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Abstract We derive a duality formula for two-row Macdonald functions by studying their relation with basic
hypergeometric functions. We introduce two parameter vertex operators to construct a family of symmetric
functions generalizing Hall-Littlewood functions. Their relation with Macdonald functions is governed by a very
well-poised q-hypergeometric functions of type 4 0$, for which we obtain linear transformation formulas in terms
of the Jacobi theta function and the q-Gamma function. The transformation formulas are then used to give the
duality formula and a new formula for two-row Macdonald functions in terms of the vertex operators. The Jack
polynomials are also treated accordingly.

Keywords: basic hypergeometric function, vertex operator, Macdonald symmetric function. Jack symmetric
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0. Introduction

Let AR be the ring of symmetric functions with coefficients in a ring R in the variable
x1, x2> • • -, and P be the union of partitions of n: A = (A1, A2 , . . . ) with A1 > A2 >
• • •. We will follow the usual notations in [7]. The ring AZ has various Z-bases indexed
by partitions: the set of monomial symmetric functions m\ = Yt,xii '''xi*! mat °f
elementary symmetric functions e\ = CA, • • • e\k with en = m(1n), and that of Schur
symmetric functions a\. There is also a Q-basis of the power sum symmetric functions
PA = PA, • • • PA* , where pn = m(n).

Let F be the field of rational functions in two independent indeterminates q, t. For any
two partitions A, p, e P define the scalar product on Af by

*The research is partially supported by NSA grant MDA904-92-H03063.

where mi is the occurrence of integer i in the partition A, 6 is the Kronecker symbol, and
">" is the dominance ordering in the set of partitions P.

Macdonald has introduced a distinguished family of orthogonal symmetric functions
Q\(q, t) with respect to the scalar product and satisfying the following triangular rela-
tion [8]:

in which c\^ € F and A, p, e P.
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We will mainly deal with the orthogonal symmetric functions Q^ (q, t) which are dual
basis of PI'S and thus proportional to P\'s. The polynomials Q\ (or PA) are called
Macdonald symmetric functions. They are generalizations of several familiar family of
symmetric functions: the Schur functions (q = t); Hall-Littlewood functions (q = 0); Jack
functions Q\-(a) (q = ta, t —> 1) as well as elementary symmetric functions e\> (q = 1)
and the monomial symmetric functions m\ (t = 1).

The Hall-Littlewood functions can be realized by certain vertex operator H ( z ) associated
with the infinite dimensional Heisenberg algebra h over Q(t) generated by hn(n e Zx)
and the central element c subject to the relation:

In this context hn corresponds to the power sum pn, and the Q\ = H-^ • • • H-\k .1 in
the basic representation space V = 5ymc(h-) c± AC [5].

In the present work we will introduce two-parameter vertex operators X(q, t; z) gener-
alizing H(z) (=X(0, t; z)) associated to the Heisenberg algebra generated by hn and the
central element c:

Then the symmetric function X-^ • • • X^\k .1 is not the Macdonald function in general
though X_n.l = Qn. However they are related through g-hypergeometric series (at least
for two row case) 4^3.

One of the advantages of the vertex operator approach to the Hall-Littlewood functions is
that we can derive various relations among the Q\ (t) by exploiting the associated contraction
function f(x) = yf^. For example the transformation relation between f(x) and f(x-1):

is equivalent to the following commutation relation among the Hall-Littlewood
functions:

where we only state the two-row case of the general relation for the Q\ (t), for details see
[5].

In the case of the Macdonald polynomials the role of the rational function £_£. is replaced
by a very-well poised basic hypergeometric function 4^3(x) as mentioned above. Thus to
generalize our method we will need to know the transformation relation for the function
4<(x) and 403(x-1). In this case the relation will involve with other similar functions of
type 4(^3 with coefficients expressed in terms of the Jacobi theta function and the q-Gamma
function (see 2.4'). It is this transformation formula which reveals hidden duality relations
satisfied by Macdonald functions.



q-HYPERGEOMETRIC SERIES AND MACDONALD FUNCTIONS 293

Thus in Section 2 we make a detailed study of the appeared basic hypergeometric series
and derive two transformation formulas, which are analogues of the well-known linear
transformation formulas for the hypergeometric function 2F1. We then use one of the
transformation formulas to extend the definition of two row Macdonald functions and obtain
a duality formula for the Qr< s. We also give a raising operator formula for the two-row
Macdonald function in terms of the symmetric functions X-\.l obtained naturally from
our two-parameter vertex operators.

The techniques we rely heavily on are those of the basic hypergeometric functions, which
do not appear explicitly in the case of Hall-Littlewood functions. We have demonstrated
another application of the theory of basic hypergeometric functions into those of symmetric
functions and vertex operators. As a byproduct we also obtain some summation formulas
for the nonterminating very-well poised series of type 4^3.

I would like to thank Professor George Gasper for comments on my earlier manipulations
of the Sears' transformation formula.

After this work was completed, Professor Igor Frenkel informed me that he also had the
notion of the two parameter vertex operator (see the definition immediately after 1.1) in his
private notes.

1. Deformed vertex operators

Let h) be the infinite dimensional Heisenberg algebra generated by hn, n € Zx and the
central element c with the following relation:

The algebra h has a basic representation realized on the space V = Sym(h- ), the
symmetric algebra generated by the elements h-n,n € N. For a positive integer n the
element h_n acts as the multiplication by h_n, and hn acts as the differentiation operator
((1 - tn)/n(l - qn))d/dh-n. We will still use the same symbol hn to denote the operators
on the space V, which then satisfy the relation (1.1) with c = 1.

We define a vertex operator on V by

and its associated operator by
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We also define the normal operator: : as the effect of moving hn's to the right of h-m's.
Then

Our vertex operators are only two parameter generalization of a special case of vertex
operators. The latter belongs to the vertex operator algebras studied comprehensively in
[1] to realize the Monster simple group.

To state our results we need the following notations from q-series [see, e.g., GR]:

We also need the basic hypergeometric series:

Proposition 1.3.

where the function ///y^y0 is meant \(j>o(t -1; -;q, tz/w) by the q-binomial theorem.
The other series is understood similarly.

Proof: We only show the first one as follows:
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Proposition 1.4. For a partition A = (Ai , . . . , A&),

where Rij is the raising operator acting on the monomials in the Qn such that R(QmQn) =
Qm+iQn-i and

Proof: By the properties of normal product we have that

Thus

where the contours of the integrals are around the origin such that \z\\ > • • • > \Zk\ > 0.
D

If we identify the element h-n to the power sum symmetric function pn, then the scalar
product is realized as the Hermitian structure on V given by

It is easy to check that for h-\ = h-\1- --h-\k,

Under the identification the elements X-x.l = X-^ • • • X-\k.l form a basis of sym-
metric functions in Af. It is clear from the construction that our symmetric functions
X-a.l satisfy the triangularity condition in terms of monomial functions as Macdonald
functions do.

In [5] we have shown that X- ^.1 — Q\(0, t) in the case of the Hall-Littlewood functions,
and in the case of (q, t) = (0, -1) we have another realization of the Schur Q-functions
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by certain twisted vertex operators in [4]. However it is not true in general that X-\.l will
be the Macdonald polynomials though this is the case when A is a one row partition (which
is why we still use Qn to represent X-n.l in the above). In fact, we know that

as discovered by Jing-J6zefiak [6].
Let q - ta, t —> 1, the relation in the Heisenberg algebra becomes

and the vertex operator X(q, t; z) degenerates to

which contains some of the vertex operators in the representation theory of the affine Lie
algebra §1(2) [I].

Meanwhile Proposition (1.4) specializes to

since

2. The very-well poised hypergeometric series 4</>3

In this section we will study the very well-poised basic hypergeometric series 4^3 in great
details to prepare for our further investigations of Macdonald functions. Follow the con-
ventional notations of the q-series in [3], we denote the very-well poised series 4^3 by

The very well-poised series 4^3 can be expressed as a linear combination of the series
201. In fact we have

To study its transformation property we recall the Watson's transformation formula for
201 [3]:
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provided that |arg(-z)| <-n,c and a/6 are not integral powers of q, and a, b, z ^ 0.

Theorem 2.4. If a/b is not an integral power of q and \arg(-z)\ < IT and a, b ^ 0, we
have that

Proof: It follows from Watson's transformation formula (2.3) that
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The hypergeometric series 2^1 (z) (or 4W3(z)) defines an analytic function when \z\ < 1,
which is denoted by the same symbol. By the so-called q-analogue of Barnes integrals the
functions can be analytically continued to the domain of |arg(—2) | < 1. The transformation
formula then gives an analytic continuation of the function 4 W3 (z) for the domain of | z \ > 1.

The coefficient functions in the transformation formula are actually quotients of the Jacobi
elliptic 6 function:

with which we can express our formula in a more transparent way:

where rq(a) = ffll) (1 — q)1- a is the q-analogue of the Gamma function.
We notice that Sears' transformation formula for nonterminating series r+\<i>r [9] could

give a relation among the very well-poised series 4W3(x), 4W3(x-1) and other associated
series of type 4(^3. However the coefficient functions in the relation have delicate zeros
depending on the arguments. One will need to deal with them very carefully in order to
reduce the relation into our simple form.

Remark 2.5. Our formula specializes to the following:
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Corollary 2.6. Let a = qp, b = t - 1 , z = tx in (2.4), we have

Corollary 2.7. (The case of Jack functions) Let q = ta, and t —> 1 we have

Remark 2.8. (The case of Hall-Littlewood functions) When q = 0, the transformation
formula reduces to the following trivial identity:

Corollary 2.9. We assume that t — ql/a, then the transformation formula implies that

where rq(a) is the q-analogue of the Gamma function defined after (2.4').

In deriving of the above special cases we have repeatedly used the (q-binomial theorem:

The following result is quoted from [Ex. 2.2,3]. We furnish a proof here for completeness.



300 NAIHUAN JING

Proposition 2.10. Formax(\z\, \aq\) < 1, one has

Proof: Using q-binomial theorem it follows that

Proposition 2.11. Formax(\z\, \aq\) < 1, we have

Proof: This is a consequence of (2.9) and the Heine's transformation formula for 24>i
series [3]:
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where \z\ < 1 and |6| < 1.

Using the formula (2.11) we can derive a summation formula for the very well-poised
series 4^3.

Proposition 2.12. For \b2q\ > 1 one has

Proof: This is obtained from our transformation formula (2.10) by applying Heine's
q-analogue of Gauss' summation formula [3]:

Applying Watson's transformation to the series 2<£i in (2.11) we obtain another transfor-
mation relation for the very well-poised series 4^3.

Proposition 2.14. For \x/b\ < 1, \aq\ < 1, and c and a/6 are not integral powers of q,
we have

Remark 2.75. Notice that the transformation formula can be also expressed in terms of the
Jacobi theta functions and q-Gamma functions. The second 4W3 can be written in a neat
form by the q-Euler's transform [3] in our case:

D
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3. Transition functions

In Section 1 we mentioned that the symmetric function X-^ •••X-^.l is not equal to
the Macdonald function Q\(q, t) when |A| = k > 2. However they are related by a
hypergeometric function.

We have obtained the following various formulas for the two-row Macdonald functions:

Now we add another formula for the Qr,s in terms of the vertex operators introduced in
Section 1.

Theorem 3.2. For r > s > 0,

where R = R12, the raising operator acting on the XnXm directly.

Proof: From the raising operator formula (1.6) it follows that

The other relation is obtained using (2.11).

Let q = ta, t —» 1 in the second relation we derive the following

Corollary 3.3. In the case of Jack symmetric functions we have

D
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Example 3.4. When t = q2 (q-zonal symmetric functions), we have

In the case of zonal symmetric functions one has

We now wish to extend the definition of Qr,s to any pair of integers. In general we define

From now on we let t = qk, k an integer. In this situation we have a duality for two row
Macdonald functions.

Proposition 3.6. For integers k, p with k>0,we have

For t = q-k and k > 0, we have from Corollary 2.9 again

Proposition 3.7.

Remark 3.8. The two cases can be combined by using the q-shifted factorial of negative
integer:

Then either of the above two propositions is true for any integer k.

One of the applications of the transformation formula (2.4) for the very well-poised
q-series is the following duality relations for Macdonald functions.
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Theorem 3.9. For any nonnegative integers r, s, k we have

Proof: Using the simple property of the raising operators:

it follows that

The other identity (t = q - k ) is proved similarly.
D

Remark 3.10. Our formula will also reveal a duality relation for the two-parameter Kostka
matrix. Macdonald conjectured that the entries of these Kostka matrices are polynomials
in q, t with positive integral coefficients. The truth of the conjecture in the two-row case
was proved in [2], and the polynomialness was done independently in [10].

Corollary 3.11. For any nonnegative integers r, s, k we have

We record some of the special cases in the following.
If t2 = q - p , then by Heine's q-analogue of Gauss' summation formula (2.12) we derive

that
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Thus,

If t = —q - p , then Baitey-Daum summation formula [3] implies that

Therefore
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