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Abstract. A ladder-shaped array is a subset of a rectangular array which looks like a Ferrers diagram

corresponding to a partition of a positive integer. The ideals generated by the p-by-p minors of a

ladder-type array of indeterminates in the corresponding polynomial ring have been shown to be

hilbertian (i.e., their Hilbert functions coincide with Hilbert polynomials for all nonnegative integers)

by Abhyankar and Kulkarni [3, p 53-76]. We exhibit here an explicit expression for the Hilbert
polynomial of the ideal generated by the two-by-two minors of a ladder-type array of indeterminates in

the corresponding polynomial ring. Counting the number of paths in the corresponding rectangular

array having a fixed number of "turning points" above the path corresponding to the ladder is

an essential ingredient of the combinatorial construction of the Hilbert polynomial. This gives
a constructive proof of the hilbertianness of the ideal generated by the two-by-two minors of a

ladder-type array of indeterminates.

1. Introduction

The primality of the ideal generated by the p-by-p minors of a matrix of in-
determinates in the corresponding polynomial ring is a well-known result. It
is closely connected with the second fundamental theorem of invariant theory
in case of vector invariants. The fact that the Hilbert polynomial and Hilbert
function of this ideal coincide for all nonnegative integers, i.e., it is a hilbertian
ideal, is also proved in different ways. Through the study of singularities of
Schubert subvarieties of a flag manifold, Abhyankar came across a question of
the primality of the ladder-determinantal ideals. A ladder is a special subset of
a rectangle (as shown by shaded part in Figure 1).

In [2], Abhyankar proved the primality of a more general type of determinantal
ideals, and gave a generalized second fundamental theorem of invariant theory.
A beautiful part of his approach was proving the primality and the hilbertianness
in the same breath through the combinatorial techniques. The first success
with his technique was to prove the primality and the hilbertianness of a usual
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Figure 1. Ladder.

determinantal ideal by giving an explicit polynomial expression for its Hilbert
function [1], In [2], in fact, he succeeds in proving the primality of the ideal
generated by the p-by-p minors coming from any "saturated" subset of a rectangle.
A subset of a rectangle (a matrix) is said to be saturated if, for each minor
whose principal diagonal lies in the set, the whole minor lies in the set. It
is easy to see that a ladder is a saturated set. The hilbertianness of these
ideals was established by Abhyankar-Kulkarni in [3]. Their methods are purely
combinatorial, bringing out the polynomial nature of the Hilbert function by the
way of "lattice path counting." The connections between the ladder-determinantal
varieties and Schubert subvarieties of a flag manifold are explored in Mulay [5].
Some relations of these ideals with standard monomial theory can also be found
in Musili [6].

The question of finding the Hilbert polynomial of a ladder-determinantal ideal
is very interesting and it leads to several exciting combinatorial enumerations.
In this paper, we give an explicit polynomial expression for the Hilbert function
of the ideal generated by the two-by-two minors of a ladder. The question of
finding an expression for the Hilbert polynomial of an ideal generated by the
p-by-p minors of a ladder for p > 2 remains open. An explicit expression for
the Hilbert function of a determinantal ideal of a saturated set seems to be a
difficult task, partially due to the variety of these saturated sets.

The primality of the determinantal ideal from a saturated set was established
by Abhyankar using a special basis of monomials in matrix indeterminates in [2].
Abhyankar defined the index of a monomial in matrix indeterminates to be the
maximal size of a minor whose principal diagonal divides the given monomial.
If we view a monomial in matrix indeterminates as a multiset of ordered pairs,
its index is the length of its longest subsequence so that both components of
the ordered pairs in the subsequence are strictly increasing. Abhyankar proved
that the set of monomials of index at most p from the saturated set form a
free basis for the corresponding quotient ring modulo the ideal generated by the
(p+ l)-by-(p+ 1) minors from it. In [3], it is shown that a monomial of a matrix
indeterminates of index p can be factored into monomials each of index at most
one and this factorization comes from the combinatorial method of associating
a nonintersecting p-tuple of paths in the rectangular lattice to a monomial of
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index p. In fact, the polynomial nature of the Hilbert function flows out of the
fact that the number of monomials of degree V residing on a nonintersecting
p-tuple of paths with total C + 1 points and having E nodes (corresponding to
the variables which have to appear) is given by a binomial coefficient ( v ~E+ c)
which may be viewed as a polynomial in V with rational coefficients. Thus, a
recipe for the Hilbert polynomial of the ideal generated by the p-by-p minors of
a ladder is to cook a formula for counting the set of nonintersecting p-tuples of
paths in a rectangular lattice having a fixed numbers of nodes (the points where
the path turns from left to down.)

In this paper, we have essentially used the same recipe. We have given
a formula for counting the number of paths above a given ladder having a
given number of nodes away from the ladder. Using this we exhibit an explicit
expression for the Hilbert polynomial of an ideal generated by the two-by-two
minors of a ladder. This of course gives a constructive proof of the hilbertianness
of this determinantal ideal. If we have a counting formula for the number of
nonintersecting k-tuples of paths with k < p, above a given ladder having a given
number of nodes away from the ladder, we can construct the Hilbert polynomial
of the ideal generated by the (p + l)-by-(p + 1) minors of the ladder following
the same strategy.

2. Notation and terminology

We put Q for the set of all rational numbers, and Z for the set of all integers.
Let N stand for the set of all nonnegative integers and N* for the set of all
positive integers. For A and B in Z, by [A, B] we denote the closed integral
segment {x e Z : A < x < B}. For a set X, let card (X) denote the cardinality
of X. For p in N*, let Xp denote the set of all ordered p-tuples with entries
from X and d E Xp can be written as (d1, d2, ..., dp).

Monomials, radicals, antichains

For q = (q1, q2) € N*2 a closed positive integral rectangle bounded by q1 and
q2, denoted by rec(q1, q2) is a set of all pairs (i, j) such that i E [1, q1] and
3 € [1, q2]- For a subset 5 of rec(q1, q2) we define the index of S, denoted by
ind(S), as

ind(S) = max{l: 3(x1, y1), ..., ( x 1 , yl) E S such that x1 < x2 < • • • < xl

and y1 < y2 < • • • < yl}.

We may note that ind(S) = 0 » S = 0.
Let S be a subset of rec(q1, q2) where q1, q2 € N*. By a monomial on a

subset S of rec(q1, q2) we mean the map T : S —> N. We denote the set of
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all monomials on S by mon(S). By support of T € mon(S) we mean the set
{x € S : T(x)= 0} and we denote it by supt T. By the degree of T e mon(S) we
mean Exes T(x) and write it as deg(T). We denote the set of all monomials on
S of degree V by mon(S, V). For g E N, by monomials on S of index < g we
mean T € mon(S) with ind(supt T) < g and we denote the set of such monomials
by mon[S, g] and we put mon(s, V, g) = mon(s, V) n mon[S, g].

A subset T of S is called a radical if ind(T) < 1. We note that the support of
the monomial of index 1 is a nonempty radical. We denote the set of all radicals
in S of cardinality k by rad(s, K), and also rad(S) = UK>o rad(S, k). A radical
R in rad(S) is called a maximal radical if there does not exist a radical R' in S
such that R' contains R properly. We denote the set of all maximal radicals in
S by maxrad(S').

Given q = (q1, q2) e N*2 and t e N, let A(q, l) denote the set of all a =
(a1, a2) € Zp x Zp such that

and

Also, let A(q) = Ul>oA(q, l). Viewing rec(q1, q2) = [1, q1] x [1, q2] with the
product partial order, an antichain T in a set S is such that for any two distinct
elements (x 1 , y1) and (x2,y2) in T, we have either x1 < x2 and y1 > y2, or
x1 > x2 and y1 < y2. We observe that, in fact, for a in A(q, l), the set
{(a1(i), a 2 ( i ) : 1 < i < l} is an antichain of cardinality l in rec(q1, q2); and each
antichain in rec(q1, q2) is indexed by an element of A(q). The set of antichains
of cardinality l in a set 5 is denoted by A(s, l) and also A(S) = ul>0A(S, l).
We note that .4(S) c rad(S), and A(q) = A(rec(q1, q2)).

Ladder

Let m, n E N*. A ladder in rec(m, n) is an order ideal of rec(m, n) containing
(1, n) and (m, 1) under the product partial order. A geometric picture of L will
look like the shaded region in Figure 1. We may note that for each ladder L in
rec(m, n), we have h E N* and a 6 A(q, h - 1) where q = (m - 1, n - 1) such
that

where a1(h) = m; a1(0) = 1; a2(h) = 1; and a2(0) = n, and we denote this ladder
L by L((m, n), a, h). For the rest of the paper, we set a1( i) = mi and a2(i) = ni

for i 6 [1, h - 1]. For a ladder L in rec(m, n), we denote



We also note that for V e Z and l e Z, we have

For V e Z and r e Z with V + r > 0, we have

where V can be taken to be an indeterminate over Q. For V, an indeterminate
over Q, we may regard (Vr) and [V] as polynomials in Q[V]. Note that for all
r E Z, and V in an overring of Q,

and

Binomial coefficients

For r e Z, we define

where L(m + 1) = 1. We define L° = L\wal(L). L° may be called an unwalled
ladder. We note that wal(L) E maxrad(L). It is easy to see that each maximal
radical in L is a path from (1, n) to (m, 1) going either left or down at each
vertex of the points in L. It is worth noting that wal(L) is the maximal border
strip of L when viewed as a Ferrers diagram.

and we define the wall of L, denoted by wal(L) as

For a ladder L in rec(m, n), we define for i e [1, m],

and
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We use the following two results: For T1, T2 e Z and A, B E Z, we have

and

be members of Nh<.
The strategy of our counting is as follows: We count the number of antichains

of fixed length l in L° (Theorem 4). We show that there is a map a from rad
(L) onto A(L°) of which restriction to maxrad(L) gives a bijection with A(L°)
(Theorem 6). We denote the map from A(L°) onto maxrad(L) by y, and show
that P(U(S)) = S for S e A(L°) (Theorem 5). We note that the number of
radicals of length k containing a fixed antichain S in L° and contained in U (S) ,
i.e., the unique maximal radical in L such that P(U(S)) = S, depends only upon
k and card(S). Thus varying l = card(S), we count the number of radicals of
length k in L using counting of antichains of fixed length i in L° (Theorem 9).
We note that the support of all monomials on L having index less than or equal
to one is a radical in L and the number of monomials of degree V having support
in the fixed radical R in L depend only on V and card(R). Using counting of
radicals of length k in L and varying k, we count mon(L, V, 1) (Theorem 11).

3. Counting antichains

LEMMA 1. Let l E N and e = (e1, e2,.. . , eh) e Nh with eh = l. For a sequence of
integers mo = 1 < m1 < m2 < ••• < mh, if Ac is the set of a = (a1, a2,..., al) E N*1
such that

where {U £ Z : ( A - U ) ( B + U ) # 0} c [-B, A]. For T1, T2 e Z and A e Z, we
have,

where {U e Z : (-1)U(T2) [A-U] # 0} C [0, A].
For h e N*, we denote by N<,

For e, f N<, we say e < f if and only if ek < fk for k; e [1, h]. For l € N, let



then

and

and

where f0 = 0.

where e0 = 0

Proof. We note that the cardinality of the set of strictly increasing maps from
[ek-1 + 1, ek] into [mk-1, mk - 1] is (mk-mk-1) for k E [1, h]. For each a e Az,

we can associate the unique h-tuple (a[k])1<k<h where for 1 < k < h,

a[k] : [ek-1+ 1, ek] -> [mk-1, mk - 1]

is a strictly increasing map given by a[k](i) = ai. Thus, the result follows from
the initial observation.

LEMMA 2. Let t € N and f = (f1, f2, • • •, fh) E Nh with fh = l. For a sequence
of integers no > n1 > • • • > nh = 1, if Bf- is the set of b = (b1, b2, ..., bl) € N*'
such that

then

and

and
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Proof. We note that the cardinality of the set of strictly decreasing maps from

[fk-1 + 1, fk] into [nk, nk-1 - 1] is (*fc%*) for * € [1, h]. For each 6 € Bf, we

can associate the unique h-tuple (b[k])1<k<h where for 1 < k < h

is a strictly decreasing map given by 6[k](i) = bi. Thus, the result follows from
the initial observation.

THEOREM 3. Under the assumptions of Lemma 1, for a = (a1, a2 , . . . , al) in Ag,
we define

Then

Proof. We note that for x e S1(a),

If for some K0 € [1, h], card({j : x2(j) > nk0}) > ek0, then x2(eko + 1 ) > n k o and
xi(ekg + 1) > mk0, so (x1(ek 0 + 1), x2(ek0 + 1)) E L° which violates the assumption
that x € .A(.L0, £)• Thus (6) is true.

We define F : S1{a) -+ Nh given by

where for k E [1, h],

From (6), it follows that

giving us

The proof is completed by using the Lemma 2 and the definition of F'.
The region of the sum in (5) is contained in {& e Nh : e1 + e2 + + eh < lh}

for l e N, and hence S(L°, l) is always an integer-valued function.



by the definition of A% in Lemma 1.
It follows from (9), (10), and (11) that
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For l € N, and a ladder L, we define

THEOREM 4. For lEN, and a ladder L,

Proof. Let

Let us define the function F*(x) for each x = (x1, x2) in A(L°, l) to be
(x1(l), x1(2), ..., x1(l)) which is an element of C. It is clear that for a in C,
F* - 1(a) = S1 (a), by the definition of S1(a) in Theorem 3. This gives us

We define the function E*: C -> Nh given by E*(a) = (E1*(a), E2(a),.... Eh(a))
where

and for e in E*(C), we have

for 3 - (a1, a2, ..., al). It is clear that



It is clear that for a filter F in L, lw(F) is a radical in L. Further, for S € A(L),
lw(L>s) will contain S. In particular, if (a, 6) is in a filter F in L and a = 1 or
6=1 then (a, b) e lw(F). We now define a map U: A(L°) -» maxrad(L) given
by At(S) = lw(wal(L) U (L>s)) for 5 in A(L°). It is clear that U (S ) is a maximal
radical in L, and 5 C U (S) for S in A(£°).

Example. This is a ladder L (see Figure 2) determined by a = ((3, 5, 6), (6, 4, 3))
and (m, n) = (8, 8). Here h = 4. The wall of L is given by {(1, 8), (2, 8), (3, 8),
(3, 7), (3, 6), (4, 6), (5, 6), (5, 5), (5, 4), (6, 4), (6, 3), (7, 3), (8, 3), (8, 2), (8, 1)}.
The encircled points illustrate an antichain S = {(2, 7), (4, 4), (6, 2)} in L°. The
path from (1, 8) to (8, 1) shown in Figure 2 gives the maximal radical U(S). It

and the proof can be completed using Lemma 1 and Theorem 3.

4. Counting radicals

We define a map a : rad(L) —> A(L°) by O(T) to be the set of minimal elements
of the poset T n L° (under the product order) for a radical T in L. We note
that if a radical T is contained in wal(L) then T(T) = 0. It is clear that O(T) is
an antichain contained in T and O(T) = T for T e A(L°). If T' is a subset of a
radical T in L and O(T) C T', then it follows immediately that O (T) C O(T').

For an antichain S in L°, let L>$ denote the filter in L generated by 5; i.e.,
the set of points of L which lie above some point of 5, i.e., all points (x, y) in L
such that there is an (x', y') in S with x' <x,y'< y. Given a filter F in L, let
the lower wall of F, denoted by lw(.F), be the set of points (a, 6) in F such that

Figure 2. Ladder determined by a = ((3, 5, 6), (6, 4, 3)) and (m, n) = (8, 8)
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is clear that the minimal elements of U (S) in L° are exactly the elements of S,
i.e., O(u,(S)) = S.

THEOREM 5. For S in A(L°), we have

Proof. We note that U(S) n L° = lw(L>s n L°) for S in A(L°). By the definition
of L>s, it is clear that the minimal elements of lw(L>s n L°) are contained in 5,
i.e., O(U(S)) C S. Since S is contained in L° and a minimal element in U(S) n L°
cannot come from the wal(L), we have S C a(U(S)).

THEOREM 6. Let a* be the restriction of a to maxrad(L). O* : maxrad(L) -> A(L°)
is a bijection.

Proof. If R is a maximal radical in L,L>R = L>O(R), since O (R) contains only
minimal elements of R. This gives us that U(O(R)) = U(R) = R. The theorem
follows from Theorem 5.

THEOREM 7. Given S € .A(L°). there is a unique maximal radical U(S ) in L such
that

Proof. It follows immediately from Theorem 6.

LEMMA 8. For k E N and S E A(L°), let Rs(k) = {T E rad(L, k) : O(T) = S}.
We have

Proof. From Theorem 7, it follows that

We know that a maximal radical U (S ) in L contains mh + no -1 elements. One
may see this by establishing one-to-one correspondence between U (S ) and wal(L)
by associating (x, y) e wal(L) to (x', y') € U ( S ) if and only if y - x = y' - x' = t
for t € [1 - mh, no - 1]. By an obvious counting principle, the lemma follows.

THEOREM 9. For a ladder L and k e N, we have



The values of k, i or u in (12) or (13) giving nonzero contribution in summation
are contained in [0, mh + no - 1], We also note that F(L, V) can be viewed as
a polynomial in V with integer coefficients.

THEOREM 11. For V e N and a ladder L, we have

For V in an overring of Q and a ladder L, we define

For V € N, and a ladder L, we define

Proof. Immediate.

We have

5. Counting mon (L, V,l)

It is easy to note that the set of those l which give a nonzero contribution in
the summation is contained in [0, min{k, mh, - 1, no - 1}].

Using Lemma 8 and Theorem 4, we get

Proof. Using the definitions of a and Rs(k) for S in A(L°) as in Lemma 8, we
have
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LEMMA 10. For R e rad(L) and V 6 N, we define
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Proof. Since the support of each monomial in mon(L, V, 1) is a radical in L,
using the definition in Lemma 10, we get

Using Lemma 10, we have

The theorem follows from Theorem 9 and the definition of F(L, V).

THEOREM 12. F'or V € N and a ladder L, we have

Proof. Since the summations in F(L, V) have finite support, changing the order
of summations in (12), we get

From (3), we have

it follows from (2) that

In fact, for l e N, we have

For V e N and t € [0, min{mh, — 1, no — 1}], since

(i) F(L, V) = F(L, V); and
(ii) card(mon(L, V, 1)) = F(L, V).



THEOREM 13. For a ladder L and IL in A, IL is hilbertian.

6. I2 is hilbertian

For h e N* (m, n) e N*2 and a € A(L°), let L((m, n), a, h) = L be a ladder in
rec(m, n) as we have been using from §2. Let k be a field and let X = (-Xij)(i, j)EL

denote the family of indeterminates over a field k. Let A = k[X] be a polynomial
ring in indeterminates Xij over a field k where (i, j) € L. For any p € N*, let
IP denote an ideal generated by the p-by-p minors of L in A (by minors here
we mean the determinants of the square p-by-p submatrices of ladder-type array
of indeterminates X).

For a homogeneous ideal I in A, we recall that the Hilbert function of /,
denoted by hI : N —» N, is given by h I (V) = dimk(A/I)v for V € N where
A/I = ®V€N(A/I)V is a graded decomposition of A/I. For such an / in A,
by Hilbert's theorem, for V in an overring of Q, there exists a polynomial
H I (V) € Q[V] and v0 € N such that HI(V) = h I (V) for V E N with V > v0.
H I(V) is called the Hilbert polynomial of /. We define an ideal / in A to be
hilbertian if for all V e N, hI(V) = HI(V).

For L = rec(m, n) and P E N*, Abhyankar, in [1], has given a formula for
the Hilbert function of IL

P+1 in A and has proved that ILp+1 is hilbertian. In fact,
he has proved the following theorem for any ladder L in [2]:

ABHYANKAR'S THEOREM. For a ladder L and p e N* and an ideal IL in A,
mon(L, V; p - 1) forms a free k-basis for (A/Ip)v, i.e, for V 6 N, hI

L(V) =
card(mon(L, V, p - 1)).

We prove the following theorem using this:

70 KULKARNI

Thus from (14) and (1), we get

From (16) and (4) for V € N, we have

and by the definition of F(L, V), we get

From Theorem 11, it follows that for V € N,
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Proof. We know that for V in an overring of Q, by Hilbert's theorem, there
exists HIL(V) e Q[V], i.e., the Hilbert polynomial of IL such that

for some v0 e N. By Abhyankar's theorem and Theorem 12,

From (17) and (18), we have,

and this forces

as HI2(V) and F(L, V) are polynomials in one indeterminate V over a ring Q.
Thus, from (18) and (19), we have

This establishes that IL is hilbertian.
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