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Abstract. We find strong necessary conditions on theectors, Betti sequences, and relative Betti sequence of

a pair of simplicial complexes. We also present an example showing that these conditions are not sufficient. If
only thedifferencebetween two Betti sequences is specified, and not the individual Betti sequences, then the char-
acterization is complete, and the characterization of all pairs of simplicial complexes matches the characterization
of pairs of near-cones. Our necessary conditions rely upon a combinatorial decomposition of pairs of simplicial

complexes that reflects the homology and relative homology of the complexes.
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1. Introduction

Given a class of simplicial complexes, it is always interesting to ask which vectors can
be the f -vector of some complex in that class (see, e.g., [1]). For instance, tradsj”

Kalai theorem [2, Theorem 1.1] (restated here as Theorem 2.4) characterizes which vectors
can be thef -vector of a simplicial complex with given Betti sequence. Put another way,
the Bjorner-Kalai theorem characterizes which pairs of vectors can bé tyector and

Betti sequence of a single simplicial complex. Our main results, Theorems 1.1 and 1.2,
describe strong necessary conditions on which 5-tuples of vectors can be the/setors,

two Betti sequences, and one relative Betti sequence (measuring relative homology) of a
singlepair of simplicial complexes. These theorems depend primarily upon the technique
of combinatorial decompositions, used previously [3, 10] to sharpen tb@&jKalai
theorem.

For basic definitions of simplicial complexes and their homology and relative homology,
see, e.g., [8, Chapter 1] or [11, Section 0.3]. We allow the empty simplicial condplex
consisting of no faces; all other complexes must contain the empty setdsdimensional
face. We also allow the complé#t} consisting of only the empty face, but we do distinguish
between the two complexésand{#}. Throughout this paper, sequence will refer to
the special case of a sequence of integets(6_1, 6o, 01, .. .) starting with index-1, and
having only a finite number of non-zero terms. Theector of a simplicial complexA is
the sequencé (A) = (f_y, fo, f1,...), wherefi =#{F € A:dimF =i}. The same notion
of f-vector will apply in this paper to every finite collection of sets.

Let K be a field, fixed throughout the paper. TBetti sequenceof a simplicial com-
plex A is the sequenc@(A) = (B_1, o, B1. ...), Where H;(A) = Hi(A; K) is theith
reduced homology group ol with respect toK, and g = dimk Hi(A). Similarly,
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the relative Betti sequenceof a pair of simplicial complexe$’ C A is the sequence
n(A,T)=(_1, 10, 71, ...), whereH; (A, )= Hi (A, I'; K) is theith reducedrelative
homology groupof the pair(A, I') with respect td<, andy; = dimk H;i (A, T). “Reduced”
homology means precisely to treat the empty set as a face of any non-empty complex, so
Bo is one less than the number of connected componems ahd hence one less than the
“unreduced”By. Furthermorepf_; =0, unlessA = {@}, in which case8_; = 1. Reduced
relative homology, which also treats the empty set as a face of any non-empty complex, is
the same as unreduced relative homology, excepithatd}, ¥) = 1; for any other pair of
complexesy_1 =0.

The necessary conditions in Theorems 1.1 and 1.2 use several sequence functions and
relations which we now introduce. Define the usual componentwise partial order on seqg-
uence® ando by settingd <o wheng; < g foralli > —1, and the usual componentwise
sum of sequenceésando by setting(@+o)i =6, + o foralli > —1. Let6_ be the sequence
defined by(0_); =6;,_; fori >0,and(®_)_1=0,s00_ = (0, 6_1, 6, ...) (Stanley [9] uses
the notationEf =6_).

Given an integek > 1, any integen > 1 can be written uniquely in the form

()20

suchthaty > --- > g >i > 0. Define

= (A ()

(see, e.q., [4]). Further, define

0 ifn=1

al(n)==1 ifn>1

ando,_1(0) =0fork > 0. Finally, letdd be the sequence defined@y); = 9,6, fori > —1.
The significance 08 is given by the Kruskal-Katona theorem (Theorem 2.1).
Let 6* denote the sequence whose elements are given by

0i*71 = ei - 9i+l + €i+2 —_— e = Z(_l)n_ien.

n>i
As a result,
6 =0%"+06*

(because6d_)* = (6*)_, we writed* for either). The* operation is linear. See Eq. (11) for
the significance of.
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Theorem 1.1 If T € A are simplicial complexesand f= f(A), g=f(T), B=8(A),
y =B(), andn=n(A,T), then

I +8) < x-, (1)

W +y) <y, 2)

Y <, ()

Y < x—1, (4)

Y =y -8 (5)
X-¥.nv. 8.7 =0, (6)

wherey =(f — )", vy =(@—p)*, andy’ = — (B —y))*.

These conditions are more easily stated in termg afidy,, and it is not hard to see that
knowing x, ¥, 8, andy is equivalent to knowind, g, 8, andy. We therefore call the set
of vectors(y, ¥, B, y, n) theparametersof the pairl’ C A.

Conditions (3)—(5) and the non-negativity of the new parametéand ofn) are new,
while the other conditions are immediate consequences of tra@tKalai theorem applied
separately taA andT.

The necessary conditions of Theorem 1.1 are insufficient (Example 4.2), but g enjy
is specified, and ngg andy individually, then we can find necessary and sufficient condi-
tions; this characterization is Theorem 1.2, below. In this case, the characterization for all
pairs is the same as the characterization for pairs of “near-cones,” a special combinatorially
defined class of simplicial complexes that are each homotopic to a wedge of spheres (see
Section 2).

Define thereduced parametersfor a pair of simplicial complexes to be, ¥, ¢, n),
where¢p = 8 — y and the other parameters are as defined in Theorem 1.1.

Theorem 1.2 The following are equivalent
(@) (x, v, ¢, n) are the reduced parameters for some pair of simplicial complEXes\;

(b)

Ax +B) =< x-. (7)
I +y) <y, (8)

V' <x—1, 9)
x:¥.nvy,B =0, (10)

wherey’ = (n — ¢)* andp’ =¢ + y’; and
(©) (x, ¥, ¢, n) are the reduced parameters for some pair of near-cdhesA.

Knowing the reduced parametdrs, v, ¢, n) is notthe same as knowingf, g, ¢, n),
since we nee@ andy individually to computef andg from ¢ andy, but this still appears
to be the best set of four parameters to pick in an incomplete characterization.
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The proofs of Theorems 1.1 and 1.2 depend primarily upon Theorem 3.10, a decompo-
sition of the larger complexA that captures most of the information about homology and
relative homology of the paifA, I'). Section 3 is devoted to proving Theorem 3.10.

Some basic techniques 6fvectors and Betti sequences are discussed in Section 2. The
proofs of Theorems 1.1 and 1.2 are in Sections 4 and 5, respectively.

2. Compression

A key technique in characterizin§-vectors, and one that we will use in all of our con-
structions, is compression, a canonical way to construct a simplicial complex with given
f-vector.

Definition LetS={x, < --- < X} andT ={xj, < --- < X;,} bek-subsets of a totally
ordered seV ={x; < --- < Xn}. ThenS<a. T under theanti-lexicographic order if
there is & such thaiy < jq andi, = j, for p > g. A collectionC of k-subsets oV is
compressedf S <. T andT € C together imply tha € C, and a simplicial complex
is compressedf Ay is compressed for eveky

Theorem 2.1 (Kruskal-Katona [7, 6]) For a sequence, fthe following are equivalent
(a) there is a simplicial complex whose f-vector is f

(b) of < f_; and

(c) there is a(unique compressed simplicial complex whose f-vectoris f.

For a proof of the Kruskal-Katona theorem, and further discussion of the uses and gener-
alizations of compression, see [4, Section 8]. We will use the following simple observation
repeatedly in our constructions.

Lemma 2.2 If I" andA are compressed simplicial complextizen f(I') < f (A) implies
I'CA.

Proof: The anti-lexicographic ordex use to build compressed complexes is a total
order, sofy(T") < fx(A) impliesTk C A, for everyk, and the lemma follows. O

Corollary 2.3 For sequences f and, ghe following are equivalent
(a) there is a pair of simplicial complexdsC A such that f= f (A) and g= f (I');
(b)
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Proof:

(a)=(b) Thatg < f isimmediate fronT" C A; the other two conditions are just the Kruskal-
Katona conditions (Theorem 2.1).

(b)=(a) LetI" andA be the (unique) compressed simplicial complexes Witrectorsg and
f respectively, guaranteed to exist because of the Kruskal-Katonatheorem (Theorem 2.1).
Then Lemma 2.2 implieF C A. |

Remark The explicit statement of Corollary 2.3 appears to be new, though implicit in the
literature. (I am grateful to Richard Stanley and Curtis Greene for pointing this out to me.)

Remark The statement and proof of Corollary 2.3 extend easily to chains of simplicial
complexes.

Bjorner and Kalai improved upon the Kruskal-Katona theorem by characterizing the
f-vector of a simplicial complex with prescribed Betti sequences. The characterization
uses near-cones [2, Section 4].

Definition A near-conewith apexuy is a simplicial complexA satisfying the following
property: For allF € A, if vo ¢ F andw € F, then

(F — {w}) U {vo} € A.

ForA anear-cone with apay, letB(A) ={F e A:FU{v} €AlandA’'={F e A vy ¢ F,
F U{vg} € A}; then

A = (vgx A") U B(A),

wheres denotes topological join (sop = A’=A" U {{vo} U F:F € A’}). Both A" and
A’ U B(A) are subcomplexes af. If B(A) =9, thenA is simply acone

Note, in particular, that and{¢} are near-cones (the condition in the definition is vacuous
in this case) and that=vo * ¥ and{@} = (v * ¥) U {#}. If A is a near-cone with apey,
thenug is one of the vertices ok, unlessA =@ or {#}.

EveryF € B(A) is maximal inA, so the collection of faces iB(A) forms an antichain.
Further, f (B(A)) = B8(A), which follows by contractingg * A’ to vg, leaving a sphere for
every face inB(A) [2, Theorem 4.3]. Also note [2, p. 292] that

f(A) = (f(A) = B(A)". (11)

Theorem 2.4 (Birner-Kalai [2]) For sequences f an#, the following are equivalent
(a) there is a simplicial complea such that f= f (A) andg = 8(A);

(b) there is a near-coné such that f= f (A) andg =B(A);

(©) 3(x + B) < x—, wherey = (f — B)*.
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Proof: We will not reproduce the proof, but mention for our constructions that in the
near-coneA = (vo * A’) U B that Bjgrner and Kalai construct in order to prove=jb),
A’ andA’ U B are compressed subcomplexes, gnd f (A'). O

Remark Bjorner and Kalai [2] state the numerical condition (c) of Theorem 2.4 slightly
differently. In particular, they explicitly include the Euler-Poineaglation: IfA has at least
one vertex, then

1=(fo—fi+ fo—)—(Bo—Br+B2—--").

To see why Theorem 2.4(c) implies this equation, rewrite the right-hand side as
(fo—PBo) —(fr =)+ (f2=p2) — - =(F =B = x-1.

Thus the Euler-Poincan‘elation is thaf_; = 1 (this is how it is stated in [2]); it is not hard
to show that this condition is implicitly contained in condition (c).

3. Decomposition

In this section, we prove the decomposition theorem (Theorem 3.10) from which

Theorems 1.1 and 1.2 follow. Our model is the following theorem thatimplies and sharpens
the Bjorner-Kalai theorem (Theorem 2.4); see [3, Section 2] for details. The acyclic case
is due to Stanley [10, Theorem 1.2].

Theorem 3.1 ([3, Theorem 1.1]) Every(finite) simplicial complexA can be written as

a disjoint unionA = A’ U BU Q, where

(@) A’is a subcomplex oh;

(b) f(B)=pB(A) and B is an antichain

(c) A’ U B is a subcomplex of; and

(d) there exists a bijection: A’ — Q such that for all Fe A’ we have Fc n(F) and
In(F) —F| =1

Theorem 3.10 generalizes Theorem 3.1 to pairs of simplicial complexes and relative
homology.

Corollary 3.2 If A=A’U B U Q is the decomposition of a simplicial complaxdes-
cribed in Theoren3.1, then f(A) = f(A") + B(A) + f_(A)

Proof: From the given decomposition, condition (d) impli€&2) = f_(A’), and con-
dition (b) implies f (B) = B(A). Then the decomposition yields(A) = f (A") + f(B)
+1(Q)=f(A) + B(A) +_(A). O

The rest of this section is devoted to proving Theorem 3.10. We start with some al-
gebraic preliminaries. Recall th#t is a field. LetA be a simplicial complex on vertex
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setV ={xy, ..., Xn}. Let A(KV) denote the exterior algebra of the vector spa& it
has aK -vector space basis consisting of all the monomidis=x;, A --- A X, where
F={x,..., %} € V. Letl, be the ideal ofA (KV) generated by alx" :F ¢ A}. The
quotient algebra\[A]:= A(KV)/I, is called theexterior face ring of A (overK) (see [2]
or [3] for more detalils).

Because is afield, dimk H' (A; K) = dimk Hi (A;K) [8, Section 53], wherél! (A; K)
denotes théth reduced cohomology group with respectpand may be computed with
a coboundary operator [8, Section 42]. It is not hard to see that, in the exterior face ring,
the standard coboundary operatbrA[A] — A[A] is simply right multiplication by
v=X1+ -+ Xg € A[A] 1€, 8y=Y A 0.

LetI" be a subcomplex oh. Sincel’ C A is a simplicial complex in its own right, we
may defineA[I"'] and §r- in exactly the same way.

Now let ¥ = A — T, the poset of faces il but notI". Relative (co)homology of the
pair (A, ') depends onlyx; in particular, we may compute relative (co)homology of
(A, T) by a (co)boundary operator an (see, e.g., [8, Section 43]). Defig X] to be
the ideal inA[A] generated by the faces &. (This is analogous to the commutative case
[9, p. 205].) Because\[X] is an ideal,se€ A[X] implies §se A[X]. The coboundary
operatorés : A[X] — A[X] is just the restriction ob to A[X], i.e., §gx=46x (for all
X € A[X)).

Also because\[X]is an ideal, we may interpret[I"] as a quotient algebra[A]/A[X];
forx € A[A], defineX =x + A[X] € A[T']. Thenforx € A[A], we haveSrX =8§x + A[Z].
From now on, we will interpref\[I"] and§r- in this way.

Lemma 3.3 ForanyI' C AandX=A —-T,
(a) kersr ={x e A[A]:8x € A[Z]}; and
(b) imér=ims + A[X].

Proof: By the definitions ofA[T"] (as the quotient algebra[A]/A[X]) and s,
kerér = {Xe A[T']:8x + A[XE] € A[Z]}={X+ A[Z]: x € A[A], X € A[X]}
= {Xxe A[A]:éx € A[Z]} + A[Z]
= {xe A[A]: éx € A[Z]},

proving (a).
The definitions ofA[I"] and ér also imply imér = {§X + A[X]: X € A[A]}={8x:X €
A[A]}+ A[Z]=im§ + A[X], proving (b). O

Lemma3.4 If T C A, thenA[T']/(kerdr) = A[A]/{x € A[A]: §x € A[Z]}.
Proof: LetX = A —T as before. Then by Lemma 3.3(a),
A[T]/ kerér = (A[A]/A[Z])/ kerdr = A[A]/(kersr + A[Z])
= A[A]/({x € A[A]:8x € A[Z]} + A[Z])
= A[A]/{X € A[A]: 8x € A[X]},
as desired. O
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Lemma3.5 Foranyf C Aand¥ =A —T,
(a) kersy = kers N A[X]; and
(b) imdég ={8x:x € A[X]}.

Proof: Part (b) is immediate from the definition & . The definition ofsy also implies
kerss ={x € A[X]:dx = 0} = ker§ N A[XZ]. O

Extend thef_ notation from sequences to graded vector spaces in the obvious way.
Namely, for a graded vector spadewhoseith graded component ¥4, let V_ denote the
graded vector space witth graded componeriV_); =V, _;.

Lemma 3.6 As graded vector spaces
{x € A[A]:6x € A[XZ]}_/(kers + A[Z])_- = (imS N A[Z])/{ss:s € A[X]}.

Proof: The isomorphism is induced by The lemma then follows from the following

four simple claims, the first two of which establish that the riap well-defined on the
whole space and on the quotient space, respectively, and the last two of which establish
injectivity and surjectivity, respectively.

Claim 1. 8{x € A[A]:8x € A[Z]} CimsN A[Z].
This is obvious.

Claim 2. §(ker§ + A[X]) C {8s:s€ A[X]}.
Letx € kerd + A[X], sox = z+s, wherez € ker§ ands € A[X]. Thendx =8z + §s=
0+ s e {§s:se A[X]}.

Claim 3.1f §x € {8s:s € A[X]}, thenx € kerd + A[X].
If 5x € {§s:s€ A[X]}, thenéx =4s for somese A[X]. Therefore§(x —s) = 0, so
X — s € kerd, and thusx = (x — s) + s € kerd + A[X].

Claim4. If yeim$NA[Z], thenthereisar € {x € A[A]: §x € A[Z]}suchthasx = y. If
y eim3NA[XZ], theny €im §, so there is an such thatx = y. ButthensSx =y € A[X],
SoX € {x € A[A]: éx e A[X]}. O

We need an improved version of the following lemma.

Lemma 3.7 ([3, Lemma 3.2]) LetA be any simplicial complex with simplicial cobound-
ary operators : A[A] — A[A]. Ifk € kers and x is a vertex o\, then kA x € im .

Corollary 3.8 If ke A[X] and x is a vertex oA, then kA X € im§ + A[X].
Proof: If xe T, thenk A x € A[Z]. Otherwisex € I", and we may apply Lemma 3.7 to

" and coboundary operatéf : A[I'] — A[']. By Lemma 3.3, keér = {k € A[A]: 8k €
A[X]} and imér =im 8 + A[X], and then the corollary follows. O
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The acyclic version (inx = keru) of the following result is due to Stanley [10,
Lemma 1.1].

Lemma 3.9 ([3, Lemma 3.1]) Let D be a directed graph on the vertex setaxd let KX
be the K-vector space with basis X. Suppose there is a linear transformatiii — KX
satisfying

(@) if x € X, thenu(x) € sparg{y € X: (X, y) is an edge of [, and

(b) imu C kerp (i.e., u? = 0).

Also assume that Y is a subset of X whose image in(iki.) is a basis for KX (im )
and that Z is a subset of Y whose image in/Kéru) is a basis for KX(kerup). Then
there is a matching of Z and X Y in D.

The following theorem is at the heart of our main results (Theorems 1.1 and 1.2). The
statement and proof reduce to those of Theorem 3.1 in the cdse-df.

Theorem 3.10 LetI" € A be a pair of simplicial complexes. Thencan be written as a

disjoint unionA = I U G’ U £’ U G U B’ U Q such that(see figurel)

@I, I'UG, UG U, I"UG U UG, and["UG U X UG U B are sub-
complexes

(b) G’ andG U B’ are antichains

(c)
f(0)=fI)+ -0 + f(G) + f(G), (12)
B(I) = f(G) + f(G), (13)
B(A) = f(G) + (B, (14)
n(A,T) = f_(G)+ f(B); (15)
and

(d) there exists abijection : (I" UG’ U ¥’) — Qsuchthat FS u(F)and |u(F) — F|=1
foralF eI’ UG' U Y.

Q
[

AN=TUGEUY

Figure L Theorem 3.10.
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Proof: Define ideals ofA[A]
1 = {X € A[A]: 86X € A[X]},
I, = kers + A[X],
I3 = kers,
4 =keréd N (imé + A[X]), and

lg = img
(these definitions are not so odd, in light of Lemmas 3.3-3.6). Also let

Qi = A[A]/1;

for eachi. Itis not hard to see that, for eachl; 2 |1, and thusQ; € Q1.

We now inductively define a set of face monomials, using the lexicographic total order
from Section 2. LetlL; be the lexicographically least set of face monomials such that
LiU---ULjisabasisfoQ; (i = 1,...,5). (SoL; is the lexicographically least basis for
Qq; L, is lexicographically least such that U L, is a basis foiQ»; etc.) Thus, ifF € A,
thenx™ ¢ Ly U-.- U L; ifand only if

xF=aix™ + .. +ax™ 1k, (16)

wherek € |; and, for eachj, we havea; € K, F; € A, andF; < F. It also follows that
L; is a basis fol;_1/1; (let 1o = A[A]). Finally, let

I'={F e A:xF e Ly},

G ={FeA:x" elLy},

¥ ={F e A:x" e L3},

G={(FeA:x"elLy, and

B '={FeA:x" elLs)
(see figure 1).
Proof of (a). Suppose™ gL, U---UL; andF c H. We need to show that” ¢ L, U- .-
UL;. Multiply Eq. (16) on the right bx"—F:

t
xH =+ Axt-F) = i(ZaxF' A xH‘F) + (kA x"F)
i—1

= Yo EaxFYH g A xHF), (17)

FUMH-F)eA
FiN(H-F)=0
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Now, FiU(H —F) <. FU(H—F)=H,andkAx"-F el;,s0 Eq. (17) impliesH ¢ LU
UL,

Proof of (b). The proofs thaG’ andG U B’ are antichains are similar, so we prove them
simultaneously, with the argument f& in brackets. The technique is similar to that used
in (a). To show thaG U B’ is an antichain@’ is an antichain], suppose thef € L4 U Ls

[xF e Ly]andF C H. We need to show that! ¢ L, U Ls [x" ¢ L,]. Letxj e H — F, and

let F'=H —{x;}. Sincel" U G’ U ¥’ is a subcomplexI[’ is a subcomplex] an& ¢ I'’
UG U [F ¢ I'],itfollows thatF' ¢I" UG U X' [F' ¢TI also, sox™ ¢ L1 UL,ULs
[x™ ¢ L] and

t
xF' = X:a,-xFi +k,
=1

wherek € kers [6k € A[X]], & € K, andF <. F'.
Thus,

t
xH=+(xF Ax) = :t(ZaixFi /\xj) + (K AX)

i=1

= Z +a x| £ (kA X). (18)
Fu{xjleA
Xj¢Fi
Now, F U{x;} <L F'U{x;}=H,andk A x; eim§[kAXj € ims+ A[X] € kers + A[X]]
by Lemma 3.7 [Corollary 3.8], so Eq. (18) implig§ ¢ L, U Ls [x" & L5].

Proof of (d). Let D be the directed graph whose vertex setjsand whose edges are the
pairs(F, HywithF ¢ H € Aand|H —F|=1.Becausé: A[A] — A[A]isacoboundary
operator = § satisfies all the conditions of Lemma 3.9. Takidg= " U G’ U ¥’ and
Y=I"UG U UGU B/, Lemma 3.9 gives a matching

wI'UGUY > A-—T'UGUTUGUB)=Q
satisfying the conditions in (d).

Proof of (c). The unionL, U Ls is a basis of ke/im §, and thug(A) = f(G) + f(B),
proving Eq. (14).
Similarly, L, is a basis for

{x € A[A]: 6x € A[Z]}/(kerd + A[Z]);
meanwhileL, is a basis for

kers/(kers N (imé& + A[X])) = (kerd + (ims + A[X]))/(imS + A[X])
= (kers + A[Z])/(imS + A[Z]),
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where the first isomorphism is via the standard isomorpthgnaN N M) = (M + N)/N
(e.g., [5, p. 176]) and the second follows fromdnx kers$. Therefore

f(G) + f(G) = dim{x € A[A]: 8x € A[Z]}/(kers + A[Z])
+dim(kers + A[X])/(imé + A[XZ])
= dim{x € A[A]:dx € A[Z]}/(iMS 4+ A[X])
= (@), (19)
by Lemma 3.3, proving Eq. (13).

Now, L, is a basis fo{x € A[A]: dx € A[X]}/(kers + A[X]), which is isomorphic to
(imds N A[E])/{8x:x € A[X]} with a dimension shift, by Lemma 3.6, so

f_(G) =dim(ims N A[Z])/{6x:x € A[Z]}.
And L5 is a basis for

(kers N (imé& + A[X]))/im§ = (im§ + (kerd N A[Z]))/im§
= (kers N A[Z])/(imé N (kers N A[X]))
= (kers N A[Z])/(ims N A[Z]),

where the first and third isomorphisms are becaus& @nkers, and the second isomor-
phismisM/(N N M) = (M + N)/N again, so

f(B) = dim((kers N A[Z])/(im§ N A[Z])).
Therefore,

f(B) + f_(G') = dim((ker§ N A[Z])/(im & N A[Z]))
+dim((ims N A[Z])/{dx:x € A[Z]})
=dim(kers N A[XZ])/{6X:x € A[Z]})
=n(A,T),

by Lemma 3.5, proving Eq. (15).

Finally, to establish Eq. (12), note tHat is the lexicographically least basis®fA]/{x €
A[A]: §x € A[X]}, which is isomorphic to\[I']/ kerdr, by Lemma 3.4. This is precisely
the definition ofL 1, and hence of”’, needed to ensure that= I'" U G* U Qr (for someG*
andQr) is the decomposition dff described by Theorem 3.1. Corollary 3.2 and Eq. (19)
then imply f (I') = f(I') + B(0) + f_(I') = f(I') + (G + f(G) + f_(I). ]

4. Numerical conditions

In this section, we use the decomposition of Theorem 3.10 to prove the necessary numerical
conditions of Theorem 1.1, and a corollary (Corollary 4.1) stating necessary and sufficient
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conditions for(x, ¥, B, y) only. We also demonstrate that the necessary conditions of
Theorem 1.1 are not sufficient (Example 4.2).

Proof of Theorem 1.1: Conditions (1) and (2) are immediate from theoBjér-Kalai
theorem (Theorem 2.4), since bathandT™ are simplicial complexes.

We next establish combinatorial interpretationsyaf x, andy’. First, note that the
matching of Theorem 3.10 implies

f(Q)=f_(I') + f(G) + f_(Z)). (20)

The first line in each of the following equations is a direct application of Theorem 3.10, and
the remaining lines use simple sequence manipulations and Eq. (20):

v =(g-y)=(f0)+ @)+ f(G)+ f(G)) — (f(G) + f(G))*
(f () + f_(I))*
= (I

x=(f=p*=(f@")+ G+ (=) + f(G) + f(B)+ f(Q)
—(f(G) + f(B))*

=(f(@)+ f(G)+ () + f(Q)*
= (f(@) + f(G) + f(Z) + (f_(I") + f_(G) + f_(T))*
=f@)+ f(G)+ f(Z);

y'=m—B -y ={_(G)+ f(B) = ((f(G)+ f(B)) — (f(G)+ f(G)*

(f_(G) + f(G))*

= f(G).

Inequalities (3), (4), and (5) now follow easily from the non-negativityf 66), f (%),
and f (B"), respectively

y' = f(G)
< fG)+ (G =y;
x—¢ =T+ G+ f(E) - T =fG)+ f(T)

> f(G) =y
y —B = (f(G)+ f(G) — (f(G)+ f(B)) = f(G)— f(B)
< f(@G)=y"

Finally, we establish condition (6). Thafy, andg are non-negative is trivial. And the
non-negativity ofy, v, andy’ follows from their combinatorial interpretation disvectors.
(Of course, the non-negativity gf and is also a result of the Byher-Kalai theorem,
Theorem 2.4, sincé andTI" are simplicial complexes.) O
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Corollary 4.1 For sequences, f8, g, andy, the following are equivalent
(a) thereisapairof simplicial complex&sC A suchthat f= f(A), B=8(A), g= f ("),
andy = g(I");

(b)
< X (21)
v4+y <x+8 (22)
dx +B) < x-, (23)
AW +y) <y, (24)

wherey = (f — g)*andy = (g — y)*; and
(c) thereis a pair of near-conds < A with common apexsuchthat f= f (A), 8 =8(A),
g= f(I),andy = (D).

Proof:

(c)=(a) is obvious.

(a)=(b) Conditions (23) and (24) are simply conditions (1) and (2). Equation (4) and the
non-negativity ofy’ together imply O< y’ < x — ¥, and hencey < x. Equations (4)
and (5) togetherimply — 8 <y’ < x — ¥, and hence/ +y < x + B.

(b)=(c) By the Bprner-Kalai theorem (Theorem 2.4) and conditions (23) and (24), we can
construct near-cones = (vox A’)UB andl' = (vox ") UG, each with the appropriate
f-vector and Betti sequence, such thdt A’ U B, I, andT” U G are compressed
simplicial complexes. By Lemma 2.2, inequalities (21) and (22) imphZ A’ and
UG < A’ U B, respectively. The € A’ impliesvg* I'" € vg * A’, and thus
M= (eI UG C (vgx A)YUB = A. O

Remark Theimplication (a)>(b) can also be easily proved by the techniques of algebraic
shifting (e.g., [2]) (the proof is omitted). This allows the generalization of Corollary 4.1 to
chains of simplicial complexes to follow readily.

The necessary conditions of Theorem 1.1 are not sufficient:

Example 4.2 The following parameters satisfy the necessary conditions in Theorem 1.1,
but there is no pair of simplicial complexes with these parametigrs: (1,3), 8 =y =
(05 07 3)5 X = (1, 4, 3, 1), andn = O.

Proof: First, we verify that the parameters satisfy Theorem 1.1. Fgemy andny = 0, it
follows thaty’ = (0—0)* = 0. Conditions (3)—(6) are then easily verified. By the Kruskal-
Katona theorem (Theorem 2.1), conditions (1) and (2) are equivalent to the existence of
simplicial complexed™” U G and A’ U B, whereG and B are each maximal antichains,
with f-vectorsf(I')=v, f(G)=y, f(A)=yx, f(B)=g. The simplicial complexes

in figure 2 have the appropriate-vectors, and thus show that conditions (1) and (2) are
satisfied.
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o

A'UB A= (vnp+*A)UB
L ]
. /\ A
I oG = (vp*I"UG

Figure 2 Complexes for Example 4.2.

Yet there is no pair of simplicial complexes with these parameters. Any such gain
would havef-vectorsf (") = v +v¢¥_+y =(1,3)+(0,1,3)+ (0,0, 3) = (1, 4, 6) and
f(A)=x+x-+8=(14,3,1)+(0,1,4,3,1)+(0,0,3) = (1,5,10,4,1). The only
simplicial complexes with thesé-vectors ard” = (vo* ') UG andA = (vg* A’) U B
as in figure 2. And, up to symmetry, there are only two ways to chbasga subcomplex
of A; the relative Betti sequence is eith€ 0, 1, 1) or (0, 0, 3, 3), depending on whether
or notI is chosen to contain vertek contradicting; = 0. m|

5. Reduction

Although Example 4.2 shows that the necessary conditions on parameters of pairs of sim-
plicial complexes in Theorem 1.1 are not sufficient, we can establish “partial sufficiency”
by constructing a pair of near-cones with almost the right parameters (Lemma 5.2). This
construction and Theorem 1.1 readily lead to an almost complete characterization of the
parameters of pairs of simplicial complexes (Theorem 1.2).

First, we generalize Byher and Kalai's argument (Section 2) that the Betti sequence of
anear-con&\ = (vgx A') U Bis B(A) = f(B).

Lemmab5.1 If ' C A are a pair of near-cones with a common apex= (vg* A’) U B
andl' = (v * ") UG, thenn(A,T) = f(B) — f(GNB) + f_(GNA).

Proof: We will slightly alter A andT", in ways whose effects on relative homology are
easy to measure, replacing them by a pair of near-cones whose relative homology is easy to
determine. (See [8, Sections 9 and 43] for details of the basic relative homology techniques
we use.)

The first step is to remove some common faces. Fac&sdannot contain the common
apexvg, S0G € A’ U B, and thusG = (G N A’) U (G N B). SinceB andG are sets of
maximal faces iMA andI" respectivelyG N B = G\ A’ is a set of faces that are maximal
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in both A andT; thereforeA® = A — (G N B) andT'® = I' — (G N B) are simplicial
complexes. Removing the same set of faces from a pair of simplicial complexes does not
change their relative homology, so

n(A,T) =n(A®, 1), (25)

LetG'=G - (GNB)=GNA/,soG' C A’ andI'® = (vgx ") UG'. Also letB'=B—
(GNB),soA® = (ygx A)U B, and

B(AM) = f(B) = f(B)— 1(GNB). (26)

The second step is to tuiif? into a cone by adding faces, keeping track of which faces
are added. LeF® = vy % (I U G’), a cone. The only difference between®, '®) and
(A, TD) is that for everyi-dimensional facdc € G/, there is ani(+ 1)-dimensional
facevo * F € A whose entire boundary is in bofH? andI'®, but is itself inI"® and
notin'M. Thus, the difference betwegiiA®, D) andy (AL, I'@) is counted, with a
dimension shift of 1, byf (G’) = f (G N A’), so

n(AD, TD) =5(A®, T@) 4+ f_(GNA). (27)
Finally, sincel’® is a cone and hence acyclic, [8, Theorem 43.1] implies
n(A(l)’ F(Z)) — ,B(A(l)). (28)
The lemma follows by stringing together Egs. (25)—(28). O
The proof of Lemma 5.1 shows that, at least for near-cones, facesiiB are somewhat
extraneous, in that they affect neithemor f — g. For a pair of complexes that are not near-
cones, we will remove the “equivalent” & N B, in order to construct a pair of near-cones
with almost the right parameters. Equations (13) and (14) suggest that the “equivalent” of
G N B in Theorem 3.10 is5; the proof of Theorem 1.1 shows th&{G’) = ', and then
Eq. (13) implies thaff (G) =y — f(G') =y — y’. We therefore subtragt — y’ from both
y andg, and use/’ andg’ = 8 — (y — y’) in place ofy andg, respectively.

Lemma 5.2 If (x, ¥, B8, v, n) satisfy conditiong1)—(6), then (x, ¥, 8’,y’, n) are the
parameters for a pair of near-congwherey’ = (n — (B —y))*andp’ = (8 —y) + .

Proof: By (5) and (6),y’ andg’ are non-negative; by (3), < y andp’ < 8. It follows
from (1) and (2), respectively, then, that

A x+B)<dax+B <x-,
and

AW +y) =0y +y) <y
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Also, condition (4) may be restated as
v+y <X,

and hence) + y' < x < x + B’ andy <y 4y’ < x, sincey’ andg’ are non-negative.
Corollary 4.1 then implies that we may construct a pair of near-cdnes,(vo*I'") U G’
andA = (vox A’) UB’, each with the propef -vector and Betti sequence, such that A.

It only remains to show that(A, I') = 5. Examining the proof of Corollary 4.1, we see
thatf (B’) = 8(A)=p'andf (G') =8(") =y’,andso, by Eq. (11 (A") = (f —8)*=x
and f (I'")=(g — y)*=v. We also see thdt’ U G’ and A’ are each compressed. Now,
fUG) =y 4y < x = f(A),sobyLemma2.Z’UG < A’. ThenG'NA' =G/,
and, sinceA’ andB’ are disjoint,G' N B’ = . Lemma 5.1 then implies that

nAD)=FfBY+ . GC)=p+y. =B—y+y' +y.
=B—yv+O-—B-V)'+O-B-—vN)=B—y+O—B—-v)
=1. n

Subtracting the same quantity from botland8 does not changg — v, or x, ¥, n, or
eveny’, since the definition of/’ is in terms of g — y where it involvesg andy at all.
Thus, if we only care aboyt — y, and notg andy separately, we do have a complete
characterization of parameters (Theorem 1.2); furthermore, the characterization for all pairs
of simplicial complexes reduces to the characterization for pairs of near-cones, as in the
single simplicial complex case.

Proof of Theorem 1.2:

(c)=(a) is trivial.

(a)=(b) LetA andr” be the pair of complexes achieving the reduced paramgtets, ¢, n),
and letA andrI’ have (non-reduced) parametéxs v, B8, v, n), S0¢p = B —y. We show
that the necessary conditions (1)-(6) of Theorem 1.1 imply the conditions in (b). Con-
ditions (2) and (3) imply condition (8). Condition (3) and the definitiongdfimply
B’ < B; along with condition (1), this implies condition (7). The non-negativityBof
follows from condition (5), and the non-negativity of the other parameters in (10) follows
from condition (6). Finally, condition (9) is simply condition (4).

(b)=(c) Sincep’ is defined to be + y’, it suffices to show thaty, v, 8’, y’, n) are the
parameters for a pair of near-cones. But by Lemma 5.2, then, we only neggtidimtl
sothat.y’' =(n— (B —y)*; B =B —y)+vy;and(x, ¥, B, y, n) satisfy conditions
(1)—(6). Letg = p'andy = y';then(n—(B—y)* = —B' =y N =m—¢) =y’
and(B —y)+y = (B —y')+y = B/, as desired, so it only remains to show that
(x, v, B, vy, n) satisfy conditions (1)—(6). Conditions (1), (2), (4), and (6) are simply
restatements of conditions (7), (8), (9), and (10), respectively. The non-negatiyity of
implies condition (5). And condition (3) is satisfied with equality. o
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Remark The implication (a}(c) of Theorem 1.2 also follows directly from the decom-
position of Theorem 3.10: Simply construct a pair of near-cones uSingnd B” as in
Lemma 5.2, ignorings.
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