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Abstract With each finite lattice L we associate a projectively embedded scheme V(L); as Hibi has shown,
the lattice D is distributive if and only if V(D) is irreducible, in which case it is a toric variety. We first apply
Birkhoff's structure theorem for finite distributive lattices to show that the orbit decomposition of V(D) gives a
lattice isomorphic to the lattice of contractions of the bounded poset of join-irreducibles P of D. Then we describe
the singular locus of V(D) by applying some general theory of toric varieties to the fan dual to the order polytope
of P: V(D) is nonsingular along an orbit closure if and only if each fibre of the corresponding contraction is a
tree. Finally, we examine the local rings and associated graded rings of orbit closures in V(D). This leads to a
second (self-contained) proof that the singular locus is as described, and a similar combinatorial criterion for the
normal link of an orbit closure to be irreducible.
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0. Introduction

With a finite lattice L and a field k we associate a graded Noetherian k-algebra as follows.
Let X := {Xa: a e L} be commuting indeterminates over k, and in the polynomial ring
k[X] define the ideal

Finally, we let k[L] := k[X]/I(JL). Since I(L) is a homogeneous ideal of k[X], the algebra
k[L] inherits the standard grading and may be regarded as the projective coordinate ring of
a projectively embedded scheme V (L) := Proj k[L]. An interesting question thus arises: to
what extent can the geometric properties of V(L) be related to the combinatorial properties
of the lattice L, independently of the choice of field k?

As Hibi [7] has observed, the following are equivalent: L is distributive; V(L) is ir-
reducible; V(L) is a toric variety. This follows from Birkhoff's structure theorem and
excluded sublattice theorem for finite distributive lattices [6, 14]. This structure theorem
is a contravariant equivalence between the category of finite distributive lattices and lattice
homomorphisms and the category of finite bounded posets and bounded poset morphisms
(we review it in Section 1). Thus, for distributive lattices D we can hope to apply Birkhoff's
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structure theorem to describe the geometry of V(D); this is the project we begin here. A
more general structure theorem for modular lattices based on the one due to Benson and
Conway [1] (which considers only objects) could provide the basis for a similar description
in that case.

Over the past decades the theory of toric varieties has seen many developments, partly
because it provides an extensive collection of nontrivial but tractable examples of algebraic-
geometric phenomena, and partly because of its connections with convex geometry and
combinatorics. Much (but not all) of what we do in Sections 2 and 3 can be derived
from the general theory by passing from a distributive lattice D to its bounded poset of
join-irreducibles P, from that to the order polytope P of P, and thence to the fan A dual
to P. However, since the structure of P determines those of D, P, and A, it is more
efficient simply to establish our results directly. Further motivation for this approach is the
hope that it can be generalized to the case of modular lattices, in which the schemes V(L)
are reducible. (Note, however, that even for arbitrary lattices the results of Eisenbud and
Sturmfels [3] do apply.)

Section 1 reviews some known results which are required: first, Birkhoff's structure
theorem for distributive lattices together with a correspondence for properties of morphisms
in the two categories (which is partially new); second, the isomorphism of three lattices:
the lattice of faces of the order polytope P, the lattice of contractions of P, and the lattice
of embedded sublattices of D; and finally, a relation between the Ehrhart polynomial of P
and a normal form for order-reversing functions a: P -»• N.

In Section 2 we apply the results of Section 1 to describe the geometry of V(D). We
first show that k[D] is a normal affine semigroup ring, describe the action of the torus (kx)p

on V(D), and show that the orbit decomposition of this action on V(D) gives a lattice
isomorphic to the three in Section 1. We then describe the fan A in terms of the poset P, and
apply the general theorem on singularities of toric varieties. If L is an embedded sublattice
of D then the closure of the corresponding orbit of V(D) is isomorphic to V(L), and V(D)
is nonsingular along V(L) if and only if each fibre of the corresponding contraction is a tree.

In Section 3 we examine the structure of the local rings OL,D of V(D) along V(L), and of
the associated graded rings giL(D). In particular, we obtain a combinatorial interpretation
for the embedding dimension of V(L) in V(D) which leads to a self-contained proof that
the singular locus of V(D) is as described in Section 2. Finally, we give a similar criterion
for the normal link of the subvariety V(L) in V(D) to be irreducible: this happens if and
only if each fibre of the corresponding contraction is a poset which satisfies a certain linear-
algebraic condition, which we call a "valuable" poset. This criterion for irreducibility seems
not to be derivable at present from a general theorem for toric varieties. Characterization
of the class of valuable posets remains as an interesting open problem.

We intend to examine in a future paper the structure of operational Chow homology and
cohomology, computation of the Todd class, and application of singular Riemann-Roch to
the varieties V(D).

1. Distributive lattices and bounded posets

We assume familiarity with the theory of posets and distributive lattices as developed in [6,
14] for instance. All posets we consider are finite. A poset is bounded if it has a unique
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minimal element 0 and a unique maximal element 1; it is proper if 0 = 1. Given any poset P,
we let P := {0} © P ® {1}, where © denotes ordinal sum of posets. Given a proper bounded
poset P we let P° := P\{0, 1}. Up to unique isomorphism there is only one bounded poset
O with 0=1. A. bounded poset morphism is an order-preserving function f:.P -> Q such
that f(0) = 0 and f(1) = 1. We denote the set of bounded poset morphisms from P to Q
by hom(P, Q). Notice that hom(O, Q) = 0 unless Q = O; in all other cases hom(P, Q)
inherits a partial order from the product order on Qp, and is a bounded poset. The opposite
of a poset P is the same set but with the order reversed, and is denoted by Pop.

All distributive lattices D we consider are finite; thus, if D = 0 then 6 and 1 exist in
D. We do not require lattice morphisms to preserve 0 and 1, so that although they are
order-preserving they need not be bounded poset morphisms.

Given a bounded poset P, let J (P) := hom(P, {0, 1 }°P)°P; thus J(P) is the set of order-
reversing {0, l}-valued functions a on P such that a(0) = 1 and <r(1) = 0, Two such
functions a and rare such that a < r in J(P)if and only if CT~'(1) £ r~'(1). Since{0, 1}°P

is a lattice, the set J ( P ) inherits a lattice structure by coordinatewise operations. In fact,
as is easily checked, J ( P ) is a distributive lattice, and J(O) = 0. Moreover, if f:P -> Q
is a bounded poset morphism, then J(f): J(Q) -»• J(P) defined by J(f)(a) :=a o f
is a lattice morphism. It follows that J(•) is a contravariant functor from the category of
bounded posets and bounded poset morphisms to the category of finite distributive lattices
and lattice morphisms.

Given a nonempty distributive lattice D, an element a e D is join-irreducible if a = 0
and whenever a = B v y in D then either a = B or a = y. The set R(D) of join-irreducible
elements of D inherits an order relation from D, so that R(D) is a bounded poset; we also
make the convention that $(0) := O. Moreover, if L is distributive and g: L -> D is
a lattice morphism then we define a bounded poset morphism R(g): K(D) -»• R(L) as
follows: for x e R(D) we put
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with the conventions that A0 := l^(t) and 0L = 6^(L). We must check that if R(g)(x) ^ 1

and R(g)(x) •£ 0 then R(g)(x) is join-irreducible in L. Accordingly, assume that A := (a e
L: x < g(ct)} ?£ 0, and let £ := A A £ 6. Suppose that £ = /3 v y with ft < $ and y < f
in L. Then, since § = AA, we have g(f)) A x < x and g(y) Ax < x in D. Since x is
join-irreducible in D we have

On the other hand,

This contradiction shows that £ e R(L), as required. It is easily verified that R(g) is
order-preserving, and it follows that R(g) is a bounded poset morphism from R(D) to
R(L). A direct calculation also establishes that R(.) is a contravariant functor. (This
construction is adapted from p. 348 of Dilworth [2], where a slightly different definition of
lattice homomorphism is used.)
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In fact, the functors J(•) and R( . ) provide a contravariant equivalence of categories, as
we now show. For a proper bounded poset P and x e P° we define Sx and S'x in J ( P ) by
saying that for each y 6 P°: Sx(y) := 1 if and only if y < x in P, and S'x(y) := 1 if and
only if y < x in P. For a bounded poset P, let P' := R(J(P)) and define a bounded poset
morphism T>: P' by r/>(jc) := <$* for each x e P° when P is proper; also, there is a
unique morphism TO'. O -> 0'. Then for all P, rp is a natural isomorphism of bounded
posets, and for any bounded poset morphism f : P - > • Q the diagram

152

is commutative, where f' := R(J(f)). On the other hand, given a distributive lattice D,
let D' := J(R(D)) and define a function VD: D ->• D' as follows: if D = 0 then D' = 0
and V0:0 -»• 0 is conventional; if D = 0 then for or e D put vD(a):= V {<5x:x €
R(D) and x < a in D}. Then VD is a natural isomorphism of distributive lattices, and for
any lattice morphism g: L -» D the diagram

is commutative, where g' := J(R(g)). Thus we have a contravariant equivalence of cate-
gories, as claimed.

We now describe some conditions on morphisms in these two categories, and relations
among them. A poset P is disconnected if either P = 0 or we may write P = X U Y with
X and Y disjoint and nonempty and such that every x e X and y e Y are incomparable in
P. If P is not disconnected then P is connected; a component of P is a maximal connected
subset of P. A bounded poset morphism f:P->Q is fibre-connected if for each q e Q,
the fibre f-1 (q) is either empty or connected; it is tight when for each covering relation
q1 < q2 of f ( P ) there exists a covering relation p1 < p2 in P such that /(/?i) = q\ and
f(p2) = q2. (Note that a covering relation in f ( P ) need not be a covering relation in Q.)
Finally, a contraction is a surjective tight fibre-connected morphism.

A lattice morphism g: L ->• D is generous when it satisfies the following condition: for
all a, B e D, if a A ft e g(L) and a v ft e g(L) then a € g(L) and B e g(L). If g is
injective and generous then it is called an embedding.

Theorem 1.1 Let g: L —»• D be a morphism of nonempty distributive lattices, and denote
the corresponding bounded poset morphism R(g): R(D) —>• R(L) by f: P —> Q.
(a) g(0) = 0 if and only if f - 1 ( 0 ) = (0).
(b) g (1 ) = 1 if and only if f-1 (1) = {1}.
(c) g is injective if and only if f is surjective.
(d) g is surjective if and only if f is injective and tight.



(e) g is generous if and only if f is fibre-connected and tight.
(f) g is an embedding if and only if f is a contraction.

Proof: By equivalence of categories we may assume instead that D = J ( P ) , L = J(Q),
and g = J(f): J ( Q ) - > ( P ) .

For (a) simply recognize that for p e P, g ( 0 L ) ( p ) = QL ° f ( p ) = 1 if and only if
f ( p ) = 6G. Thus g(6t) = 60 if and only if f-1 (0Q) = {0p}. Part (b) is similar.

For (c), let a, B e L be such that g(a) = g(ft), so that a o f = B o f in D. Thus, if f
is surjective then a = B, so that g is injective. Conversely, if q e Q\f(P) then &q = &'q in
L but g(Sq) = g(^) in D, so that g is not injective.

For (d), if f is not injective then let q € Q be such that #f-1 (q) > 2 and let p e P be a
minimal element of /"' (q). Then Sp is not constant on f-1 (q), so that £p $. g(L). Hence
g is not surjective. If f is injective but not tight then let f ( p 1 ) = q1 and f ( p 2 ) = q2 with
q1 < q2 in f(P) but p1 and p2 incomparable in P. Then <5P2 takes the values 0 at p\ and 1
at pi, and so it is not in g(L). Thus g is not surjective.

Conversely, assume that / is injective and tight, so that / is an isomorphism from P to
f ( P ) . For each a € D, let ft e L be the join of all &q 6 L such that q = f(p) for some
p € P with a(p) = 1. One easily checks that g(fi) = a,sog is^surjective.

For (e), assume first that / is not fibre-connected, and let q e Q be such that f~l (q) ^ 0
is disconnected. Let f - 1 ( q ) = X U Y with X and Y disjoint, nonempty, and such that
each x € X and y e Y are incomparable in P. Let £ :=g(&'q) v v^:* € X) and
»»:=*(*£) v v{5y: y € Y} in D. Notice that g(S'q) < f < g(V and *0£) < 17 < g(J,) in
D, and mat £ A 77 = g(5^) and f v r; = g(&<,) in D. Since neither £ nor rj is constant on
f-1 (q), we have £ ^ g(L) and n e g(L). Therefore g is not generous.

Now assume that / is not tight, and let q1 < q2 be a covering relation in f(P) such
that every x € f-1(q1) and y e f-1(q1) are incomparable in P. Let £ :=g(5,,) and
P := V {Sy: f ( y ) < q2 and f ( y ) = q1} in D. Then f A n = g(<$;) and f V n = g(^) but
?? £ g(L), so that g is not generous.

Conversely, assume that g is not generous, and let £, rj e D be such that either £ £g(L)or
T) & g(L), but both £ A r; 6 g(L)and£v;j eg(L); we may assume that f & g(L). We must
show that either / is not tight or / is not fibre-connected. We may suppose that / is tight,
so that a g D is in g(L) if and only if a is constant on each fibre of f. Thus there is a q 6 Q
such that $ is not constant on f-1 (q). Since £ A r} and £ v n are both constant on f - 1 ( q ) we
must have £(p) = 0 if and only if r)(p) = 1, for each p 6 /-1 (9). Since both £ and r? are
order-reversing the sets X:={p e /"'(?):£(/>) = 0} and Y:={p e f-1 (q):%(p) = 1}
show that f-1 (9) is not connected. Thus / is not fibre-connected.

Clearly (f) follows from (c) and (e). D

Given a distributive lattice D, a sublattice L C D is embedded if the inclusion L ^ D
is an embedding. The set £(D) of all embedded sublattices, partially ordered by inclusion,
is a bounded poset. (We consider 0 c D to be embedded.)

Let P be a bounded poset. A contraction f1: P -> Q1 dominates a contraction f2: P ->
Q2 if there is a morphism f': Q1 -> Q2 such that f2 = f' o f1 in this case /' is also a
contraction. If f1 dominates f2 and f2 dominates f1 then f1 and f2 are equivalent. The set
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Let Q be a compact convex polytope in R" with integer vertices. For each positive
integer m let i(Q; m) :=#(Z" n mQ) be the number ofveZ" such that v/m e Q. This
is a polynomial function of m, called the Ehrhart polynomial of Q. See p. 235 of Stanley
[14] or Part Two of Hibi [9] for further details.

Theorem 1.3 Let P be a proper bounded poset, let D := J ( P ) and T := T(D), and let
the h-vector of T be h(Y) = (h0, h 1 , . . .,hs). Let P be the order polytope of P.
(a) A function a:^P -> N is in E(P) if and only if it is order-reversing and a(1) = 0.
(b) Any a € £ (P) may be written uniquely as a — am + am-1 + + a1 with m > 0 and

am < am-1 < • • • < a1 in D.
(c)
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C(P) of equivalence classes of contractions of P is finite. We say that [f1] < [f2] in C(P)
if f2 dominates f1; this makes C(P) into a bounded poset.

Let P be a poset. As in Stanley [13], the order polytope of P is the set P(P) of vectors
v € Rp satisfying the inequalities 1 > v(x) > 0 for all x e P, and v(x) > v(y) for all
x < y in P. Clearly this is a compact convex polytope; the set F(P) of faces of P(P),
ordered by inclusion, is a bounded poset.

Theorem 1.2 For a nonempty distributive lattice D, with P = R(D), the bounded posets
L(D), C(P), and F(P°) are isomorphic lattices.

Proof: The intersection of two embedded sublattices of D is an embedded sublattice;
since L ( D ) has a unique maximal element (namely D) it follows that L(D) is a lattice.
Theorem 1.1 (f) and equivalence of categories shows that f ->• J(f) induces a bounded
poset isomorphism from C(P) to L(D); hence these are also isomorphic as lattices. The
proof that F(P°) is isomorphic with C(P) is due (with a different terminology) to Geissinger
[5]; see also Theorem 1.2 of Stanley [ 13]. D

Finally, we review an enumerative result. Recall that for a bounded poset P, the elements
of J ( P ) are N-valued functions on P. We let E+(P) denote the additive semigroup
generated by J ( P ) in Np, and put T,(P) := E+(P) U {0P}, where 0P is the neutral element
of NP (which takes the value 0 everywhere).

Given a proper bounded poset P, a chain is a sequence 6 < pr < • • • < p\ < 1 in P;
the size of this chain is r. The order complex of P is the set F(P) of all chains of P; it is
partially ordered by inclusion and forms an abstract simplicial complex, that is, a downset
in the set of all subsets of P°. The f-vector of V(P) is (F) := (f0, f 1 , . . . , f d ) where
fi) is the number of chains in P of size i, for each 0 < i < d, and fd = 0. The h-vector
h(V) := (h0, h1 hs) of r(P) is defined by
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Proof: Clearly every a e E(P) is an order-reversing function such that or(l) = 0.
Conversely, any order-reversing function a: P -»• N with a (1) = 0 is a sum am-1 + am-1

+ + a1 where m :=cr(6) and for 1 < i < m and p e P:

This is the unique expression as in (b), so (a) and (b) are proved.
For (c) we identify P with the maximal face P' of P(P) satisfying u(0) = 1 and u(l) = 0

for all u e P'. A point in Zp HmP' is an order-reversing functions-: P -»• N with a(O) = m
and a (1) = 0, which implies the first equality. For each chain 0 < a, < aj-1 < •• • <

a1 < 1 of size j in D the sum of A,"*0* over all a e S(P) for which the unique expression
as in (b) is of the form
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where bo > 0, b1 > 0, and each c1- > 1 gives a contribution of A.J(1 — A.) 2 ;. As each
a e £(P) is supported on exactly one chain of D in this way, we get

The result follows from the definition of h(F). D

2. Orbit decomposition and singularities

For the rest of the paper f: P -» Q denotes a contraction of proper bounded posets
corresponding to the embedding L C D , where L := J(Q) and D := J(P).

Let Z := (Zp: p e P} be commuting indeterminates over k, and for a: P -> N let
1" := Ylpep Za

p
(l>). Define a k-algebra homomorphism <p: k[X] -> k[Z] by <p(Xa) :=Z"

for each a e D and k-linear and multiplicative extension. Regard k[Z] as a graded algebra
by putting deg(Zff) :=cr(0). Then since a(0) = 1 for all a e D, it follows that <p is a
homogeneous homomorphism of degree 0. Theorem 2.1(a,b) appears on p. 99 of Hibi [7];
part (c) is an immediate consequence.

Theorem 2.1 Let D = J (P) be a nonempty distributive lattice, and consider the homo-
morphism (p: k[X] -»• k[Z].
(a) ker(^>) = I(D), so that k[D] may fee regarded as a subalgebra of k[Z].
(b) im(«/>) = kE(P), the semigroup algebra of E(P).
(c) The Hilbert Junction of k[D] is i(P(P); m).

Proof: For part (a) it is clear that I(D) c ker(^). Conversely, suppose that u e
ker(p). By applying the generators of I(D) we see that modulo I(D) each monomial



c(a, B , . . . , y ) X a X B •• • Xy which appears in « with coefficient c(a, B , . . . , y) e k has
<x < B < • • • < y in D. For this monomial we have <p(XaXp • • • XY) = Z? where
CT=a + B + + X- By Theorem 1.3(b), the coefficient of Zff in p(u) is c(a, p,...,y);
since #>(«) = 0 this coefficient is zero. Hence u e I(D).

Part (b) follows from Theorem 1.3(a,b), and part (c) from Theorem 1.3(c). D

Theorem 2.1 shows that k[D] ~ kE (P) is an affine semigroup algebra, and from Hochster
[10] it follows that k[D] is an integrally closed Cohen-Macaulay domain. As shown in [8,
15], this implies numerous inequalities among the entries of the h-vector h(F) appearing
Theorem 1.3, which can be given a direct combinatorial interpretation (see Theorem 4.5.14
of Stanley [14]). On page 105 of [7] Hibi shows that k[D] is Gorenstein if and only if all
maximal chains of P have the same size; see also Theorem 5.4 of Stanley [12], Theorem 2.9
of Hibi [8] gives a combinatorial criterion for k[D] to be level.

Let A be an integral k-algebra, and consider an A-valued point £ e V(D) with ho-
mogeneous coordinates [f (a): a e D]. Since f satisfies every relation in I(D), we have
£(a)£(B) = £(a A B)£(a v B) for all a, B e D. Since A is a domain it follows that
supp(£) := (a e D: % (a) ^ 0} is a nonempty embedded sublattice of D. Given a nonempty
embedded sublattice L C D , let U(L) := {£ e V(D): supp(£) = L}. Notice that U(L)
with the operation of coordinatewise multiplication is an abelian group. We now describe
the action of the algebraic torus (kx)p on the k-valued points of V(D).

y>. A

Theorem 2.2 Let LCD and f:P—>- Q be as above. Consider the k-valued points of
V(D).
(a) The group U (L) is isomorphic with (kx)Q.
(b) There is a group epimorphism f: U(D) -> t/(L) corresponding to f: P -> Q. If

M c L fa an embedded sublattice corresponding tog: Q -^ S, then (g o f)' = g' o f'.
The orbits of U(D) acting on V(D) are the sets U(L) for all nonempty embedded
sublattices L of D.

(c) The closure U(L) of U(L) in V(D) is isomorphic with V(L), and if V(L) is not a
single point then U(L) is open in U(L).

(d) The set of U(D)-orbits of V(D), with O1 < O2 if f O1 c O2, is isomorphic with
L(D)\{0}.

Proof: For part (a), let i:U(L) ->• (kx)L be the group monomorphism f t-> f |L defined
by restriction to L. Also, let j: (kx)G -»• (kx)t be the group monomorphism defined by
q H> 89 and extension by 1: for 0: Q -> kx and a € L, let j(^)(«) :=^(?) if a = 5g
for some q e Q, and let j(6)(a) := 1 otherwise. Define a function /i: (kx)L ->• (kx)L as
follows: for f: L -> kx and a € L let

Then h is a group automorphism, and
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where ̂ (-, •) is the Mobius function of L. It is easy to check that the image of the composite
h o j is contained in the image of i. Conversely, let f be in the image of j, and let a e L
cover Pi, ...,pm, where m >2. For nonempty I c {1, . . . ,m} let B1:= A {Bi: i e I},
and let B0 :=a. Then the interval [B^ m), a] in L is a Boolean algebra, and the Mobius
function of L is such that U(y,a) = 0 unless P(1 m) < y < a, and for I c {1,. . . ,m} we
have ^(P/, a) = (-1)#/. Now for each I C {3 m} we have £(B1)£(B1 A B1 A B2) =
f (B1 A B1)$(B1 A B2) since £ is in the image of i. The contribution of these four factors
to h-1(?)(a) is either £(B1)£G8/ A /3t A /32)/£(/3/ A ft)£(ft A ft) or its reciprocal, and so
is just 1. Thus h~l(tj)(a) = 1 if a is not join-irreducible, so that the image of/i"1 o i is
contained in the image of j. Hence U(L) is isomorphic to (kx)e.

For part (b), given a contraction f:P^Q define /": (kx)/) ->• (kx)c as follows. For
<9: /" ->• kx and q e Q let

This is clearly a group epimorphism, since / is surjective. Composing /" with the appro-
priate isomorphisms from part (a) gives /': U(D) ->• U(L). The fact that (g o /)' = g' o f
is immediate from the construction. The claim describing the orbits of U(D) on V(D)
follows, since the /' are epimorphisms.

For (c), notice that U(L) = \JuU(M) where the union is over nonempty embedded
sublattices M c. L. This is the subvariety of V(D) defined by (Xa = 0: a € D\L};
clearly it is isomorphic with V (L). Now V (L) is a single point if and only if L is a minimal
nonempty embedded sublattice of D. If this is not the case then

where the union is over nonempty embedded sublattices strictly contained in L. This is a
union of proper closed subvarieties of U(L), so that U(L) is open in U(L).

Part (d) follows immediately from parts (b) and (c). n

To connect with the general theory of toric varieties we describe the fan A dual to P,
the order poly tope of P. The maximal proper faces of P correspond to the equalities
v(x) = v(y) for each covering relation x <• y in P, with the understanding that v(0) = 1
and u(l) = 0. Let \ex: x G P} be the standard basis of M :=ZP, and let {e,: x € P} be the
dual basis of N := M*. From p. 26 of Fulton [4], for example, one sees that the minimal
generators of the rays of the fan A are of three types: —e^ for each minimal x e P, e* — sy

for each x < y in P, and sx for each maximal x e P. Moreover, a proper subset C of
these minimal generators spans a cone in A if and only if there is a contraction /: P -»• Q
such that the following three conditions hold: for minimal x e P, f ( x ) = 0 if and only if
—EX e C;for x <y e P,f(x) = f ( y ) i f and only if e* — sy e C; and for maximal x e P,
f ( x ) = 6 if and only if e, 6 C.

The Hasse graph of a poset 5 has vertex-set S and edges x ~ v for each covering relation
x < y in S. A poset S is a tree if its Hasse graph is connected and contains no cycles.
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Theorem 2.3 Let L C D and f :P-> Q be as above. Then V(D) is nonsingular along
V(L) if and only if for each q e Q the fibre f-1 (q) is a tree.

Proof: Let C be the set of minimal generators of rays of A which corresponds to the
contraction f. Then V(D) is nonsingular along V(L) if and only if C c B for some basis
B of the free abelian group N c zp (cf. p. 29 of Fulton [4]). Each fibre of f is connected,
since f is a contraction. Suppose that f - 1 ( q ) contains a cycle, for some q € Q. Let C' c C
be the subset of C corresponding to covering relations, minimal elements, and maximal
elements of P which are in f-1 (q). Then C' is linearly dependent, so C is not contained in
any basis of N. Conversely, suppose that each fibre of / is a tree. For each q e Q choose
any x(q) e f - 1 ( q ) . We claim that B := C U {fi^: q 6 Q} is a Z-basis for N. Let A be
the matrix with rows indexed by P and with columns indexed by B, in which the columns
are the coordinate vectors of the members of B with respect to the basis [sx: x e P} of N.
Then A can be partitioned into block-diagonal form A = A1 ® • • • ® Ar where r :=#Q
and each A, is the incidence matrix of a tree (with arbitrarily directed edges) with an extra
column indicating a distinguished (root) vertex. Such a matrix A, is well-known (and easily
seen) to have |det/i,-1 = 1, and hence B is a Z-basis for N. D

A subset 5 of a poset P is convex if whenever a < b < c in P and a e S and c e S, then
beS.

Corollary 2.4 Let P be a proper bounded poset, and D := J ( P ) . Then V(D) is non-
singular if and only if P is a disjoint union of chains (in which case V(D) is the Segre
embedding of a product of projective spaces). If P is not a disjoint union of chains, then
let g(P) be the minimum cardinality of a convex subset of P which contains a cycle in the
Hasse graph of P not passing through both 6 and 1. In this case the codimension of the
singular locus of V(D) is g(P) — 1.

Proof: The claim when P is a disjoint union of chains is clear. Otherwise, if 5 is a subset
of P as in the statement then there is a contraction of P which identifies the elements of S
and maps the other elements of P to distinct points. D

So the codimension of the singular locus of V(D) is always at least three, which is one
more than we could expect merely from the fact that V(D) is normal.

3. Local rings and normal links

We now examine the local rings £>L,O and associated graded rings grL(D), where LCD
and f: P -> Q are as in Section 2. The projective coordinate ring of V(D) is k[D]; the
ideal corresponding to the subvariety V(L) is (Xa: a e D\L) + 7(D). The local ring OL<D

of V(D) along V(L) is obtained by inverting homogeneous elements of k[D] not in the
ideal of V(L), and taking the subring of homogeneous elements of degree zero. Since / is
a contraction, an element a e D is in L if and only if a is constant on each fibre of /. Now
k[D] is isomorphic with the affine semigroup ring kS(P). The ideal of V(L) in this view is
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(Z°: a 6 D\L). Identifying OL.D with its image under the induced isomorphism, a typical
element of OL.D is of the form t/u, where t and u are homogeneous k-linear combinations
of {Zff:o- € S(P)} of the same degree (where deg(Za) :=a(6)), u = 0, and at least one
monomial Z occurring in K has a constant on each fibre of /.

We may identify 2?/ZP with Za~ft/l and assume that each element t/u of OL.D has the
following form:

(N): the numerator t e k[Zp, Z - 1 : p e P] is such that each monomial If occurring in t

satisfies or (1) = tr(6) = Oand<T|/-i(9) is an order-reversing function for each q e Q;
(D): the denominator 0 ^ u e k[Zp, Z~' : p e P] satisfies the condition (N) and is such

that at least one monomial Z" occurring in « has a constant on each fibre of /.

The maximal ideal m of OL.D consists of 0 and those elements t/u such that every monomial
Z" occurring in t has some q e Q such that o\f-\(q) is not constant. Thus the ideal m
is generated by the elements {Z"~a)/l:a € D\L] where a> :=6j, o /. (A minimal set of
generators for m is described in Corollary 3.3.)

To describe the residue field K := OL,D/m let tq := (Z(i»-^)o//l) + m for each q e Q.
It is clear that k(tq: q e Q) c K. Conversely, given ( t / u ) + m in K we may assume that
t and M are k-linear combinations of terms (Z"/l) + m such that a(l) = er(6) = 0 and
a is constant on each fibre of /. Denoting the common value of a on /"' (q) by e(q) for
each q € Q it is clear that (Zff/l) + m = l\q€Q te

q
w in K. Hence K = k(tq: q e Q). The

elements {tq: q e Q} are clearly algebraically independent over k, corresponding to the fact
that V(L) is birationally equivalent to k#Q.

To describe the associated graded ring grL(D) := Uy>o m-i/mj+} of OL,D we need some
more combinatorics. A split of a connected poset S is an ordered pair (5', 5") of subsets
of S such that S' n S" = 0 and S' U S" = S, S' is a connected downset (downward-closed
subset) of S, and S" is a connected upset (upward-closed subset) of 5. Let S (S) denote the
set of order-reversing functions a: S -* Z. Define an equivalence relation « on S(S) by
saying that a « T if and only a — r is constant. An element as S(S) is a split element if
and only if a(S) = { 0 , 1 } and (a-1(1), a-1(0)) is a split of S.

Proposition 3.1 If S is a connected poset then every a e 3(S) is equivalent to a sum of
split elements.

Proof: Clearly each element of S(S) is equivalent to one of the form a: S -> N with
cr"1^) = 0, so we need only consider this case. Let m := max{cr(jc): x e S}, and for
1 < i < m define Bi e 5(S) by

Then a = B1 + B2 + Bm, so it suffices to show that each {0, 1}-valued B e S(S) is
equivalent to a sum of split elements.
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If ft is constant then this is trivial. Otherwise, first consider the case in which B-1 (0)
is connected, and let the components of B-1(1) be C 1 , . . . , Cm. For 1 < i < m define
or,: S -»• {0, 1} by «,•(*) := 1 if and only if x e C,. Since S is connected, it follows that
each a; is a split element of S(S). Clearly B = a1 + + am, as was to be shown. Now
consider the case in which B -1(0) is not connected, and let the components of B -1(0) be
C 1 , . . . , Cm. For 1 < i < m define ai: S ->> {0,1} by ai(x) :=0 if and only if x e Ci.
Clearly B + (m - 1)ls = a1 + + am and each a/ is such that ar1 (0) is connected. Thus
we have reduced to the first case, finishing the proof. O

For any a e S(5), define the order of a to be the supremum over all r e N for which
there exist split elements a\,..., ar of S(5) such that a « «i + • • • + ar; the order of
cr is denoted by ord(<r). Thus ord(a) = 0 if and only if a is constant, and ord(cr) = 1
if and only if a is equivalent to a split element. Given a € S(S), it is easy to see that
ord(or) < Ylx<y(aM — ̂ 00). the sum being over all covering relations of S, so that
each CT e S(5) has a finite order. The inequality ord(or) + ord(r) < ord(<r + r) is
immediate from the definition. This inequality may be strict, as the example in Figure 1
shows. A minimax formula for calculating ord(<r) has been derived by Vidyasankar [16]
and generalized by Lucchesi and Younger [11].

Given a connected poset 5 and a field k we define a graded k-algebra G|<(S) as follows.
It has as a k-basis the set T := [Ta: a e E (S)}, with grading given by deg(71j) := ord(cr).
The multiplicative structure is determined by putting

and extending k-bilinearly. If 5 has a unique minimal element 0, then let S'(S) c S(S)
consist of those a e S(5) such that <r(6) = 0. Thus S'(5) is a submonoid of S(S), and
so the k-span of (Ta: a € S'(5)} in G^(S) is a k-subalgebra of Gk(S) which we denote by

Figure 1. ai + ce2 » fti + ft + ft.



G'k(5). Similarly, if S has a unique maximal element 1 we let S"(5) be the submonoid of
E(S) consisting of those a e S(S) with a(\) = 0. Then G'^(S) := spank (Ta: a e S"(S)}
is a k-subalgebra of Gk(£). Notice that Gk(S) is a free k[T, T-1]-algebra, where T := Tts;
a free basis of G^(S) over k[T, T-1] may be constructed by choosing any x e S and taking
the set of Ta for which a e S(5) is such that CT(*) = 0. For any k[T, T-1]-algebra A we
let 0/1(5) := A ®k[r r-'j Gk(S), and for a^ k-algebra B we let G'B($) := B ®k Gk(S) and
G£(S):=B®kGk '(S).

Now we can describe the associated graded ring gcL(D), For each q € Q let r? be the
basis element of Gk(f - 1(q)) corresponding to 1f-1(q) € S (f -1(q)). So for each q € Q, K
is a k[T9, r~']-algebra via the monomorphism given by Tq H+ tq and algebraic extension

(here tq := (Z(S"~s't}of/I) + m, as above).

Theorem 3.2 Let L c £) a«J f:P-*Qbeas above. Then the associated graded ring
grL(D) o f V ( L ) in V(D) is naturally isomorphic to the K-tensor product

Proof: Let zq := Zw«~^)o//l in OL,D for each q e Q, and let F := k(z9: g e Q). Then
0£,D is an F-algebra, and a spanning set for OL.D over F may be constructed as follows.

1 A A A A A

Choose an element x(q) e f~l (q) for each q e Q; we insist that *(0) = 0 and *(1) = 1.
The spanning set consists of those elements Z"/u for which u satisfies condition (D) above
and Zff satisfies condition (N) above and <T(x(q)) = 0 for each q e Q; we denote the set
of such a by B.

For any t/u in OL,D let o(t/u) denote the largest j > 0 such that t/u e m'; for a 6 B
we write o(cr) instead of o(ZIT/l). Since the elements Z"/u for cr e B span OL<Q as
an F-vector space, the residues Ya := (Z"/l) + m1+(>((r) € m0^/ml+o(a) for a € B span
grt(D) as a K-vector space; we claim that in fact they form a basis. To see this, assume that
H<reB Ca^a = 0 is a K-linear dependence in grL(D) among (Ya: a € B}. If this dependence
is not trivial, then let j := min{o(«r): a e B and ca ^ 0}, and let B(j) be the set of a € B
with o(a) = j. For each a e B(j) let cff = (tff + m)/(ua + m) where each monomial Tf
occurring in la or ua has B constant on each fibre of / (note that ua = 0). Then we have
EtfeBQ-)^ + m)Ya/(u° + tn) c tn^+1. This implies that Y.aeB<j) taZ"/l e mJ+l, from
which it follows that ta e m for each a e B(J). This contradicts our choice of j, so the
dependence must have been trivial.

Now we claim that for any a e B, o(a) = Z!9eG ord(o" |f-1(q))• Certainly, o(a) is no
less than the right-hand side, since each a \ f-\ (9) can be expressed as a sum of ord(<r |/-> (9>)
split elements and an integer multiple of l/-i(9>; each of these split elements a determines
an element of m: if q ^ 6 we have Za/1 e m and if q = 6 we have Za~w/\ e m (where
o> := OL o /, and we have extended a by 0 to obtain a function on P). The product of these
elements of m is equal to Z"/l times a scalar from F, proving the inequality.

Conversely, if o(a) = p> £96eOrd(or|/-i(i7))then let Zoyi = (gigi-• • gp)/uindL,D,

where each g,- e m; in other words uZ° = g\g2 - - - g p (since kE(^) has no zero-divisors).
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Proof: With the notation in the proof of Theorem 3.2, the elements ¥„ with a e B and
o(a) = 1 form a K-basis for m/m2. By the formula for o(a) in that proof, we see that such
aor hasCT|y-i(9) nonzero for exactly one q e Q, and on that fibre o-|/-i(9) is equivalent to a
split element of E(/"' (q)). This implies the result. D

Theorem 3.4 If S is a connected poset then sn(5) > #5 — 1, and equality holds if and
only ifS is a tree.

Proof: We proceed by induction on #5, the basis #S < 2 being clear. Let x 6 S be
minimal, and let the connected components of S\x be / ? i , . . . , Rm. For each 1 < i < m
and split (/?,, /?") of /?/, we construct a split of S as follows. If x < y for some y e R't
then (Uy,« Rj u R'i u W< R") is a split of S; otherwise (/?,', U;y,- fy u #" u M) is a
split of S. Also, for each 1 < i < m the pair (U,Y< fy U {*},/?,-) is a split of S. These
splits are pairwise distinct, so that by induction sn(5) > J2T=i (sn(^<) + 1)2: J1T=\ *^' =

#5-1.
If equality holds then sn(y?,-) = #/?, — 1 for all 1 < i < m, so that by induction each fl,

is a tree. Suppose that for some 1 < j < m, there are two elements « and v of Rj which
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Since M satisfies condition (D), there is a term Zr occurring in wZ" such that a — T is contant
on each fibre of /. We must be able to produce Zr by choosing a monomial Z# occurring
in gj for each 1 < i < p and taking their product: that is, Zr = Z^1+'"+Pp. Thus, for each
q e 0. CT !/-'(</) ^ ( f tH h/3p)|/-i(?)in S(/~'(9)). For each 1 < j < p, since gi em
and Z^' is a term in #,, there is some g, e Q such that ̂ 8, is not constant on f~l (qi). By our
assumption that p = o(a) is large, there is some q e Q such that q = qt for at least p' + 1
indicesz, where p':=ord(<r|/-i(?)). ButnowordCul/-!^)) > £f_, ord(^|/-i(?)) > p'+l,
a contradiction. This proves the equality.

From the equality just established and the superadditivity of ord(.), it follows that for
any a, r e B, o(a + T) = O(CT) + O(T) if and only if ord((cr +T)|/-I(?)) = ord(a|y-i(?)) +
ord(a|/-i(g)) for each q € Q. Since in grt(D) we have

it readily follows that the map defined by Ya !->• (S)q€Q ^a\f-iw and K-linear extension is a
K-algebra isomorphism as in the statement of the theorem. D

With this description of gr£(D) we can improve upon Theorem 2.3. The embedding
dimension of V(L) in V(D) is edimD(L) := dimKm/m2, where K is the residue field and m
is the maximal ideal of OL.D • The split number of a connected poset 5 is sn(5), the number
of splits of S.

Corollary 3.3 Let L C. D and f: P ->• Q be as above. Then



cover x in S. Then u and v are incomparable in Rj. Since Rj is a tree, there is a unique
path L in the Hasse graph of Rj from u to v, and since u and u are not comparable in Rj,
there is an internal vertex z of L which is either minimal or maximal in L.

Suppose that we can find u and v such that z is maximal in L. Let R'j be the union of the two
components of Rj\z which contain u and v, and let R" := Rj\R'j. Then /?J is a connected
upset of fy and Rj is an downset of Rj with two components. Thus (Rj, R'!) is not a split
of Rj, but ({x} U fl} U U¥; RI, R'j) is a split of 5. This implies that sn(5) > #S - 1, a
contradiction.

In the remaining case, for any u and v in Rj which cover x e 5, the path in Rj between
u and v has a unique minimal element, and this is neither u nor v. Choose any u and v in
Rj which cover x e S, and let z be the unique minimal element of the path between them.
Let R'j be the component of Rj\C which contains z, where C is the set of elements of Rj
which cover x e 5, and let /?J := Rj\R'j. Then /?' is a connected downset of Rj, and /?''
is an upset of Rj with at least two components, each of which contains an element of C.
Thus (R'j, R'j) is not a split of Rj, but (R'j, {x} U R" U (Jw Ri) is a split of 5. This implies
that sn(S) > #S — 1, another contradiction.

It follows that for each 1 < i < m there is exactly one qt € /?, which covers x in 5.
Therefore, S is a tree.

Conversely, if 5 is a tree then there is an obvious bijection between the splits of S and
the covering relations of 5. Hence, sn(S) = #S — 1. D

Theorem 2.3 follows directly from Corollary 3.3 and Theorem 3.4, since (by the Zariski
smoothness criterion) V(D) is nonsingular along V(L) if and only if edimD(L) =
dim(V(D)) - dim(V(L)), and from Theorem 2.2 the codimension of V(L) in V(D) is
#P-#Q.

Finally, we consider the question of irreducibility of the normal link of V(L) in V(D).
Since the normal link is by definition Proj grL(D), this is equivalent to the condition
that grL(D) is an integral domain. For this it is clearly neccesary that ord(.) be additive on
S(/~1(^))foreach^ e Q; this turns out to be sufficient as well. Moreover, for a connected
poset 5, there is a nice linear-algebraic criterion for ord(.) to be additive on S(S) which
leads to a result similar in form to Theorem 2.3. Given S, let {•, •) be the inner product on
0s which makes the indicator functions of the vertices of S into an orthonormal basis. A
valuation of S is a function (p: S -»• Q such that (<p. 1s) = 0 and (<p, a) = 1 for each split
element a e 3(5). If S has a valuation then S is valuable.

Theorem 3.5 Given a connected poset S, ord(-) is additive on S(5) if and only ifS is
valuable.

Proof: First, assume that <p is a valuation of S. Given any a R* ct\ + • • • + am in 3(5),
with each «; split, we have (<p, a) = m, so that ord(<r) = (tp, cr) is additive on 13(5).

For the converse, first note that ord(-) is additive on 3(5) if and only if whenever
a « a1 + • • • + am in S(S), with each a, split, we have m = ord(cr). Certainly this
condition implies additivity of ord(.). For the other direction, suppose that the condition
fails, and consider an equivalence a = a1 + • • • + am = B1 + • • • + Bn with each ai and
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Bj split, with m < n, and with m as small as possible. Then m > 2, and ord(a1) = 1 and
ord(a2 + + am) = m - 1 and ord(<r) > n > m, so that ord(.) is not additive.

Now let M be the matrix with 1 + sn(S) rows and #5 columns, with first row all 1's
and the other rows being the split elements of S (S). Let u be the column vector of length
1 + sn(S), with first entry 0 and all other entries 1. By definition, 5 has a valuation if and
only if u is in the column space of M. If u is not in the column space of M then let c be a
row vector such that cu = 0 and cM = 0. Since all the coefficients are rational, we can find
such a c with integer entries. That is, if a 1 , . . . , as are all the splits of S, we have integers
C0, c 1 , . . . , cs such that C01S + c1a1 + + csas = 0s and c1+ + cs = 0. Taking the
terms with ci- < 0 to the right side we find an element of S (5) which is equivalent to sums
of splits of two different lengths. Hence ord(.) is not additive on E(S). Q

Theorem 3.6 Let L C D and f: P -*• Q be as above. Then grL(D) is a normal integral
K-algebra if and only if for each q e Q the fibre f-1 (q) is valuable.

Proof: From Theorems 3.2 and 3.5 it is clear that if some fibre of / is not valuable then
grL(D) contains zero-divisors.

Conversely, assume that each fibre of f is valuable. For each q e Q, choose x(q) €
f - 1 ( q ) subject only to x(0) = 0 and x(1) = 1. Then, by the proof of Theorem 3.2,
grL(D) has as a K-basis the set {Ya: a e B], in which B is the set of a: P ->• Z such that
for each q 6 Q, cr\/-i(q) is order-reversing and a(x(q)) = 0. By Theorem 3.5 and the
proof of Theorem 3.2, the assignment Ya (->• Z" for a e B, extended K-linearly, identifies
grt(D) with the semigroup algebra of S (considered as an additive semigroup) over K. This
semigroup algebra KB is a subalgebra of«[Zp, Z~l:p e P\X] where X :={x(q):q 6 Q},
and hence is an integral domain. The semigroup B is easily seen to satisfy the definition
(p. 320 of Hochster [10]) of a normal semigroup: if a, a', a" e B and integer m > 0 are
such that a + ma' = ma" then there is a r 6 B such that a = mi. By Proposition 1 of
[10] it follows that grt(D) is normal. D

As the example in Figure 1 shows, not all connected posets are valuable. It is easy to
see that all bounded posets are valuable, but there are many valuable posets which are not
bounded. For example, since the normal link of a regular point is irreducible, Theorems
2.3 and 3.6 give an indirect proof that all trees are valuable. The problem of structurally
characterizing valuable posets is addressed in [ 17]. In particular, it is proved there that every
orbit-closure of V (D) has an irreducible normal link if and only if P is adismantlable lattice.

References

1. D.J. Benson and J.H. Conway, "Diagrams for modular lattices," J. Pure Appl. Algebra 37 (1985), 111-116.
2. R.P. Dilworth, "The role of order in lattice theory," in Ordered Sets, I. Rival (Ed.), D. Reidel, Dordrecht,

Boston, 1982.
3. D. Eisenbud and B. Sturmfels, "Binomial Ideals," preprint.
4. W. Fulton, "Introduction to toric varieties," Annals of Math. Studies 131, Princeton U.P., Princeton, N.J.,

1993.

164 WAGNER



SINGULARITIES OF TORIC VARIETIES

5. L. Geissinger, "The face structure of a poset polytope," in Proceedings of the Third Caribbean Conference
on Combinatorics and Computing, Univ. West Indies, Barbados, 1981.

6. G. Gratzer, General Lattice Theory, Birkhauser, Basel, Stuttgart, 1978.
7. T. Hibi, "Distributive lattices, affine semigroup rings, and algebras with straightening laws," in Commutative

Algebra and Combinatorics, M. Nagata and H. Matsumura (Eds.), Advanced Studies in Pure Math. 11,
North-Holland, Amsterdam, 1987.

8. T. Hibi, "Hilbert functions of Cohen-Macaulay integral domains and chain conditions of finite partially
ordered sets," J. Pure and Applied Algebra 72 (1991), 265-273.

9. T. Hibi, Algebraic Combinatorics on Convex Polytopes, Carslaw Publications, Glebe, Australia, 1992.
10. M. Hochster, "Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes,"

Annals of Math. 96 (1972), 318-337.
11. C.L. Lucchesi and D.H. Younger, "A minimax theorem for directed graphs," 7. London Math. Soc. (2) 17

(1978), 369-374.
12. R.P. Stanley, "Hilbert functions of graded algebras," Advances in Math. 28 (1978), 57-83.
13. R.P. Stanley, "Two poset polytopes," Discrete Comput. Geom. 1 (1986), 9-23.
14. R.P. Stanley, Enumerative Combinatorics, vol. I, Wadsworth & Brooks/Cole, Monterey, CA, 1986.
15. R.P. Stanley, "On the Hilbert function of a graded Cohen-Macaulay domain," J. Pure and Applied Algebra

73 (1991), 307-314.
16. K. Vidyasankar, Some Covering Problems for Directed Graphs, Ph.D. Thesis, University of Waterloo,

Ontario, 1976.
17. D.G. Wagner, "Crowns, Cutsets, and Valuable Posets," preprint.

165


