
Machine Learning, 17, 69-105 (1994)
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Quantifying Prior Determination Knowledge Using
the PAC Learning Model

SRIDHAR MAHADEVAN mahadeva@csee.usf.edu

Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620

PRASAD TADEPALLI tadepalli@cs.orst.edu

Department of Computer Science, Oregon State University, Corvallis, OR 97331

Editor: David Haussler

Abstract. Prior knowledge, or bias, regarding a concept can reduce the number of examples needed to learn it.
Probably Approximately Correct (PAC) learning is a mathematical model of concept learning that can be used
to quantify the reduction in the number of examples due to different forms of bias. Thus far, PAC learning has
mostly been used to analyze syntactic bias, such as limiting concepts to conjunctions of boolean prepositions.
This paper demonstrates that PAC learning can also be used to analyze semantic bias, such as a domain theory
about the concept being learned. The key idea is to view the hypothesis space in PAC learning as that consistent
with all prior knowledge, syntactic and semantic. In particular, the paper presents an analysis of determinations,
a type of relevance knowledge. The results of the analysis reveal crisp distinctions and relations among different
determinations, and illustrate the usefulness of an analysis based on the PAC learning model.
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1. Introduction

Bias or prior knowledge is any basis for choosing one generalization over another other than
strict consistency with the training examples [Mitchell, 1980]. Prior knowledge regarding
a concept can often dramatically reduce the number of examples needed to learn it. One
common form of bias is syntactic constraints on the concept description language. For
example, if a learner knows that the concept being learned is describable by a purely con-
junctive boolean expression, a special technique for inducing such expressions can be used
to expedite the learning. There have been many successful attempts at quantifying syntac-
tic bias, such as [Haussler, 1988]. These approaches are based on a mathematical model
of concept learning called Probably Approximately Correct (PAC) learning introduced by
Valiant [Valiant, 1984], For a detailed introduction to the model, see [Natarajan, 1991].

However, humans, and indeed some machine learning systems, draw their power not only
from syntactic bias, but also from knowing something about the content of the particular
concept being learned. For example, a human learning to play a new game often uses
his general knowledge of competitive games to accelerate learning. Similarly, machine
learning programs like FOCL rely on a "domain theory" to expedite learning new knowledge
[Pazzani, 1992]. In other words, these systems exploit a "semantic bias" in addition to a
syntactic bias.
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Quantifying semantic bias or prior knowledge is an important problem in artificial intel-
ligence (AI). In a recent introductory book on AI [Rich and Knight, 1991], after discussing
Valiant's model of PAC learning, the authors of the book note (pages 482-483):

After all, people are able to solve many exponentially hard problems by using
knowledge to constrain the space of possible solutions. Perhaps mathematical
theory will one day be used to quantify the use of such knowledge, but this prospect
seems far off.

In this paper we show that the authors' pessimism is somewhat unwarranted, and that
semantic bias can be quantified using essentially the same PAC learning framework used
to analyze syntactic bias. To our knowledge, the work described here—which was first
reported in [Mahadevan and Tadepalli, 1988]—represents one of the first attempts to analyze
semantic bias using PAC learning. Russell's work on "tree-structured bias" is another early
example of such an analysis [Russell, 1988].

PAC learning is based on a paradigm wherein a teacher provides a learner with examples
of a target function from an initially agreed upon space of possible functions. This space can
be viewed as representing the syntactic bias of the learner. Examples are selected randomly
according to a fixed but arbitrary probability distribution unknown to the learner. The
task of the learner is to find with high probability a function that is a good approximation
of the target function—hence the name "Probably Approximately Correct" learning. The
learner prunes the function space by eliminating functions that are inconsistent with the
examples. Learning is complete when the only functions that remain unpruned are with
high probability good approximations of the target function. The more restricted the initial
space of functions that contains the target function, the fewer the functions that have to be
pruned to learn it, and hence, the fewer the examples needed to do the pruning. In general,
the number of examples needed to learn an arbitrary function in a function space increases
monotonically with the number of functions in the function space.

In order to obtain broadly applicable results, any attempt to quantify semantic bias should
be insensitive to particular ways of representing the prior knowledge. The key observation
behind this paper is that such an analysis can be achieved by modeling knowledge abstractly
as a space of functions of which the target function is a member. We thereby generalize
the notion of function space in PAC learning to the set of functions consistent with all prior
knowledge—both syntactic and semantic.

Our results are based on the central results in PAC learning that imply that the number
of examples needed for robust learning increases with some measure of the complexity of
the function space. Since a reliable learning algorithm has to learn any and all functions
consistent with its prior knowledge, our negative results, which are based on the size of the
function space, are hard lower bounds.1 They imply that certain kinds of prior knowledge
are not strong enough to make a learner converge after seeing a reasonably small number of
examples, whatever form that knowledge is represented in. In contrast, our positive results
are constructive in that they are accompanied by polynomial-time learning algorithms.

An analysis of the effect of a particular piece of domain knowledge on learning may
not be useful in other domains. Hence, we analyze the usefulness of general forms of
knowledge in a domain-independent way. In particular, this paper presents an analysis of
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determinations, a general form of relevance knowledge. Relevance knowledge consists
of information about the dependence among different features. A feature P is relevant to
another feature Q if the fact that P holds for some object affects whether Q also holds for
that object. Determinations were originally proposed by Davies and Russell [Davies and
Russell, 1987, Russell, 1986, Russell, 1989] in the context of analogical reasoning. An
example of a determination is the prior knowledge that "nationality" determines "language",
that is, individuals of the same nationality speak the same language. This particular form of
determination can be weakened in several ways. For example, another form of determination
allows for individuals with the same nationality to speak different languages, as long as they
share a common language. Yet another form allows for a small number of "exceptional"
individuals who may not speak any common language, and so on.

We analyze each of these forms of determinations. In particular, for each type of deter-
mination, we study its effect on learning a function by comparing the number of examples
required in the absence and presence of the determination. Several interesting facts emerge
from the analysis. Minor changes in the definition of a determination can result in dra-
matically different learnability properties. This allows the various determinations to be
ranked according to their effect on the learning process. Furthermore, apparently dissimilar
determinations are actually quite similar in terms of their effect on learning.

We believe our theoretical results have direct relevance to implementors of practical
know ledge-based learning systems. For example, Explanation-Based Learning (EBL) is a
knowledge-intensive learning technique that relies on its ability to classify an instance using
a theory of the domain [Mitchell et al, 1986, Dejong and Mooney, 1986]. One of the open
problems in EBL arises when the domain theory is not adequate to classify every instance
[Mitchell et a/., 1986]. Most approaches to this "incomplete theory problem" are based
on using pre-classified training examples to expose and fill in missing parts of the domain
theory [Hirsh, 1989, Hall, 1988, Mahadevan, 1989, Danyluk, 1989]. For example, one
approach involves using determinations to represent gaps in the domain theory, which are
filled by extracting implicative rules from the determinations [Russell, 1987, Mahadevan,
1989]. A PAC analysis can be used to determine whether the gaps in a domain theory are
"small" enough so that they can be filled with a reasonably small number of examples.

The rest of this paper is organized as follows. Section 2 informally explains our approach
to quantifying semantic bias. Section 3 describes the PAC learning framework. The main
results on learnability of function spaces in the presence of the various determinations are
given in Section 4. Section 5 discusses some implications of our formal results. Section 6
summarizes the main results of the paper.

2. Informal overview of the approach

In this section we informally characterize our approach to quantifying semantic bias. Sup-
pose an intelligent agent is faced with the task of learning from examples some unknown
function, such as a mapping from individuals to languages. Each example describes an
individual using a set of attributes such as his or her height, weight, nationality, place of
employment etc., and also lists his or her language. Any information the learner has about
the unknown function before seeing the examples is its "prior knowledge." Although prior
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Figure 1. Reducing a function space using prior knowledge.

knowledge can also take the form of a "simplicity" preference ordering on the functions in
the function space, in this paper we restrict ourselves to prior knowledge which constrains
the set of allowed functions to a subset of all possible functions. In the absence of any
such prior knowledge about the target function, the agent can do no better than storing
each example. This rote learning strategy becomes prohibitive if the number of individuals
(more precisely, the number of possible descriptions of individuals) is very large.

On the other hand, suppose the agent has prior knowledge in the form of a determination
that any two people of the same nationality speak the same language. Given this piece
of knowledge, the initial learning problem is now reduced to one of learning a function
that maps nationalities to languages. If there are very few nationalities compared to the
number of people, which happens to be true of our world, the learning problem is now a
much simpler one. In particular, the agent can justifiably generalize from a single example:
once it knows the language spoken by some individual of a given nationality, it can form a
general rule stating that every individual of that nationality speaks this language.

Pursuing the nationality example further, we note that even with the prior knowledge, the
learning problem is not trivial since there may be many functions that are consistent with
the knowledge. For example, the function that assigns all Americans the English language,
the function that assigns all Americans the Spanish language etc., are all consistent with the
prior knowledge. Generally, prior knowledge will define a space of functions, and examples
help refine the space of functions to the one target function that the learner is supposed to
acquire.

Generalizing from the above example, Figure 1 illustrates the relation between the amount
of prior knowledge available and the size of the function space. Given no knowledge, the
space of possible functions is large, and learning requires too many examples. When some
knowledge is available about the function being learned, the space is reduced since all
functions that are inconsistent with the given knowledge are eliminated.

Leaving the formal details to future sections, it will be useful here to briefly outline
the form of our analysis. Given a particular determination, we estimate the size of the
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function space consistent with the determination. The main result in PAC learning that we
use is the dimensionality theorem, which relates the number of training examples needed
for successful learning to the size of the function space [Blumer et al., 1989, Natarajan,
1989]. Informally, this theorem says that the number of examples sufficient for successful
learning varies logarithmically with the asymptotic size of the function space. We apply the
dimensionality theorem to the reduced function space consistent with the prior knowledge
and determine bounds on the number of examples needed to learn functions in that space. If
this bound is too high, that is, exponential in the problem parameters, then it is not feasible to
learn that space. If this bound is reasonable, that is, polynomial in the problem parameters,
then we conclude that it is feasible to learn this function space.

A practical learning technique not only needs to converge with a reasonable number
of examples, but also needs to be computationally efficient. While prior knowledge will
always reduce the number of examples sufficient for learning, it might sometimes increase
the time complexity of searching for a function consistent with it [Haussler, 1988]. In those
cases, it may be appropriate to ignore some prior knowledge and consider a bigger function
space than is necessary, thus requiring a few more examples while gaining computational
tractability. For each of our function spaces that can be learned with a reasonable number
of examples, we isolate conditions under which they are learnable in reasonable time, and
describe efficient (polynomial-time) learning algorithms for them.

3. The PAC learning model

In this section we give a brief overview of the relevant formal results from PAC learning.
In particular, we will use a generalization of Valiant's original model to function learning
studied by Natarajan [Natarajan, 1989, Natarajan, 1991].

3.1. Preliminaries

Since any domain/range element of a function can be encoded as a binary string, without
loss of generality we consider learning functions from binary strings to binary strings. An
example of a function / is a pair ( x , f ( x ) ) . We assume a routine EXAMPLE, which outputs
an example of a function / according to some fixed, but unknown, probability distribution
Pr. In other words, the probability of a particular example (x, f ( x ) ) being generated by a
call of EXAMPLE is Pr(x).

In the following, we denote the length, or the number of significant bits of string x by \x\.
We let £" refer to the set of strings of length n and £* to the set of strings of arbitrary
length. We let Trim(w, n) denote the n-length prefix of string w € ^*.

Definition 1. A space of functions F is a set of functions from F* to £T.

The following definition limits the functions being considered to those whose output is
at most a polynomial in the size of their input.
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Definition 2. If k(n) is a fixed polynomial function, called the scale-up function, the nth-

subspace Fn of F= {f 1 , . . . , f i , . . . } is { g i , . . . , g i , . . . } where each gi,: £" - £k(n) is

such that gi(Trim(w, n)) = Trim(fi(w),k(n)) if all w*£* with the same n-length prefix
are mapped by fi to strings with the same k(n)-length prefix, and undefined otherwise.

A simple example will help illustrate these definitions. Assume that the task is to learn
boolean functions. The function space B is the set of all possible boolean functions which
output a single bit. The nth-subspace Bn is a restriction of B to functions over input bit
strings of length n. Note that Bn has 22" functions.

3.2. PAC learning

We now formally describe the PAC learning model. For convenience, we distinguish
learning that converges with reasonable (polynomial) number of examples, which we call
feasible learnability, from learning that also bounds the computational time, which we call
polynomial-time learnability.

Definition 3. A space of functions F is feasibly learnable if there exists an algorithm A
that, given an error parameter e, a confidence parameter 8, and the problem size n,

(i) makes calls to EXAMPLE, whose number is polynomial in n, 1/e, and 1/8, and

(ii) for all functions f in Fn and all probability distributions Pr, over £n, with probability
at least 1-8 outputs a function g such that,

where and
We make no assumptions on the representation of g other than that there exists a
polynomial time algorithm that, given g and x, outputs g(x).

Under the above conditions, A is called a learning algorithm for F.

The parameter e specifies the error of the function g when compared to the real function
/ the learner is trying to approximate. The error is measured by the probability that / and
g differ on some example chosen randomly using the same distribution Pr that was used
during the learning. Since the approximation is obtained using randomly chosen training
examples, they might sometimes be unrepresentative, in which case the approximation
learned from them may not be sufficiently accurate on representative test examples. A
learning algorithm must ensure that the probability of this event is lower than the confidence
parameter 6.

Note that we do not require the output function g to be in Fn. In other words, we allow the
learner to output a function which violates the prior knowledge, as long as it approximately
agrees with the target function with a high probability on the training distribution. The
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advantage of this definition is that it avoids the problem of having to check that g is consistent
with the prior knowledge, which could sometimes be computationally complex [Haussler et
al, 1988,Pitt and Valiant, 1988]. This definition of learnability is also called "predictability"
in PAC learning literature [Haussler et al, 1988, Natarajan, 1991].

To study the time requirements of learning, we need to assume a representation or index
for the functions. Since each function may have multiple names, the index maps functions
to sets of binary strings.

Definition 4. An index of the function space F is a function I : F —> 2s*, such that
V f , g e F , i f f = g , I ( f ) n I ( g ) = { } .

Definition 5. A function class is said to be polynomial-time learnable if there is a learning
algorithm that runs in time polynomial in n, the length of the shortest index of the target
function f € Fn, 1/e and 1/8.

3.3. Identification and dimensionality

The following additional definitions are needed to state the main theorems from learnability
theory.

Definition 6. A f unction f is consistent with a set of example s S if ( x , y ) e S => f ( x ) = y.

Typically, learning algorithms work by guessing a function which is consistent with all
the input examples. Following [Rivest, 1987] we call such an algorithm an identification.
Formally,

Definition 7. An identification O of a space of functions F is an algorithm that takes as
input an integer n and a set of examples S = { ( x i , yi)}, where each xi is of length at most
n, and produces an output function f € F that is consistent with S, if such exists. If O
runs in time polynomial in the length of its input and the length of the shortest index of the
functions consistent with S, we say that F is polynomial-time identifiable.

An identification for the boolean function space B will take as input many examples of the
form (xi, yi), where Xi is a bit string of length n and yi is 0 or 1, and outputs the following
function /. / outputs a 1 for any input string xi in the example set such that yi = 1, and
outputs a 0 on all other inputs. / can be represented simply by the set of positive instances,
that is, examples for which the output is a 1. Since / can be produced in time polynomial
in the number of examples, B is polynomial-time identifiable.

We now introduce Natarajan's notion of "dimension," a measure of the size of a function
space [Natarajan, 1989]. The relationship of Natarajan's dimension to the more popular
Vapnik-Chervonenkis dimension [Blumer et al., 1989] is discussed in [Natarajan, 1989].

Definition 8. The dimension of Fn, the nth subspace of F, is Iog2 Fn\.
2
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Definition 9. A space of functions F is of dimension D(n) if, for all n, the dimension of
Fn (the nth subspace of F) is D(n). If there is a polynomial p(n) such that D(n ) < p ( n )
for all n, F is said to be of polynomial dimension.

To calculate the dimension of the function space B in our boolean function example
above, we note that there are 22n. possible functions in Bn. Thus, the dimension of the
function space B is D(n) = 2n. Now consider a subspace B' of B in which every boolean
function maps exactly one input string to 1, and the rest to 0. It is easy to see that there
are only 2" functions in B'n, one function for each input string. The dimension of this new
function space B' is the polynomial D (n) = n.

3.4. Learnability theorems

The main results we will be using from the theory of PAC learnability can now be stated
[Natarajan, 1989].

THEOREM 1 (NATARAJAN). A space of functions F is feasibly learnable if and only if
it is of polynomial dimension,

THEOREM 2 (NATARAJAN). A space of functions is polynomial-time learnable if it is of
polynomial dimension and is polynomial-time identifiable.

Taking our boolean function example once again, since the dimension of the function
space B is exponential, it is not feasibly learnable. But if the learner has the additional
knowledge that the target function maps exactly one input string to 1 and the rest to 0, we
can simply focus on the reduced function space B1, which has a polynomial dimension, and
feasibly learn it. B' is also polynomial-time learnable because the same identification that
we discussed before for B would work for B1 as well, and runs in time polynomial in the
length of its input. This example clearly illustrates how a single piece of knowledge, such
as the existence of a single positive instance for the target function, can make a dramatic
difference to the learnability of the function space.

The following theorem allows us to estimate the exact number of examples sufficient to
learn a function given the dimensionality of the space containing it.

THEOREM 3 (NATARAJAN). If DimF(n) is the dimension of a function space F, then
any algorithm which collects and identifies a set of examples of size 1/8 (DimF(n) lne 2 +
In (1/8|)) is a learning algorithm of F.

The proof for the above theorem follows a similar result for concept learning given in
[Blumer et al, 1989] or [Natarajan, 1987].

4. Learnability results

This section describes the main results of this paper on quantifying relevance knowledge
defined by various determinations.
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4.1. Determinations

Determinations are intended as a formalization of the notion of relevance. Intuitively, an
attribute P is relevant to an attribute Q if the fact that P holds for some object affects whether
Q holds of that object. For example, the fact that the attribute American-Nationality holds
for a certain individual affects whether the attribute Speaks-English holds true for him or
her. On the other hand, we feel reasonably certain that the Height attribute will not similarly
affect the Speaks-English attribute.

The simplest type of determinations are called total determinations. Russell introduced
five types of total determination in his thesis [Russell, 1986]. The first of these is defined
as follows:

Definition 10. Let P(x, y) and Q(x, z) be any two first-order sentences, where x represents
the set of variables that occur free in both P and Q, while y and z represent the set of free
variables that occur only in P and Q, respectively. We say P(x, y) >- Q(x, z) iff

An example (which we will use as a running example throughout this paper) will help clar-
ify the above definition. Let P(x, y) denote the predicate Nationality(x, y), which means
that the individuals has nationality y. Also let <2(x, z) denote the predicate Language (x, z),
which means that x speaks language z. Then, the above total determination states that if
there exist two individuals x and w who share a nationality y, then x and w will speak the
same set of languages.

Determinations can be viewed as a form of incomplete knowledge [Russell, 1987]. For
example, from

and

it follows that

However, just knowing that nationality determines language is not sufficient to compute an
individual's language from his nationality. Examples are required to fill in this knowledge,
and thus they are a source of new information (unlike the situation in EBL where examples
are a logical consequence of the domain theory [Mitchell et al., 1986]). In general, from
P(x,y) >- Q(x,z) and P(A,B) A Q(A,C), the implication MxP(x,B) -> Q(x,C)
follows.
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4.2. Function space consistent with a determination

Let P(x, y) and Q(x,z) be any two first-order formulas specified as part of a determination
P(x, y) >- Q(x, z), where, as before, x represents the set of free variables appearing in
both P and Q, and y and z represent the set of free variables appearing only in P and
Q, respectively. For some sets /, N, and L, let P C I x N and Q C N x L denote
the extensions of the predicates P and Q respectively. Therefore, the variables x range
over I, the variables y range over N, and the variables z range over L. In terms of the
nationality example, / is the set of individuals, N is the set of nationalities, and L is the set
of languages.

We denote the set {y \ P(x,y)} by Px, and the set {'y \ Q ( x , y ) } by Qx. The task
is to learn to predict Qx, given x and Px. We view this as learning a function from
D - {(x, Px) : x e I} to 2L. Let F denote the set of all such functions fP,Q : D —> 2L

for a given P. The training examples consist of the input-output pairs ( { x , P X ) , Q X ) .

Any particular relations P and Q uniquely define a function fptq € F such that, for
all x € I, fp,Q((x, Px)) — Qx- A determination P(x, y) > Q(x, z) can be viewed as a
constraint on the relations P and Q. With every determination P(x, y) > Q(x, z), we can
associate a space of functions F> = {FP,Q} C F, defined by all particular relations P and
Q satisfying that determination. We call it the space of functions consistent with or defined
by that determination. Formally, F> = {Fp,Q : P(x,y) > Q(x,z)}.

An example will help clarify the above definitions. Consider the determination Nationality
(x,y) > Language(x,z). Let / ={Giuseppe, John, Lisa, Isabella, Mami}, N = {Italy,
US, Japan }, and L — {Italian, English, Japanese}. Further, let P = {(Giuseppe, Italy),
(John, US), (Lisa, US), (Isabella, Italy), (Mami, Japan)}. For the above P, it is easy
to see that Q = {(Giuseppe, Italian), (John, English), (Lisa, English), (Isabella, Italian),
(Mami, Japanese)} is consistent with the above determination, whereas Q' = {(Giuseppe,
Japanese), (John, English), (Lisa, English), (Isabella, Italian), (Mami, Japanese)} is not.
The reason, of course, is that, Giuseppe and Isabella, who are both from Italy, are mapped to
the same language by Q, but mapped to two different languages by Q'. Hence the function
fp,Q with mappings ( Giuseppe, {Italy} ) —> {Italian}, ( John, {US}) —> {English}, etc.
is in Fy, and the other function fp1Q' with mappings (Giuseppe, {Italy}) —> {Japanese},
and (Isabella, {Italy}) —> {Italian}, etc. is not.

As we said b ,fore, the nationality determination makes the function learning problem
feasible because it reduces the original problem of learning a function that maps individuals
to languages, which is infeasible, to a simpler problem, namely learning a function from na-
tionalities to languages. We can view the domain of the new function, that is, nationalities,
as an abstraction of the domain of the old function, that is, individuals. Figure 2 illustrates
this point, showing how individuals sharing a nationality can be abstracted by their nation-
ality. In Figure 2, John and Lisa are grouped together as Americans, and Giuseppe and
Isabella are grouped as Italians. Now, learning a mapping from nationalities to languages
effectively permits us to predict a person's language by knowing his/her nationality. The
amount of abstraction achieved by a determination depends on the number of nationalities
and individuals, and will turn out to be the basis for our learnability results. For the above
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Figure 2. Abstracting the domain of a function using a determination.

determination, learning becomes feasible when the number of nationalities is much smaller
than the number of individuals (we make this statement more precise below).

In order to quantify the amount of abstraction achieved by a determination, we have to
parameterize the functions. We do this by parameterizing the sizes of various components
of the training examples, indirectly bounding the sizes of the various sets and functions
involved. In any training example ((x, Px), Qx), we assume that \x\ = n, Px\ = c, and
\QX\ = I- Since x is any member of/, these assumptions imply |/| < 2n. On the other
hand, since Px is any subset of N and Qx is any subset of L, it follows that |N|| < c and
\L\ < L

We make the assumption that I varies as a polynomial function of n, and is the scale-up
function of F. So the nth-subspace Fn of F can be defined as {g : £n -» £i(n) | Vx e
I,g(x) = f ( ( x , P x ) ) , w h e r e feF}.

We can now get bounds on the size of the function subspace Fn as a function of n and
I. Note that each function in Fn is from /, a set of size < 2", to 2L, a set of size < 2l.
Hence, in the worst case, we have |Fn| = (2l)2", and dim(F) = log |Fn| = 2nl. Using
the dimensionality theorem, F is not learnable without some additional prior knowledge,
since it is of exponential dimension in n,

4.3. Results on total determinations

The first set of results concern the various types of total determinations. For each type of
determination we compute bounds on the dimensionality of the function space consistent
with that determination. Using the learnability theorems presented above, we can then
determine the learnability of each space. We present detailed proofs for two cases in this
section and refer the reader to the appendix for the rest.

A function in the function space defined by the determination P(x,y) > Q(x,z) is
illustrated in Figure 3. As a generalization of the example discussed in previous section,
individuals may have multiple P values, that is, nationalities. Each ellipse in the domain
of the function in Figure 3 represents a nationality. Individuals who share at least one
nationality speak exactly the same set of languages.
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Figure 3. Part of a function in the space consistent with the >- determination.

The following theorem affirms the polynomial-time learnability of function spaces con-
sistent with the total determination >.

THEOREM 4 The space of functions F> consistent with a determination P(x,y) >
Q(x,z] is polynomial-time learnable if \range(P)\ < c and \range(Q)\ < I are poly-
nomials in x\ = n.

Proof, Let us define a relation R such that any two elements a and b in / are related by
R iff the sets Pa and Pb are not mutually exclusive. It follows from the definition of the >
determination that for any two such elements a and b, Qa = Qb The transitive closure on R
induces a partition of the set /. We call each member of that partition a "continent". For any
x and y that belong to two distinct continents, Px and Py should be mutually exclusive, and
hence each distinct continent must have at least one distinct nationality. Hence, \continents\
< \N\ < c.

From the definition of the > determination, it can be seen that each member of a single
continent has to be mapped to the same subset of L. Hence, the total number of possible
functions is bounded from the above by the number of ways the continents can be mapped
to subsets of L. Since the number of subsets of L is bounded by 21, the total number of
functions is bounded by (2i)|continentss|. Since \continents\ < |N| < c, the number of
functions in Fn is bounded by ( 2 l ) c . Hence, the dimension of F> < cl. If c and / are
polynomials in n, then by Theorem 1, F> is feasibly learnable since it is of polynomial
dimension.

BuildContinentMap (see Figure 4) takes the error parameters e, 6, and problem size n as
inputs, collects a large enough set of examples S, and constructs a mapping T, which is
consistent with the examples in S, from subsets of TV that correspond to continents to subsets
of L. T is a representation of a function in F>. If the set of P values of an individual x of
the current example intersects with some continent w in the mapping T, then the continent
w is merged with Px, and its image is stored as Qx. (If all the examples are consistent with
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Figure 4. A learning algorithm for F>

the determination, this new image will be the same as the old image.) If there is no such
intersection, then T maps Px to Qx.

To find out the mapping of a new example, say (w, Pw), under the learned function, find
any T(y), where y has a non-empty intersection with Pw. If the examples are consistent
with the determination and with each other, all such y's should give the same result.

T is consistent with the training examples if some function in F> is consistent with them.
Note that the size of the table T never exceeds c because the number of entries in T is not
increased unless the algorithm comes across an example with nationalities (in Px) which
have not been seen previously. Hence, BuildContinentMap runs in time polynomial in the
sample size and c, which are in turn polynomials in i, y and hn. Since the construction of
T is consistent with the training examples and the determination P(x, y) > Q(x, z), by
Theorems 2 and 3, it follows that F> is polynomial-time learnable by BuildContinentMap.

•

Note that BuildContinentMap assumes that the polynomial bounds c(n) and l(n) are
known in advance to facilitate the estimation of the number of examples sufficient for
learning. Hence, strictly speaking, our proof of Theorem 4 is only an existence proof of a
learning algorithm. However, it is possible to convert it into an "on-line" learning algorithm
that does not assume the knowledge of these bounds by using the stochastic testing method
introduced in [Angluin, 1988]. This method works by incrementally training the system
until it correctly classifies a set of randomly drawn test examples. The number of test
examples in each iteration must be increased by a small factor to guarantee that the total
probability of learning a function which is not approximately correct in any iteration is
bounded by 6. If c(n) and l ( n ) are polynomial functions of n, then the total number of
training and test examples can still be shown to be polynomial in |, | and n. We ignore this
refinement in the interest of simplicity and simply note that the same argument applies to
all of our algorithms, which assume the knowledge of various fixed polynomial functions.

As we mentioned earlier, there are several types of total determinations. We now introduce
the remaining types, and characterize when they define learnable function spaces.
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In the real world, the assertion that Nationality(x, y) > Language(x, z) is too strong.
In our toy example, if Giuseppe happens to be a national of both US and Italy, then it
follows that Lisa, John, Giuseppe, and Isabella should all speak both Italian and English!
This conclusion follows even though Isabella and John do not share any nationality. One
individual who has multiple nationalities can effectively merge all those nationalities into a
single continent! The following total determination eliminates this problem by weakening
the > determination.

Definition 11. Let P and Q be any two binary predicates. We say P(x, y) y Q(x, z) iff

Nationality (x, y) >y Language(x, z) means that two individuals speak the same set
of languages if their set of nationalities is the same. The following theorem characterizes
the learnability of F > v .

THEOREM 5 The space of functions F>v consistent with P(x, y) >v Q(x, z) is not learn-
able if\ range(P)\ = c > O(n), where n = x\. However, F^v is polynomial-time
learnable ifc < O(logn).

Proof. Figure 5 illustrates a portion of a function in the space F^v. In contrast to the
situation in Figure 3, here every subset of N can be mapped to a completely distinct subset
of L. Note that elements merely sharing a P value may not be mapped to the same subset
of L, as the figure illustrates.

In this case, given any two elements a and b in /, we can assert that Qa = Qb if Pa = Pb-
If c < n, then \F^V \ is as large as the number of ways in which subsets of N can be assigned
elements in 2L. This is so because every possible assignment of elements in 2L to subsets of
N defines a function consistent with the above determination. So, in the worst case, |F^V |
= (2 l)2C. Thus dim(F>v) = 2Cl. If c > n, then dim(F>v) = dim(F) = 2nl This is
because |F>_W | < F , since FXv C F. Thus, if c > O(n), it follows from Theorem 1 that
F>v is not feasibly learnable. If c < O(logn), then dim(F>v) = 2cl < 2k log nl = nkl is
a polynomial in n, and hence F>v is feasibly learnable.

Figure 5. Part of a function in the space consistent with the Xy determination.
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We describe, in Figure 6, a polynomial-time learning algorithm that collects and identifies
a large enough set of examples in time polynomial in n when c < 0(log n). It constructs a
table T that represents a mapping from subsets of N that represent Px to subsets of L that
represent Qx for all examples ( ( x , P X ) , Q X ) . Since all individuals x who map exactly to
the same Px, should also map to the same Qx, this table T is guaranteed to be consistent
with all the examples. Using T, any input (x, Px) is mapped to T(PX), or to { } if T(PX)
is not in T.

The size of the table T can grow as big as the number of subsets of N. Hence the
complexity of the above algorithm is O(\{2cl+ In |}). If c grows at most logarithmically
with n, BuildSetsOfCountriesMap runs in time polynomial with n. •

We introduce the remaining types of total determinations below, but postpone their learn-
ability analysis to Appendix 8.1.

One problem that the >y determination does not solve is when two individuals, such as
Guiseppe and John, share a nationality. In that case, we feel confident in asserting that they
share a language too. This is captured by the following third type of total determination:

Definition 12. Let P and Q be any two binary predicates. We say P(x, y) >? Q(x, z) iff

In this case Nationality (x, y) Xa Language(x, z) means that if two individuals share
a nationality, then it can be asserted that they share a language. We prove the following
negative result in the appendix.

THEOREM 6 The space of functions F>B consistent with P(x,y) >g Q(x,z) is not learn-
able.

For the case when individuals with multiple nationalities exist, it would be computation-
ally advantageous if we could compute the set of languages of such individuals as the union

Figure 6. A learning algorithm for F>v and F>c
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of some "official" set of languages associated with each nationality. Denoting such a rela-
tion from nationalities to languages by a second order predicate R, we have the following
definition:

Definition 13. Let P and Q be any two binary predicates. We say P(x, y) >R Q(x, z) iff

Thus given any nationality y, the set of languages associated with y is simply {z \
R(y, z)}. The set of languages spoken by any individual x is given by {z \ P(x, y) A
R(y, z)}. We prove the following theorem in the appendix.

THEOREM 7 The space of functions F>R consistent with a determination P(x,y) >~R
Q(x,z) is polynomial-time learnable if\range(P)\ = c and \range(Q)\ = I are polyno-
mials in\x\ = n.

The definition of P(x,y) >R Q(x,z) above is expressed as a statement in second or-
der logic. Russell introduced another determination which is intended to be a first order
approximation of the previous determination.

Definition 14. Let P and Q be any two binary predicates. We say P(x, y) >c Q(x, z) iff

In terms of the nationality example, the >c determination states that if the set of nation-
alities of w is a subset of that of x, then the set of languages spoken by w is also a subset
of those spoken by x. In the appendix, we show that if c < O(logn), then the function
class defined by the above determination is learnable in polynomial-time by the algorithm
BuildSetsOfCountriesMap in Figure 6. Somewhat surprisingly, however, this function class
is not learnable when c > O(n), even though the previous function class F>R it is intended
to approximate is learnable if c < O(nk).

THEOREM 8 The space of functions F>c consistent with P(x,y) >c Q(x,z) is not
learnable if\range(P)\ = c > O(n), where \x\ = n. However, F>c is polynomial-time
learnable ifc < O(logn), and \range(Q)\ = I < O(nk).

4.4. Results on extended and partial determinations

4.4.1. Preliminaries

More often than not, real world knowledge admits exceptions. Extended and partial deter-
minations are two types of determination knowledge that can deal with exceptions. In order
to facilitate the analysis of such determination knowledge, we introduce a distance metric
on function spaces. We then prove a general result regarding the learnability of function
spaces that are "close" to other learnable function spaces in terms of this metric.
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We begin by defining the notion of distance between two functions.3

Definition 15. Given any two functions f : D —» R and g : D —» R, the distance between
f and g is defined as:

In other words, the distance between two functions is simply the number of domain
elements on which the two functions disagree. We generalize this notion to function spaces
as follows. Intuitively, the distance from a function space to another is the maximum of the
distances from the functions in the first space to their closest neighbors in the second space.

Definition 16. Given any two function subspaces Fn and Gn the distance from Fn to Gn

is defined as:

Note that the distance from a function subspace Fn to Gn is not necessarily the same
as the distance from Gn to Fn. We now define a relation "p-close" between two function
spaces that indicates that the distance between the corresponding subspaces is small. It is
easy to see that the relation p-close is not symmetric.

Definition 17. Given two spaces of functions F and G, we say that F is p(n)-close or
p-close to G iff for all n, Dist(Fn, Gn) < p(n).

This relation between function spaces establishes a relationship between their dimensions,
which in turn relates the number of examples needed to learn them.

THEOREM 9 Let F be a function space which is p(n)-close to G. Let the range of the
functions in the two subspaces Fn and Gn be Rn. If\Rn\ < 2k(n) for some polynomial k(n),
and the dimension of G is Dim<3(n), then the dimension of F DimF(n) < DimG(n) +
p(n)k(n) + np(n) + logp(n).

Proof. Let the domain of the functions in the function subspaces Fn and Gn be Dn. As
before, assume that \Dn\ = 2n. Since F is p-close to G, Dist(Fn, Gn) < p(n). We define
a new function subspace En : Dn —> Fin U {-L}, where _L is some element not in Rn, as
follows.

En - {/ : Dn —> Rn U {-L} | / maps at most p(n) elements in Dn to Rn, and the
rest to _L}.

Intuitively, functions in En represent the set of all possible ways in which the functions
in Fn can differ with the functions in Gn. Note that
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Hence the dimension of E,

Given the spaces Gn and En, we define the product space Gn x En as follows:

Since the functions in Fn have a corresponding function in Gn which differs from it on
at most p(n) elements, and some function in En represents all such differences, it follows
that Gn x En includes all functions in Fn. Gn x En contains at most \Gn\ * \En many
functions.

Hence, the dimension of F,

We are now ready to infer the feasibility of learning in one space from the feasibility of
learning in another space which is p(n) -close to it.

THEOREM 10 If a space of functions F is p(n)-close to another space of functions G
for some polynomial function p(n), and G is feasibly learnable, then F is also feasibly
learnable.

Proof, Since G is feasibly learnable, from Theorem 1, its dimension Dim<7(n) is a
polynomial in n. From the previous theorem, it follows that F has a polynomial dimension
as well, which implies that F is feasibly learnable. •

Note that the above theorems do not make any guarantees about the learning time. How-
ever, they are useful to predict the number of examples sufficient to learn a function space
from the number of examples sufficient to learn another function space which is "close" to
it.

4.4.2. Extended determinations

In many real world situations, it is difficult to find total determinations. Even in our
nationality example, the reader might have noticed that it is not always true that all people
with the same nationality speak the same set of languages. One would like to be able to
tolerate a small number of "exceptions" to a total determination. Russell proposes two
solutions to this problem: extended determinations, and partial determinations [Russell,
1986]. We analyze the former first.

An extended determination is like a total determination, except that one is required to see
p examples with the same values for P and Q, in order to conclude that all elements with
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the same value for P also have the same value for Q. An extended determination reduces to
a total determination when p = 1. Intuitively, extended determinations represent situations
where there are a small number of exceptions to a total determination.

Figure 7 illustrates a portion of a function consistent with an extended determination. A
set of elements sharing a given P value all map to a given subset of L, except for a set of
"exceptional" individuals who map to larger subsets of L.

We now carry out an analysis of extended determinations. Following [Russell, 1986] we
define the notion of an extended determination as follows:

Definition 18. We say P(x, y) >-V
E Q(x, z) iff

For example, Nationality(x, y) >-P
E Language(x,z) means if p or more distinct people

are American, and they all speak English, then every American will speak English. Clearly,
when p = 1, this reduces to the determination V, and as p grows larger the statement
becomes weaker. The question naturally arises: how large can p get without sacrificing
learnability. To answer this question, we first relate p to the distance between the function
subspaces of F^r and F>R.

E

Lemma 1. Let T C / x N and Q C I x L. If \L\ < I, and \N\ < c then the function
space F^r consistent with the determination P(x, y) >-P

E Q(x, z) is d(p - l)-close to the
function space F>R consistent with P(x, y) >R Q(x, z).

Proof. Please see Appendix 8.2.

We are now ready to establish the learnability of the corresponding function space.

Figure 7. Part of a function in the space consistent with an extended determination.
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THEOREM 11 The function space F^T consistent with the determination P(x,y) >P
E

Q(x,z) is polynomial-time learnable if \range(P)\ = c, range(Q)\ — l, and p are
polynomials in \x\ — n.

Proof. The feasible learnability of F^v follows from Theorem 10, and the fact that FXJ>
is d(p - l)-close to F^R, which is feasibly learnable. Please see Appendix 8.2 for a
polynomial-time learning algorithm. •

Our learnability result essentially states that as long as the number of exceptions permitted
by the extended determination is low (that is, polynomial in n), the function space defined
by it is polynomial-time learnable.

4.4.3. Partial determinations

A partial determination is similar to an extended determination in that it tolerates a small
number of exceptions to a total determination. A partial determination is introduced through
a probability measure, d(P,Q], which is an empirical estimate of the relevance of one
attribute P to another attribute Q [Russell, 1986]. This measure is also similar to the
"uniformity" measure discussed in [Davies, 1988].

Consider two relations P and Q as before, where P C I x N and Q C / x L. Let us
denote the set {x \ P(x,w)} by P - l . For each w such that \P^l\ > 1. d ( P - l , Q ) is
defined as follows:

If we interpret P as Nationality and Q as Language., then essentially d(Pw
 1,Q) is

measuring the extent to which the languages spoken by individuals belonging to nationality
w overlap. If they all speak the same set of languages, d ( P - 1 , Q ) is 1, and if there is no
overlap, then d(P^1,Q) is 0.

Now we define d(P, Q) as the average of the above metric over all possible range values
of the relation P.

In general, d(P, Q) is intended to capture the probability that two randomly chosen
individuals with the same P value have the same Q value. Note that if we have a total
determination P > Q, d(P, Q) = 1. If P and Q are uncorrelated, then d(P, Q) is just the
probability that two randomly chosen individuals have the same Q value. Thus, intuitively
d(P, Q) is a measure on how relevant P is to making predictions about Q. A good discussion
of how this measure is related to other metrics for relevance in statistics, such as correlation,
is given in [Davies, 1988]. desJardins considered the task of predicting the value of a target
feature Q from a single input feature P, which is assumed to be statistically correlated to
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Q, making some strong assumptions on the distribution of the input and output features
[desJardins, 1989]. In the spirit of our previous results, we derive distribution-independent
sufficient conditions for learnability which rely on the asymptotic growth rate of d(P, Q)
with the size of the learning problem.

Definition 19. We say that P(x, y) partially determines Q(x, z) (written as P(x, y) >-p
Q(x, z)) if there is a polynomial a in n, such that d(P, Q) > 1 — ̂ r, where \x\ < n.

Figure 8 illustrates a portion of a function in the function space Fx«. Most members
of / with a given P value get mapped to a particular subset of L (shown by the shaded
region in Figure 8), while there is a set of "exceptions," who get mapped to arbitrary subsets
of L. Our results imply essentially that partial determinations define learnable function
spaces as long as the number of such exceptions remains bounded by a polynomial in n.
Also, note the difference between Figure 7 and Figure 8. In the former, which describes
a function consistent with an extended determination, exceptional individuals must map
to subsets of L that include the corresponding maps of normal individuals. In the case of
partial determinations, there is no such restriction.

If P partially determines Q, then it can be shown that the resulting function space F^ is
2c2£a-close to F^, and hence is feasibly learnable. But first, we need an auxiliary lemma
that allows us to infer a lower bound on d ( P - l , Q ) for any w € N from the lower bound
on d(P.Q).

Lemma 2. If P C I x N and Q C I x L are such that P(x,y) >% Q(x, z), then for all
wtNs.t. \p-l\>l,d(P-\Q}>l-^.

Proof. Please see Appendix 8.3.

Lemma 2 is used to prove the following:

Figure 8. Part of a function in the space consistent with the >p determination.
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Lemma 3. The space of Functions F^^ consistent with P(x, y) >-p Q(x, y) is 2c2la-close
to the space F^ consistent with P(x, y) >- Q(x, z).

Proof. Please see Appendix 8.3.

Now we can state the main theorem of this section.

THEOREM 12 The space of functions F>t>p consistent with P(x,y) X-p Q(x,y) is
polynomial-time learnable, if range(P)\ = c, \range(Q)\ = I, and a are polynomials in
\x = n.

Proof. Feasible learnability follows from the above lemmas and the Theorem 10. Please
see Appendix 8.3 for a polynomial-time learning algorithm •

There are some interesting points to note regarding the above analysis. The strategy
used to prove the above results, based on a distance metric on function spaces, reveals
relations between the various determinations not obvious from their respective definitions.
For example, the positive results on both the partial and the extended determinations are
due to the proximity of their function spaces to that of a learnable total determination. If we
interpret d(P, Q) as the probability of the predicate P totally determining Q, P partially
determines Q means that this probability can be made arbitrarily close to 1, by increasing
n. Our results show that for learning to be effective, it is not necessary for P to totally
determine Q. It suffices if the probability of this can be made asymptotically close to 1.

Interestingly, the notion of partial determination seems similar to the e-semantics, pro-
posed by Pearl to give probabilistic semantics to default logic [Pearl, 1988].4 Here default
rules are interpreted to be sentences which are true with a probability 1 — e, where c can
be made arbitrarily small. A sentence is true under this semantics if it can be inferred
with probability 1 - O(e) in all distributions which are consistent with the input defaults.
Viewed in this vein, if P partially determines Q, a default inference of a Q value might be
sanctioned for an individual with a known P value; however, this default will have to be
over-ridden if there is extra-evidence to suggest that the real Q value of this individual is
different from that of "normal" individuals.

4.5. A summary of learnability results

Table 1 summarizes our results. The table characterizes the number of examples sufficient
to learn the function spaces defined by the different types of determinations under various
conditions on their parameters. The table also specifies if and when the function space
defined by each determination is polynomial-time learnable.

Min(x, y) denotes the minimum of x and y. Note that in the case of the Vy determination,
since the number of functions consistent with it could not be more than \F\, we need to
take the smaller of the dimensionalities computed with and without the determination
knowledge. In the case of the >c and >3 determinations, the dimensionality lies between
the two expressions shown enclosed by square brackets.

What can we take away from these results in Table 1?
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First, the results characterize some conditions under which the determinations define
learnable function spaces. Obviously, the table is not exhaustive in terms of conditions—
for example, what happens to the learnability of F>v, if we further require that every
individual can only belong to a constant number of nationalities?5 The table gives us the
sufficient conditions for feasible learning when different determination-based theories are
available. It is important, particularly when interpreting the negative results, to note that
the results are tied to the assumptions underlying the PAC learnability model. For example,
the non-learnable spaces may turn out to be learnable for some specific "easy" distributions
of examples.

Second, the results specify the amount the input needs to be abstracted for the function
learning problem to be feasible. For example, for the >-R determination, a logarithmic
reduction is sufficient (in terms of the nationality example, the number of nationalities needs
to be a logarithm of the number of people). On the other hand, for the ^v determination,
a doubly logarithmic reduction is needed. Interestingly, for the >i determination, even a
doubly logarithmic reduction is insufficient to make the learning feasible.

Third, the results also give us some insight into the relations between the various deter-
minations. For example, it is interesting to note that the function space that corresponds
to >R is learnable under much weaker conditions than that of its first-order approximation
xc-

Finally, the results on extended and partial determinations are interesting because they
allow a small number of exceptions to total determinations without sacrificing the learn-
ability. Determinations of this form are more suitable to the real world domains since there
are usually a number of exceptions to any rule in such domains.

Table 1. A summary of learnability results. See text for explanation.

Determ.

P^Q

P>RQ

P^Q

P>cQ

P>3Q

P>P
BQ

P>%Q

Dimension

< d

d

Min[2e/, 2nl]

[2c/2(,Min[2c/, 2"(]]

[2n(l- l),2nl]

<d + d2(p-l)+
cin(p-l) + log(d(p-l))

< d + 2c2l2a+
2c2 Ian + Iog2c2 la

{Examples} needed

i{dln2 + ln|}

I{C/ln2 + ln|}

i {Min(2c l ,2n J)ln2 + ln|}

i{2cl ln2 + lni}

i { 2 n l in2 + lni}

±{(cl+ c l 2(p- l ) + cln(p - l) +
log(c lp- l ) ) ) ln2 + ln±}

i{(cl + 2c2J2a + 2c2km+
log 2c2 la) In 2 + In |}

P-time learnable if

c < O(nk)

c < O(nk)

c < O(log n)

c < O(log n)

Not Learnable

c < O(nk)

c < O(nk)
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5. Discussion

The main lesson of this work is that PAC learning can be used to quantify semantic bias
by analyzing the learnability of a hypothesis space consistent with all prior knowledge—
syntactic and semantic. What this work suggests is that in some cases semantic bias can
be as effective as syntactic bias in making the learning task tractable. In this section we
discuss some implications of our analysis for knowledge-based learning.

5.1. Syntactic and semantic biases

Traditionally, PAC learning has focused on constraining learning by providing the learner
with a syntactically defined space of functions. For example the class of k-CNF boolean
formulas, which is defined as the set of conjunctions of at most k disjuncts, is known to
be learnable [Valiant, 1984]. Semantic bias allows one to make finer distinctions between
the objects of the same syntactic type. For example, it allows us to talk about something
being a function of one attribute rather than another, which cannot be done with purely
syntactic constraints. However the price paid is that the semantic bias can be very domain-
specific and an algorithm to implement an arbitrary domain-specific bias may be of no use
in another domain. The problem, then, is to identify general classes of semantic bias more
expressive than syntactic bias. Such semantic bias should be describable by a small set of
parameters which can be explicit inputs to the learning algorithm. Determinations are good
examples of such semantic bias in that they can be parameterized by a set of attributes that
determine the target function. This allows the same learning algorithm to be applicable to
many domains, in spite of the domain-specific nature of the particular determinations such
as nationality determines language.

Note, however, that our work is agnostic about whether prior knowledge should be declar-
atively represented in the system. The analysis holds whether or not this is the case. In
[Russell and Grosof, 1989], the benefits of declarative bias are eloquently argued, while in
[Brooks, 1991] the necessity of any declarative representations in reasoning and learning is
seriously questioned. The problem is that declarative representations of prior knowledge,
while being more flexible, might introduce computational intractability. The question of
what part of the knowledge must be declaratively represented and how, must be resolved
using considerations of computational complexity in addition to the needed generality and
flexibility of learning. In the case of determinations, it suffices to declaratively represent
the attributes in the determination. Our algorithms do not require the first order logic
representations of the various determinations.

5.2. Tree-structured bias

Our results suggest that knowledge-based learning is not automatically immune to the ob-
served statistical limitations of inductive learning systems [Dietterich, 1989]. The analysis
of the kind performed here can help the designer of a learning system decide whether some
existing prior knowledge is adequate, or if more knowledge is needed to make learning
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feasible. It might also suggest the need for learning from additional sources of informa-
tion such as "membership queries," when learning from random examples alone is not
computationally tractable [Angluin, 1988].

It may not always be realistic to find a small number of relevant attributes that can
determine a target function. Russell showed that if the learner has a set of determinations
structured as a tree, the number of examples needed to learn a target function is significantly
reduced even while the total number of relevant attributes is large [Russell, 1989]. Tree-
structured bias consists of a tree of attributes such that each attribute at a node is determined
by at most a small constant number (k) of other attributes, which are represented as its
children. At the root of the tree is the target attribute, whose value is to be predicted, and at
the leaves are the input attributes, whose values are given. The learning problem is made
difficult by the fact that the non-root internal nodes that represent "intermediate" attributes
are not observable during the training or testing.

Note that it is logically sound to replace the tree of determinations with a single "flat"
determination that says that the target attribute is determined by the input attributes. How-
ever, Russell showed that the tree structure provides additional bias so that a function class
which is not feasibly learnable with the flat determination might still be learnable with the
tree of determinations.

Learning with tree-structured bias from classified random examples is reducible to learn-
ing arbitrary boolean formulas [Pitt and Warmuth, 1990], which in turn is reducible to some
apparently hard cryptographic problems such as inverting the RSA cryptosystem [Kearns
and Valient, 1989], However, there is an efficient learning algorithm for boolean functions
that obey tree-structured bias if the learner is also allowed to query the output of the target
function for any arbitrary input, i.e., ask "membership queries" [Tadepalli, 1993]. This
algorithm was implemented as a program called TSB and was shown to learn the target
functions consistent with a determination tree of a few dozen nodes to almost 100% accu-
racy with a modest number of examples and queries [Tadepalli, 1993]. A knowledge-free
induction program (ID3) using the same data could only achieve a maximum of 75% ac-
curacy. This shows the power of the tree-structured determination knowledge in reducing
the number of training examples needed for learning, and the usefulness of membership
queries in effectively exploiting this knowledge.

5.3. Learning prior knowledge

We could also consider the possibility of the system interactively learning the necessary
prior knowledge, perhaps by asking a domain expert directed questions. In the language
domain, for example, it makes sense to ask, "do you know any attribute that determines
language?" This is a more useful question to ask than "what language does Giuseppe
speak?" because an affirmative answer to the first question greatly reduces the difficulty of
the learning problem. Thus, our work can provide guidance as to what questions to ask in
a new domain to facilitate further knowledge acquisition.

One could also consider learning prior knowledge from examples and some weaker prior
knowledge. For example, under some conditions, "nationality determines language" might
be learned by knowing that "some attribute determines language."
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However, prior knowledge cannot be considerably weakened without sacrificing learn-
ability. To see this, assume that there is some knowledge K (such as a mapping from
individuals to languages) which is not feasibly learnable from prior knowledge Pweak, but
is feasibly learnable given a stronger piece of prior knowledge Pstrong.. Let us consider
the possibility of first learning Pstrong from Pweak, and then learning K. If Pstrong can
be learned feasibly from Pweak and examples, then since K can be feasibly learned from
Pstrong. Pstrong + K can be feasibly learned from Pweak. This means that K itself can
be feasibly learned from Pweak, which we know is impossible. Hence Pstrong must not
be learnable from Pweak. A corollary of this is that if something is not learnable from a
state of tabula rasa, then any prior knowledge that makes such learning feasible is itself not
learnable from a state of tabula rasa.

Another approach for acquiring prior knowledge might be through some other means of
learning: by being told, for example. However, the results of [Natarajan and Tadepalli,
1988] show that this approach too suffers from the same information theoretic limitations.
Simply stated, the set of all possible functions is too large to be learned from a reasonable
number of bits whether these bits are interpreted as examples or domain theory or knowledge
or bias.

Thus, we must conclude that although some forms of prior knowledge might be learnable,
not all forms are, and that what can be feasibly learned is, indeed, limited.

5.4. Application to knowledge-based learning systems

Our work provides a way to analyze the convergence of techniques for completing partial
domain theories. For example, FED is a technique that extends EBL to partial domain
theories containing determinations by using classified training instances to extract im-
plicative rules from the determinations [Mahadevan, 1989]. FED relies on the fact that
if instances P(A, B) and Q(A, C) of a determination P(x, y) > Q(x, z) can be proven
from a training instance, then the definition of a determination sanctions adding the rule
P(x, B) => Q(x, C) to the domain theory. Our results can be used to distinguish situations
when FED can feasibly complete a partial theory from those when it cannot.

For example, if the determinations in a domain theory are all of the first type (that is,
P > Q ), and instances of the predicates in a determination can always be derived from
a given training instance, and \range(P)\ and range(Q)\ are polynomial in n for every
determination, then our results imply that PED can fill in the gaps in the domain theory
from a polynomial number of training instances.

5.5. Application to speedup learning

Interestingly, the analysis of the kind performed above can also be carried out for speedup
learning systems like the EBL systems. In these systems, the problem is to compute an
operational (efficient) specialization of an intractable domain theory from examples. Since
the original domain theory of the system is "complete" in the sense that the examples, and
the final result of learning are deductive consequences of the domain theory, it might seem
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that they require a radically different kind of analysis. However, as we show below, a
simple re-interpretation of the task of these systems suffices to allow exactly the same kind
of analysis.

Suppose that an EBL system is given examples by a teacher, who generates solutions using
an operational specialization of a domain theory which is tuned to the training distribution
of problems. Before the learning begins, what does the learner know about this operational
form of the domain theory in the teacher's mind? Only that it should be entailed by its
domain theory. In other words, it has no knowledge of the particular operational version of
the domain theory, although it knows the domain theory! The examples provide the learner
new information about the teacher's knowledge, even if they do not provide new information
about the domain. In other words, although the domain theory may be "complete" in
the sense that any output of the learner must be sound with respect to the initial domain
theory, it is too weak to predict which of the many possible deductive consequences of the
domain theory the teacher has in mind. We can view this situation as learning a particular
operational version of the domain theory, which the teacher is trying to communicate to the
learner through examples.

Thus, we can interpret the different operational versions of the domain theory that a
speedup learning system might potentially learn as its "hypotheses" about the teacher's
knowledge. However, only one of these possible hypotheses (functions) is correct, and
the task is to find an approximation to the correct function with a high probability. Prior
knowledge can help constrain this space of possible hypotheses and reduce the number of
examples needed for convergence.

In [Tadepalli, 1991], an analysis similar to that we used in this paper was carried out
for EBL systems when the hypotheses are in the form of sets of macro-operators. The
learning algorithm exploits a piece of domain knowledge called "serial decomposability"
[Korf, 1985]. This property is relevant to problem solving domains whose states can be
represented as discrete valued feature vectors. A domain is said to be serially decomposable
if there is an ordering fi of its features such that the effect of any operator (and hence a
macro-operator) on a feature is a function of, (or is determined by), only that feature and the
features that come before it in fl [Korf, 1985]. If the set of solvable problems in a serially
decomposable domain is closed under the operators, then all solvable problems in that
domain can be efficiently solved using Korf's macro table algorithm. This algorithm solves
a problem by sequentially taking each feature in the order defined by fi to its goal value
using a macro-operator. The previously achieved subgoals may be temporarily clobbered
while solving the next subgoal, but they will all be reachieved at the end of application of
the macro-operator.

The analysis of [Tadepalli, 1991] assumes that the teacher gives examples of problem
solving traces generated using Korf's macro table algorithm with the feature ordering O,
which is known to the learner. Since fi defines which features of the initial state determine
the value of a given feature of the final state, the knowledge of ft makes it possible to
generalize the solution sequence to macro-operators by ignoring all the irrelevant features
in the initial state. In the absense of this prior knowledge, the learner has to search in
the space of all possible feature orderings for an ordering that is consistent with all the
input examples. This not only increases the hypothesis space and hence the number of



96 S. MAHADEVAN AND P. TADEPALLI

training examples needed for convergence, but also makes the search computationally more
demanding. Thus, similar to determinations, the knowledge of serial decomposability
allows the learner to effectively generalize from fewer examples in some domains.

6. Conclusions and future work

This paper employed the PAC learning framework to analyze the effectiveness of various
forms of prior knowledge in learning. We showed that it is possible to use PAC learning to
analyze the effectiveness of semantic prior knowledge as well as syntactic prior knowledge,
by viewing the prior knowledge as constraining the function space to that which is consistent
with it. We used this approach to analyze various forms of determination knowledge.
The analysis revealed surprising differences and similarities between the different kinds
of determinations. While some kind of determinations make polynomial-time learning
possible, some forms of determinations still require exponential number of examples. The
analysis also shows similarities between two seemingly different determinations: partial
and extended determinations.

Our work describes one way to do a representation-independent quantified analysis of
determination knowledge. A similar analysis might be carried out for other forms of
incomplete knowledge, and constitutes an important direction for future work. Application
of PAC learning model to systems that learn from intractable and inconsistent domain
theories is another interesting avenue to explore.

By applying the tools of computational learning theory to a more knowledge-intensive
form of learning than it is usually applied to, our work shows how PAC-learning can form
a theoretical basis for a unified view of learning. Analyses of this kind might also help us
understand the structure of various kinds of knowledge and its relationship to the structure
of the complexity classes.

Appendix

In what follows, we make the usual assumptions on the bounds of various sets: |I| < 2n,
\N\ <c and|L| < I.

Total determinations

THEOREM 6 The space of functions F>E consistent with P(x,y) X-g Q(x, z) is not learn-
able.

Proof. This determination says that if two individuals share a P value then they also share
a Q value. We prove that F^3 is not learnable by constructing a space F" of exponential
dimension which is consistent with this determination. Let c = \range(P)\ = 1 and
l = \range(Q)\ > 1. Let i be an element in L such that Vx in /, i s Qx. Now for every
element b in / we can choose to define the set Qb in exactly 2l-1 ways, since Qb = {i} U L'
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Figure 9. A learning algorithm for F>R

where L' is any subset of L— {i}. Hence dim(F") > 2n(l - 1), and F>3 is not learnable
even if c — 1. •

THEOREM 7 The space of functions FyR consistent with a determination P(x,y) >R
Q(x,z) is polynomial-time learnable if\range(P)\ = cand \range(Q)\ = I are polyno-
mials in\x\ = n.

Proof. >R determination says that there is a relation R from N to L such that Qx for
any x € / is the set {z\P(x, y) A R(y, z ) } . This implies that, given the relation P, the
relation Q from I to L can be computed from R. Hence, an upper bound on the number of
mappings from TV to 2L also gives an upper bound on the number of mappings from / to
2L. Since \N\ = c, and \2L\ = I1, this upper bound is (2 l)C. Hence dim(F^) < cl. If c
and / are polynomials in n, then by the dimensionality theorem F> is learnable since it is
of at most polynomial dimension.

F>R is in fact polynomial-time learnable since it is polynomial-time identifiable by the
program BuildNationalitiesMap in Figure 9. The program returns a table T that represents
a mapping from AT to subsets of L. T maintains, for each member of N, the largest possible
subset of L that it can map to while being consistent with all the previous examples. Initially,
each member of Px has no T-image, and Qx is made its T-image. Subsequently, a new
T-image is computed as the intersection of the current T-image and Qx. It is easy to see
that this maintains the required semantics for T and runs in time polynomial in n, I, and c.

T can be viewed as a representation of functions in F> R . Any input (x,Px) will be
mapped to {z\z € T(y) and y € Px}. •

THEOREM 8 The space of functions Fyc consistent with P(x,y) ^c Q(x,z) is not
learnable if\range(P)\ = c> O(ri), where \x\ = n. However, Fyc is polynomial-time
learnable if c < O(log n), and \range(Q)\ — l < O(nk).
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Proof. This determination constrains functions from D —» 2L in the following way:
given any two elements a and b in I, if Pa C Pb, then it must be that Qa C Qb. It
follows that if there exist a and b in / such that Pa = Pb, then Qa = Qb. Hence, this
determination is stronger than >v, and hence, is learnable whenever F>v is learnable.

•

We prove that it is not learnable under significantly weaker conditions by constructing a
space of functions F' of exponential dimension consistent with the above determination.
We construct F' as follows. Assume that c = 2n. For any 6 in /, if Pb is of size greater
than c/2, then define Qb — L. If Pb, is of size less than c/2, then define Qb = {}. If Pb

is of size exactly c/2, then let Qb be any arbitrary subset of L. It is easy to verify that F1

is consistent with the above determination. Since there exist at least 2C / 2 subsets of N of
size c/2, and since we can assign each of them to subsets of L in 2l ways, the number of
functions in F' is at least (2 l)2c /2 . Hence dim(F') > 2C/2l = 2nl.

Next we have to show that when c < O(log n), F^c is polynomial-time learnable. For
this, we simply note that F>c C F>v. Since F^v is learnable in polynomial-time by
BuildSetsofCountriesMap (cf. Figure 6) when c < O(log n), F>c is also learnable by the
same algorithm.

Extended determinations

Lemma 1. Let P C I x N and Q C I x L. If\L\< I, and \N\ < c then the function
space F^v consistent with the determination P(x, y) >-P

E Q(x, z) is cl(p-l)-close to the
function space F>n consistent with P(x, y) >-R Q(x, z).

Proof. Let / be any function in the nth-subspace of K_ v . We show that there is a function
g in the nth-subspace of F>R such that dist(f,g) is at most cl (p - 1).

Let P and Q be the predicates corresponding to f. T is a partial function from N to 2L

defined as follows.
T(y) := {z there are p distinct elements xi g I such that P(xi, y} A Q ( X i , z)}
By the definition of extended determination, if T(y) is defined for some y £ N, then for

all x € I such that P(x, y), Qx must include T(y).
If we define g ( ( x , Px}) to be \Jy€P T(y), it then follows that for any function / e F^v ,

f ( ( x , Px)} must include g ( ( x , Px)).
Furthermore, treating T as a representation of the relation R C TV x L as defined by the

determination F>R, g can be seen to be a member of F>R.
We now estimate dist(/, g). Let us call each x on which / and g disagree, an exception.

By the definition of T and F^, each (y,z)s.t. y 6 TV and z e Lean con tribute at most p-1
exceptions. If more than p — 1 members of / map to the same y 6 TV and the same z 6 L,
then T(y) will include z, which will be reflected in g. Hence the number of exceptions,
dist(/,fir) < d (p-l), which implies that the function space .F^ p is cl(p-1)-close to F>R.

•
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Figure JO. A learning algorithm for F.p
r E

THEOREM 11 The function space Fyi> consistent with the determination P(x,y) >-P
E

Q(x,z) is polynomial-time learnable if \range(P)\ — c, \range(Q)\ = I, and p are
polynomials in x\ = n.

Proof. By Theorem 9 and Lemma 1, the dimension of F^r is at most

Since Dim>R, (n) is at most cl, by Theorem 3, it can be feasibly learned by identifying a
set of

examples.
The procedure BuildNationalitiesAndExceptionsMap (see Figure 10) collects that many

examples, and constructs the mapping T from N to 2L defined in the previous proof, and
also builds a table E of exceptions indexed by nationalities and languages. Whenever the
number of exceptions for a nationality y and language z exceeds p -1, then T (y) is updated
to include z, and the exceptions are removed.

Assuming that c, I, and p are polynomials in n, it can be easily seen that the above pro-
gram runs in time polynomial in the required parameters. Since the size of exceptions table
does not exceed p for any nationality language pair (y, z), T and E represent a function
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consistent with the determination P >-P
E Q and with the examples. Hence, BuildNation-

alitiesAndExceptionsMap is a polynomial-time learning algorithm for Fxi>. The tables T
and E are used to predict Qx for a given example as follows: first look up the particular
example in the exceptions table E (for each y e Px and z € L). If it is not in this table,
then return the union of all T(y) such that y e Px- •

Partial determinations

Lemma 2. and are such that then for all

Proof. We prove this result by contradiction. Assume that there is some w' € N such that
Let

Note that c' < \N\ = c. Since d ( P - l , Q ) < I for all W, from the definition of d(P, Q), it
follows that

Since we have

Combining the above two inequalities, we get

which leads to a contradiction.

Lemma 3. The space a/functions F^« consistent with P(xty) ^p Q(x,y) is 2c2'la-close
to the space F^ consistent with P(x, y) >- Q(x, z).

Proof. We prove this result by contradiction. Assume that F^« is not 2c2/a-close to F>.
Then it follows that there is some function / in F» such that for all functions g in F^,
dist(f,g) > 2c2la.

Let us denote the restriction of / and g to the elements of P-l by fw and gw respectively.
Let w' € N be such that d is t ( f w ' ,g w

1 ) > dist(fw,gw), for all w € N. It is easy to see
that
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We can combine the above two inequalities to obtain

We now show that the above is not possible, which implies that

Note that for any g e F^, gw' should map all the elements x in Pw,1 to the same set
L' C L. If fw> were to differ from all such gw< by more than Ida, then, for any set
L' C L, there are more than Ida elements in P~} that are not mapped to L' by /. It
then follows that for each i € P*,1, there are more than Ida. elements j € P~,1 such that
Qi = fw'((j, Pj}) is different from Qi — fw<((i, Pi}). At least for half such pairs (i,j),
QJ g Qi. Each such pair contributes at most 1 - } to the numerator of d(P~}, Q). Thus,
we get the following upper bound for d(P~}, Q).

From Lemma 2, we know that

Combining the above two inequalities, we get | P^,1 > 2™, which leads to a contradiction.
Hence dist(./v, gw') < Ida, and dist(/, g) < 1<?\a. •

THEOREM 12 The space of functions F^« consistent with the partial determination
P(x,y) Xp Q(x,y) is polynomial-time learnable, if \range(P)\ = c, \range(Q)\ = I,
and a are polynomials in\x\ = n.

Proof. Instead of directly learning the set of functions Fx «, our algorithm learns a superset
of functions which are 2c2/a-close to F^.

By Theorem 9 and Lemma 1, the dimension of F^* is at most

Since Dim^ (n) is at most d, by Theorem 3, it can be feasibly learned by identifying a set
of

examples.
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Figure 11. A learning algorithm for F^r

FindMinimalExceptionsMap (see Figure 11) collects that many examples, and identifies
it in time polynomial in n, \ and |. The idea of this learning algorithm is to build a table
T from TV to subsets of L, to represent the "normal" mappings, and store the examples that
do not obey this mapping in an exceptions table E.

Note that all the "normal" mappings from y € I whose P values have some w € N in
common should map to the same subset of L. The algorithm considers each w € N, and
builds the Table T, which maps each w e N to a subset Z of L such that the number of
exceptions (x, Px) which do not map to that subset, even while w e Px, are minimized.
This is done by computing Score(w, Z) for each w £ N, and each relevant Z C L, which
indicates the number of members of P~1 whose Q values coincide with Z. The Z C L that
maximizes Score(w, Z} is stored in T(w). For each w € N all members of P-l whose
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Q values do not coincide with T(w) are considered "exceptions" and their Q values are
stored in E.

Since the target function satisfies the partial determination F^», from Equation 6 in the
proof of Lemma 3, the number of actual exceptions for each w 6 N is upper-bounded by
2da. Since our algorithm minimizes the number of exceptions in each P-l with respect
to the examples, the number of exceptions stored in E for each w must also be < 2cla.
Hence the maximum size of E is upper-bounded to 2c2la, ensuring that the output function
represented by T and E is 2c2/a-close to some function in F>.

It is easy to see that the above program runs in time polynomial in n, ^ and | if c and I
are bounded by polynomials in n. The tables T and E are used to predict Qx for a given
input (x, Px) as follows: First look up E for the particular example. If it is not in this table,
then return T(y) for some y 6 Px, •
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Notes

1. Negative results using the PAC learning model should be interpreted as "worst-case" theorems similar to the
NP-completeness results in computational complexity theory.

2. From now on, we use log for Iog2 and In for loge.

3. The definitions below assume that D, R, Fn, and Gn are all finite.

4. We thank one of the reviewers, who pointed this out.

5. As the reader might have guesssed, the function space is learnable if the number of nationalities is bounded
by a polynomial in n, and not learnable otherwise.
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