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Abstract. Let G be a bipartite graph with bicoloration {A, B}, |A| = |B|, and let w : E(G) -» K where K
is a finite abelian group with k elements. For a subset S c E(G) let w(S) = IIeE s

w(e).A Perfect matching
M c E(G) is a w-matching if w(M) = 1.

A characterization is given for all w's for which every perfect matching is a w-matching.
It is shown that if G = Kk+1,k+1 then either G has no w-matchings or it has at least 2 m-matchings.
If K is the group of order 2 and deg(a) > d for all a e A, then either G has no w-matchings, or G has at least

(d — 1)! w-matchings.
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1 Introduction

Let G be a bipartite graph with bicoloration {A, B}, |A| = |B| = n. Let E(G) c A x B
denote the edge set of G, e(G) = |E(G)|.

Let K be a (multiplicative) finite abelian group |K| = k, and let w: E(G) -> K be a
weight assignment on the edges of G. For a subset S c E(G) let w(S) = Te E s w(e).

A perfect matching M of G. is a w-matching if w(M) = 1. We shall consider several
problems concerning w-matchings.

Let F(G) = KE(G) denote all mappings w:E(G) -» K. and let M(G) denote all
w e F(G) which satisfy w(M) . = 1 for all perfect matchings M of G.

Aharoni, Manber and Wajnryb[l] obtained a concise description of M(G) whenK = C2
is the group of order 2. Here we give a new proof and an extension to arbitrary abelian
groups.

One simple way of obtaining elements of M(G) is the following: Choose a: A ->
K, P:B -> K which satisfy Ta e A a(a) Th eB P(b) = 1, and define w: E(G) -> K by
w(a, b) = a(a)p(b). Clearly w e M(G).

Denote by U(G) C M(G) the set of all w's obtained this way.

Theorem 1.1 If every edge in G is contained in a perfect matching then U(G) = M(G).

The case K = C2 of Theorem 1.1 was proved by Aharoni, Manber and Wajnryb [1].
Next we consider w-matchings in complete bipartite graphs.
Let Kk+1, k+1 denote the complete bipartite graph on {A, B}, |A| = |B| = k + 1, and let

w:E(K k + 1 , k + 1) -» K.
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Theorem 1.2 If Kk+1,k+1 has a w-matching, then it has at least two w-matchings.

Finally we consider the number of w-matchings in bipartite graphs.
M. Hall (see exercise 7.15 in [4]) proved that if G has a perfect matching and if deg(a) > d

for all a e A, Then G has at least d! perfect matchings.
Here we show

Theorem 1.3 Let w: E(G) -»• C2. If G has a w-matching anddeg(a) > d for all a e A,
then G has at least (d — 1)! w-matchings.

Theorem 1.1 is proved in section 2. In section 3 we apply the group algebra of K to
w-matchings in complete bipartite graphs. In section 4 we prove a result on C2-weighted
digraphs which implies Theorem 1.3. A special case of Theorem 1.3 is then applied to a
problem of Rinnot on random matrices. We conclude in section 5 with a conjecture which
extends the results of sections 3 and 4.

where F(X) denotes the neighbors of X.
Note that U(G) c M(G) C F(G) are abelian groups with respect to pointwise multi-

plication: w\wi(e) = w1(e)w2(e).
We first prove a lower bound on |U(G)|.

Claim 2.2. |U(G)| > k2n-2 .

Proof: Let A = {a 1 , . . . ,a n } , B = {b1 , . . . ,bn} . Denote by Km the direct product
K x • • • x K (m times). Define a homomorphism O: Kn-1x Kn-1 -> U(G) as follows:
Let u = (u1, . . . , u n - 1 ) , v = (v1 , . . . , v n - 1 ) e Kn-1, and set un = Tn-1 U - 1 v - 1 , v n = 1.

Define $(u,v) e M(G) by O(u,v)(ai, bj) = u iv j for (ai, bj) e E(G).
We show that o is 1-1. Suppose to the contrary that (1,1) = ( u , v ) e ker o c Kn-1 x

Kn-1. LetX = {ai:ui = 1} , Y = {b j . v j = 1}. If |X| < |Y| then since |Y| < n - 1 it
follows from 2.1 that |r(y)| > |x|. Therefore there exists an edge (a i, bj) e E(G) such
that ai E X and bj e Y. Thus 1 = o(u, v)(a i ,b j) = ui vj, = vj, a contradiction. The case
|X| > |Y| is similiar. Therefore $ is 1-1 and the Claim follows. D

Denote by H the character group of a finite abelian group H. For a subgroup A c H let
A± = {h E H: X(h) = 1 for all x e A}. A1 is a subgroup of H and |A||AT| = |H|.

For each x E K and a perfect matching M_of G, let c(M, x) e F(G) be defined
by c(M, x)(w) = X(w(M ) ) - Let P(G) c F(G) be the subgroup generated by all the
c(M, x)'s. Clearly P(G)T = M(G). We now prove a lower bound on |P(G)| .
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2 Proof of Theorem 1.1

We may clearly assume that G is an elementary bipartite graph, i.e. G is connected and
every edge of G is contained in a perfect matching.

By a result of Hetyei (exercise 7.7 in [4]) G satisfies



Claim 2.3. | P ( G ) | > Ke(G)-2(n-1).

Proof: We argue by induction on e(G). If e(G) = 1 then n = 1 and P(G) = K. Suppose
e(G) > 1. By a theorem of Hetyei on the structure of elementary bipartite graphs (exercise
7.8 in [4]) G decomposes as G = G' U C, where G' is again elementary, and C is an odd
path joining x e V(G') n A and y e V(G') n B such that V(C) n V(G') = {x, y}.

To simplify notation assume that for some 1 < m < n.
V(G') = {a, a m } U { b l , . . . . bm}, V(C) = {am,..., a n } U { b m , . . . , bn] and E(C) =

{( ai, bi-1)}i=m+1U ((ai, bi))i=m+1 U {am, bn)}
We also choose a (fixed) perfect matching M of G which contains the edge (am , bn).
Every perfect matching M' of G' can be extended to a perfect matching e(M') — M by

M = M'U{(ai,bi)}i=m+1.
Define h:P(G') x K-> P(G) as follows: Let p = ni=1 C(M', Xi) e P(G') where Xi e

A and the M's are perfect matchings of G'. Define h(p, x) = ni=1 c(e(Mi), X i ) c ( M , x).
We check that A is 1-1. Suppose (r, n) = (nj=1 c(Nj,nj), n) € P(G') x K where

nj e K and the N'j 's are perfect matchings of G'.
If x = 1 then x(z) = v(z) for some z € K. Define w e F(G) by w(e) = z if

e = (am, bn) and w(e) = 1 otherwise. Clearly h ( p , x)(w) — X(z) = n(z) = h ( y , n ) ( w ) .
If on the other hand x = n, then P = y and so y(w) = y(w') for some w' e F(G').
Defining w e F(G) by w(e) = w'(e) for e e E(G') and w(e) = 1 otherwise, we obtain
h(p, x)(w) = P(u>')x(w(M)) = y A(w')x(wW) = h (y, n ) ( w ) .

The injectivity of h together with the induction hypothesis imply:
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Claims 2.2 and 2.3 imply

Therefore U(G) = M(G).

3 w-matchings in complete bipartite graphs

Let Mm(S) denote all m x m matrices with entries in S.
For Q = (qij) e Mm(K) and a permutation a e Sm, let Q(a) = Hi=1 i<ra(i)- For x e K

letS(Q,x) = {a e Sm :Q(a)=x}.
Let t = t(K) denote the minimal t such that for any Q e M,(K), either S(Q, 1) = 0 or

| S ( Q , 1)| > 2.
A mapping w: E(Km,m) -> K naturally corresponds to a matrix Q e Mm(K). We prove

the following matrix version of Theorem 1.2.

Theorem 3.1 t(K) < k + 1.

Proof: Let Q = (qij) e M k+1(K). Denote by C[K] the complex group algebra of K and

letK = {x1, . . . ,xk}.



where a ranges over all permutations of 2 , . . . , s + 2. By Olson's Theorem all products on
the right vanish and so det Q =0. Q

In section 4 we shall need a version of Theorem 3.1 for directed graphs. Let Kk+1 denote
the complete directed graph on V = { 1 , . . . , k+l}, E (K k + 1 ) = {(i, j): 1 < i ^ j < k + l}.
For w: E(K k + 1 ) -> K and S C E ( K k + 1 ) let w(S) = Y[e eS

 W(e).

So that for each x e K either S(Q, x) = 0 or \S(Q, x ) | > 2 . O

A lower bound on t(K) may be obtained as follows: Let s = s(K) denote the maximal
s for which there exists a sequence x 1 , . . . , xs € K such that ]\i€, xi= 1 for all 0 ^ / C
( 1 , . . . , s } .

Define Q = (qij) e M.S+1(K) by qij = 1 if i = j or i = s + 1, and qij = xi otherwise.
Clearly S(Q, 1) contains only the identity permutation, so t(K) > s(K) + 2. Note that for
the cyclic group K = Ck this lower bound is tight by Theorem 3.1.

s(K) was studied by a number of authors ([6], [3], [2], [5]). We shall need the following
result of Olson. Let Zp[K] denote the group algebra of K with coefficients in Zp.

Theorem (Olson [6]) Let K be an abelian p-group K = Cpe1 x • • • x Cpe1. Then s =
s(K) = E!i=i(Pei-1) and far every x1 , . . . , xs+l e K, n/=J (xi - 1) = 0 in Zp[K]. a

We now show

Theorem 3.3 If K is an abelian p-group, then t(K) = s(K) + 2.

Proof: Let s = s(K) and let Q = (qij) e Ms+2(K). As in Theorem 3.1 it suffices to
show that det Q = 0 in Zp[K]. Multiplying rows and columns by appropriate elements of
K we may assume that q1i = qi1= 1 for all 1 < i < s + 2. Subtracting the first row from
the others, we obtain:

Define (A i j) e Mk+1(C*) by A1j = 1 and A.,/ = Xi-1(q1jqij
-1) for all 2 < i < k + 1,

1 < j < k + 1. Let R = (r i j) e Mk+1(C[K]) be defined by rij = Aijqij. Note that
det R e C[K].

Claim 3.2. det R = 0.

Proof: Let 1 < l < k and consider the matrix xl;(R) = ( X i ( r i j ) ) e Mk+1(C).
Clearly xl(rij) = X l(

r
i j+1 , j) for all 1 < j < k + 1 therefore X;(R) is singular and

X1(det R) = det(xl(R)) = 0. Since this holds for all 1 < l < k it follows that det R = 0.
a

Therefore

168 AHARONI, MESHULAM AND WAJNRYB



Corollary 3.4__ For any w : E ( K k + 1 ) -»• K there exist vertex disjoint directed cycles
C1 , . . . ,C1 in Kk+1 such that Yi=l w ( c i ) = 1.

Proof: Define Q = (qij) e Mk+1 (K) by qii = 1 and qij = w(i, j) for 1 < i = j < k +1.
Since the identity permutation belong to 5(2,1), it follows from Theorem 3.1 that there
exists a 1 = a g S(Q, 1).

V0 = ( i : a ( i ) = i} clearly decomposes into vertex disjoint directed cycles C1,.. . ,Ct

such that ni=1, w(Ci) = Fj=1 qja(j) = 1. D

4 On the number of w-matchings

Let D = (V, E) be a directed graph, possibly with loops but with no multiple edges in the
same direction.

The proof of Theorem 1.3 depends on the following result which combines an idea of
Thomassen [8] with Corollary 3.4.

Proposition 4.1 Let D = (V, E) be a digraph (as above), and let w: E -> C2.
If deg+(v) = 2 for all v € V, then there exist vertex disjoint directed cycles C1, . . . , Cl
such that Yi=1 w(Ci) = 1.

Proof: Let D be a minimal counterexample. If C1, €2 are two vertex disjoint directed
cycles then either if (Ci) = 1 for some i, or w(C1)to(C2) = 1. It follows that any two
dicycles intersect. If D has a loop C1 = (v, v) then D - v has a directed cycle C2, thus D
is loopless.

Suppose there is an edge (x, y) e E such that for no v e V both (v, x) and (v, v) are
edges. We form a new digraph D' = (V, E') on V = V - x by deleting x and all edges
incident with it, and replacing each edge of the form (v, x) e Eby a new edge (v, y) e E'.
Note that deg+(v') = 2 for all v' e V. Define w': E' -» C2 by w'(e') = w(e') for e' e E,
and w'(v, y) = w(v, x)w(x, y) if (v, x) e E.

With each directed cycle C' in D' we associate a directed cycle C in D. If C' contains a
new edge (v, y) e E' (where (v, x) € E), let

C = C - ( v , y ) + (v,x) + (x,y). Otherwise C = C1. Clearly w(C) = w'(C')
and V(C;)n V(C2) = 0 implies V(C,)n V(C2) = 0- Therefore if D' satisfies the
conclusions of the Theorem, so does D—in contradiction with the minimality assumption.

Therefore for every (x, y) 6 E there exists a vertex z ^ x, y such that (z, x), (z, y) 6 E.
It follows that each v e V is dominated by a directed cycle, and in particular deg-(u) > 2.
Since deg+(u) = 2 for all D, it follows that there exists a v such that deg-(u) = 2. Thus
there is a cycle C1 = {(x, v), (y, x)) such that (x, v), (y, D) e E.

Let C2 be a cycle which dominates x. Clearly y e V(C2) for otherwise C1 and C2 are
vertex disjoint. Therefore v e V(C2) too, and so (v, x) e E. Similarly we conclude that
( w , y ) e E.

Therefore the complete directed graph on {x, y, v} is contained in D, in contradiction
with Corollary 3.4 (for the group K = C2). D

Returning to the number of w-matchings, let G be a bipartite graph on (A, B], |A| =
|B| = n and w: E(G) -> C2. For a e A let UG(a, w) denote the set of all edges incident
with a which participate in a in-matching of G, |f/o(a, w)\ = «G(a, w).
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The following result clearly implies Theorem 1.3 by induction on d.

Theorem 4.2 If G has a w-matching then there exists an a e A such that uG(a,w) >
degG(a) - 1.

Proof: We argue by induction on e(G). Let<5(G) = min{degG(a):a 6 A}. The assertion
is clear if S(G) < 2, so we assume <5(G) > 3.

Suppose there exists an a e A with degG(a) > 4 and distinguish two cases:

a) Ua(a, w) = {e}. Choose e' ^ e incident with a and let G' = G — e'. By induction
there exists an a' € A such that uG>(a', u>) > degG,(a') — 1. Since uG(a, w) = 1 and
degG,(a) > 3, it follows that a' ^ a and so uc(a', w) = ua<(a', w) > degG(a') - 1.

b) Uc(a, w) D {e, e1}. Again let G' = G — e' and choose by induction an a' e A such
that uc'(a', w) > degG,(a') — 1. If a' ^ a we are done as before. Otherwise a' = a
and so Ua(a, w) = Ua'(a, w) U{e ' } . Therefore

ua(a, w) = uG'(a, w) + 1 > (degG,(a) -1) + 1= degG(a) - 1.

We thus remain with the case deg(a) = 3 for all a e A.
Let M = ( (a1 , b1 ) , . . . , (an, bn)} be a tu-matching of G. With no loss of generality

we may assume that u>(a,, b1) = 1 for all ('. Construct a directed graph D on ( 1 , . . . , n]
by (i,.j) e E(D) iff i + j and (a,-, bj) e E(G), and let <p: E(D) -> C2 be defined by
p(i , j) = w(ai, bj). Since deg+(t;) = 2 for all v e V(O), it follows from Proposition
4.1 that there exist vertex disjoint cycles C1,. . . , Cl such that [i=1 w(Ci) — 1. Let
V0 = Ui=1 V(Ci) and define a permutation a on V0byo-(v1) = v2 i f ( v 1 , v2) e Ui=1 E(Ci).
Consider the perfect matching

M' = {(ai, bi,): i e V0} U{(ai, ba(i)): i 6 V0}.

Clearly M'^ M and w(M') = Yi=1 <P(Ci) = 1. D

Applying Theorem 1.3 to the complete bipartite graph Kn,n we obtain

Corollary 4.3 Let Q = (qij) e Mn(C2). Then either S(Q, 1) = 0 or \S(Q, 1)| >
(n-1)!.

We conclude this section with an application of Corollary 4.3.
LetX = (X,j)beanrt xnmatrixofindependentrandom variablesXy suchthatPr(Xij =

1) = P r ( X i j = -1) = 1/2. For C e Sn, define a random variable X (or) = Yi=1 XMO and

let id be the identity permutation in Sn.
Denote by f(n) the maximal cardinality of a family of permutations 5 C Sn such that

X(id) is independent of {X(cr): a € S}. Y. Rinnot [7] noted that S = {a € Sn: a(1) £ 1}
satisfies this independence condition and thus f(n)> \S\ = n\ — (n — 1)!. Here we show
that Rinnot's construction is optimal:

Theorem4.4 IfX(id) is independent of{X(a):a e S}, then |S| < n! - (n - 1)!.

Proof: The events A = (X(o-) = -I for all a e 5} and B = (X(id) = 1} are clearly
independent and both have positive probability, therefore Pr(A (~\ fi) = Pr(A)Pr(fl) > 0.
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Hence there exists a matrix Q e A/n(±l)suchthat(2(<7) = -1 for alia e S and Q (id) = 1.
Therefore S(Q, 1) f| S = 0 and S(Q, 1) ̂  0, so by Corollary 4.3

|S| <n! - |S (G. 01 < n!-(n-!)!.
D

5 Concluding remarks

Our results seem to suggest the following extension of Theorem 1.3.

Conjecture 5.1 Let Gbea bipartite graph on {A, B}, \A\ = \B\, and let w: E(G) -> K.
If G has a w-matching and deg(a) > d for all a e A, then G has at least (d - s(K))!
w-matchings.

The proof of Theorem 4.2 may be modified to show that Conjecture 5.1 is equivalent to

Conjecture 5.2 Let D = (V, E) be a simple digraph, and let w: E -> K. If deg+(u) =
s(K) + 1 for all t> e V, Then there exist vertex disjoint directed cycles C1, . . . , Cl such that
n!=1 w(c,) = i.
Remarks

a) The lower bound f (K) > s(K) + 2 shows that the conjectures do not hold if s(K) is
replaced by a smaller constant.

b) Both conjectures hold when s(K) is replaced by another (much larger) constant c(K).

Added on June 1,1993: J. Kahn and R. Meshulam proved that both conjectures hold when
s(K) is replaced by |K| — 1. In particular the conjectures are valid for cyclic K. Details
will appear elsewhere.
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