small number
of mistakes can be made under self-directed learning. While the complexity of self-directed
learning can be arbitrarily smaller than the VC-dimension, in general, the VC-dimension
is not an upper bound for the self-directed learning complexity. Namely, for the family
of concept classes of n-gons for odd n > 5, we have shown that VCD(n-gon) = 2, whereas
the SDC(n-gon) = 3. In contrast to that example, we showed that all concept classes of
VC-dimension 1 over finite instance spaces have self-directed learning complexity 1. Also,
for any maximum concept class, we showed that the VC-dimension gives a lower bound
for the self-directed learning complexity. Finally, we explored a relationship between
Mitchell's version space algorithm and the existence of self-directed learning algorithms
that make few mistakes.

There are many interesting directions for future research. In section 10, we described
two variations of the self-directed learning model that raise interesting questions for future
research. It would be interesting to understand how these variations of the self-directed
learning model relate to the model studied here and the standard on-line and query learn-
ing models.

Another very intriguing open problem is either to prove conjecture 11 or to give a
counterexample to it. Along these lines, we are very interested in finding an answer to
the following question: Is there a concept class Cover some finite set" for which SDC(C)
= cj(vcD(C)), or one can prove that for all C, SDC(C) < a • VCD(C) for some constant
a? Or even better, can it be shown that SDC(C) < VCD(C) + j3 for some constant 0? (As
far as we know, this may hold for 3 = 1.)

We now describe a nice combinatorial characterization of this open problem, as observed
by David Haussler (personal communication). Littlestone (1988) defined a mistake tree
for target class C over an instance space X as a decision tree in which each node is a nonempty
subset of C and each internal node is labeled with a point of X, and that satisfies the following:
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1. The root of the tree is C.
2. Given any internal node C' labeled with x, the left child of C', if present, is the subset

of C' for which x is 0, and the right child, if present, is the subset of C' for which x is 1.

Ehrenfeucht and Haussler (1989) gave the following definition of the rank of a decision
tree Q, denoted r(Q).

1. If Q contains only one node, then r(Q) = 0.
2. Else, if r0 is th rank of the left subtree of Q, and rl is the rank of the right subtree of

Q, then

otherwise

Littlestone (1988) showed that for any concept class C, the worst-case mistake bound
in the standard on-line learning model is equal to the largest integer k such that there is
a mistake tree for C such that every leaf has depth at least k. Observe that the rank of
a mistake tree corresponds to the minimum depth of a leaf. Thus, Littlestone's result can
be restated as follows:

where MA(C) denotes the optimal-mistake bound for target class C (in the standard on-
line learning model), and Tc denotes the set of mistake trees for target concept c. As part
of the proof of this result, Littlestone introduces an algorithm he calls the standard optimal
algorithm. Observe that every target concept and instance sequence define a mistake tree
for C, Littlestone shows that by selecting a mistake tree with rank r, the adversary can
force the learner to make r mistakes; furthermore, he shows that the standard optimal
algorithm will make at most r mistakes. Recall that the standard on-line learning model
and the self-directed learning model are distinguished by whether the adversary or learner
selects the order in which the instances are presented. Thus, Littlestone's proof can be
easily modified to show

Thus, the only difference is that now the learner is selecting the query sequence and thus
can select one that generates a mistake tree of minimum rank. Thus we ask: How does
the VC-dimension of C relate to maxrtC {minimum rank of a mistake tree for c}?
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Notes

1. A concept class of VC-dimension d over a finite instance space is maximum (or complete) if its size is max-
imum among concept classes of VC-dimension d over the given sized instance space.

2. Such algorithms have also been referred to in the learning theory literature as prediction algorithms.
3. The adversary, who tries to maximize the learner's mistakes, knows the learner's algorithm and has unlimited

computing power.
4. Two objects are distinct if there exists an attribute that they classify differently.
5. To see that the VC-dimension grows with N, consider for any d all products of d - 1 of the first d primes.

This set is shattered.
6. Note that if we did not restrict the definition of self-directed learning to finite instance spaces, we would

have a concept class with infinite VC-dimension and self-directed learning complexity of 1. That choice
of definition would lead to other difficulties, however. See the discussion below in section 10.

7. As discussed in section 6.2 of Floyd's thesis (1989), this is not true of all classes of VC-dimension greater
than 1.

8. In the version space literature, the concept class is usually called the rule space, and is thought of as being
the learner's hypothesis space, although it is usually implicitly assumed that the target concept does in fact
come from the rule space.

9. Actually, this is true for the more general class of pure conjunctive concepts over a finite set of tree-structured
attributes.

10. One might try to limit self-directed learning to countably infinite instance spaces where the "natural" order
on the instance space is not dense.

11. We are interested in finite versus countable instance spaces, for the reasons discussed in section 10.1.
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