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1. Overview

Creating a Memory of Causal Relationships describes the OCCAM program. OCCAM
is an incremental learning system that inputs examples of sequences of causally connected
events and constructs a causal model of the processes that govern the events. A variety
of learning methods are used in OCCAM, ranging from strong, knowledge-intensive methods
like explanation-based learning to weak, knowledge-free learning methods like similarity-
based learning. OCCAM has two major goals: to model how humans do learn, and to pro-
pose an effective method by which computers can learn causal relationships.

This review attempts to evaluate the research described in Creating a Memory of Causal
Relationships. This evaluation is primarily from the prospective of AI machine learning,
although I have also made an attempt to evaluate OCCAM'S contribution as a model of
human learning.

2. About the book

2.1. Knowledge representation in OCCAM

The first two chapters of Pazzani's book are a detailed description of the learning problem
that OCCAM is intended to solve. These chapters also describe the scheme that OCCAM
uses to represent knowledge. In OCCAM, sequences of events (in particular, OCCAM'S
training examples) are represented as networks of Conceptual Dependency (CD) schemata;
OCCAM'S memory, which generalizes these sequences of events, is represented as a hierar-
chy of networks of abstract schemata. Each schema in a network represents an event, a
state, or a goal; schemata are linked by binary relations such as enable or result. The hierar-
chy of schemata networks is organized with the most general networks at the top; it is used
by traversing it, in a top-down manner, and retrieving the most specific schemata network
in the hierarchy that is relevant to an example. Instantiating the schema against the example
yields certain predictions, which may be either true or false. Notice that organizing learned
schemata into a general-to-specific hierarchy, and basing predictions on the most specific
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schemata in the hierarchy, means that knowledge has a non-monotonic character: a schema
is assumed to hold unless some more specialized schema encoding a class of exceptions
also holds.

In addition to prediction, the OCCAM'S memory may also be used for explanation of
an example. Explanations can be constructed either by instantiating a schema or by chain-
ing together rules derived from schemata; however, for reasons of efficiency, the second
type of explanation is performed only under certain circumstances. In particular, while
rules can be chained together to explain an observed event, they are not chained together
to form predictions.

2.2. Learning methods

The next three chapters describe the three learning methods used in OCCAM. Similarity-
based learning (SBL) is the weakest method, and requires no background knowledge (beyond
that implicit in the choice of representation). The SBL method used in OCCAM consists
of clustering similar examples, and then finding the maximally specific conjunctive gener-
alization of each of the clusters. Theory driven learning (TDL) uses generalization rules,
which are a sort of rule schema, to generalize a cluster of examples. Generalization rules
are used to encode fairly general types of causal knowledge, such as the knowledge that
a cause must precede its effect. TDL thus incorporates a stronger bias than SBL, as it will
only output a hypothesis that is consistent with this pre-existing causal knowledge. Finally,
explanation-based learning (EBL) is also used in OCCAM. Pre-programmed (or previously-
learned) rules can be chained together to explain an observed sequence of events; the resulting
explanation is then generalized and cached in OCCAM'S memory.

2.3. Integration

The final section of the book describes how these three learning systems are integrated
in OCCAM, and also gives some extended examples of how they interact on various learn-
ing problems. Whenever OCCAM is given a new example, it first searches its memory
for the most specific relevant schema. If the prediction made by that schema is correct,
then no change is made to OCCAM'S memory.

If OCCAM is given a new example that is not consistent with its existing memory, it
first attempts to use EBL. If the differences between the prediction made by the retrieved
schema and the example can be explained analytically, then EBL is invoked, and the gen-
eralization produced by EBL is added to the memory as a specialization of the existing
schema. The effect of this is that the original schema is retained, but qualified by a description
of a class of possible exceptions.

If the differences between the example and the retrieved schema cannot be explained,
then one of three things can happen. If there are few other exceptions to the schema, the
example is simply stored as an exception. If there are many exceptions of a schema that
has not often been used successfully, then the retrieved schema is simply deleted from mem-
ory, and relearned using the new and larger set of examples. Finally, if there are many
exceptions and the schema has been used successfully many times before, then an attempt
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is made to generalize the exceptions using the other learning methods. First, TDL is in-
voked. If TDL fails—that is, if no hypothesis can be formed that is consistent with the
causal knowledge encoded by the generalization rules used by TDL—then SBL is invoked.

The OCCAM architecture allows for many interesting interactions between the three learn-
ing techniques, some of which are explored in the last section of Pazzani's book. For exam-
ple, TDL can be used to learn a domain theory for EBL. If learning is incomplete, then
when EBL is applied, the domain theory may still be buggy; in this case the generalization
produced by EBL will be incorrect. However, if later examples show the schema to be inac-
curate, OCCAM will eventually remove the incorrect schema under the procedure described
above, and re-learn it using a newer and more correct version of the domain theory.

2.4. Presentation

Throughout, Pazzani's book is clearly written. There is a large amount of motivational
material, and each chapter includes several detailed examples. This is by far the best source
for learning about OCCAM; although much of the technical material appears elsewhere,
the results are scattered across several short papers, and are not presented in as much depth
as in the book.

One can also obtain, for a small additional charge, Common LISP source code for
OCCAM-LITE, a micro-version of OCCAM which implements most of the main ideas;
I also tested this code (on a Macintosh II under Allegra Common LISP) and found it to
work as advertised. Of course, having a working and easily-understandable implementation
of OCCAM available would be very valuable for a researcher wishing to build on, or more
deeply understand, this work.

3. Methodology

Pazzani's primary goal in developing OCCAM is to develop a model of human learning;
in particular, a model of how humans learn causal relationships. This is an important question
because (by Pazzani's hypothesis) humans use some prior knowledge in learning causal
relationships: understanding how humans use such prior knowledge may thus help to illu-
minate the question of how prior knowledge can affect learning, and thus illuminate the
process of "learning to learn."

OCCAM'S psychological plausibility is bolstered by several experiments. In one experi-
ment, humans are shown to learn faster (i.e., using fewer examples) in domains in which
prior knowledge suggests an answer than in domains in which no prior knowledge exists;
in a parallel experiment, OCCAM'S EBL method is shown to learn faster than SBL. In
a second experiment, humans are shown to learn faster in domains in which the expected
answer is consistent with general knowledge of causality; in a parallel experiment, OCCAM'S
TDL is shown to learn faster than SBL. Pazzani also notes that OCCAM'S SBL strategy is
similar to that used by most people, as determined by previous psychological experiments.

In a final set of experiments, Pazzani shows that the OCCAM strategy of preferring EBL
to SBL is computationally advantageous (that is, better than using either EBL or SBL alone)
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in most settings. This is not a psychological argument per se, but it could be argued that
evolution favors more computationally effective learners, and hence that a simple but com-
putationally effective algorithm is, at the very least, more plausible than an ineffective one.
These results also support Pazzani's claim that OCCAM (or at least, OCCAM'S method
for integrating of SBL and EBL) is an effective learning algorithm.

It should be noted, however, that these experiments show only that OCCAM has the
right rough qualitative behavior; no evidence is given to show (for example) that OCCAM'S
learning rates are quantitatively similar to human learning rates. Also, OCCAM makes
several additional detailed predictions about learning rates that are not experimentally tested.
For example, OCCAM'S TDL algorithm makes use of several types of generalization rules:
first "exceptionless" rules, then "dispositional" rules, and finally "historical" rules. Thus
OCCAM predicts that the sorts of causal relationships expressible by exceptionless general-
ization rules are more easily learned than causal relationships expressible by dispositional
generalization rules, and so on: this prediction, however, is not tested. Pazzani also discusses
cases (such as "illusory correlations" and the differing impacts of earlier versus later training
examples) in which human learning is clearly suboptimal, and suggests that OCCAM would
display the same behavior in these cases. However, this is not demonstrated experimentally.
Finally, there is no rigorous investigation of either the computational effect of learning
"dispositions," or of their psychological validity.1

A final criticism of the experimentation is that all of the experiments with OCCAM are
performed on hand-constructed learning problems and/or using hand-constructed data. For
example, the TDL component was evaluated by learning what class of people can open
a refrigerator door, and five of the examples in the economic sanctions problem used to
test the EBL component were hypothetical cases constructed by hand. While testing on
natural problems is not always essential—for example, I found the study of OCCAM'S inte-
gration of SBL and EBL to be quite informative—I would argue that testing a learning
algorithm only on a small number of hand-crafted problems is never adequate. Hand-crafted
problems might not adequately test the weaker components of the learning system; in
OCCAM'S case, for example, the TDL and SBL algorithms are dependent on a clustering
procedure that seems rather ad hoc. More rigorous experimental validation of these learn-
ing algorithms would be desirable; such validation would certainly strengthen OCCAM'S
claim to be an effective machine learning algorithm.

The above remarks should perhaps be tempered with the observation that since OCCAM
is the first attempt to model this aspect of learning, it may be unreasonable to expect more
than a qualitative match with psychological data. Also, as a machine learning method,
OCCAM attacks a recently-identified problem in a novel way; again, one cannot expect
the sort of strong experimental results associated with more mature research efforts.

4. Research issues raised

Like most research projects, OCCAM raises, as well as answers, many questions. One
topic for further research discussed by Pazzani is the problem of learning the generalization
rules required by TDL. These generalization rules, which encode general knowledge of
causality, are currently hand-coded into OCCAM; however, psychological evidence suggests
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that this knowledge is not innate. This flaw in OCCAM (as a model of human learning)
could be addressed by incorporating the ability to learn TDL generalization rules.

A second question raised by OCCAM pertains to the role and meaning of the domain
theories used by EBL. It is perfectly possible for OCCAM to be in a semantically incon-
sistent state, in the sense that some schemata contradict the logical consequences of other
schemata. (In fact, when OCCAM discovers that a schema makes an incorrect prediction
p, the first thing it tries to do is prove, by chaining together other rules, that the prediction
is incorrect, i.e., that ->p holds). An interesting question is: why is it that this logical
inconsistency is, in practice, not problematic?

The answer to this question seems to be related to the fact that OCCAM'S reasoning
mechanism is incomplete, in the sense that it is not possible to derive all of the logical
consequences of the schemata stored in its memory. The only time OCCAM will predict
some result p is if the most specific schema that is explicitly stored in memory predicts
p; this in turn can only occur if, in previous examples, p was actually a result. Thus, as
OCCAM learns using EBL, and as the schema memory develops into a progressively larger
subset of the deductive closure of the existing theory, inconsistencies in its knowledge are
gradually resolved in favor of those cases that actually occur. This is a fairly subtle aspect
of OCCAM'S behavior, and one that is not discussed at length in Pazzani's book.

OCCAM includes several other results that I found interesting, although Pazzani did not
discuss them at length. For example, OCCAM'S SBL and TDL methods, since they operate
on CD schemata, allow one to learn a constrained type of relational concept. This makes
the integration of TDL and EBL far more powerful, since the rules used by EBL are not
restricted to be prepositional. Finally, OCCAM'S integration of TDL and EBL allows EBL
to be applied with an initially buggy domain theory.

5. Summary

Creating a Memory of Causal Relationships is an investigation of the specific problem of
learning causal relationships. More generally, the book is an investigation of the problem
of learning using prior background knowledge, and as such would be of interest to anyone
interested in this problem.

Primarily, the book is a clear and detailed description of OCCAM, a program for learn-
ing causal relationships. OCCAM incorporates many interesting and novel ideas. The ideas
that are emphasized by Pazzani, and that are explored in depth in the book, are a novel
integration of explanation-based and similarity-based learning methods; a third learning
technique, theory-based learning or TDL, which is in some ways an intermediary between
EBL and SBL; and a characterization of (at least some of) the background knowledge that
is needed to learn causal relationships.

Notes

1. "Dispositions" are feature-preferences that are learned as means of tuning the TDL component of OCCAM.


