
Information Retrieval, 5, 353–375, 2002
c© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Generalized Hamming Distance

ABRAHAM BOOKSTEIN a-bookstein@uchicago.edu
Center for Information and Language Studies, University of Chicago, Chicago, IL 60637

VLADIMIR A. KULYUKIN vkulyukin@cs.usu.edu
Computer Science Department, Utah State University, Logan, Utah 84322-4205

TIMO RAITA∗ raita@cs.utu.fi
Computer Science Department, University of Turku, 20520 Turku, Finland

Received October 13, 1999; Revised May 23, 2002; Accepted July 12, 2002

Abstract. Many problems in information retrieval and related fields depend on a reliable measure of the distance
or similarity between objects that, most frequently, are represented as vectors. This paper considers vectors of bits.
Such data structures implement entities as diverse as bitmaps that indicate the occurrences of terms and bitstrings
indicating the presence of edges in images. For such applications, a popular distance measure is the Hamming
distance. The value of the Hamming distance for information retrieval applications is limited by the fact that
it counts only exact matches, whereas in information retrieval, corresponding bits that are close by can still be
considered to be almost identical. We define a “Generalized Hamming distance” that extends the Hamming concept
to give partial credit for near misses, and suggest a dynamic programming algorithm that permits it to be computed
efficiently. We envision many uses for such a measure. In this paper we define and prove some basic properties
of the “Generalized Hamming distance”, and illustrate its use in the area of object recognition. We evaluate our
implementation in a series of experiments, using autonomous robots to test the measure’s effectiveness in relating
similar bitstrings.
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1. Introduction

The Hamming distance is often used to quantify the extent to which two bitstrings of the
same dimension differ. An early application was in the theory of error-correcting codes
(see, e.g., Hamming (1980)) where the Hamming distance measured the error introduced
by noise over a channel when a message, typically a sequence of bits, is sent between its
source and destination. Bit sequences also appear within the Information Retrieval (IR)
environment. For example, bitmaps can indicate the documents a term occurs in, with the
Hamming distance quantifying differences in the occurrence patterns of terms. A typical
application of such a distance measure is to create term clusters (Bookstein and Klein
1991).

∗It is our sad duty to report that Timo Raita passed away shortly before this paper was completed. Timo was a
close and valued colleague. He will be greatly missed.
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In a traditional application of the Hamming distance, the only concern is whether the cor-
responding bits in two strings agree. However, in a full text database, more subtle distinctions
are required. For example, bitmaps may be used to indicate the units (sentences, paragraphs,
etc.) within a single document that a term occurs in; in this context, it is troubling that two
terms that tend to occur “close” to one another, even if not in exactly the same units, are
assessed by the Hamming distance in the same way as terms that are completely unrelated
to one another. In other words, the original Hamming distance does not recognize the idea
of neighboring units.

As an example, consider the problem of automatically segmenting a body of text (Hearst
1994, Hearst and Plaunt 1993). In this context, it is useful to have a measure of how well
an algorithmic text segmentor agrees with a target partition, as defined, for example, by
a judge. In this case, both the target and the source can be represented by bitmaps, with
each sentence (or other text unit) being represented by a bit position, and 1-bits indicating
segment boundaries. Here, ideally, we should have an exact matching of 1-bits, and the
number of discrepancies is the most obvious measure of algorithm failure. This measure is
the Classic Hamming distance (CHD).

However, unlike the many coding applications in which the Hamming distance is used,
in the text segmentation context we have a notion of bit-site proximity, and a measure of
failure can reasonably be expected to take this into account. For example, CHD does not
distinguish whether a discrepancy between a target and source 1-bit are separated by one
or many textual units. Consider the following target bitmap (a), and the candidate source
bitmaps (b) and (c):

(a) 1100100000
(b) 1100010000
(c) 1100000001

As assessed by CHD, both (b) and (c) are equally good efforts to match the target’s
segment boundaries: both differ from the target by a distance of 2. But intuitively, one is
inclined to regard (b) as a better match than (c): while both (b) and (c) fail at matching the
last 1-bit, (b) misses by only one unit, which may be quite acceptable for applications such
as document segmentation. Similarly, in image matching applications, the noise introduced
by the channel, e.g., a camera, makes exact matches highly improbable, so that the best
solution is to find matches that are close enough. For such applications, we would like a
distance measure that assesses (a) to be closer to (b) than it is to (c).

In general, there is a great deal of arbitrariness in defining a measure of goodness. But a
minimal desideratum of a measure of quality is that it at least satisfy such intuitive criteria as
suggested by the applications for which it is intended. The Generalized Hamming distance
(GHD) we define below introduces this flexibility. In addition, if our measure is to be applied
in contexts where noise is significant, we would hope that it is more reliable than the classic
measure when the exact placement of 1-bits is influenced by random effects. Experiments
described in Bookstein et al. (2001) suggest that this is true for GHD.

While motivated by the problem of assessing the effectiveness of segmentation algo-
rithms, GHD should be applicable to other problems in which the notion of bit-neighbor-
hoods is valid. For example, in the course of computing GHD, our algorithm constructs
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an “optimal” sequence of steps that transforms one bitmap into the other. Such a process
is similar to that used for fax compression (Witten et al. 1999), and an encoding of the
optimized transformation process may permit us to improve compression in applications
requiring higher performance. A more flexible Hamming distance can also be of use in sit-
uations which require assessing the closeness of pairs of event sequences, in which nearby
events are considered to be associated; such a requirement occurs in some data-mining
applications (Adriaans and Zantinge 1996, Kulyukin and Burke to appear). In this paper,
we illustrate our algorithms by considering the problem of object recognition, such as may
occur in image retrieval, or, perhaps, character recognition. We evaluate our implementation
in a series of image matching experiments with an autonomous robot.

In the following section we extend CHD to be sensitive to situations in which the concept
of neighboring locations is important. This extension will be defined in terms of the oper-
ations necessary to transform the source bitmap to the target bitmap. Conditions sufficient
for this measure to be a true distance will be derived. The paper concludes by describing
an application in object recognition.

2. Generalized Hamming distance

The traditional definition of a Hamming distance is simple and intuitively appealing: given
two bitstrings (more generally, strings of symbols) of the same dimension, the Hamming
distance is the minimum number of symbol changes needed to change one bitmap into the
other. One can view this as a type of edit-distance (Sankoff and Kruskal 1983, Crochemore
and Rytter 1994), but with a highly restricted set of edit operations.

Our generalization of the Hamming distance is also a type of edit distance. But by
extending the edit-operation set, we are able to recognize a notion of neighborhood that
gives credit for near misses. Unlike most edit distances, our measure compares pairs of
fixed size bitmaps instead of general strings. The restriction to comparing two bitmaps of
equal size allows our measure to focus only on the disposition of 1-bits, which greatly
simplifies our task. However, it relies critically on a “shift” operation that, while important
for us, has not gotten much, if any, attention in the string literature (Crochemore and Rytter
1994).

Suppose then that we wish to measure the distance between two bitmaps. For many
applications, these enter symmetrically, but this need not be the case. For example, one
bitmap may represent a target bitmap (BT ); the other may be a source bitmap (BS) that is
the output of an algorithm that is trying to match that target. To assess the success of the
algorithm, we wish to measure how similar the two bitmaps are. Ideally, BS and BT should
be identical.

Notationally, we let B denote a bitmap, and M denote its dimension. We define a bit-site
to be a position in a bitmap that contains a 1-bit or a 0-bit. For example, the bit-map might
describe a sequence of M sentences, with a bit-site associated with each sentence and a
1-bit indicating that the corresponding sentence ends a segment of text. We shall use the
notation N (B) to denote the number of 1-bits in the bitmap B. We next define GHD as an
edit distance that measures the difficulty of transforming the source bitmap (BS) into the
target bitmap (BT ).
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2.1. Edit distance: Overview

To compute an edit distance we first define a set of elementary edit-operations, and associate
with each a cost. The edit operations we define must certainly include the insert/delete
operations of CHD. In addition, we introduce a shift operation that allows us to transfer a
1-bit in BS to a nearby 1-bit in BT at less cost than deleting the 1-bit in BS and inserting
it in BT . The shift operation is an abstraction of the concrete task of attempting to match a
1-bit in a target and missing, but getting close—it thus captures, for our measure, the notion
of neighboring bit-sites.

Given a set of elementary operations, with a cost assigned to each, a measure of the
difference between two bitmaps can be computed by using these operations to transform
one bitmap to the other, and adding up the costs of the operations used. To eliminate the
ambiguity attached to the multiplicity of possible transformation sequences, we quantify
how close one bitmap is to another by the minimum cost over sequences of elementary
operations that transform the source bitmap into the target bitmap.

2.2. Edit distance: Details

Computing edit distances typically requires processing whole strings. However, the special
nature of our problem will allow us to focus on only the 1-bits of the bitmap, which reduces
the computational cost of our algorithm. Thus, to develop our algorithm, it is convenient
to describe a participating bitmap by a list of the index values, in ascending order, of its
1-bits. For example, we might represent the bitmap BS by S = 〈s1, s2, . . . , sN (S)〉, where si

is an integer denoting the position of the i-th 1-bit of the bitmap BS , and N (S) = N (BS).
Below we shall refer to both representations, BS and S, as “the source bitmap”; we use T
to denote the corresponding representation of the bitmap BT .

In general, let c(i, j) denote the minimum cost of transforming the first i 1-bits of the
source bitmap, BS , into the first j 1-bits of a target bitmap, BT , where 1 ≤ i ≤ N (BS)
and 1 ≤ j ≤ N (BT ). Our objective, then, is to compute the distance d(S, T ) between the
bitmaps represented by S and T as c(N (BS), N (BT )), the minimum cost of transforming
the source bitmap BS into the target bitmap BT . We will represent the function c in a
tableau, whose values will be computed by means of a dynamic programming technique,
as is standard in the string processing literature (Sankoff and Kruskal 1983, Crochemore
and Rytter 1994).

The dynamic programming technique we employ assures that we satisfy the desired con-
straint that no two shift operations cross: i.e., if si is shifted to t j and s ′

i is shifted to t ′
j , then

the dynamic programming technique assures that if si < s ′
i , then t j < t ′

j (See next section).
Such a constraint is consistent with the applications for which we envision this measure;

for example, if we are trying to match segment boundaries in text, we anticipate missing the
correct boundary by a slight amount, but not actually interchanging boundaries. Consider,
for example, the following configuration:

BS = 0
a
1

b
1

BT = 1 1 0
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We would not like the algorithm to compute the matching error on the assumption that the
corrections required shifting the 1-bit labeled b on BS as follows:

BS = 0
a
1

b
1 → b

1
a
1 0,

passing the 1-bit labeled by b over the 1-bit labeled a.
To define our edit distance, we use the following elementary operations, motivated by

reference to a problem in which a source bitmap is created with the intention of matching
a target bitmap:

• Insertion: Here the algorithm generating the source is considered to have completely
missed the j-th 1-bit of the target, located on BT at location t j . To correct this oversight,
a 1-bit is inserted into the source, BS , at location t j , incurring a cost cI > 0. If this operator
is applied in the course of a truly optimal sequence of operations taking 〈s1, . . . , si 〉 to
〈t1, . . . t j 〉, then

c(i, j) = cI + c(i, j − 1),

and the j-th target bit is considered disposed of. Note that an insertion is an option only
when we are matching bit-sites si and t j where si < t j .

Note that the possibility of this insertion does not preclude the possibility of a 1-bit
already being present at this site in BS , as might be the case if si > t j . But accepting the
possibility of an insertion at this stage, even in this case, greatly simplifies our evaluating
this measure, since we are able to focus on only the “end” bits. Further, such a possibility
is conceptually desirable, since we have to take into account the possibility that the bit
in BS that matches t j has been placed there erroneously, and should itself be shifted to
match a different bit in BT . For example, we can return to the following configuration:

BS = 0
a
1

b
1

BT = 1 1 0

The algorithm might properly shift the 1-bit labeled b to the left, apparently over the 1-bit
labeled a; of course, the 1-bit labeled a will itself be deleted or moved at another stage in
the algorithm. Whether precisely this sequence of steps is realized is of course taken care
of automatically in the course of the optimization procedure, to generate that sequence
that produces the smallest cost.

We also note that our use of the terms insertion and deletion, while natural in this
context, is somewhat non-standard. An insertion changes the value of a bit from zero
to one, while the lengths of the bitmaps are fixed—that is, only the number of 1-bits
is changed. In the string-algorithm literature, an insertion usually refers to an operation
that increases the size of the string. Similar considerations apply below, when we define
deletions.

• Deletion: Here the i-th 1-bit of the source is assessed as spurious. The 1-bit is changed
to a 0-bit, incurring a cost cD > 0. If this is optimal, then

c(i, j) = cD + c(i − 1, j),
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and the i-th source bit is considered disposed of. We consider a deletion only when
si > t j .

• Shift: Here the j-th 1-bit of the target and the i-th 1-bit of the source are considered
to represent the same bit value, but misaligned by a small amount. Continuing with the
example of trying to match segment boundaries, in this case the source generator correctly
sensed the need for a 1-bit, but its exact location may have been in error. Now the source
1-bit is shifted � locations to align it with the target 1-bit. The cost incurred by this
operation is given by cS(�), a non-negative function, monotonically increasing with |�|.
If the match was accurate, then � = 0, with cS(0) = 0, will denote the null operation. If
a shift operation is optimal, then, for � = t j − si ,

c(i, j) = cS(�) + c(i − 1, j − 1),

and the i-th source bit and j-th target bit are considered disposed of. Most simply, we
can assess cS(�) = A|�|, for some non-negative constant A. We would want to adjust
A relative to cI and cD so that for |�| “large,” it is cheaper to delete and insert rather
than shift, while the opposite is true for small |�|. We will adopt this form for the shift
cost below, though in other contexts a different form might be used. For example, if our
algorithm is to be used for data compression, the cost would be made to conform with
the number of bits required to encode the operation; this would be true also for the cost
of insertion and deletion, which might in this context not be equal.

Although the shift operation is unconventional in the string processing literature, it is
easily accommodated within the dynamic programming framework.

Computing edit distances typically requires processing whole strings. But, the special
nature of our problem will allow us to focus on only the 1-bits of the bitmap, which reduces
the computational cost of our algorithm. We are assuming here that the bitmaps we are pro-
cessing have already been constructed, for example during indexing, and that they are stored,
for efficiency, as pointers to the 1-bits. However, under certain circumstances the bit-sites
may have to be constructed at run time, in which case the cost of linearly reading both
bitmaps once must be added to the overall cost of the algorithm.

2.3. Implementation

To implement the dynamic programming method, we most conveniently work with the
representations S and T . We first initialize the tableau by inserting the following boundary
values:

c(0, j) = j cI and c(i, 0) = i cD,

reflecting that we begin the process with the source bitmap S, or target bitmap T , being
empty. The optimal costs are then developed recursively as indicated in the definition of
the operations: starting with row 1, going from left to right, we compute the costs of the
various possible operations, and select that with the smallest cost. When a cell in the tableau
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is evaluated, the costs to its left and above have already been computed, so the optimal
decision for that cell is possible. The optimal value is then stored in the cell (as well, if
appropriate, as the operation applied to get that value), and the next cell evaluated. When the
last cell, at the south-east corner of the tableau, has been evaluated, the task is completed.

Example. We once more consider the following configuration:

BS = 0
a
1

b
1

BT = 1 1 0

So we are trying to convert S = 〈2, 3〉 into T = 〈1, 2〉. For this problem, we let cI =
20, cD = 30, and c(�) = A|�|, for A = 10.

We begin by initializing the tableau:

For example, the corner of the table (row 0, column 0) is assigned the value 0, since it gives
the cost of changing a null source into a null target.

The other values on top margin (row 0) of the table give the costs of transforming a source
vector to a null target vector, while the left margin (column 0), below the corner, gives the
costs of transforming a null source vector to a target vector. For example, the value 30 in
the top margin assesses the cost of changing the source bitmap 01, i.e., S = 〈2〉, into the
null target vector. We can do this only by deleting the 1-bit in S at site 2, which incurs a
cost of cD = 30.

Similarly, the value 20 in row 1 of the left margin is the cost of transforming a null source
vector to the target bitmap 1. Since the only way to achieve this transformation is to insert
a 1-bit into the source at position 1, the cost is cI = 20. The other two values in the top
margin (left margin) represent the costs of deleting 1-bits from the source bitmap (inserting
1-bits into the source bitmap).

To continue with our example, let us number the cells constituting the body of the table
with integers in the order in which the tableau cells are filled by the algorithm:

Thus, the algorithm first computes the values in row 1: first for cell 1, then cell 2; it then
goes on to evaluate row 2: first cell 3, then 4. The value placed into cell 4 is the GHD value
of the distance between the two bitmaps.
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To compute the value for cell 1, the algorithm is presented the task of transforming
S ′ = 〈2〉 into T ′ = 〈1〉. As always, the algorithm tries to reconcile, optimally, the rightmost
bits of S ′ and T ′, taking into account values already computed. (Here, these 1-bits are the
only 1-bits.) Since bit-site 2 is greater than the target’s bit-site 1, we have to decide whether
to delete the 1-bit at s1 = 2 or to shift it one position to the left.

• If we delete the 1-bit, we incur a cost of cD = 30, plus the cost of converting the empty
source into T , which has already been evaluated in the course of the initiation procedure
as 20, for a total cost of c(1, 1) = cD + c(0, 1) = 50.

• If we shift the 1-bit, we incur an incremental cost of 10 for the shift, plus the cost of
transforming an empty source into an empty target, which has already been evaluated
(see corner of tableau) as 0, for a total cost of c(1, 1) = cS(1) + c(0, 0) = 10.

We select the minimum-cost option, and insert its value, 10, into cell 1 of the tableau (and,
if useful, the fact that a shift was used).

To compute the value in cell 2, c(1, 2), we give the algorithm the task of transforming
S = 〈2, 3〉 into T ′ = 〈1〉. Sicne t1 = 1 < s2 = 3, we consider either deletion or shift.

• The cost of deletion is cD + c(1, 1) = 30 + 10 = 40.
• The cost of the shift is cS(�) + c(0, 1) = A|3 − 1| + 30 = 20 + 30 = 50.

We insert the minimum of these (40) into cell 2.
Having completed the first row, we are in a position to compute the second row. The value

in cell 3, c(2, 1), is the cost of transformingS ′ = 〈2〉 intoT = 〈1, 2〉. Since s1 = 2 = t2 = 2,
we can accept the cost (0) of a zero shift as optimal, and insert the value c(1, 0) + 0 = 20
into cell 3.

The transformation of the tableau described above leaves only the terminal cell, cell 4,
empty:

At this point, our task is to transform S = 〈2, 3〉 into T = 〈1, 2〉. As usual, we first
decide how best to dispose of the right-most bits. Since 3 is greater than 2, we have the
option of deleting the 1-bit at 3 or shifting it to bit position 2.

• If we delete it, we incur a cost of cD = 30 plus the cost of transforming 〈2〉 into 〈1, 2〉,
already evaluated as 20, for a total cost of c(2, 2) = cD + c(2, 1) = 50.

• If we shift it by one place, we incur a cost of 10 for the shift, plus the cost of transforming
〈2〉 into 〈1〉, already evaluated as 10, for a total cost of c(2, 2) = cS(1) + c(1, 1) = 20.
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We put the minimum of the two values, or 20, into the final cell:

Thus, we conclude that the GHD for this problem is 20.
Note that the size of the tableau is N (S)N (T ), rather than M2, which may dramatically

reduce the complexity of the computation. Further efficiencies are possible if the bitmaps
are sparse or the maximal shift distance is sufficiently small.

Below, when we wish to reveal all parameters in the edit distance between two arbitrary
source and target bitmaps of the same dimension, represented as above by S and T , we
adopt the notation d(S, T ; cI , cD, A).

3. Properties

GHD has some very interesting properties and relations to other functions. We now examine
some that are particularly striking.

3.1. Crossing restraint

The character of the problems we deal with would make it awkward if a 1-bit in S had
to be shifted so it exchanged relative positions with another source 1-bit. Fortunately, our
dynamic programming algorithm automatically prevents this. This is because the algorithm,
at any stage, considers only the rightmost bits of initial components of the two bitmaps. We
now examine this in detail, implicitly arguing by induction.

Once the tableau is complete, we can take the two bitmaps being compared and, by
backtracking, describe the disposition of each 1-bit in the source. We start with the rightmost
bit and work backward through the source and target bitmaps. Suppose it has been shown that
after disposing of a number of the terminating bits, no crossing has occurred, and examine
the remaining source and target bitmaps at that stage. Certainly the terminal source bit,
say s, can’t be shifted to cross any of the source 1-bits to its right that have already been
disposed of, for these have either been deleted, or shifted to target bits to the right of the
rightmost target bit remaining in the current target. So we need ask only whether s might
cross a 1-bit to its left.

If s is deleted, then the issue of crossing is meaningless. So suppose the terminal source
bit, s, is shifted to the current terminal target bit. But then both are removed from any further
consideration, and no opportunity exists for a source 1-bit to the left of s be moved to the
right of s. Note that in moving s to its final site, s may very well pass over source 1-bits
currently to its left. But, considering the details of the algorithm, we see that any 1-bits
in the source passed over in this way will soon either be deleted, or shifted further to the
left.

We conclude that at no stage can crossing occur.
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3.2. GHD is a true distance

An immediately appealing quality of the traditional Hamming Distance is that it is indeed a
true distance function: that is, it is a real valued function of two bitmaps that is (a) Symmetric;
(b) Positive, unless the two bitmaps are equal, in which case it takes the value zero; and
(c) Satisfies the triangle inequality. We begin by examining the conditions under which
GHD can be shown to be a distance. To do this, it is convenient to define a function on
the integers as concave if it satisfies the following condition: given integers r, s, t, u, with
r < s ≤ t < u, a function f defined on the integers is concave provided,

f (s) − f (r )

s − r
≥ f (u) − f (t)

u − t
.

Below, we denote the distance between bitmaps S and T , as determined by GHD, by
d(S, T ). Then we claim:

Theorem. d(S, T ) is a true distance function, if, when x ≥ 0 denotes the absolute size
of a shift:
(a) cS depends only on x, i.e., it is symmetric around zero;
(b) cS(x) = 0, if x = 0, and cS(x) > 0 otherwise;
(c) cS(x) increases monotonically;
(d) cS(x) is concave on the integers; and
(e) cD = cI > 0.

Proof: For GHD to be a distance function, three conditions must be satisfied.

Positivity: d(S, T ) > 0 if S �= T ; d(S, T ) = 0 if S = T .

Clearly, if S = T , no operations (technically, only shifts of length zero) are required to
transform one to the other, so for this case d(S, T ) = 0. On the other hand, if the bitmaps
are not identical, at least one non-trivial operation must be applied, incurring a positive cost.
Thus, d(S, T ) ≥ 0, taking the value zero only for identical bitmaps.

Symmetry: d(S, T ) = d(T ,S).

For any sequence of operations, o1, o2, . . . , on, taking S to T , a complementary sequence
of operations can be defined: o′

n, o′
n−1, . . . , o′

1, where

o′
i =




delete if oi = insert

insert if oi = delete

shift(− j) if oi = shift( j).

Clearly, the complementary sequence systematically undoes the effect of the original se-
quence, so, when applied to the bitmap T , it transforms it to S. Under the conditions of the
theorem, it incurs the identical cost. Since this is true as well for an optimal sequence, the
symmetry condition is satisfied.
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Triangle inequality: For bitmaps S, T , and U , d(S, T ) ≤ d(S,U) + d(U, T ).

Consider an optimal sequence of operations, τ , that transforms S to T . Each operation
either deletes an “extraneous” 1-bit of S; inserts an “overlooked” 1-bit into S to match one
in T ; or shifts a “misplaced” 1-bit in S to match a 1-bit in T .

To prove the triangle inequality, the costs of operations that transform S to T via the
intermediary U must be evaluated and compared to the cost of τ . So consider the sequence
of operations, τ ′, first taking S to U ; then the sequence, τ ′′, taking U to T .

Consider, then, a 1-bit in S. It could be considered acted on in any of several ways. It can
be:

(i) left alone in both τ ′ and τ ′′;
(ii) deleted in τ ′, and left alone by τ ′′;

(iii) left alone in τ ′ and deleted in τ ′′;
(iv) shifted in τ ′ and left alone in τ ′′;
(v) left alone in τ ′ and shifted in τ ′′;

(vi) deleted in τ ′, then reinserted in τ ′′;
(vii) shifted in τ ′ then deleted in τ ′′; or

(viii) shifted in both τ ′ and τ ′′.

An additional set of operations would be required to complete the description of how a
1-bit in T might matched, for example by insertions. Since they don’t introduce any new
possibilities, they won’t be considered explicitly.

Pairs of operations similar to (i)–(v) are easily disposed of: in effect they directly transform
a 1-bit inS to a 1-bit in T , and could have been performed as a single operation in τ , and thus
must have been considered in the process of constructing τ , and incorporated or rejected.
Thus, since τ is optimal, these operations, collectively can only increase the cost or leave
it unchanged; as such they are compatible with the triangle inequality.

Any sequence of two operations that cancel, as in (vi), or a single shift combined with a
non-null operation, as in (vii), can only increase the cost relative to the disposition of the
bit in τ , again in accordance with the triangle inequality. By systematically examining all
possibilities in this manner, it is straightforward to conclude that the only way the triangle
inequality can break down is if the concatenated sequence τ ′τ ′′ shifts a bit twice: in effect
shifting the bit from its initial location in S to its final destination in T by means of two
shifts (a disposition illegal when directly transforming S to T ).

Thus, to prove the triangle inequality we need to examine only the case when two succes-
sive shifts, say of (positive) lengths A and B, are encountered. Consider two cases: (a) both
shifts are to the same direction, resulting in the combined shift length A+ B and (b) one shift
is followed by a shift in the reverse direction for the second, resulting in the combined shift
length |A − B|. Recalling that cS depends only on the absolute value of its argument, we
observe that these conditions imply that for the triangle inequality to be valid, the following
inequalities must hold:

cS(A) + cS(B) ≥ cS(A + B)

cS(A) + cS(B) ≥ cS(A − B).
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Since cS(A − B) = cS(B − A), we can assume, without loss of generality, that A > B.
Thus we proceed assuming that A, B ≥ 0 and A ≥ B.

We first note that the second inequality is a direct consequence of the monotonicity
property, since cS(A) alone is greater than cS(A − B), and gives nothing new. So we need
focus only on the consequences of the first inequality.

First note that the triangle inequality is trivially valid if one term, say B, is zero. So
consider two integers, A ≥ B > 0. Then 0 < B ≤ A < A + B. If cS(.) is concave on the
integers, then, by the definition of concavity given above,

cS(B)

B
= cS(B) − cS(0)

B
≥ cS(A + B) − cS(A)

B

Thus, cS(A + B) ≤ cS(A) + cS(B). That is, the concavity property is sufficient to assure
the triangle inequality, as was to be proved.

The class of integer concave functions is quite broad. In particular, if cS(.) is linear, or
the integer restriction of a traditionally concave function defined over the reals, then we
can assume that our measure is a distance, and benefit from the intuition that this provides.
However, we do wish to observe that under some conditions, it may be necessary to abandon
the condition that the GHD is a true distance function. For example, there can be situations
where inserting a bit is more expensive than deleting it. Some image processing operations
allow for pixel insertions but disallow pixel deletions. Also, if we are computing the distance
in order to compress a bitmap, the costs of insertion and deletion are the number of bits
required to encode the operation, and these may not be the same for an optimal encoding.

3.3. Optimality

We first argue that the procedure described above does produce an optimal result, among
alternatives subject to the constraint that 1-bits in BS not cross. The logic is simple: given two
bitmaps, there are only three operations that are permitted in disposing of one or both of the
rightmost bits. Each such operation reduces the bitmap(s) to a simpler pair. If we know the
minimum cost for each of the simpler pairs, then we can consider in turn each permitted
disposition of the rightmost bits and add its cost to the optimal cost of the resulting simpler
pair. If we choose the minimum of these costs, then we have made the optimal decision for
the initial pair of bitmaps. We now argue that, if we fill the tableaux as described above,
each cell contains values consistent with this logic.

Consider, then, in more detail the various steps in the algorithm, assuming i 1-bits for
BT and j for BS:

• Initialization: The margins (i and/or j being 0) involve changing a bitmap to an empty
bitmap, or vv. Here we have no choice. For example, if BS has i bits and BT is empty,
our only option is to delete the i bits in BS , incurring a cost of icD .

• s j = ti : Here the rightmost bits match. We can with no cost pass on to the i − 1, j − 1
case (with a shift of zero bits). This value already appears in the table as c(i − 1, j − 1),
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and is assumed to be the optimal value for the reduced problem. Thus we insert into the
tableau the value c(i, j) = c(i − 1, j − 1).

• s j > ti : There are three options, which we consider in turn.

(a) If we delete the bit at s j , we incur the cost cD , to which we add the known, and
presumed optimal, cost of c(i, j − 1) for transforming the remaining source bitmap
into the target, for a total cost of cD + c(i, j − 1).

(b) An insertion in BS at ti is precluded. For ultimately, the rightmost bit in BS must
be dealt with. If it will sooner or later be deleted, we can with no extra cost do that
now. On the other hand, if the terminal bit in BS will eventually be shifted to match
the terminal bit in BT , then again an insertion is not necessary. Nor can an insertion
occur, eventually followed by the terminal bit in BS being shifted to more leftmost
bit in BT , since this would violate our restraint that no bits cross.

(c) This leaves a shift as the only remaining possibility. If we shift the source bit to the
target bit, we incur the cost cS(ti − s j ), which is added to the value c(i − 1, j − 1),
available and presumed optimal; in this case c(i, j) = cS(ti − s j ) + c(i − 1, j − 1).
We cannot shift this bit to a bit to the left of ti , since the target bit ultimately must
be matched, and whether this be by an insertion or shifting an earlier bit, it would
violate the restriction that no 1-bit in BS cross another.

Thus, if, as assumed, the cells evaluated earlier are optimal, then the minimum of
the two costs considered above will be again optimal, and c(i, j) = min(cD +c(i, j −
1), cS(ti − s j ) + c(i − 1, j − 1).

• s j < ti : By an argument parallel to that just presented, we conclude that the optimal
value for c(i, j) is given by c(i, j) = min(cI + c(i − 1, j), cS(ti − s j ) + c(i − 1, j − 1).

3.4. Relation to other measures

The edit distance we defined above is very general, and it is interesting to relate it to other
distance-measures between bitmaps.

3.4.1. Hamming distance. An obvious measure for the distance between two bitmaps is
the simple Hamming distance: the minimum number of bits that must be changed so the
source and target agree. The Hamming distance between the bitmaps represented by S and
T may be expressed as a special case of the edit distance: d(S, T ; 1, 1, ∞). That is, our
measure is a genuine generalization of the traditional Hamming distance.

3.4.2. Recall/precision type measures. In IR, one customarily uses two measures to eval-
uate performance. Recall indicates the fraction of all relevant items, e.g., documents or
images, that appear in a retrieval set, while precision indicates the fraction of items in a
retrieval set that are relevant. These measures can be adapted to evaluating the distance
between a source and target bitmap (Hearst 1994). To do this, we define two functions:

p(S, T ) = N (S AND T )

N (S)
, r (S, T ) = N (S AND T )

N (T )
,

where the AND operator acts on the bitmaps indicated by S and T .
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Thus p(S, T ) is the fraction of the 1-bits of the bitmap represented by S to be evaluated
which indeed match the 1-bits of the target bitmap represented by T , e.g., the percentage
of segment boundaries produced by our algorithm, which are “correct” in the sense that
they are also boundaries in the given reference partition; similarly r (S, T ) is the fraction
of the 1-bits of the target bitmap that have corresponding 1-bits in the source bitmap (e.g.
the percentage of segment boundaries of the reference partition that are detected by our
algorithm).

We thus assign, after having fixed T , a pair of numbers (r, p) to each partition. Relative to
T , we consider a partition represented by S1 to be better than another partition, represented
by S2, if

p(S1, T ) ≥ p(S2, T ) and r (S1, T ) ≥ r (S2, T ).

Generally, however, the values r and p tend to be inversely related, and trying to raise
one usually lowers the other. By changing the parameters in a segmentation algorithm, one
could get a series of (r, p)-pairs, and produce curves similar to the recall/precision curves
in IR.

While these measures are interesting because of their relation to the tradition of research
in IR, they can be simply expressed in terms of our edit distance. Letting 0 denote the
zero-bitmap and recalling the notation d(S, T ; cI , cD, A), we find

p(S, T ) = d(S, 0; 0, 1, ∞) − d(S, T ; 0, 1, ∞)

d(S, 0; 0, 1, ∞)

r (S, T ) = d(S, 0; 0, 1, ∞) − d(S, T ; 0, 1, ∞)

d(T , 0; 0, 1, ∞)
.

Since recall and precision can be expressed in terms of imprecise costs, this representation
immediately suggests an interesting generalization. By relaxing the infinity value in the
cost, we can define new versions of the classic recall and precision measures as used in this
context.

4. Experiments

Many areas of modern computer science are in constant need of robust similarity metrics.
One such area is image retrieval. To assess the role GHD might play in image processing,
we conducted a number of experiments which required a robot to use GHD to identify target
objects in images captured by the robot. The use of robots allowed us to objectively evaluate
the value of our measure for the task of finding objects in images, as well as introduce GHD
for use in robot vision more generally, another area in which GHD could be of interest.

Many problems in robotics depend on reliable object recognition (Murphy 2000). To be
practical, object recognition must use metrics that are robust in the presence of sensor noise
and account not only for exact matches but also for approximate ones. A key component
of image retrieval research is the automatic generation of keyword indexes for individual
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images in image collections (Tam and Leung 2001). Many keyword index generation tech-
niques used in image retrieval rely on accurate object recognition. Images can, for example,
be indexed in terms of objects found in them and, if feasible and necessary, relationships
among found objects. In this section, we present object recognition experiments with GHD.
Our objective in performing these experiments was to show that GHD can be used to create
robust object recognition similarity metrics.

Most current object recognition metrics are either model-based or sample-based. Model-
based metrics, such as correlation (Parker 1993), template matching (Parker 1993), and
color histogram matching (Swain and Ballard 1991, Chang and Krumm 1999), rely on
model libraries. Sample-based metrics, such as Bayesian Networks (BN) (Boykov and
Huttenlocher 1999) and Artificial Neural Networks (ANN) (Young et al. 1994), require
large pre-classified samples for training.

We used GHD to define a model-based object recognition metric: that is, we created a
library of images for objects that must be recognized, and used GHD and other measures to
attempt to match a new image with those in the library. GHD complements the other metrics
insomuch as it offers a principled way to specify the degree of approximation that can be
tolerated in matches. The metric is implemented and integrated with the control system of
a mobile robot. In our test, the robot patrols an office area and looks for soda cans, coffee
cups, and crumpled pieces of paper. When an object is recognized in the image, the robot
must pick it up and place it in an area of the floor designated for that type of object. Thus, it
is important that the robot be able to distinguish each type of object by matching the images
it creates as it moves around the room with those in the library.

4.1. Object models

Objects are represented by model libraries created from images taken from different dis-
tances and with different camera tilts. The camera used is the Pioneer Pan-Tilt-Zoom (PTZ)
Robotic Camera mounted on a Pioneer 2DX mobile robot manufactured by ActivMedia,
Inc. (www.activmedia.com). The video capture card used in the experiments was Winnov
Video VO PCI (www.winnov.com). Figure 1 depicts the robot used in the experiments. The
camera has a horizontal angle of view of 48.8 degrees and a vertical angle of view of 37.6
degrees. The images are saved as 120 by 160 color bitmaps. The origin of the image coor-
dinate system is in the bottom left corner of the image. Distances are measured in meters

Figure 1. Pioneer 2DX robot.
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from the robot’s gripper to the object. The models were taken from the following distances:
0.5, 1.0, 1.5, and 2 meters. The camera tilt for the distances 1.0, 1.5, and 2 was 0 degrees.
The camera tilts for 0.5 were 0 and −10 degrees. The negative tilt, which indicates that the
camera is tilted 10 degrees downward, was chosen for the distance 0.5, because, as the robot
approaches an object, the pickup skill tilts the camera in order to ensure that the object is
still present or to correctly identify the object. (In the robotics literature, a skill is a program
that runs in response to a command given to the robot either by a human observer or by
another program. For example, the observer may ask the robot to fetch a pepsican, which
will trigger the activation of the “pickup skill.”) Each object is represented in the library by
two types of representations, which we will refer to below as models: Hamming distance
models (HDMs) and color histogram models (CHMs) (Swain and Ballard 1991, Chang and
Krumm 1999).

4.1.1. Hamming distance models. To create an HDM, an object’s image is taken from a
given distance and with a given camera tilt. We now wish to convert this image into a binary
one. We first process the image with the “gradient edge detection mask” (Parker 1993).
This process transforms the image in a manner that helps us to detect edges, which are
characterized by sharp changes in intensities. Once we have identified those changes, we
can turn the image into a bit array. This is done by transforming intensity values to 1’s and
0’s. If the intensity value is above a threshold, the edge is there so the corresponding pixel
becomes 1; otherwise the value 0 is assigned. The object’s model is the smallest region of
this bit array containing the object. Thus, we finally produce HDMs, which are 2D bit arrays.
Figure 2 contains part of an image containing a soda can. Figure 3 contains the image from
figure 2 after the application of the gradient edge detection mask. The white lines are the
edges detected by the mask. Figure 4 contains the bit array obtained from the image from
figure 3. In summary, an HDM model is obtained from the 2D bit array computed from

Figure 2. A soda can.

Figure 3. Edges of the soda can.
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Figure 4. Bit array of the soda can.

the manually cropped region containing the object. In this case, the region is a rectangle
containing all of the bits of the soda can.

An object has five HDMs: two models for the distance 0.5, one with tilt 0 and one
with tilt −10, and three models with tilt 0 for the remaining distances. In addition, we
add two parameters to each model: these are row constraints that indicate approximately
where in the robot’s image the bottom row of the model would be found. For example,
the row constraints of the two meter pepsican model are 40 and 45. These row constraints
were added to the models to reflect the camera’s calibration, and to speed up the image
processing. For example, when the robot is looking for a pepsican approximately 2 meters
away from it on the floor, the base of the object will be between rows 40 and 45. Thus, the
appropriate models can be restricted to that region of the image. It was assumed that all
objects are on the floor.

4.1.2. Color histogram models. CHMs are models of objects that are based on the distri-
bution of colors. They are created for the same distances and tilts as the HDMs. To create a
CHM, an object’s image is taken, as before, from a given distance and with a given camera
tilt. The smallest region of the image containing the object is manually cropped. Three color
histograms are created from the cropped region. The first histogram records the relative fre-
quencies of red intensities over the rows comprising the cropped image. The other two do
the same for blue and green.

Specifically, the image is made up of pixels, each pixel giving the intensity values for
red, green and blue. To create a histogram for a color, we divide the full intensity range,
[0, 255], into sixteen non-overlapping subranges, e.g., [0, 15], [16, 31], etc. We proceed
by computing the percentages of pixels whose intensities for the given color fall into each
subrange. Since this computation is done for red, green, and blue, each CHM consists of three
color histograms, each with sixteen values. The same row constraints as for the HDMs hold.

4.2. Object recognition

4.2.1. Hamming distance models. To recognize objects in images using HDM models,
we convert images into 2D bit arrays. Formally, let MH (O, D, T, L , U ) denote an HDM
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for object O at distance D and with tilt T and two row constraints L and U for the lower
and upper rows, respectively. For example, MH (pepsican, 2, 0, 40, 45) is the model of a
pepsican two meters from the robot and with tilt 0 and row constraints 40 and 45.

Let H and W be the model’s height and width. Suppose we are given an image I , and
are given the task of deciding whether an object O can be found in I . We first process I
with the gradient edge detection mask. To recognize O in I , the model MH (O, D, T, L , U )
is matched with the region of I whose bottom row is L and whose top row is U + H .
For example, if the height of MH (pepsican, 2, 0, 40, 45) is 13 rows, the matching happens
between rows 40 and 58 (45 + 13). The matching is done by moving the model from left to
right C columns at a time and from top to bottom R rows at a time. For this reason, R and C
are referred to as model shift parameters. After each shift, a tentative similarity coefficient
is computed for each region of the image that overlaps with the model. We then take the
region with the highest similarity coefficient.

We now indicate how each candidate similarity coefficient is computed. To compute a
similarity coefficient between the model and an image region covered by the model, we
take the sum of distances computed between the bit strings comprising the corresponding
rows of the model and the image region, normalized by the model’s size. In this paper, the
distance measures used will the classic Hamming distance, and the generalization, GHD,
introduced here; we also test two other traditional metrics. Formally, let S be the image
region covered by MH (O, D, T, L , U ). The similarity between MH and S, sim(MH , S),
is given by sim(MH , S) = K × ∑H−1

R=0 ghd(MR, SR ; cI , cD, cS), where MR and SR are
the two corresponding bit strings, i.e., rows, from MH and S, respectively, and K is the
normalization coefficient.

Consider figures 5 and 6. The former contains the top of HDM model for a pepsican.
The latter contains a region of a 2D array obtained from an image that contains another
pepsican. We now overlap the model with various regions of the image. For each overlap,
we compute the similarity between the model top and the region, as described above, by
summing the measured distances between the corresponding horizontal bit strings. The sum
thus obtained is normalized by multiplying by the reciprocal of the product of the model’s
height and width. By giving a “per pixel” value, we are able to relate models of different

Figure 5. Bit model.

Figure 6. Bit image.
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size. This similarity coefficient represents our confidence that the model’s object is in the
region covered by the model. We then shift and obtain another similarity coefficient for
another row and column pair.

We label each of these similarity coefficients with the row and column of the bottom left
corner of the image region covered by the model. The result is a set of 4-tuples 〈x, y, m, s〉
where x and y are the coordinates of the bottom left corner of the image region that matches
the model m with the similarity score s. We sort by the value of s and take the top N , where
N can be between 1 and 5, for further evaluation as described below.

4.2.2. Color histogram models. CHMs are matched as follows. Let MC (O, D, T, L , U )
be the H × W CHM of object O at distance D and with tilt T and two row constraints L
and U . Let I be an image. To recognize O in I with MC (O, D, T, L , U ), the H × W mask
is matched with the appropriate region of the image R. The similarity between MC and R
is the weighted sum of the similarities between their corresponding color histograms: we
define h(H1, H2), the similarity between two color histograms H1 and H2, as the sum of
the absolute differences of their relative frequencies; thus 0 ≤ h(H1, H2) ≤ Q, where Q is
a suitably chosen constant.

Let RH(MC ) denote the model’s red histogram, BH(MC ) denote its blue histogram, and
GH(MC ) denote its green histogram. Let RH(R) be the red intensity histogram of R, and
let BH(R) and GH(R) be the blue and green intensity histograms, respectively, of the
portion of the image being matched. Then sim(MC , R) = 1/Q[A × h(RH(MC ), RH(R)) +
B × h(BH(MC ), BH(R)) + C × h(GH(MC ), GH(R))], where A, B, and C are the weights
assessing the relative importance of each color that sum up to 1. In the experiments, A =
.34, B = C = .33. Thus, 0 ≤ sim(MC , R) ≤ 1. This matching metric is different from the
standard intersection metric used in color histogram matching (Swain and Ballard 1991),
because it provides a way to control the relative importance of different colors.

4.3. Evaluation

We evaluated four metrics on 425 images of various objects taken by the robot’s camera from
different distances, under different lighting conditions, and with different occlusions. The
following metrics, were evaluated: GHD, CHD, the color histogram metric, and normalized
correlation (Parker 1993). The normalized correlation similarity between a bit model and the
region of a bit image covered by the model is the sum of the products of the corresponding
bits, normalized by the size of the model. Normalized correlation serves as a typical basis
of comparison in many object recognition experiments.

We used the following parameters to compute the GHD: ghd(S, T ; cI = 1, cD = 1, A =
0.5). The cost of shift was computed as cS(�) = A|�|, with � the distance between a target
bit and a source bit being shifted. The small value of A was chosen, because quite a few
images taken by the robot contain multiple objects. Therefore, the degree of approximation
was minimized to avoid false positives as much as possible. When an image contains a
single object, a correct model is likely to give a large matching score on the sub-image
containing the object even if the corresponding bits are misaligned to a significant degree.
On the other hand, in images with multiple objects, the value of A should be small, because
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large values may lead to numerous false positives. The model shift parameters C and R
were set to 1. The threshold for all metrics was .6.

The main question our experiments was to answer was how likely it is that an object
is correctly recognized in an image that contains it. The answer to this question estimates
how well a metric detects objects when they are present in images. Let 1 ≤ N ≤ 5. Let
REC(O, D, T, N ) be the event when the metric recognizes O at D and with T within
the first N matches. Let IC(O, D, T ) be the event that a captured image actually con-
tains O at D and with T . The answer to the question above can be formulated as Prec =
Pr{REC(O, D, T, N ) | IC(O, D, T )}, the probability that an object model recognize an ob-
ject, given that an image contains the object the model is to recognize. Different metrics can
be compared in terms of how close they come to the ideal that Prec = 1. In the context of
image retrieval, this evaluation procedure can be interpreted as follows. If a metric correctly
recognizes an object in a image, the image is retrieved. Otherwise, the image is not retrieved.

We estimated Prec as the ratio L1/L2, where L1 is the number of images that contain O
at D and with T and where the metric correctly recognizes O within the first N matches;
L2 is the number of images that contain O at D and with T .

The justification of this estimation method is twofold. First, in the context of information
retrieval, a growing body of experimental evidence (Jansen et al. 1998) suggests that most
users (80–90%) examine only the top 2–4% of retrievals. Consequently, little benefit is
gained from retrieving all relevant items, if none of them makes it to the small group at the
top. Second, in the context of robot vision, a robot must make real time decisions on the
basis of object recognition. Inspecting a small number of top matches does not result in
performance deterioration. On the other hand, if the number of matches becomes large, the
robot loses the ability to respond to its environment in real time.

Figures 7–10 contain experimental data. Each cell contains a value of Prec. In each table,
columns 1 to 4 present data for N = 1, and columns 5 to 8 present data for N = 5. As

Figure 7. Generalized Hamming distance. N = 1 and N = 5.

Figure 8. Crisp Hamming distance. N = 1 and N = 5.
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Figure 9. Color histogram matching. N = 1 and N = 5.

Figure 10. Normalized correlation. N = 1 and N = 5.

can be seen from the table, the Prec values for GHD are best overall, while those for the
normalized correlation are worst.

CHD does well on pepsicans and root beer cans, but performs worse on coffee cups
and crumpled pieces of paper. GHD has the same tendency but shows improvement over
CHD, because, unlike the CHD or normalized correlation, GHD can handle misaligned
objects and models. GHD performs better on images with multiple objects where the object
contours are not well defined due to occlusions.

GHD and CHD do equally well on images with single objects where object contours
are well delineated. The color histogram metric does well on objects that are close to
the robot. However, its performance degrades as the objects get further away from the
robot, especially when the lighting conditions change. GHD appears to be more robust
than the color histogram metric in the presence of occlusions and changes in lighting. The
color histogram metric did not recognize a number of objects in images where the lighting
conditions were different from the lighting conditions of the image from which the models
were taken.

The experiments suggest that GHD can be used as a basis for object recognition metrics.
GHD appears to perform at least as well as or slightly better than several model-based and
sample-based metrics discussed in the object recognition literature. For example, Young
et al. (1994) present an approach to object recognition based on a multi-layer Hopfield
neural network structured as a cascade of several single layer Hopfield networks with
links between adjacent layers. The network is evaluated on a set of 51 images of door
keys. The success rate on images with single objects is 82 percent and on images with
occluded objects is 31 percent. Although Young et al. (1994) do not offer any distance or
lighting information, both numbers are, on average, below the recognition rates achieved
by GHD.
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Boykov and Huttenlocher (1999) present a Bayesian approach to object recognition
that explicitly accounts for dependencies between features of the object. The approach
is evaluated with Monte Carlo techniques to estimate Receiver Operating Characteristic
(ROC) curves that plot the probability of detection along the y-axis and the probability of
false alarms along the x-axis. The recognition rates of GHD are no worse than the rates
reported by Boykov and Huttenlocher. One advantage of GHD is that it does not require the
expensive computation of the a priori probabilities. It is difficult to make further content-
based comparisons, because Boykov and Huttenlocher use synthetically generated images
of very simple objects, e.g., single contour airplanes, in their experiments.

Chang and Krumm (1999) extend the normal color histogram by adding geometric in-
formation to it and obtaining the color co-occurrence histogram. The color co-occurrence
histogram keeps track of the number of pairs of colored pixels that occur at certain sepa-
ration distances. The recognition rates of GHD are as good as than the recognition rates of
the color co-occurrence histograms. One advantage of GHDs is that their model libraries
are significantly smaller and less complex than the model libraries needed for the color
co-occurrence histograms. As with Boykov and Huttenlocher’s approach, further content-
based comparisons are hard to make, because Chang and Krumm use cartoon images for
evaluation.

5. Conclusion

The Hamming distance was developed to measure the similarity of two bitstrings used for
coding. It is tempting to adopt this measure for a broader range of contexts in which bitmaps
are used. A problem is that the traditional Hamming distance may be more sensitive to slight
deviations than is appropriate for many potential applications. Our intention in this paper
was to extend the traditional Hamming distance to be sensitive to situations in which the
concept of neighboring locations is important. This extension, called Generalized Hamming
distance, was defined in terms of the operations necessary to transform a source bitmap to a
target bitmap. One important motivation for developing GHD is that we believe it to be more
reliable than the crisp Hamming measure when the exact placement of 1-bits is influenced
by random effects. This is especially true when we deal with noisy channels, as diverse as
robot cameras and imperfect text segmentation algorithms.

We derived conditions sufficient for this measure to be a true distance, as is the traditional
Hamming distance: in this sense it is a true generalization. We showed that the algorithm we
presented for computing GHD does produce optimal results. We also showed how standard
recall and precision can be expressed in terms of GHD.

To test the insensitivity of the GHD to noise, we introduced it into a image recogni-
tion process, implemented by means of standard robot vision techniques. To do this, we
developed a GHD-based object recognition metric and evaluated it in a series of object
recognition experiments on a mobile robot. We compared our results with that using the tra-
ditional Hamming distance, as well as two metrics commonly use in the robotics literature.
Our experiments suggest that GHD can be used as a basis for object recognition similar-
ity metrics. We envision many other uses of GHD-based similarity metrics in information
retrieval and related fields.
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