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Abstract. We present a new method for classification using a Bayesian version of the Multivariate Adaptive
Regression Spline (MARS) model of J.H. Friedman (Annals of Statistics, 19, 1–141, 1991). Special attention is
paid to the use of Markov chain Monte Carlo (MCMC) simulation to gain inference under the model. In particular
we discuss three important developments in MCMC methodology. First, we describe the reversible jump MCMC
algorithm of P.J. Green (Biometrika, 82, 711–732, 1995) which allows inference on a varying dimensional,
possibly uncountable, model space. This allows us to consider MARS models of differing numbers and positions
of splines. Secondly, we discuss marginalisation which is used to reduce the effective dimension of the parameter
space under consideration. Thirdly, we describe the use of latent variables to improve the MCMC computation.
Our methods are generic and can be applied to any basis function model including, wavelets, artificial neural nets
and radial basis functions. We present examples to show that the Bayesian MARS classifier is competitive with
other approaches on a number of benchmark data sets.
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1. Introduction

The multivariate adaptive regression spline (MARS) model of Friedman (1991) is a popular
method for non-linear regression which provides a direct competitor to artificial neural
networks (ANNs). Empirical evidence suggests it is very competitive with other methods
such as ANNs on a variety of different data sets (Rasmussen, 1996). The original MARS
model was designed for regression problems, however, extensions to classification problems
are well documented, see for example Kooperberg, Bose, and Stone (1997).

In this article we present a Bayesian version of MARS, extending the work of Denison,
Mallick, and Smith (1998), to deal with two class classification problems. Our Bayesian
framework places a prior distribution on the whole of MARS model space where we treat
the number of splines, as well as all other parameters, as unknown. Class decision bound-
aries are formed by integrating over the posterior model space which produces a form of
model averaging. We show that this averaging has the effect of producing smooth decision
boundaries from the individual non-smooth MARS models.

The integration takes place over a high dimensional model space and hence approximation
techniques are required for inference. In particular we make use of Markov chain Monte
Carlo (MCMC) methods which are used to draw samples of models from the posterior
distribution. One of the aims of this paper, alongside the introduction of the Bayesian
MARS classifier, is to highlight efficient MCMC procedures for implementing our method.
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Specifically, we make use of the reversible jump MCMC algorithm of Green (1995)
which allows inference on the varying dimensional, uncountable, model space of MARS.
We formulate the model through the use of latent variables and the Probit link function
that dramatically improves the efficiency of the MCMC computation. An important role is
played by marginalising over the spline coefficients (or output weights) which is used to
reduce the effective dimension of the model space. Our methods are generic and can be
applied to any basis function model including, wavelets, artificial neural nets and radial basis
functions. A Matlab version of the algorithm is available from the first author on request.

A key feature of our approach is that we accommodate uncertainty in the number of
spline basis functions that make up the MARS model. Related work in the literature for
regression problems includes the papers of Smith and Kohn (1996), Holmes and Mallick
(1998), and Andrieu, de Freitas, and Doucet (2000). For classification, the use of smoothing
splines with latent variables and probit link function is reported in Wood and Kohn (1998).

The rest of the paper is as follows. In Section 2 we present the Bayesian formulation of
MARS and discuss implementation details for the binary classification problem. In Section
3 we provide examples that illustrate the relative performance of the model and support our
argument for the use of latent variables. A brief discussion is given in Section 4.

2. Bayesian MARS for the 2 class classification problems

The conventional MARS model for regression makes predictions, ŷi , on a set of p predictor
variables, xi = {xi1, . . . , xip}, using a linear combinations of tensor product splines

ŷi = β0 +
k∑

j=1

β j

z j∏
l=1

(
xid jl − θ jl

)
q jl

, (1)

where k is the number of spline bases, β = {β1, . . . , βk} are a set of spline coefficients (or
output weights), z j is the interaction level (or order) of the j th spline, θ jl is a spline knot
point, d jl indicates which of the p predictors enters into the lth interaction of the j th spline,
d jl ∈ {1, . . . , p}, and q jl determines the orientation of the spline components, q jl ∈ {+, −},
where (a)+ = max(a, 0), (a)− = min(a, 0). It will be useful in what follows to write the
model in matrix notation,

Ŷ = �(X)β, (2)

where X is the data set of n × p predictor variables, Ŷ is the n vector of predictions,
β = {β0, . . . , βk} is the set of spline coefficients and �(X) is the n × (k + 1) matrix of
spline basis outputs,

� =




1,
∏z1

l=1

(
x1d1 j − θ1 j

)
q1 j

, · · · ∏zk
l=1

(
x1dkl − θkl

)
qkl

1,
∏z1

l=1

(
x2d1 j − θ1 j

)
q1 j

, · · · ∏zk
l=1

(
x2dkl − θkl

)
qkl

...
...

. . .
...

1,
∏z1

l=1

(
xnd1 j − θ1 j

)
q1 j

, · · · ∏zk
l=1

(
xndkl − θkl

)
qkl


, (3)
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where the first column of �(X) corresponds to the intercept term β0 and we define an
individual spline basis function to represent one column of �(X). In matrix notation it
becomes clear that MARS, just like any other basis function model, is simply a linear
regression in a non-linear spline base. From now on we shall simply write �(X) as �.

In two class classification problems, yi ∈ {0, 1}, and an invertible link function, g, is
introduced that maps the real valued predictor onto the range (0, 1),

p(yi = 1 | xi ) = g(ηi )
(4)

ηi = β0 +
k∑

j=1

β j

z j∏
l=1

(
xidl j − θ jl

)
±,

and in matrix form,

p(Y = 1 | X) = g(η)
(5)

η = �β.

By convention, researchers have tended to use the sigmoidal link function, g(a) = 1
1+exp(−a) ,

however, in the next section we show that from a Bayesian perspective considerable compu-
tational advantages are made by using the equally valid probit link function, g(a) = �(a),
where � is the cumulative distribution of the standard normal �(a) = ∫ a

−∞
1

2π
exp(−a2/2).

In non-Bayesian MARS, the model parameters, M = {k,β, z, d, q,θ}, are set to
single optimal values, where z = {z1, . . . , zk}, d = {d11, . . . , dkzk }, q = {q11, . . . , qkzk } and
θ= {θ11, . . . , θkzk }.

This optimisation is typically achieved by stepwise spline selection on the spline bases
functions with the spline coefficients set by least squares. In conventional MARS, higher
order spline interactions, z j > 1, can only be included if the corresponding lower order
splines are already present. We do not impose this constraint in our model, though we
note that it would be possible to do so if the practitioners prior beliefs accorded. The cost
function that is optimised in the stepwise selection is commonly taken to be a penalised
likelihood that balances goodness of fit against model complexity, see Friedman (1991) and
Kooperberg, Bose, and Stone (1997). In the next section we present an alternative Bayesian
formulation.

2.1. Bayesian formulation

The fixing of M to a single set of values fails to capture a key component of uncertainty
in the modelling process which can lead to over confident predictions (Draper, 1995). In a
Bayesian framework prior distributions are placed on all unknown quantities including the
number of splines k and a parameter that governs the prior on β. It is useful to write the
prior in factorised form which highlights conditional dependencies,

p(θ, q, d, z,β, v, k) = p(θ | z, d, k)p(q | z, k)p(d | z, k)

× p(z | k)p(β | k, V )p(v | k)p(k). (6)
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The specific form that we adopt for these prior distributions is as follows. We take the prior
on the individual knot locations θ jl to be uniform at the n data points p(θ jl | d jl) = U (x1d jl ,

x2d jl , . . . , xnd jl }, where d jl indicates which predictor is being used and p(d jl) is uniform on
the p predictors, p(d jl) = U (1, . . . , p). The prior on the orientation is uniform, p(q jl =
+) = p(q jl = −) = 0.5. The interaction level in each spline has the prior, p(z j ) =
U (1, . . . , zmax), where zmax is the maximum level to be set by the user. The prior on the
spline coefficients is taken to be normal with mean zero and variance v, p(β) = N (0, v I ),
where I is the identity matrix of suitable dimensions. To reduce sensitivity to the prior
specification of v we adopt a conjugate hyper-prior distribution on v which we take to be
an Inverse-Gamma density, p(v−1) = Gamma(.001, .1), which is sufficiently diffuse with
a mean of 0.01 for v−1. Finally, p(k) is assigned an improper prior, p(k) = U (1, . . . ,∞)
which indicates ignorance on the number of splines needed a priori. Hence the model has
just one user set parameter, zmax, for which we recommend a default setting in Section 3.

The prior distributions on the parameters are combined with information in the data via
Bayes theorem and the likelihood function, which for the two class classification problem
is taken to be Bernoulli, p(Y |M) = ∏n

i=1 g(ηi )yi [1 − g(ηi )](1−yi ), where g(ηi ) is from (4).
This leads to marginal predictive distributions for new data being given as,

p(ynew = 1 | xnew) =
∞∑

k=1

∫
p(ynew = 1 | xnew,Mk)p(Mk | Y ) dMk, (7)

where p(Mk | Y ) is the posterior probability and Mk indicates a MARS model with k
splines. Clearly the integral in (7) is computationally and analytically intractable and some
approximation method is required if we are to proceed. An elegant solution is provided by
MCMC simulation which allows one to draw samples, {M(1),M(2), . . . ,M(m)}, from the
full posterior distribution p(M | Y ) and then approximate (7) by

p(ynew = 1 | xnew) ≈ 1

m

m∑
j=1

p
(
ynew = 1 | xnew,M( j)

)
. (8)

The approximation (8) converges to the true value (7) as m → ∞. An immediate advantage
of the MCMC approach is that only a single collection of samples is required to in order to
make predictions at any data point xnew. The MCMC procedure that we use is described in
the next section.

2.2. Implementation via Markov chain Monte Carlo simulation

It is fair to say that the resurgence of interest in Bayesian methods is in no small part due
to the introduction of MCMC simulation and the availability of fast computing devices.
MCMC is an extremely general computer intensive method for generating samples from
any distribution, however complex. Moreover, the procedures are very simple. To begin, one
constructs a Markov chain which has a stationary (steady state) distribution that matches the
distribution of interest. There are simple rules on how to do this. Then one runs an iterative
computer simulation of the chain for a long enough time, generating a new sample at each
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iteration. An initial portion of samples must be discarded as being unrepresentative of the
steady state distribution and the rest are used to make inference on quantities of interest,
such as the predictive distributions in (8) although much more information is available in
the samples. For example, all of the marginal parameter distributions, such as p(k | Y ), are
approximated by the values that appear in the retained samples.

One of the simplest MCMC procedures is the Metropolis-Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970). In this method, at each iteration of the simulation, the current
state of the chain, M(t), is updated using a proposal distribution R(·), that might be based on
the current state. This produces a new modelM(∗) which is then accepted with probability Q,

Q = min

{
1,

p
(
M(∗)

∣∣ Y
)
S
(
M(t), R,M(∗)

)
p
(
M(t)

∣∣ Y
)
S
(
M(∗), R,M(t))

}
, (9)

where S(M(a), R,M(b)) is the probability of generating the stateM(a) given the current state
M(b) and proposal density R. If the state is accepted then we set the sample M(t+1) = M(∗)

else the current state is retained,M(t+1) = M(t). It is straightforward to show that the above
procedure results in samples appearing in the chain with probability p(M | Y ) as desired
(Gilks, Richardson, & Spiegelhalter, 1996).

The theory of MCMC places few restrictions on the form of the proposal density R.
However, dramatic variations in performance occur for different choices of R and it is vital
that ‘good’ proposal distributions can be found in order to get reasonable results within
realistic computer time (Gilks, Richardson, & Spiegelhalter, 1996).

For our purposes, we wish to sample from the posterior density p(M | Y ) in order to make
inference about marginal densities of interest such as predictive distributions. Conventional
MCMC methods, such as the Metropolis-Hastings (MH) algorithm, are not applicable as
we do not know the number of splines a priori. Therefore we use the variable dimension
reversible jump sampler outlined in Green (1995). Reversible jump MCMC is an extension
of the MH algorithm to variable dimensions. In our method, at each iteration the sampler
updates the current state of the chain, which equates to a MARS model, by choosing one
of the following proposals with equal probability

1. Add a new spline basis function to the model.
2. Remove one of the k existing spline bases from the model.
3. Alter an existing spline basis in the model (by altering one of it’s knot points).

Following each move an update is made to the spline coefficients β. The three move
steps above are equivalent to adding, removing and altering a column of � in (3). The exact
algorithm is listed in the Appendix and we note that the removal step is not attempted when
k = 0. Using these update proposals the acceptance probability, following Green (1995),
is of the same form as (9). Following the update to the model a new value for v, the prior
variance of β, is drawn from its conditional distribution, see the Appendix.

In RJMCMC methods for basis function models, such as MARS, the update to β is the
critical step which determines the efficiency of the algorithm. A poor proposal distribution
for β will cause the generated state M(∗) to have low posterior probability and hence
acceptance rates can be very low. For example, consider the procedure of removing a spline
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basis from the model, which is equivalent to removing a column of � in (3). If we do not
alter the remaining β parameters then the acceptance probability will tend to be very low,
as the remaining parameters are now ill-tuned to the data due to the strong collinearity
that exists between the spline bases. The most efficient procedure would be to update β
using the conditional distribution p(β | Y , k∗, θ∗, d∗, q∗, V ∗), as in Denison, Mallick and
Smith (1998) and Holmes and Mallick (2000). However, for classification models, unlike
the regression models in Denison, Mallick, and Smith (1998) and Holmes and Mallick
(2000), this conditional distribution is unknown. This then leaves us with a problem. How
can one find ‘good’ proposal distributions to update the spline coefficients β given changes
to the spline bases.

The solution we propose is to use latent variables, following the approach of Albert and
Chib (1993). The concept behind latent variables in MCMC is to introduce an extra set of
parameters into the model that leave the marginal (original) model distribution unchanged.
The reason for introducing the extra variables is to improve the overall efficiency of the
sampling algorithms.

For our method, we now augment the original model space with a extra set of n real valued
parameters {ω1, . . . , ωn}, one for each data point. We then redefine the model in (4) to be,

p(yi = 1 | ωi ) =
{

1 if ωi > 0

0 otherwise

}
(10)

ωi = β0 +
k∑

j=1

β j

z j∏
l=1

(
xd jl − θ jl

)
q jl

+ εi ,

where εi is a standard normal random variable εi ∼ N (0, 1). It is then straightforward to
show that marginally, yi , is equivalent for the two models: (4) with the probit link and (10)
with the latent variables ε. This is clearly seen as in (10),

p(yi = 1) = p(ωi > 0) = p(εi > −m) = �(m), (11)

where �( ) is the cdf of the standard normal and m = β0 + ∑k
j=1 β j

∏z j

l=1(xd jl − θ jl)q jl .
Hence (10) is equivalent to (4) once we marginalise over ω as �(m) is just the probit link
function.

Now, it appears that not much has been gained in that we have introduced an extra n
parameters and we still have the same (marginal) model. However, examining the second
line in (10), we observe that it has the form of a linear regression model of ω in the spline
base �, with a known noise variance εi ∼ N (0, 1). Furthermore, in the Bayesian linear
model with normal priors on β we know the exact form of the posterior distribution of β
given the other parameters. This leads to the following efficient MCMC procedure.

Iterate until enough samples have been generated:

• Sample the variables � = {ω1, . . . , ωn}, conditional on the MARS parameters M.
• Sample the MARS parameters M conditional on �.

The sampling distribution of the latent variables �, given the current model, is given in the
Appendix. The updates to the spline bases are as before but now the updated values for β,
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conditional on the change to the spline base and the current value of �, follows from the
Bayes linear model theory (O’Hagan, 1994),

p(β | �, �, v) = N (β̂, V̂ ) (12)

where β̂ is the posterior mean β̂ = (�′� + v−1 I )−1�′�, V̂ is the posterior variance
V̂ = (�′� + v−1 I )−1 and as before � is the output of the k spline basis functions plus
intercept at the n data points.

With β updated using (12) it is straightforward to show that the acceptance probability
of the MARS update step, conditional on �, is just,

Q = min

{
1,

vk/2|V̂ ∗|1/2

vk∗/2|V̂ |1/2
exp

(
a

a∗

)}
, (13)

where, v determines the prior variance, |V̂ | is the determinant of the posterior variance
covariance matrix in (12), the superscripts ∗ refer to the parameters of the proposed update
model and a is an error term,

a = �′� − β̂′V̂ −1β̂. (14)

The acceptance ratio in (13) is just the ratio of marginal likelihoods, as if the model was
a linear regression in � with predictors �. The ratio of marginal likelihoods is known as
the Bayes factor (Kass & Raftery, 1995), or sometimes the evidence ratio (MacKay, 1992).
It is well known that Bayesian methods contain a natural penalty against over complex
models and hence we would not expect the model to over fit by selecting many spline bases
even though the prior on k contains no dimension penalty. Note that the ratio in (13) makes
no reference to the actual value of β that was drawn. In effect the spline coefficients β
have been marginalised out in the acceptance probability. This marginalisation effectively
reduces the dimension of the model space, to leave the marginal probability of the spline
base � given the latent variables �.

We reiterate the fact that the models (4) and (10) are equivalent. The introduction of
the latent variables � is a computational procedure used to improve the MCMC. The
information contained in � allow for β to be updated in an informed manner when we
make effectively large changes to the model by removing, adding or altering a spline base.

3. Examples

We tested the method on the three two class data sets that appeared in Husmeier, Penny,
and Roberts (1999) and on two larger data sets obtained from the consumer credit research
group within Imperial College, London University. In Husmeier, Penny, and Roberts (1999)
they present an empirical comparison of Bayesian neural network models that are described
in Neal (1996). The credit data sets have previously be analysed in Denison et al. (2001) and
Kelly (1998) where they compare a number of machine learning and statistical algorithms. A
brief overview of the data sets is given below and also in Table 1. We ran our method on each
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Table 1. Training data set characteristics.

Data set Observations Predictors (irrelevant) Real/Synthetic (1/0)

Ripley 250 4 (2) 0

Tremor 178 4 (2) 1

Ionosphere 250 34 (?) 1

Collections 3488 8 (?) 1

UPL 4000 12 (?) 1

data set using a maximum of 2 interactions per spline, zmax = 2. The choice of zmax = 2 is
made on two grounds; first that the resulting model is interpretable, being additive in a series
of one and two dimensional curves and surfaces, and secondly to accurately uncover any
higher order interactions requires a very a large amount of data. The algorithm was run for
20,000 iterations which takes around 5 minutes in Matlab on our DEC Alpha workstations
for the fist three data sets in Table 1 and about 30 minutes for the larger collections data. The
first 10,000 samples were discarded as a burn in. The burn in period was chosen by examining
plots of k and of the log likelihood, both of which had completely settled down by this point.

3.1. Ripley’s synthetic data

This data set is taken from Ripley (1994). The data set is a two class classification problem
where each population is an equal mixture of two two-dimensional normal distributions. A
training set of 250 points is used and the model is tested on a set of 1000 points. The data
can be obtained from www.stats.ox.ac.uk/pub/PRNN/. Following Husmeier, Penny,
and Roberts (1999) we add 2 irrelevant predictors to the data set by drawing random points
uniform on [0, 1].

3.2. Arm tremor

The task in this data set is to try and predict the presence or absence of Parkinson’s disease
in 357 individuals based on the two measurements of arm tremor. The original data is taken
from Spyers-Ashby (1996). The original data is partitioned into a training set of 178 points
and a test set of 179 points. Again, as in Husmeier, Penny, and Roberts (1999) we add 2
irrelevant predictors to the data set by drawing random points uniform on [0, 1].

3.3. Ionosphere data

This data was consists of ‘good’ and ‘bad’ radar returns from a system of 16 high-frequency
antennas set up in Goose Bay, Labrador to monitor free electrons in the ionosphere. Good
returns are those signals showing evidence of structure, while bad returns are those that do
not. The data is pre-processed to obtain 17 pulse numbers each of which is described by
2 attributes to produce 34 predictors. The training set size was 250 points with 150 points
retained for testing.
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3.4. Collections data

This example is taken from a retail credit problem concerning the repayment of bank loans.
Accounts that are deemed to be unsatisfactory are entered into a process called “collections”,
where a more vigorous effort is made to correct the problem. The task is to try to predict those
customers that spend less than 30 days in collections, based on a series of 8 measurements
taken from the original application form and from features of the customer’s conduct during
repayment. A total of 6976 observations are available, which are randomly split into equally
sized training and test sets.

3.5. Unsecured personal loan (UPL) data

This example is a retail credit problem relating to the forecasting of bad debtors of unsecured
personal loans. An individual is classed as having defaulted on their loan if they are more
than 3 months late on their repayment plan. The problem is to predict defaulters using 12
predictors taken from the loan application form and from the customers bank record. A total
of 8,000 records are available (4,000 of which are defaulters) and these are randomly split
into two equally sized training and test sets.

3.6. Results

The results in terms of misclassification error are shown in Table 2. As a benchmark we
include results using the Real Adaboost algorithm (Schapire & Singer, 1999) with deci-
sion stumps run for 200 rounds of boosting. Also included are the best reported model in
Husmeier, Penny, and Roberts (1999) for the Bayesian neural networks with Automatic
Relevance Determination (ARD) and from Denison et al. (2001) and Kelly (1998). From
Table 2 we see that the Bayesian MARS method appears competitive with the other models
on these data sets.

The predictive distribution for the arm tremor data set is shown in figure 1. Notice how
the model has selected essentially a hard linear decision boundary at the top of the figure.
The predictive contours in the bottom of figure 1 appear smooth even though the individual
MARS models have axis parallel non-smooth contours. This is an artifact of the Bayesian

Table 2. Test errors on data sets for the Bayesian MARS (BMARS) model.

Data set BMARS Real Adaboost Best reported result

Ripley 0.091 0.131 0.088a

Tremor 0.146 0.201 0.163a

Ionosphere 0.053 0.080 0.073a

Collections 0.255 0.266 0.263b

UPL 0.33 0.33 0.36c

Also included are results using Real Adaboost with stumps (Schapire et al.,
1998) and the best results found in the papers of aHusmeier, Penny, and
Roberts (1999), bDenison et al. (2001) and cKelly (1998).
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Figure 1. Arm tremor data set with class probability contours showing p(yi = 1) under the Bayesian MARS
model.

approach where the process of marginalisation in (7) has the tendency to smooth the non-
smooth models.

In all of the examples the use of the latent variables produces excellent acceptance rates
for the reversible jump MCMC update proposals with all three proposals (addition, deletion,
alteration) showing around a 30% acceptance rate. In contrast, when we tried the algorithm
without latent variables the acceptance rates were much poorer, down to under 2% when
using a Metropolis-Hastings approach. The marginal densities for the number of splines
used, p(k | Y ), for the examples are shown in figure 2 as histograms using 10,000 MCMC
samples. We can see that the number of splines used by the model adapts to the problem at
hand and that a range of values for k have support under the data which suggests that fixing
a value for the number of splines is inappropriate.

4. Discussion

We have presented a Bayesian version of MARS for performing two class classification
that mixes over the space of models with differing numbers and position of splines. On
a number of problems the model appears competitive with other methods reported in the
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Figure 2. Plots of p(k | Y ), the posterior distribution of the number of spline basis functions, for the four data
examples, using 10,000 samples from the MCMC output. (a) p(k | Y ) for Ripley’s data; (b) p(k | Y ) for the arm
tremor data; (c) p(k | Y ) for the ionosphere data; (d) p(k | Y ) for the collections data; (e) p(k | Y ) for the UPL data.

literature. The use of latent variables allowed us to define efficient MCMC procedures for
the computation. Multi-class problems can be tackled in much the same way as we describe
here; see the extension to polychotomous classification in Albert and Chib (1993). The
Bayesian MARS method should scale well to larger problems as the major computational
burden in the algorithm is inverting the k × k posterior variance-covariance matrix v̂ in
(12) which is not dependent on the number of data points or the number of predictors. The
procedures we describe are generic and applicable to any basis function method including
wavelets, artificial neural networks and radial basis functions.

Appendix

The pseudo-code for the algorithm is as follows:

• Start the model with just an intercept term and no spline basis functions, i.e. k = 0 and
� = (1, . . . , 1)′.
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• Initialise the latent variables ωi = 1 if yi = 1, ωi = −1 otherwise, for i = 1, . . . , n.
• Draw β0 using the procedure for updating β given below.
• Iterate until enough samples have been generated:

– Redraw the latent variables � given the current model.
– Update the prior variance v using the procedure described below.
– Update � using one of the following moves chosen with equal probability:

∗ Add a spline basis function.
∗ Delete a spline basis function.
∗ Alter a spline basis function.

– Redraw β.
– Accept the changes to � and β with probability

Q = min

{
1,

vk/2|V̂ ∗|1/2

vk∗/2|V̂ |1/2
exp

(
a

a∗

)}
, (15)

where, v determines the prior variance, |V̂ | is the determinant of the posterior variance
covariance matrix in (12), the superscripts ∗ refer to the parameters of the proposed
update model and a is an error term,

a = �′� − β̂′V̂ −1β̂. (16)

– Else keep the current model

The procedures for adding, deleting and altering the spline base and for updating β are
given below.

Adding a spline

When adding a basis function to the model we perform the following procedure

1. Draw the interaction level of the spline from the prior z j ∼ U [1, . . . , zmax].
2. Draw the z j elements {d j1, . . . , d jz j } from {1, . . . , p} without replacement.
3. For each of the z j interactions that make up the j th spline: select a data point at random

from the data set, say xi and set the corresponding knot point θ jl to be θ jl = xid jl . Then
draw the orientation q jl from uniform {+, −}.

4. Update the values for β. See below.

Deleting a spline

Simply choose one of the k splines at random and remove it from the model. Then update
the values of β. See below.
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Altering a spline

When altering a spline

1. Select one, say the j th, spline uniformly at random.
2. Select one, say the lth, of the z j interactions at random and reset the knot point θ jl by

randomly drawing a data point xi from the data set and fixing the value of θ jl to be xid jl .
3. Update the values for β. See below.

Updating the latent variables �

The latent variables ω conditional on the current model parameters M and the data Y , can
be seen to follow a truncated normal distribution (Albert & Chib, 1993),

ωi ∼
{

N (mi , 1)I (ωi > 0) if yi = 1

N (mi , 1)I (ωi < 0) if yi = 0

}
, (17)

where I is the identity function and mi = β0 + ∑k
j=1 β j

∏z j

l=1(xid jl − θ jl)q jl . Efficient
algorithms for generating from truncated normal distributions exist, see for example Robert
(1995).

Updating β given changes to the spline base and the latent variables �

Given the set of latent variables � and the model (10), we can make use of Bayesian linear
model theory to update the spline coefficients using their posterior distribution, follow-
ing changes to the spline base. New values for β∗ are drawn from a multivariate normal
distribution,

β∗ ∼ N (m∗, V ∗) (18)

where,

m∗ = V ∗(�∗)′�,
(19)

V ∗ = [(�∗)′�∗ + v−1 I ]−1

where �∗ is the n × (k∗ + 1) matrix of outputs from the k∗ splines plus intercept (3) and v

determines the variance of the prior p(β) = N (0, v I ).

Updating the prior variance v given the model

Using the conjugate (Gamma) hyper-prior for v−1 with parameters, p(v−1) =
Gamma(0.001, 0.1) we can draw new values for v using the conditional posterior
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distribution which is,

v−1 ∼ Gamma

(
0.001 + k

2
, 0.1 + β′β

2

)

where k is the number of basis functions and β are the regression coefficients.
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