Skip to main content
Log in

Sinai Billiards, Ruelle Zeta-functions and Ruelle Resonances: Microwave Experiments

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We discuss the impact of recent developments in the theory of chaotic dynamical systems, particularly the results of Sinai and Ruelle, on microwave experiments designed to study quantum chaos. The properties of closed Sinai billiard microwave cavities are discussed in terms of universal predictions from random matrix theory, as well as periodic orbit contributions which manifest as “scars” in eigenfunctions. The semiclassical and classical Ruelle zeta-functions lead to quantum and classical resonances, both of which are observed in microwave experiments on n-disk hyperbolic billiards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. Smale, Bull. Amer. Math. Soc. 73:747 (1967).

    Google Scholar 

  2. Ya. Sinai, Russian Math. Surveys 25:137 (1970).

    Google Scholar 

  3. M. Wojtkowski, Comm. Math. Phys. 105:391 (1986).

    Google Scholar 

  4. L. A. Bunimovich, Comm. Math. Phys. 65:295 (1979).

    Google Scholar 

  5. D. Ruelle, Phys. Rev. Lett. 56:405 (1986); J. Stat. Phys. 44:481 (1986).

    Google Scholar 

  6. M. Pollicott, Ann. Math. 131:331 (1990).

    Google Scholar 

  7. S. Sridhar, Phys. Rev. Lett. 67:785 (1991).

    Google Scholar 

  8. A. Kudrolli, S. Sridhar, A. Pandey, and R. Ramaswamy, Phys. Rev. E 49:R11 (1994).

    Google Scholar 

  9. P. Pradhan and S. Sridhar, Phys. Rev. Lett. 85:2360 (1995).

    Google Scholar 

  10. A. Kudrolli, V. Kidambi, and S. Sridhar, Phys. Rev. Lett. 75:822 (1995).

    Google Scholar 

  11. W. Lu, M. Rose, K. Pance, and S. Sridhar, Phys. Rev. Lett. 82:5233 (1999); W. Lu, L. Viola, K. Pance, M. Rose, and S. Sridhar, Phys. Rev. E 61:3652 (2000).

    Google Scholar 

  12. K. Pance, W. Lu, and S. Sridhar, Phys. Rev. Lett. 85:2737 (2000); W. T. Lu, K. Pance, P. Pradhan, and S. Sridhar, Phys. Scrip. T90:238 (2001).

    Google Scholar 

  13. S. Sridhar and A. Kudrolli, Phys. Rev. Lett. 72:2175 (1994).

    Google Scholar 

  14. T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Phys. Rep. 299:189 (1998).

    Google Scholar 

  15. H.-J. Stockmann, Quantum Chaos: An Introduction (Cambridge University Press, 1999).

  16. S. Sridhar, D. Hogenboom, and B. A. Willemsen, J. Stat. Phys. 68:239 (1992).

    Google Scholar 

  17. E. J. Heller, Phys. Rev. Lett. 53:1515 (1984).

    Google Scholar 

  18. P. Gaspard and S. A. Rice, J. Chem. Phys. 91:2225, 2242, 2255 (1989).

    Google Scholar 

  19. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, 1990).

  20. L.-S. Young, Notices of the AMS 45:1318 (1998); Ann. Math. 147:585 (1998).

    Google Scholar 

  21. P. Cvitanović and B. Eckhardt, J. Phys. A 24:L237 (1991).

    Google Scholar 

  22. P. Gaspard, D. Alonso, T. Okuda, and K. Nakamura, Phys. Rev. E 50:2591 (1994).

    Google Scholar 

  23. P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and G. Vattay, Classical and Quantum Chaos, www.nbi.dk/ChaosBook/ (Niels Bohr Institute, Copenhagen, 2001).

    Google Scholar 

  24. P. Gaspard, Chaos, Scattering, and Statistical Mechanics (Cambridge University Press, 1998).

  25. P. Cvitanović and B. Eckhardt, Phys. Rev. Lett. 63:823 (1989).

    Google Scholar 

  26. C. Manderfeld, J. Weber, and F. Haake, J. Phys. A 34:9893 (2001).

    Google Scholar 

  27. O. Bohigas, P. Leboeuf, and M. J. Sanchez, Found. Phys. 31:489 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sridhar, S., Lu, W.T. Sinai Billiards, Ruelle Zeta-functions and Ruelle Resonances: Microwave Experiments. Journal of Statistical Physics 108, 755–765 (2002). https://doi.org/10.1023/A:1019714808787

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019714808787

Navigation