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If F is a geometry for this rank 3 diagram and F' is its shadow geometry with respect to
the central node of the diagram, then f satisfies the Intersection Property (IP), it belongs
to the following diagram

where L and L* denote the classes of linear spaces and dual linear spaces, respectively.
According to a well established habit, we only consider residually connected and firm
geometries. That is, we include residual connectedness and firmness in the definition of
geometry, as in [25].

The classification theorem will be stated in Section 3 (Theorem 1). The examples to be
mentioned in that classification will be described in Section 2.

We leave the rank 3 case out of the scope of this paper. When n = 3, the diagram
An-2.L*.L looks as follows:

Keywords: diagram geometry, projective space, afflne grassmannian, Mathieu-Witt design

1. Introduction, definitions and notation

We will classify finite flag-transitive geometries of rank n > 4 belonging to the following
diagram:

Abstract We classify finite flag-transitive geometries of rank n > 4 belonging to the following diagram



and it is thin (it admits order one) at the third node of this diagram. Furthermore, I' is
flag-transitive if and only if F is flag-transitive and admits a dual automorphism. Note that
f is simply connected if and only if F is simply connected [26].

Conversely, if F' is a simply connected geometry belonging to L.C2, thin at the last node
of this diagram and satisfying (IP), then F' can be obtained from a geometry belonging to
L*.L by taking shadows with respect to the central node of the diagram L*.L [26]. Thus,
every result on L* .L-geometries is equivalent to a result on L C2-geometries satisfying (IP)
and thin at the last node of the L.C2 diagram.

There are a lot of finite flag-transitive examples for L*.L and L.C2 (see [1, 11, 13-15,
22, 28]; also [5], Section 4). A complete classification of finite flag-transitive geometries
belonging to L*.L or L.C2 does not seem to be in reach, at least for the moment. How-
ever, some results have been obtained in particular cases (see [1, 11, 13-15, 23, 28], for
instance).

We now state a bit of notation. We take the nonnegative integers 0, 1,...,n — 1 as
types

Elements of type 0, 1, 2, n — 1 will be called points, lines, planes and dual points
respectively (note that the word "plane" and "dual point" are synonymous when
n = 3).

We will only consider finite geometries in our main theorem, but we could state it in
the locally finite case as well. Indeed, let F be a geometry belonging to An-2.L*.L. The
(n - 3, n - 2, n - 1 }-truncation F' of F belongs to L*.L

and the shadow geometry F" of F' with respect to the central node n — 2 of the above
diagram belongs to L.C2. Therefore, if F is locally finite (that is, it admits finite orders),
then F" is finite [24], hence F is finite, too. That is, F is finite if it is locally finite.

2. Examples

2.1. Truncated pwjective geometries

Let f be PG(m, q) or the m-dimensional simplex, m > n. The elements off of dimension
< n form a flag-transitive geometry F belonging to the following special case of An_2.L* .L:

We call F the upper n-truncation of f. Clearly, F = F when n = m. In any case,
Aut(F) = Aut(f).
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2.2. Truncated affine grassmannians

The grassmannian Qn-1 of f = PG(m, q), m > n > 1, is the point-line space with point
set the set of all the (n - 2)-dimensional subspaces of f and as lines the pencils of (n - 2)-
dimensional subspaces contained in a (n — l)-dimensional subspace and containing some
n-dimensional subspace. (Here a — 1-dimensional subspace is the empty set.) A geometric
hyperplane of Qn-1 is a proper subset of the point set of Qn-1 meeting every line of Qn-1 in
just one or all points. The affine grassmannian of rank n is the geometry of maximal flags
of F not containing an element of some fixed geometric hyperplane of Qn-1 • We refer the
reader to [10, 11, 16, 27] for a general discussion of geometric hyperplanes of Qn-1 and
affine grassmannians. We now describe the example that will occur in our classification
theorem. Given f = PG(m, q), m > n > 1, let S be a subspace of f of dimension
m — n + 1. Set H to be the set of all subspaces of dimension (type) n — 2 of f meeting
S nontrivially. Then H is a geometric hyperplane of the grassmannian Qn-1. Let C be
the set of flags of f of type {0, 1 , . . . , n - 1} not containing an element of H. Then C is
the chamber system of a flag-transitive geometry F of rank n, belonging to the following
special case of An-2.L*.L:

Clearly, Aut(D is the stabilizer of 5 in Aut(F).

2.3. The Witt designs for M23 and M24

Consider the Witt design 5(3 + i, 6 + i, 22 + i) on 22 + i points for the Mathieu group
A2 2 + i . where 0 < i < 2. The dual Witt design for M22+i, with i = 0,1 or 2, is the geometry
of blocks (type 0) and subsets of the point set of size t with 1 < t < i + 2 (type 3 + i — t)
of the Witt design 5(3 + i,6 + i, 22 + i), where incidence is symmetrized inclusion. The
dual of the Witt design for A/23 belongs to the following special case of An-2.L*.L, where
4, 4, 1, 1 are the orders and c* denotes the class of dual circular spaces:

The residue at a dual point of this geometry is the dual Witt design for M22.
The dual of the Witt design for M24 has diagram and orders as follows, where the residue

of a dual point is isomorphic to the dual Witt design for M23:

If we truncate it by deleting the elements corresponding to the last node of its diagram,
then we obtain a geometry for the following special case of An_2.L*.L and admitting A24
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where 1 < t < oo, and the residue of a dual point is isomorphic to the dual Witt design
for the group M22. Then t = 2 and F is the dual of the Witt design for M24, truncated as
in Subsection 2.3.

Postponing the proofs of Propositions 2 and 3 to the next two sections, we now show
how Theorem 1 follows from them.

Let T be as in the hypotheses of Theorem l.Byaresultof Delandtsheer [ 12], the diagram
of P is one of the following:
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as flag-transitive automorphism group:

Then F is a truncated affine grassmannian as in Subsection 2.2.

Proposition 3 Let F be a flag-transitive geometry of rank 4 with diagram and orders as
follows

Then F is one of the examples described in the previous section.

We will obtain this theorem as a consequence of the next two results:

Proposition 2 Let F be aflag-transitive geometry belonging to the diagram An_2.Af*.L,
with n > 4 and orders q, q,..., q, q — 1, t with q < 3 and t < I:

3. The classification theorem

Theorem 1 Let F be afiniteflag-transitive geometry belonging to the diagram An-2.L* .L,
with n > 4:



In the first case F is the upper n-truncation of PG(m, q) or of an m-dimensional symplex,
for some m > n ([2], Theorem 8; also [25], Corollary 7.11).

In the second case, if the lines of F are incident to more than 4 points, then F is an
affine grassmannian by Theorem 1.2 of [11]. It is straightforward to prove that an affine
grassmannian is flag-transitive only if it is obtained either as in Subsection 2.2 or from a
non-degenerate symplectic form (see [10]). However, we get geometries of rank 3 in the
latter case, whereas we have assumed n > 4. Thus F is as in Subsection 2.2. If the lines of
F are incident to 3 or 4 points, then Proposition 2 gives us the conclusion.

Let F belong to the third one of the above diagrams. When t = 1 it is well known [20]
that F is the dual of the Witt design for A23. When t > 2 we can apply Proposition 3, thus
finishing the proof of Theorem 1.

We notice that the proof of Theorem 1 relies heavily on the classification of finite simple
groups and of finite 2-transitive groups. In particular, these classifications are used by
Delandtsheer [12] as well as in the proof of Proposition 3. The proof of Proposition 2
however, is free of any use of these results. It relies on the results of [11] and [9].

4. Proof of Proposition 2

Let F be as in the hypotheses of Proposition 2, let G be a flag-transitive subgroup of Aut(F)
and let n be the point-line system of F (we have defined points and lines in Section 1). n
is a partial linear space ([11], Lemma 4.1) and G acts flag-transitively on it.

The subspaces of n generated by two intersecting lines will be called planar subspaces
of II. For each element X of F, the points and lines of F incident to X form a partial linear
space U(X). Note that O(X) is a subspace of n when X has type < n — 1 (actually, it is a
projective space). On the other hand, if X is a dual point of F, then I1(X) might not be a
subspace of n.

As in [11], we start with the investigation of n. In particular, we will determine the
structure of the planar subspaces of n.

Suppose L and M are two lines through a point p and let T (L, M) be the planar subspace
of F generated by them. If L and M are incident with some plane n of F, then n(L, M) =
n(n), which is a projective plane because n>4.

Suppose L and M are not coplanar in F. By an inductive argument one can prove
that mere is a dual point H of F incident with both L and M (compare [11], proof of
Proposition 4.2). U(H) is a dual affine space ([2], 9.2) and L, M generate a dual affine
plane n in it. Clearly, n c j (L, M).

Assume J ^ j(L, M). That is, some of the lines of n(L, AM) are missing in T. Anyhow,
r(L, M) is either a projective plane or a projective plane minus a line ([11], Proposition

4.2). Assume the latter. Then the stabilizer of n (L, M) in G cannot be transitive on the set
of points of n (L, M), as it cannot map any point of the removed line onto any point outside
that line. On the other hand, the stabilizer GH,n of n in the stabilizer GH of H in G acts
flag-transitively on n and stabilizes n(L, M), as j (L , Am) is the unique planar subspace of
n containing n. We have reached a contradiction. Hence n(L, M) is a projective plane.

Thus, if L and M are non-coplanar intersecting lines of F, then n(L, M) is either a
dual affine plane or a projective plane. Let L, M and L', M' be two pairs of non-coplanar
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intersecting lines such that n(L, M) is projective but it(L', M') is dual affine, if possible.
As G is flag-transitive, we may assume that L = L' and that L,M,M' pass through the
same point p. As we have remarked above, there are dual points H, H' incident with L and
M and with L and M', respectively. By the flag-transitivity of G we can also assume that
H = H'. As n > 4,thedualofn(#)isisomorphictoAG(n-l,q). Hence the (dual of the)
residue Pp,n of the flag (p, H) of F is isomorphic to AG(n — 2, q) and the lines L, M, M'
are hyperplanes of this affine geometry. As none of M or M' is coplanar with L in F, both
M and M' are parallel to L when viewed as hyperplanes of V p , H ~ AG(n — 2, q). Clearly,
M, M' and L are pairwise distinct. Hence q > 2. That is, q = 3, as q < 3 by assumption.

Let [L] be the parallelism class of L in the affine geometry rp, H. As n (L, M) is projective
whereas n(L', M') is dual affine, the stabilizer Gp,L,H in G of the flag (p, L, H) does not act
transitively on [L] — {L}. Exploiting a theorem of Higman [19] and recalling that q = 3, we
see that the above cannot happen. Therefore, either all planar subspaces generated by two
intersecting non-coplanar lines are dual affine planes, or all of them are projective planes.

Assume that all planar subspaces generated by two intersecting hnon-coplanar lines are
dual affine planes. Then n is the space of points and lines of PG(m, q) (for some m > n)
missing some (m — n + l)-dimensional subspace S and F is as in Subsection 2.2 (see [11]
and [9], Theorem 1.1).

Let all planar subspaces generated by two intersecting lines be projective, if possible.
Then FT is the point-line system of PG(m, q) for some m > n and G acts flag-transitively
on it. We have G > PSLm+1(q) (see [4], 2.2.1). Hence G acts transitively on the pairs of
intersecting lines. Therefore, any two intersecting lines are coplanar. We will now obtain
a contradiction by induction on n. Let n = 4, let H be a dual point of F and a, b distinct
points of H not collinear in U(H). As U(H) is a dual affine space, there is some point
c collinear with both a and b in Tl(H). Let L, M be the lines of Tl(H) through a and c
and through c and b, respectively. These lines are not coplanar in the residue FH of H.
However, they are coplanar in F because any two intersecting lines of F are coplanar in F.
Let n be the plane of F incident with both L and M. By Lemma 3.2 of [11], n is incident
with H, an impossibility. Let n > 4. A contradiction can be obtained as above, except that
the inductive hypothesis should be used now instead of Lemma 3.2 of [11]. By induction,
the residue of c is an affine grassmann geometry as described in Subsection 2.2. It is easily
seen that the analogue of Lemma 3.2 of [11] holds in such a geometry, with planes replaced
by dual points in that statement.

5. Proof of Proposition 3

Let F be as in the hypotheses of Proposition 3 and let G < Aut(F) be flag-transitive on F.
Let F' be the geometry of lines, planes and dual points of F. Note that F' has diagram and
orders as follows:
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As in the previous section, we say that two lines are coplanar if they are incident to a
common plane. We use the same convention for dual points: two dual points are coplanar
if there is a plane incident with both of them. Our first goal is to prove that the Intersection
Property (IP) (see [25]) holds in F'. For, then we can apply a result of Sprague [28] to
identify the elements of F' with subsets of size 20, 21 and 22 in a set S of size 22 + t.
Moreover, the action of G on 5 will be shown to be a t + 1-fold extension of PSL3(4) acting
naturally on a 21 point subset of S, from which it easily follows that t = 2, G ~ M24 and
r is the truncation of the dual Witt design for M24.

As F' belongs to c*.c, (IP) in it amounts to the following three properties, see Chapter 6
of [25], and also [3] or [28]:

(1) any two distinct coplanar lines are incident to at most one common plane;
(2) given two distinct lines A, B, a plane a and a dual point U, if both a and U are incident

to both A and B, then a is incident to U;
(3) given two distinct lines A, B and two distinct dual points U, V, if both U and V are

incident to both A and B, then A and B are coplanar.

The following are the dual properties:

(1*) any two distinct dual points are incident to at most one common plane;
(2*) given two distinct dual points U, V, a plane a and a line A, if both a and A are incident

to both U and V, then a is incident to A;
(3*) given two distinct dual points U, V and two distinct lines A, B, if both A and B are

incident to both U and V, then U and V are coplanar.

As a matter of fact, these are exactly the properties used by Sprague in [28].

5.1. Properties (1), (1*), (2) and (2*) hold in F'

Lemma 4 Both (1) and (1*) hold in F'.

Proof (Compare the proof of Lemma 4.1 of [11]): Let A, B be distinct lines. If a, B
are planes incident to both A and B, in the residue of A we find a dual point U incident
to both a and ft. In the residue of U we see that a = ft. Hence (1) holds in I". The dual
property (1*) can be proved by a dual argument. D

Lemma 5 Property (2) holds in F'.

Proof: Let (2) fail to hold, if possible. Then there are distinct lines A and B, a plane a
and a dual point U such that both a and U are incident to both A and B but a is not incident
to U. In the residue of a in F we find a point a incident to both A and B. The residue FJU

of U in F is isomorphic to the Witt design obtained from the Steiner system S(3,6,22) for
M22 and the lines A and B appear in 5(3,6,22) as pairs of points (planes of F) in the same
block a. These two pairs of points of 5(3, 6, 22) are disjoint, because the plane a, which is
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incident to both A and B, is not incident to U, and it is the unique plane incident to both A
and B, by (1).

The stabilizer GU of U in G acts as M22 or Aut(M22) on FU = S(3,6,22) (see [20]).
Hence it is transitive on the set of ordered pairs of disjoint pairs of points of 5(3,6, 22) in the
same block of 5(3, 6,22). That is, Gy is transitive on the set of ordered pairs of intersecting
lines of FU non-coplanar in Tv. As (A, B) is such a pair and A, B are coplanar in F, any
two distinct intersecting lines of FU are coplanar in F. By flag-transitivity, the same holds
in the residue of every dual point: if two intersecting lines are incident to some common
dual point, then they are coplanar.

Let now x be a point and X, Y any two lines incident to x. We will prove that X and
Y are coplanar. If not, let k > 1 be the minimal number of planes and of lines needed to
connect X to Y in Fx. That is, there are planes a1, a2 ak and lines X0, X1, X 2 , . . . , Xk

with X0 = X, Xk == Y, x incident to Xi for all i < k and ai incident to both Xi-1 and Xi
for every i = 1,2, . . . , k, and k is minimal with this property. In the residue of X1 there
is a dual point V incident to both a1 and a2. Thus, X0 and X2 are intersecting lines both
incident to the dual point V. Hence they are coplanar in F. However, this contradicts the
minimality of k. Therefore any two intersecting lines are coplanar.

Let now F" be the geometry of points, lines and planes of F. As any two intersecting
lines of F are coplanar and (1) holds in F' (Lemma 4), the geometry F" has diagram and
orders as follows:

Hence F" is a truncation of PG(m, 4) for some m > 3 ([2], Theorem 8) and G acts flag-
transitively on it. Therefore PSLm+1(4) < G < PFLm+1(4) (see [19] and [4], 2.2.1).

Let now (p, L) be a point-line flag and let n, n' be distinct planes incident to L. Let
W be the (unique) dual point incident to both n and JT'. The stabilizer Gp,L,n,it' of p,
L, n and it' fixes W and the 3-space Ft of PG(m, 4) = F" spanned by JT U it'. That is,
Gp.L.n.n' = Gp,L,x,n',n = Gp , L , p , n ,w = Gp,L,n,w (we have the last equality because F is
thin at the third node of the diagram).

The stabilizer Gw of W acts as M22 or Aut(M22) on Fw (see [20]). Hence Gp,L,p,p

(= G p , L , P , w ) acts on the projective plane Tn,W as a Borel subgroup of PSL3(4) or
PSL3 (4).22. On the other hand, G p , L , W , p ' is the stabilizer of p, L, n, n' and n in
G > PSLm+(q). The stabilizer of n and n in PSLm+1(Q) acts as PGL3(4) = PSL3(4).3
on the plane n. Hence the group induced by Gp,L,P,P' on TT contains a Borel subgroup of
PGL3(4), which is not a subgroup of a Borel subgroup of either of PSL3(4) or PSL3(4).2.
This contradiction finishes the proof. O

Lemma 6 Property (2*) holds in F'.

Proof: Let U1, U2 be distinct dual points and let L and n be a line and a plane incident
to both U1 and U2. Let L and n be not incident, if possible. We can choose planes n1,n2

in FL incident to U1 and U2, respectively. For ( = 1,2, there is a line Li in the residue of

112 CUYPERS AND PASINI



Ui incident to both n and JTi,. In FL we find a dual point V incident to both n1 and n2. As
(2) holds in F' (Lemma 5), either L1 = L2 or V is incident to TT.

Let L1 = L2a. As L and n are not incident, L ^ Lt| = L2- Hence n1 = jr2 = n
by (1) and (1*) in F' (Lemma 4). This forces L to be incident to JT, contrary to our
assumptions. Therefore L1 ^ L2. Hence V is incident to jr. By (1*) in F' one of the
following occurs:

(i) n = TT1 = 7T2 and V ^ U1, U2;
(ii) either V = U1 and TT = r2 or V = U2 and n = n1.

In any case, L and JT are incident: again a contradiction. Therefore (2*) holds in F'. n

5.2. Kernels

Given a flag F of F', GF is the stabilizer of F in G. The elementwise stabilizer in Gp of
the residue r'F of F in f will be denoted by Kf. Then GF = GF/KF is the action of GF

on r'F. Given a plane n, F- (respectively, F+) will denote the set of lines (dual points)
incident to jr. Henceforth (L, n, U) is a chamber of I".

Lemma 7 K„ = KL n KU = 1.

Proof: Since every line, respectively, dual point of rn is also in FU respectively, PL, the
group Ka contains KU, respectively, KL- Hence Kn > KU D KL. On the other hand, since
FL is a circle, KL is contained in KL. Similarly Kn < KU. Hence Kn = KL n KU. But
then also Kn' = KL n KU = Kn for every plane TT' incident with both L and U. Thus if
two planes TT and TT' are incident with the same line and dual point, the kernels Kn and Kn

are the same. By connectedness of F all kernels Kn for any plane n" are equal to Kn and
Kj" has to be trivial. D

Let N+, N~ be the kernels of the actions of Gn on F+ and F-, respectively.

Lemma 8 PSL3 (4) < N+ < PSL3 (4): 2 acting naturally on the 21 lines in F-.

Proof: We have 7N+ n Kv < Ka = 1 (Lemma 7). On the other hand, N+ n GL =
KL < GU. As KL n KU = 1 (Lemma 7), we can recognize KL inside GU, which is
either M22 or Aut(M22) [20]. AL is contained in the stabilizer of two points of the Steiner
system 5(3,6,22). Hence KL < 24 :PSL2(4).e, with e = 1 or 2. On the other hand,
KU n N+ = 1 (see above). Thus, N+ can also be recognized inside G^. As N+ < Gn<u

and Gn ,V/KU appears as the stabilizer of a point of S(3,6, 22) in GU, either N+ is trivial
or N+ = PSL3(4).e (e = 1 or 2).

In the latter case we are done. Assume N+ = 1, if possible. The group KL = 1, since
KL = N+ n GU = 1. That is, GL acts faithfully on the f + 2 planes incident to L. That
action is 2-transitive, by flag-transitivity.

Furthermore, the stabilizer Gc of the flag C = (L, U) equals K U ( 2 n : S5), with n = 4
or 5 (we see this in GU) and GC appears in GL as the stabilizer of a pah- of planes incident
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to L. Moreover, GC acts as S5 on the 5 points of L. Hence GL also acts as S5 on the 5
points of L. Hence, we have found:

(a) GL is a 2-transitive groups of degree t + 2;
(b) GL admits a quotient isomorphic to S5;
(c) the stabilizer in GL of a pair of points admits a quotient isomorphic to 2n : S5, with

n = 4 or 5.

We can check the list of 2-transitive permutation groups (see [6]; also [8, 17, 18, 21]),
searching for a group X = GL with the above properties.

Clearly, X cannot be of simple type. Indeed, if X is of simple type, then the factor group
of X mentioned in (b) should be recoverd as a section of the outer automorphism group
Out(,S(X)) of the socle S(X) of X because A; = S'5 is simple. However, as a consequence
of the classification of the finite simple groups Schreier's conjecture holds, and Out(5(X)) is
solvable. But as AS is simple this leads to a contradiction. Therefore X is not of simple type.

Hence X should be of affine type. Doubly transitive permutation groups of affine type
have been classified by Hering [17, 18] (see also [21], Appendix I). Let X be such a group.
Then X has degree pm for some prime p and some positive integer m and it contains a normal
subgroup N = pm, acting regularly on the pm objects on which X acts. A point-stabilizer
X0 in X is a subgroup of TL(q, d) for some divisor d of m and with q = pk, k = m/d.

The following are the cases that can occur:

(D d = 1;
(2) SLd(q)<X0;
(3) Spd(q) < X0 < Aut(Spd(q)) (d even);
(4) G2(q)' < X0 < Aut(G2(q)'), p = 2 and d = 6;
(5) d = 2, p = 5,7, 11 or 23 and X0 normalizes a subgroup of G L 2 ( p ) isomorphic

with Q8;
(6) p = 3, m = 4, X0 has a normal subgroup R isomorphic with the central product of Q8

and D8 and X0/R < S5i;
(7) m = 2, p = 9,11,19,29 or 59 and SL2(5) < X0;
(8) m = 4, p = 2 and X0 = A6 or A7;
(9) m = 6,p = 3 and X0 = SL2(13).

Cases (l)-(4) can be ruled out by an argument similar to the one used for the simple case.
None of (5), (7) and (9) can occur. Indeed, by (c) |24 : 55| divides |Xol, whereas this

divisibility condition fails to hold in each of (5), (7), (8) and (9). In case (6), the order of a
two-points stabilizer divides 24.36.13. This does not fit with (c).

Therefore there are no 2-transitive groups satisfying (a), (b) and (c). Hence N+ = 1. n

5.3. A description of P

Lemma 9 Property (3) holds in r".

114 CUYPERS AND PASINI



Proof: Let A and B be distinct lines and U and V be distinct dual points as in the
hypotheses of (3). By Lemma 8, KA = N+n GA = 24: PSL2(4).£ (s = 1 or 2). The orbit
of B under the action of KA can be seen inside IV It contains a line B' ^ B coplanar with
B. Let a be the plane incident to B and B'. Clearly, a is incident to U, as we have found it
in FU. On the other hand, (2) holds in F" (Lemma 7) and, applying this property to B, B',
a and V, we see that a is also incident to V, because B' is incident to V (indeed it belongs
to the orbit of B under the action of KA, which fixes V). We can now apply (2*) (Lemma
6) to A, a, U and V, thus obtaining that A is incident to a, too. Therefore a is incident to
both A and B, which then proves (3). D

Corollary 10 The Intersection Property (IP) holds in P.

(Easy, by Lemmas 7 and 9.)

Corollary 11 F' is the system of all subsets of size 20, 21 and 22 of a set S of size 22 +t
with incidence being symmetrized inclusion.

Proof: r" is a truncation of some (degenerate) projective geometry FI, by Corollary 10
and a theorem of Sprague [28]. Since it has orders 20, 1, t., FI is the 21 + Ndimensional
simplex (with 22 +1 vertices). D

5.4. End of the proof

Let 5 be a set of size 22 + t and F' the system of all subsets of size 20, 21 and 22 of S.
For every plane n of F', i.e., a subset of size 21, the group N+ is isomorphic to PSL3(4)
or PSL3(4) : 2 and acts naturally on the 21 points of n, see Lemma 8. As N+ stabilizes all
dual points of F' it also fixes all points of S \ it. Now suppose V is a subset of size at least 21
of S. Then the subgroup G( V) := (N+ | n is a plane in V) of G is transitive on the points
of V and fixes all points outside V. Hence, the action of G(S) on S is a t + 1-fold transitive
extension of the action of G(TT) = N+ for any plane n of F'. It is well known that N+

admits a 3-fold transitive extension isomorphic to M24 but no 4-fold transitive extension.
Proposition 3 follows immediately.
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