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Abstract An l1 -graph is a graph whose nodes can be labeled by binary vectors in such a way that the
Hamming distance between the binary addresses is, up to scale, the distance in the graph between
the corresponding nodes. We show that many interesting graphs are l1 -rigid, i.e., that they admit an
essentially unique such binary labeling.
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1. Introduction

In this paper, we consider l1-graphs, i.e., graphs whose path metric is isometrically
embeddable in some l1 -space. In fact, l1 -graphs are exactly those admitting a
binary addressing such that, up to scale, the Hamming distance between the binary
addresses of two nodes coincides with their distance in the graph. Namely, a
graph G = (V, E) is an l1-graph if, for some integer m > 1, there exists a map
(p: V —> {0, 1}m and an integer scalar A such that

for all nodes u,v e V, where dG denotes the path metric of G and dH the
Hamming distance, i.e., the path metric of the m-dimensional hypercube H(m, 2).
Such map y> is called an embedding with scale A, or a \-embedding of G into the
hypercube H(m, 2). Hence, isometric embeddings into the hypercube correspond
to the case A = 1. The minimum A for which there exists a A-embedding of G
into a hypercube is called the scale of G. Here, we consider more specifically
l1-rigid graphs, i.e., l1-graphs admitting essentially a unique l1-embedding.

The l1-graphs have been characterized in [24] and later in [10]; namely, a
graph is an l1 -graph if and only if it is an isometric subgraph of a product
of half-cubes and cocktail party graphs. The proof of [10] is shorter, since it
relies on the theory of Delaunay polytopes in lattices (see, e.g., [11] for details);
moreover, it applies to a larger class of metrics than graphic ones. The proof of
[24] provides some insight on the structure of t\ -graphs. Moreover, it permits
to establish that l1 -graphs can be recognized in polynomial time. Note that, for
general metrics, the problem of testing l1-embeddability is JVP-hard [20].

More precisely, Shpectorov [24] proved the following result.
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THEOREM 1.1. Let G be an l1-graph on n vertices. Then, there exist a graph F and
an isometric embedding </? from G into F such that

(i) F is a Cartesian product of complete graphs, cocktail party graphs and half-cubes,

(ii) if tf> is a \-embedding from G into the hypercube H(m, 2), then there exists a
X-embedding $ from F into the same hypercube H(m, 2) such that tj) = $tp.

Moreover, the scale X of G is either equal to 1, or is even, with X<n — 2 if n> 4.

As a consequence of Theorem 1.1, G is l1-rigid if and only if the graph F is
l1 -rigid. Since T is a Cartesian product, it is t1 -rigid if and only if all its factors
are l1-rigid (see Fact (2.2) below). This is equivalent to the condition that no
factor is isomorphic to a complete graph or a cocktail party graph on at least 4
vertices. Therefore,

COROLLARY 1.1 [24]. Every l1-rigid graph G is an isometric subgraph of a half-cube,
i.e., G has scale 1 or 2.

Moreover, if G is not l1 -rigid, then the variety of its l1-embeddings arises from
that of the complete graph (since the variety of the l1-embeddings of the cocktail
party graph comes from that of the complete graph, see Facts (2.6) and (2.9)).

It is proved in [23] that, if G is bipartite, then G is an l1 -graph if and only if
G is an isometric subgraph of a hypercube, i.e., G has scale 1.

On the other hand, every isometric subgraph of a hypercube is l1 -rigid; see
Proposition 3.1. Actually, this result is also implied by the following result from
[22] (see Section 4.1 for more details). Let G be a bipartite graph, then its path
metric dG is metrically rigid, i.e., there is a unique way of writing dG as a sum
of metrics.

The above discussion can be summarized by the following (strict) implications:

G is an isometric subgraph of a hypercube

^G is l1 -rigid

^G is an isometric subgraph of a half-cube

Therefore, t1 -rigidity is an important concept lying in between the well-studied
concept of isometric hypercube embeddability (scale 1) and its relaxation to
isometric half-cube embeddability (scale 1 or 2).

The questions of isometric embedding into a hypercube have been extensively
studied; they have many applications, in particular, for addressing problems in
communication networks (see, e.g., [19] and references there). Actually, the
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i.e., G(i, j) consists of the nodes which are closer to i than to j. If G is bipartite,
then the sets G(i, j) and G(j, i) form a partition of V, for each edge e = (i, j)
of G.

THEOREM 1.2 [18]. The graph G is an isometric subgraph of a hypercube if and
only if G is bipartite and, for every edge e = (i, j) of G, both sets G(i, j) and G(j, i)
are closed under taking shortest paths.

On the other hand, no similar characterization is known for the isometric
subgraphs of half-cubes.

In this paper, we present several classes of l1 -rigid graphs. This permits us to
obtain some classifications for l1-rigid graphs within several interesting classes of
graphs, especially within distance regular graphs.

For definitions, notation and quoting of results on graphs, we rely entirely on
the monography [4].

The paper is organized as follows. In Section 2, we give a catalog of graphs
for which we group information on their l1-embeddings, mainly, on rigidity and
scale. We also present some operations which preserve l1-embeddability and
l1 -rigidity. Section 3 deals with bipartite graphs and some weighted graphs. We
group in Section 4 all the proofs and tools. Actually, the main tool we use is
the fact that l1-metrics are exactly the points of the cut cone and l1 -rigid metrics
are those lying on a simplicial face of this cone. In fact, all the examples of
i\ -rigid graphs that we present here share the property that they are lying on a
simplicial face of the cut cone, which is entirely defined by triangle inequalities.
In Section 5, via some classification theorems from [4], and as application of
Sections 2 and 3, we specify l\ -graphs and their rigidity within some important
classes of graphs.

2. A catalog of l1-graphs

Let d be a function defined on the pairs of V = {1, ..., n}; d is a metric on V
if d satisfies the following triangle inequality

for all i, j, k e V. The metric cone Mn is the cone defined by the triangle
inequalities (1).

question of isometric l1-embedding (i.e., binary addressing up to scale) was
already considered in [3].

The isometric subgraphs of hypercubes have been characterized by Djokovic
[18]. Given a graph G = (V, E) and an edge e = (i, j) of G, set
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Then, d is an l1-metric if d is isometrically l1-embeddable, i.e., there exist
an integer m > 1 and n vectors x1 , . . . , xn e Rm such that d(i, j) = ||xj - Xj||
for all i, j 6 V. We say that x1, ..., xn form an l1-embedding of d in Rm.
(For y = (yh)1<h<m € Rm, ||y|| = E1<h<m|yh| denotes the l1-norm.) When the
embedding is binary, i.e., x 1 , . . . , xn € {0, l}m, then the l1-distance ||xj - Xj||
coincides with the Hamming distance d H ( x i , Xj).

Let d be an l1-metric and let x1, ...,xn be an l1-embedding of d in Rm.
Consider the n x m matrix M whose rows are the vectors x1, ..., xn; M is called
an l1-realization matrix of d. Consider the following three operations on the
realization matrix M:

• add to (or delete from) M a column with all identical entries,
• add an arbitrary vector a e Rm to all the rows of M (translation),
• permute the columns of M.

Call two l1-embeddings equivalent if their realization matrices can be obtained
from one another via the above three operations. Then, a metric is l1-rigid if it
admits, up to equivalence, a unique l1-embedding.

Fact (2.1) [2]. Let d be rational valued. Then, d is an l1-metric if and only if
Ad admits a binary l1-embedding for some integer A > 1. We call the smallest
such integer A the scale of d.

For l1-metrics with scale 1, i.e., metrics admitting a binary l1-embedding, the
following weaker notion of rigidity has been considered. Call d h-rigid if d admits
a unique (up to equivalence) binary t\ -embedding. Hence, if d is l1 -rigid, then
d is l1-rigid, but not vice versa. For example, given an integer i > 1, Deza [9]
proved that the equidistant metric 2td(Kn) (taking the value 2t on all pairs of
{1, ..., n}) is h-rigid for n > t2 + t + 3. However, 2td(Kn) is not l1-rigid for
n > 4 and t > 1, while 2td(K4) is already not h-rigid for t > 1. In fact, 2d(K4)
has exactly two (up to equivalence) binary l1-embeddings.

We shall consider in this paper only metrics arising from graphs, or weighted
graphs. Let G(V, E) be a graph and let w = (we)e€E be nonnegative weights
assigned to the edges of G. The path metric d(G , w), or d(G, w), of the weighted
graph (G, w) is defined as follows: d(G,w)(i, j) is the shortest w-length X)eepwe

of a path P joining i and j in G. In the unweighted case: we = 1 for all
edges e e E, we simply denote the path metric by dG, or d(G). When the path
metric d(G,w) is an l1-metric, we say that (G, w) is an l1-graph and, when d(G,w)

is l1-rigid, we say that the graph (G, w) is l1-rigid.
The l1-graphs with scale 1, i.e., the graphs admitting a binary l1-embedding,

are precisely the isometric subgraphs of a cube. The l1-graphs with scale 2 are
the isometric subgraphs of a half-cube; they are called code graphs in [21].

A useful operation on metrics is the direct product operation. Let da be a



l1-RIGID GRAPHS 157

metric on Va, for a = 1,2. Consider the function d defined on V1 x V2 by:

for all (i1, i2), (j1, j2) € V1 x V2. Then, d is a metric on V1 x V2, called the direct
product of d1, d2. Note that, for path metrics, this corresponds to the Cartesian
product of graphs. It is well known and easy to see that l1-embeddability is
preserved by direct product. Moreover,

Fact (2.2). Let d be the direct product of d1 and d2. Then, d is l1-rigid if and
only if d1 and d2 are l1 -rigid.

The following 1-sum operation also preserves l1-metrics and l1-rigidity. Let
V1 and V2 be two sets which intersect in exactly one element, V1 n V2 = {k}. Let
da be a metric defined on the set Va, for a = 1, 2. Their 1-sum is the metric d
defined on the set V1 U V2 by

Fact (2.3). Let d be the 1-sum of d1 and d2. Then, d is an l1-metric if and only
if d1 and d2 are l1-metrics. Moreover, d is l1-rigid if and only if d1 and d2 are
l1-rigid.

Another useful operation on metrics is the antipodal extension operation (for
details, see [13]). Given a metric d on V = {1,..., n} and a e R, we define its
antipodal extension antn(d) on V U {n + 1} as follows:

So, anta(d) is an extension of d obtained by adding a new node n +1 at distance
a from node 1 and a - d1i from the other nodes. This operation can be repeated,
up to doubling of all the nodes; then, we obtain a metric on 2n nodes, denoted
as Anta(d).

The nice feature of the antipodal extension operation is that, under some
condition on a, it preserves l1-embeddability and l1-rigidity. Namely,

Fact (2.4) [2], [13]. anta(d) is an l1-metric if and only if d is an l1-metric and
admits an l1-embedding of size less than or equal to a; moreover, anta(d) is
l1-rigid if and only if d is l1-rigid. (See Fact (4.4), and Section 4.1 for the notion
of size.)

In this paper, we study l1-rigidity for the following classes of graphs:
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 Kn, the complete graph (l-skeleton of the simplex an-1)
 Knx2, the cocktail party graph (l-skeleton of the cross polytope /3n)
 H(n, d) ~ (Kd)n, the Hamming graph and, in particular,
H(n, 2), the cube (l-skeleton of the hypercube 7n)
H(2, d), the d x d-grid
1H(n, 2), the half-cube
J(n, d), the Johnson graph
DO2n+1, the double odd graph
A(n, t) (considered in [21])
O3, the Petersen graph
the Shrikhande graph
the (l-skeleton of the) dodecahedron
the (l-skeleton of the) icosahedron
Cn, the cycle of length n.

We will also consider in the next section t\ -rigidity for bipartite graphs and
weighted cycles.

All the graphs listed above are l1-graphs and all of them, except Knx2 for
n > 5, have scale 1 or 2. In fact, the l1-graphs with scale 1 are the bipartite
l1-graphs, including even cycles, cubes, double odd graphs. We specify below
which graphs are l1-rigid or not.

Fact (2.5). Kn is not l1-rigid, except for n - 2,3. See [15] for the study of the
variety of l1-embeddings of Kn and connections with design theory.

Fact (2.6). Knx2 is not l1-rigid, except for n = 2,3. In fact, its variety of
l1-embeddings entirely comes from the variety of l1-embeddings of Kn (via the
antipodal extension operation since d(Kn x 2) - Ant2(d(Kn)), see Section 4.3).

Fact (2.7). Any Doob graph (i.e., product of copies of K4, and of the Shrikhande
graph) is not l1-rigid whenever it involves some K4; its variety of l1-embeddings
comes from that of K4 (by the direct product operation, since the Shrikhande
graph is l1-rigid).

Fact (2.8). The Hamming graph H(n, d) is not l1-rigid, except for d < 3 (again
its variety of embeddings comes from that of Kd, by direct product).

Fact (2.9). The half-cube 1H(n, 2) is always l1-rigid, except if n = 3,4; indeed,
1H(3, 2) ~ K4 and 1H(4, 2) ~ K4x2.

Fact (2.10). The Johnson graph J(n, d) is always l1-rigid, except in the case
d = 1 and n > 4; indeed, J(n, 1) ~ Kn.
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Fact (2.11). The double odd graph DO2n+1 is always l1-rigid (by Proposition 3.1,
since it is bipartite).

Fact (2.12). The graph A(n, t) is l1-rigid for t > 3.

Fact (2.13). The Petersen, Shrikhande graphs, the skeletons of the dodecahedron
and of the icosahedron are all l1-rigid, with scale 2.

The proofs of the statements presented in this section will be given in Section 4.
We refer also to Section 4 for a precise description of all graphs and of their
l1-embeddings.

3. Bipartite and weighted l1-graphs

Given a graph G(V, E), consider the relation 9 defined on the edge set E of G
as follows: Given two edges e = (i, j), e' = (i', j') of G,

The relation 6 is reflexive, symmetric, but not transitive in general. An equivalent
formulation of Theorem 1.2 is that G is an isometric subgraph of a hypercube
if and only if G is bipartite and the relation 0 is transitive. It is observed in
[26] that every isometric subgraph of a hypercube admits (up to equivalence)
a unique binary l1-embedding (i.e., is h-rigid). In fact, we have the following
stronger result.

PROPOSITION 3.1. Every bipartite l1-graph is l1-rigid.

This result can be extended to weighted bipartite graphs as follows. Let
w = (we)e€E be nonnegative edge weights assigned to the edges of G; the
weighting w is said to be compatible with the relation 6 if we = we' holds
whenever eOe'.

PROPOSITION 3.2. Let G be a bipartite l1-graph and let w be a nonnegative weighting
of the edges of G which is compatible with the relation 0. Then, the weighted graph
(G, w) is l1-rigid.

As we shall explain in Section 4, a metric d on n points is l1-rigid if it lies on
a simplicial face of the cut cone Cn. Hence, if G is a bipartite l1-graph on n
nodes, then its path metric dG lies on a simplicial face FG of Cn. The dimension
of the face FG is equal to the number of equivalence classes of the relation 9.
Moreover, every other metric d lying on FG is the path metric of (G, w) for
some (compatible) nonnegative weighting w of G.
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In particular, if G is a tree, then (G, w) is l1-rigid for every nonnegative
weighting w (since 0 is the identity relation).

In fact, a similar result holds for cycles, as we now see. Note, however, that 6
is not the identity relation for even cycles (any two opposite edges on the cycle
are in relation by 9).

PROPOSITION 3.3. Let C = (V, E) be a cycle and let w = (we)e€E be nonnegative
integer edge weights. Then, (C, w) is l1-rigid; moreover, (C, w) admits a binary
l1-embedding if and only if Z)eeE we = 0 (mod 2).

As example of application of the above results, we obtain that every connected
graph with largest eigenvalue less than or equal to 2 is l1-rigid. Indeed, such
graphs are classified (see Theorem 3.2.5 in [4]) as subgraphs of extended Dynkin
diagrams which are trees or cycles.

4. Tools and proofs

4.1. l1-metrics and the cut cone

All the proofs use extensively the following correspondence between l1-metrics
and the points of the cut cone.

Given a subset 5 of V = {1, ..., n}, let 6(S) denote the cut metric on V
defined by: 6(S)(i, j) = 1 if |S n {i, j}| = 1, and 6(S)(i, j) = 0 otherwise, for
1 < i < j < n. Hence, 6(S) = 6(V - S) and «5(V) = 6(V) is identically zero. The
cut cone Cn is the cone in R(n) generated by the cut metrics 6(S) for S C V. (For
general information on the cut cone, see e.g., [14] and the survey [12].) A face
F of Cn is said to be simplicial if the nonzero cut metrics lying on F are linearly
independent. For any metric d on V, the following assertions hold:

Fact (4.1). d is an l1-metric if and only if d belongs to the cut cone Cn, i.e.,
d = Es As6(S), with \s > 0 for all S C V.

Fact (4.2). d is an l1-metric with scale 1, i.e., d admits a binary l1-embedding,
if and only if d = £s \S6(S), with \s e Z+ for all S C V.

Fact (4.3). d is l1-rigid if and only if d lies on a simplicial face of the cut cone
Cn, i.e., d admits a unique decomposition as a nonnegative sum of cut metrics.

For Facts (4.1) and (4.2), see [2] and for (4.3) see [16]. Note that Fact (2.1)
follows immediately from (4.1) and (4.2). Any decomposition of d as a nonnega-
tive sum of cut metrics is called a R+-realization of d and any decomposition of d
as a nonnegative integer sum of cut metrics is called a Z+ -realization. Moreover,
if d = Es Asfl(S) with As > 0, then £s Xs is called the size of the realization.
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For instance, (4.2) can be checked as follows. Let d be an l1-metric with
scale 1 and let X 1 , . . . , xn € {0, l}m be a binary embedding of d. Consider the
associated realization matrix M whose rows are x1 , . . . , xn. Each column of M
can be seen as the incidence vector of a subset Sj of V. Then, d = S1<j<m

6(Sj) holds. Therefore, the rows of M provide the binary labeling of the nodes
while the columns of M provide the cut metrics whose sum gives d.

All the maximal simplicial faces of the cut cone C5 are described in [17]; each
of them contains a graphic metric. This yields a characterization on the l1 -rigid
metrics on at most five points.

We can also precise the statement (2.4) on the antipodal extension operation.
Namely, if d is a metric on V and a € R+, then:

Fact (4.4). anta(d) is an l1-metric, i.e., anta(d) e Cn+1, if and only if d is an
l1-metric, i.e., d € Cn, and d admits a R+ -realization of size less than or equal to
a; moreover, any R+-realization of anta(d) is of the form:

where d = £sAs£(S) is a R+-realization of d with J^s^s < <*•

Let us now indicate the pattern that our proofs of l1-rigidity will follow.
Given a metric d on V, how to prove that d is l1-rigid? By (4.3), this amounts

to proving that d lies on a simplicial face of the cut cone Cn. We proceed as
follows.

Fact (4.5). First, we check that d is an l1-metric.

For this, we exhibit a binary l1-embedding for \d, for some scalar A; in all
the cases treated here (except for Knx2), A is equal to 1 or 2. In other words,
we exhibit a decomposition of Ad as integer sum of cuts, say Ad = £Se5 Xs6(S)
with AS e Z, AS > 0, for S e S.

Then, let ft denote the face of smallest dimension of the cut cone Cn containing
d. Hence, the cut metrics 6(S), S e S, belong to Fd. We show that the face Fd

is simplicial by checking that the following Facts (4.6) and (4.7) hold.

Fact (4.6). The cut metrics £(S), S e S, are linearly independent.

Fact (4.7). The only cut metrics lying on ft are the cut metrics 6(S) for S e S.

Actually, in all the cases treated here, we shall show the following property,
which is stronger than (4.7): The only cut metrics which satisfy the same triangle
equalities as d are the cut metrics 6(5), for S e S. This means that the face ft
is completely determined by triangle inequalities.
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More precisely, define also the smallest face FM of the metric cone Mn

containing d. Then, Fd C FM n Mn holds. The equality Fd = FM n Mn holds
if the face .Fd is completely defined as an intersection of triangle faces. Clearly,
if the face FM is simplicial, then the face Fd too is simplicial. Lomonossov and
Sebo [22] have shown that the path metric of a bipartite graph is metrically rigid,
i.e., lies on a simplicial face of the metric cone, which, therefore, implies the
result from Proposition 3.1. Note that K6 - P3, K5 - P3 are examples of l1-rigid
graphs which are not metrically rigid.

4.2. Proof of (2.2) and (2.3)

We first show the statement (2.2). Let da be a metric on Va, for o = 1,2, and let
d denote the direct product of d1, d2, defined on V1 x V2. It is easy to see that:

(i) If d1, d2 are l1-metrics with R+-realizations, d1 = Y^ses asS(S), d2 =
Y,TzT PT&(T\ respectively, then d is an l1-metric with R+-realization

(ii) Conversely, if d is an l1-metric with R+ -realization d = J^A^6(A), then

Therefore, from (i), if d is l1-rigid, then both d\, d2 are l1-rigid. Conversely,
assume that d1, d2 are l1-rigid; we show that d is l1-rigid. The proof follows the
steps (4.6) and (4.7). We suppose that the R+-realizations of d1, d2 are as in (i).

First, it is immediate to see that the cut metrics 6(S x V2), S € S, and S(V1 x T),
T € T, are linearly independent.

We check (4.7). Take A C V1 x V2 such that 6(A) satisfies the same triangle
equalities as d and, thus, the following equalities:

for all i1, j1 e V1, i2, j2 e V2. We show that A is one of S x V2 for S e S or
V1 x T for T e T. Suppose, e.g., that, for some i2 € V2, A n(V1 x {i2}) is a proper
nonempty subset of V1 x {i2}. Then, by the above triangle equalities, we deduce
that {i} x V2 C A for any i e V1 such that (i, i2) € A, and A n ({i} x V2) = 0 for
any i 6 V1 such that (i, i2) £ A Therefore, A is of the form S x V2 and, since
d1 is l1-rigid, S e S. This concludes the proof.
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We now show that the statement (2.3) holds. Let da be a metric on Va, for
a = 1, 2, where V1 and V2 have exactly one common element, V1 n V2 = {k}. Let
d denote the 1-sum of d1 and d2. It is easy to check that:

(i) If d1, d2 are l1-metrics with R+-realizations, d1 = ^2SsSas6(S), d2 =
Hrer 0r&(T), respectively, where we can suppose that k g S, T for all
S 6 S and T e T, then d is an l1-metric with R+-realization

(ii) Conversely, if d is an l1-metric with R+-realization d = Y^AZA ^6(A), where
we can suppose that k & A for all A e A, then, we have A C V1, or A C V2

for each A e A and

and, therefore, d1, d2 are l1-metrics.

An immediate consequense of (i), (ii) above is that d is l1-rigid if and only if
d1 and d2 are l1-rigid.

4.3. Proof of (2.5)-(2.8)

Let us first observe that the complete graph Kn is an l1-graph. Indeed, a binary
t\ -embedding of 2d(Kn) is obtained by labeling the nodes of Kn by the unit
vectors of Rn or, equivalently, 2d(Kn) = X)i<i<n *({*})• For n = 2, 3, the cone Cn
is simplicial and, thus, Kn is l1-rigid. However, for n>4,Kn admits many other
l1-embeddings. For example, for 1 < q < n, £)se{1 n } , | s | = q S ( S ) = 2(n-2)d(Kn);

for q = [n], this gives an l1-embedding of minimum possible size n(n-1) < 2.
Consider now the cocktail party graph Knx2 defined on the 2n nodes of

{1, ..., 2n}. Its path metric has all its values equal to 1 except values 2 on the
n pairs (i, n + i) for 1 < i < n. Therefore, d(K n x 2 ) can be expressed in terms of
d(Kn) using the antipodal extension operation; namely, d(K n x 2 ) = Ant2(d(Kn)).
Therefore, by (2.4), Knx2 is an l1-graph and is l1-rigid if and only if Kn is
t\ -rigid, i.e., for n = 2, 3.

The statements (2.7) and (2.8) follow by application of (2.2).

4.4. Proof of (2.9) and (2.10)

We first show that the half-cube 1H(n, 2) is l1-rigid for any n > 5.
Let us fix some notation. Let En denote the family of the subsets of V -

{1, ..., n} of even cardinality. Then, 1H(n, 2) is the graph with node set En

and with edges the pairs (A, B) such that A, B 6 En and |AAB| = 2.
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For any i e V, define the set Si consisting of all the sets A € En with i e A,
It is easy to see that 2d(1H(n, 2)) = £1<i<n5(Si) holds; this corresponds to the
binary l1-embedding of 2d(1H(n, 2)) obtained by assigning to each node A e En

its incidence vector.
Observe that the subgraph of 1H(n, 2) induced by any subset Si is isomorphic

to 1H(n - 1, 2). This simple observation will permit us to use induction on n.
For showing that the half-cube 1H(n, 2) is l1-rigid for n > 5, we follow the

steps (4.6) and (4.7). It is easy to check that the cuts 6(Si), for 1 < i < n, are
linearly independent.

Then, by induction on n > 5, we show that the only nonzero cut metrics on
En satisfying the same triangle equalities as d(1H(n, 2)) are the n cut metrics
6(Si) for 1 < i < n. The case n = 5 can be checked directly. We describe only
the induction step. We suppose that the property holds for n - 1 and we show
that it holds for n.

Take S C En such that the cut metric 6(S) satisfies the same triangle equalities
as d(1H(n, 2)). For any i € V, by looking at the local structure on Si and
applying the induction assumption, we deduce that S n Si = 0, Si, Si n Sj or
Si - Sj for some j e V.

We shall use the fact that d :=d(1H(n , 2)) satisfies the following triangle
equalities:

for any A, B, C e En such that |AAC| = 4, |AAB| = |BAC| = 2.
Let us first suppose, for example, that S1 C S. We show that, if S ^ S1, then

S = En. We use the following assertions (i)-(ii).

(i) If A g S with 2 < |A| < n - 2, then A - {a, b} & S for all distinct a, 6 6 A.
Indeed, take c 6 V-A, c ^ 1, and use the triangle equality: d(A — {a, b}, AU
{1, c}) = d(A - {a, b}, A) + d(A, A U {1, c}).

(ii) If A g S with |A| < n - 4, then A U {a, b} g S for all distinct a, b e
V - A, a, b ̂  1. Indeed, take c € V - A, c ^ a, b, 1, and use the triangle
equality: d(A U {a, b}, A U {1, c}) - d(A, A U {a, b}) + d(A, A U {1, c}).

Let A € En of minimum cardinality such that A & S. If A = 0, then, by
(ii), S = S1 holds. If |A| < n - 2, then we have a contradiction with (i) since
0 € S. Hence, |A| = n - 1, A = [2, n] 0 S while A - {2, 3}, A - {n - 1, n} e S,
contradicting the triangle equality: d(A - {2, 3}, A - {n - 1, n}) = d(A, A -
{2,3}) + d ( A , A - { n - 1 , n } ) .

Therefore, S, is not contained in S for all i. We can suppose, for instance,
that 5 n S1 = S1 n S2. We deduce that S n S2 = S1 n S2 and S n S3 = S3 n Si

for some i ^ 3. By taking the intersection of both sides of S n S3 = S3 n Si with
S1 and S2, we obtain that i should coincide with 2 and 1, respectively, hence
a contradiction.

This concludes the proof.
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We now show that the Johnson graph J(n, d) is l1-rigid for d > 2.
Let Pd denote the family of the subsets of V = {1,..., n} of cardinality d.

The Johnson graph J(n, d) is the graph with node set Pd and with edges the
pairs (A, B) for A, B e Pd and |AAB| = 2.

A binary l1-embedding of 2d(J(n, d)) is obtained, simply, by labeling each node
A by its incidence vector. This corresponds to the following Z+-realization of
2d(J(n, d)): 2d(J(n, d)) = £1<i<n 6(S i), where Si is the subset of Pd consisting
of all A € Pd with i € A, for 1 < i < n.

The subgraph of J(n, d) induced by the node set Si is isomorphic to J(n -
1, d- 1). This observation permits us, as in the case of the half-cube, to apply
induction.

The proof of l1-rigidity of the Johnson graph J(n, d) (for d > 2) is similar
to the proof of l1-rigidity for the half-cube 1H(n, 2) (for n > 5), so we omit
the details.

4.5. Proof of (2.12)

Let us recall the definition of the graph A(n, t), taken from [21].
Let V = {1, ..., n} and n > 2t, t > 3. We define the families:

• X00, consisting of the sets A, for A C V, \A\ = t
• X\\, consisting of the sets A U {n + 1, n + 2}, for A C V,|A| = t
• X10, consisting of the sets A U {n + 1}, for A C V, |A| = t - 1
• X01, consisting of the sets A U {n + 2}, for A C V, |A| = t - 1

A(n, t) is the graph with node set X00 U X11 U X10 U X01 and with edges the pairs
(C, D) with |CAD| = 2.

The subgraph of A(n, t) induced by any of the sets X00, X11 (resp. X01, X10) is
isomorphic to the Johnson graph J(n, t) (resp. J(n, t- 1)). Hence, it is l1-rigid
since we assume that t > 3. For 1 < i < n, denote by Si (resp. Ti, Ui, Wi) the
subset of .X00 (resp. X11, X10, X01) consisting of the members containing the
element i.

A binary l1-embedding of 2d(A(n, t)) is obtained, simply, by labeling each
node by its incidence set. Correspondingly, we have the following Z+-realization
of 2d(A(n, t)):

We show that A(n, t) is l1-rigid.
First, it is easy to check that the cut metrics 6(X00 U X01), 6 (X 0 0 U X10) and

6(Si U Ti U Ui U Wi), for 1 < i < n, are linearly independent (using, for instance,
the corresponding independence result for the Johnson graph).
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Let 8(S) be a nonzero cut metric satisfying the same triangle equalities as
d(A(n, t)). We show that S(S) is one of the cut metrics 6 (X 0 0 UX 0 1 ) , 6(X0 0UX1 0)
or 6(Si U Ti U Ui U Wi), for 1 < i < n.

We shall use, in particular, the following triangle equalities:

(i) d(A, B U {n + 1, n + 2}) = d(A, A U {n + 1, n + 2}) + d(A U {n + 1, n + 2},
Bu{n+ 1, n + 2})

(ii) d(A, B U {n + 1, n + 2}) - d(A, B) + d(B, B U {n + 1, n + 2})
for A, B C V, |A| = |B| = t, and |AAB| = 2,

(iii) d(A, (A - a) U {b, n + 1, n + 2}) = d(A, (A - a) U {n + 1})
+ d((A - a) U {n + 1}, (A - a) U {b, n + 1, n + 2})

(iv) d(A, (A - a) U {b, n + 1, n + 2}) - d(A, (A - a) U {n + 2})
+ d((A - a) U {n + 2}, (A - a) U {b, n + 1, n + 2}) for A C V, |A| = t,
a e A,b e V - A,

(v) d((A - a) U {n + 1}, (A - b) U {n + 2}) = d((A - a) U {n + 1}, A)
+ d(A,(A-b)L){n + 2}).

(vi) d((A - a) U {n + 1}, (A - b) U {n + 2}) = d((A - a) U {n + 1},
A U {n + 1, n + 2}) + d(A U {n + 1, n + 2}, (A - b) U {n + 2})

The subgraph induced by A(n, t) on X00 is the l1-rigid graph J(n, t); hence,
from the fact that the l1-embedding of J(n, t) uses precisely the cut metrics
6(S i) (see Section 4.4), we deduce that S n X00 = 0, X00, Si, or X00 - Si for
some 1 < i < n. Similarly, S n X11= 0, X11, Ti, or X11 - Ti for some i;
S n X10 - 0, X10, Ui, or X10 - Ui for some i; S n X01 = 0, X01, Wi, or X01 - Wi
for some i.

We can suppose, e.g., that S n X00 = X00 or Si. We assume first that
S n X00 = X00. If X11 n S ? 0, then S = X00 U X11U X10 U X01, using the triangle
equalities (i)-(iv) above. So we can suppose that S n X11 = 0. From the triangle
equalities (v), (vi), S contains exactly one of A — a U {n + 1}, A — b U {n + 2}, for
all a, 6 € A, |A| = t. One deduces easily that S = X00 U X01, or X00 U X10.

We now assume that S n X00 = Si for some i. Using again some triangle
equalities, one can check that S = Si< U Ti u Ui u Wi.

This concludes the proof.

4.6. Proof of (2.13)

Here, we show that the Petersen graph, the Shrikhande graph, the dodecahedron
and the icosahedron are l1-rigid.

Figures 1 and 2 show, respectively, the Petersen graph 03 and the Shrikhande
graph GSh together with an isometric embedding in the half-cube 1H(6, 2) (up
to reflection in the first coordinate), i.e., a binary l1-embedding of 2d(G) for
G = 03 and Gsh. Actually, the binary l1-embeddings we describe in Figures 1
and 2 are equivalent to the ones given in Section 3.11 from [4]. Observe that, in
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Figure 1. The Petersen graph.

Figure 2. The Shrikhande graph.
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Figure 3. VC5.

both cases, the binary labels are the blocks of a design, namely, of S2(2, 3, 6) for
the Peterson graph, and 54(2, {2, 4}, 6) (where the blocks of size 2 form a cycle)
for the Shrikhande graph. The corresponding Z+-realizations are given by:

and

Again, one shows that 03, Gsh are l1-rigid by checking that the conditions
(4.6) and (4.7) hold. We omit the details.

We consider now the icosahedron and the dodecahedron, whose path metrics
are denoted, respectively, by dico and ddod; these two graphs can be found, e.g.,
in chapter 1 from [4]. A useful observation is that both graphs can be expressed
in terms of smaller graphs (one-half number of nodes) using the antipodal
extension operation.

Namely, consider the 5-wheel VC5, i.e., the graph obtained by adding a node
adjacent to all nodes of the 5-cycle; VC5 and a binary l1-embedding of 2d(VC5)
are shown in Figure 3. Then, dico = Ant3(d(VC5)), or 2dico = Ant6(2d(VC5)).
It is easy to check that VCs is l1-rigid. Therefore, by (2.4), the icosahedron
is l1-rigid. A binary l1-embedding for 2dico follows from that of 2d(VC5) using
(4.4).

Note that there are other ways to express the icosahedron as antipodal extension
of some smaller l1-rigid graph. For instance, dico = Ant3(d(G i)) where G1 and
G2 are the graphs shown in Figures 4 and 5, respectively (G1 is weighted, with
weights 1 or 2, the edges with weight 2 are indicated by a double line).

Consider also the weighted graph G3 shown in Figure 6; its edges have
weight 1 or 2 (edges with weight 2 being indicated by a double line). Then,
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Figure 4. G1.

Figure 5. G2.

ddod - Ant5(d(G3)) holds. Using the binary l1-embedding of 2d(G3) shown in
Figure 6, it is easy to check that the graph G3 is l1-rigid. Therefore, the
dodecahedron is l1-rigid.

4.7. Proof of Propositions 3.1 and 3.2

We prove that every bipartite l1-embeddable graph is l1-rigid.
We first recall (from [18]) how the binary l1-embedding is constructed.
Let G = (V, E) be a bipartite l1-graph. Let 1? denote the set of equivalence

classes of the relation 0 introduced in Section 3. Recall that, given two edges
e = (i, j) and e' = (i', j') of G, e B e' holds if and only if the two partitions of V
into G(i, j) u G(j, i) and G(i', j') U G(j', i') are identical.

A binary l1-embedding of dG is constructed as follows. Choose a node u0 in V.
For each node u € V, let F(u) denote the subset of E consisting of the classes e
for which u and u0 belong to distinct sets in the partition V = G(i, j) U G(j, i),
if e = (i, j). Then, labeling the node u0 by the zero vector and each other node
u by the incidence_vector of the set F(u), we obtain a binary l1-embedding of
dG of dimension |E|. This corresponds to the following Z+-realization of dG:



Figure 6. G3.

where Se = G(i, j) if e = (i, j) is any representant of the class e. _
We now show that G is l1-rigid. First, the family of the cut metrics 6(Se), e e E,

is trivially linearly independent. Then, consider a nonzero cut metric 6(S)
which satisfies the same triangle equalities as dG; we show that S = Se for
some e £ E. Consider a shortest path P between two nodes i and j in
G, P = (i1 = i,i2,...,ik = j), and suppose that i & S and j € S. Let 2
< h < k -1 be the largest index such that ih £ S, so ih+1 € S. Since 6(S) satisfies
the triangle equality: d(ih, ip) = d(ih, ih+1) + d(ih+1, ip) for h + 2 < p < k, we
deduce that ip e S for all h + 1 < p < k. Hence, the nodes of P belonging to
5, as well as the nodes of P not belonging to S, form an interval on P. From
this, it is easy to obtain that S is necessarily of the form Se for some e e E.

So we have shown that G is l1-rigid. In fact, we have also shown that the
smallest face FG of the cut cone Cn containing dG is generated by the cut metrics
8(Se), e e E. Every metric d € FG is of the form: d = £eel W f 6 ( S e ) for some
scalars we > 0. Let us extend w to E by setting wf = we for f 6 .E, f0e. By
construction, w is compatible with 8 and d coincides with the path metric of the
weighted graph (G, w). This shows Proposition 3.2.

4.8. Proof of Proposition 3.3

Let C = (1, 2,.. . , n) be a cycle on V = {1,..., n} and Wi be a nonnegative
integer weight assigned to the edge (i, i + 1), for 1 < i < n, the indices being
taken modulo n.

We first show that (C, w) is an l1-graph. Let C* denote the cycle obtained
by replacing each edge e of C by a path of length we. Hence, the projection of
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d(C*) on V coincides with d(C, w). If £e we is even, then C* is an even cycle
and C* is l1-embeddable with scale 1, otherwise C* is l1-embeddable with scale
2. In both cases, an l1-embedding for d(C, w) is obtained from an l1-embedding
for d(C*) by projection. We now show that d(C, w) is l1-rigid, i.e., lies on a
simplicial face of Cn.

If wn > w1 + • • • + wn-1, then no shortest path in C uses the edge (1, n). Hence,
d(C, w) coincides with the path metric of the path P = (1, ..., n) with weights
w1, ..., wn-1 on its edges; therefore, by Proposition 3.2, (C, w) is l1-rigid.

We can now assume that max(wi : 1 < i < n) < 1 £1<i<n wi. Hence, d(i, i +
1) = Wi for all 1 < i < n. Define i' as the largest index i, 2 < i < n, such that
w1 + • • • + Wi-1 < wi + • • • + wn. Hence, W1 + • • • + wi-1 < Wi + ••• + wn and
w1 + • • • + Wi. > Wi+1 + • • • + wn. Let (P, w) (resp. (Q, w)) denote the path
(1, ...,i*) (resp. (i* + 1, ..., n, 1)) with the weights we being assigned to its
edges. By construction of i*, the projection of d(C, w) on P (resp. Q) coincides
with d(P, w) (resp. d(Q, w)). From Section 4.7, d(P, w) = r2<h<i. wh6({h, h +
1,..., i* - 1, i*}) and d(Qw) = I7i+1<k<nwk5({i* + 1, i* + 2, ..., k- 1, k}) and
they are l1-rigid.

Let (5(5) be a cut metric satisfying the same triangle equalities as d(C, w).
Since the paths (P, w) and (Q, w) are l1-rigid, we obtain that Sn{l, ..., i*} =
0, {1, ..., i'}, {1, 2, ..., h - 2, h - 1}, or {h, h + 1, ..., i'} for some 2<h<i*,
and Sn{i* + l, ..., n-1, n, 1} = 0, {i* + l, ..., n-1, n, 1}, {i* + l, ..., k-1, k},
or {k +1, ..., n -1, n, 1} for some i* + 1 < k < n. We can suppose, for instance,
that 1 £ S. Then, S is one of the following sets: 0, Ak :={i* + 1, ..., k - 1, k}
for i* + 1 < k < n, Bh: = {h, h + 1, ..., i*} for 2 < h < i*, and 5h,k:={h, h +
1, ..., i*} U {i* + 1, ..., k - 1, k} for 2 < h < i* and i* + 1 < k < n.

Let .F denote the smallest face of Cn containing d(C, w). Every nonzero
cut metric lying on F must be one of the cut metrics 6(Ak), <5(Bh), < 5 ( S h , k ) > for
2 < h <i* and i* + 1 < k < n. If we show that the cut metrics 6(Ak), <5(Sh) and
<5(Sh , k) are linearly independent, then this will imply that the face F is simplicial
and, thus, that (C, w) is l1-rigid.

Indeed, suppose that

Computing the value on the edges (h0 - 1, h0), (k0, k0 + 1) and (h0, k0), for
2< h0< i*, i* + 1<k 0 <n, yields, respectively, the relations:

Using (i) and (ii), (iii) can be rewritten as
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from which one obtains that sh,k = 0 for all h, k and, thus, ak = 0, bh = 0 for
all h, k.

This concludes the proof.

5. Applications

In application of the results from Sections 2 and 3, we group here information on
l1-rigidity for some important classes of graphs, whose classification is provided,
in particular, in [4].

Fact (5.1). The only strongly regular l1-graphs are Knx2, H(2, d), J(n, 2), C5,
the Petersen graph O3 and the Shrikhande graph [21, Corollary 3.9]. All, except
Knx2 and the grid H(2, n) for n > 4, are l1-rigid.

Fact (5.2). The l-skeletons of all regular polytopes, except the 24-cell, the
600-cell, and the undecided case of the 120-cell, are l1-graphs [1]. Among them,
all are t\ -rigid except for the simplex an for n > 3 and the cross-polytope /?n for
n > 4 .

Remark that the Johnson graph and the half-cube are also the l-skeletons of
some polytopes, in fact, of some L-polytopes (or Delaunay polytopes). (Recall
that an L-polytope is the convex hull of the lattice points lying on the boundary of
a hole in a lattice L, see, e.g., [5].) For J(n, 1) and 1H(n, 2) with n = 2, 3, the
L-polytope is regular (it is a simplex); else, it is not regular. For J(5, 2) ~ T(5),
the L-polytope is 021, and for 1H(5, 2) (the Clebsch graph), it is 121, which are
both sem(regular (see [6]).

Using Section 3.15 from [4], we obtain (5.3) and (5.4) below.

Fact (5.3). The only distance regular l1-graphs with \L > 2 and d > 3 are 1H(n, 2)
for n > 6, J(n, d), H(n, d) for n > 3, the icosahedron and the Doob graphs.

Fact (5.4). The only amply regular l1-graphs with n > 2 are Knx2, 1H(n, 2),
J(n, d), H(n, d) and direct products of icosahedra and Doob graphs.

Fact (5.5). Using Table 10.6 from [4], among distance regular finite Coxeter
graphs, the only l1-graphs are Knx2, 1H(n, 2), J(n, d), H(n, 2), Cn for n > 5,
the icosahedron and the dodecahedron.

Fact (5.6). Using Theorem 7.5.1 from [4], all distance regular cubic l1-graphs
are K4, the Petersen graph O3, H(3, 2), the double odd graph DO5 and the
dodecahedron.
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Fact (5.7). We consider now l1-graphs among distance regular antipodal graphs.
Koolen ([21], Lemma 5.7) observed that any distance regular antipodal l1-graph
is a double cover and, moreover, classified them among the double covers
of complete graphs, i.e., among Taylor graphs (Lemma 3.13); namely, they
are J(6, 3), 1H(6, 2), the icosahedron and the two bipartite graphs: C6 ~
DO3, H(3, 2), and, thus, they are all l1-rigid. Other examples of distance regular
antipodal l1-graphs include the dodecahedron (double cover of the Petersen
graph O3) and the three bipartite graphs: C2n (double cover of Cn), H(n, 2)
(double cover of the folded cube) and DO2n+1 (double cover of the odd graph
02n+1). Actually, the only distance regular graphs that are l1-graphs with scale
1 are C2n, DO2n+l and H(n, 2) ([21], [25]).

Fact (5.8). Using Theorem 2.8 from [21], the only root graphs with n > 3 and root
representation in Zn which are l1 -graph are: complete multipartite graphs with
classes of size 1 or 2, 1

/2H(n, 2), the suspension of J(n, 2) ~ T(n), J(n, d), A(n, t),
the suspension of the p x q-grid and Ls,t. Moreover, except the undecided case of
Ls,t, we know which ones are l1-rigid. Namely, 1

/2H(n, 2), A(n, t), the suspension
of T(n) or of a p x q-grid are l1 -rigid (this is easy to check in the last two cases).
A complete multipartite graph with p classes of size 1 or 2 is l1 -rigid if and only
if p < 3 (this is easy to see using (2.4)).

Fact (5.9). The complement of J(n, 2) is not an l1-graph if n > 6 (since it
contains K2,3 as an isometric subgraph) and it is l1 -rigid if n = 5 (since it is
isomorphic to the Petersen graph).

Fact (5.10). Let Q be a generalized quadrangle and let GQ denote its collinearity
graph.

(i) If Q is degenerate, then GQ is an l1 -graph with scale 1 if all lines have size
2 and with scale 2 otherwise. Moreover, GQ is l1 -rigid if and only if all the
lines of Q have size at most 3.

(ii) If Q is a generalized quadrangle with all lines of size 3, then GQ is an
l1 -graph if and only if Q is degenerate or Q is the 3 x 3-grid H(2, 3). In
both cases, GQ is l1 -rigid.

Proof. (ii) follows from the classification of generalized quadrangles with line
size 3 (see Section 1.15 in [4]) and from (i). (i) follows by applying (2.3).
Indeed, let Q be a degenerate generalized quadrangle with point set X with lines
L1, ..., Lk and let x0 denote their common point. Observe that d(GQ) arises as
the 1-sum of the metrics da, where dn is the path metric of the complete graph
on La, for 1 < a < k. Therefore, from (2.3), GQ is an l1 -graph with scale 1 if
all lines have size 2, and with scale 2 otherwise. Moreover, GQ is l1 -rigid if and
only if all da are l1-rigid, i.e., all lines have size at most 3. D
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Fact (5.11). Given p, q > 2, the complement of the p x q-grid Kp x Kq is not
an l1 -graph if q > 5, or p > 3 and q > 4 (since it contains K2,3 as isometric
subgraph) and it is l1-rigid for (p, q) = (2, 3), (2, 4), (3, 3) (since it is isomorphic
to C6, H(3, 2), K3 x K3, respectively).

Fact (5.12). There are 30 connected graphs on 2 < n < 5 nodes (see [8]). Among
them, there are

• three graphs which are not l1-graphs, namely, VK1,3, K5 - (P2 U P3), K2,3
• four nonrigid l1-graphs with scale 2, namely, K4, K5, K5—P2 , K4 plus a pendant

edge
• nine l1-rigid graphs with scale 1, namely, C4, C4 plus a pendant edge and all

seven trees.

The remaining 15 graphs are l1-rigid with scale 2.

Fact (5.13). Among the integral graphs on n < 7 nodes (i.e., the eigenvalues of
their adjacency matrix are all integral; see [7] for their list), the t\ -graphs are:

• K4, K5, K6
and the following ones which are l1-rigid:

• C2, C3, C4, C6, K3x2, the 2 x 3-grid,

• the trees K1,4,

• the degenerate generalized quadrangle on 7 nodes with line size 3 (i.e., three
triangles sharing a common vertex),

• the graph

Fact (5.14). We conclude with a remark on (k, g)-cages. All known (k, g)-cages of
even girth are bipartite; therefore, by Proposition 3.1, they are l1-rigid whenever
they are l1-graphs. Actually, all known l1-graphs among (k,g) -cages are the
(2, g)-cage Cg, the (k, 3)-cage Kk+1 and the (3, 5)-cage O3 (Petersen graph).

and
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