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Abstract. We find strong necessary conditions on thef -vectors, Betti sequences, and relative Betti sequence of
a pair of simplicial complexes. We also present an example showing that these conditions are not sufficient. If
only thedifferencebetween two Betti sequences is specified, and not the individual Betti sequences, then the char-
acterization is complete, and the characterization of all pairs of simplicial complexes matches the characterization
of pairs of near-cones. Our necessary conditions rely upon a combinatorial decomposition of pairs of simplicial
complexes that reflects the homology and relative homology of the complexes.
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1. Introduction

Given a class of simplicial complexes, it is always interesting to ask which vectors can
be the f -vector of some complex in that class (see, e.g., [1]). For instance, the Bj¨orner-
Kalai theorem [2, Theorem 1.1] (restated here as Theorem 2.4) characterizes which vectors
can be thef -vector of a simplicial complex with given Betti sequence. Put another way,
the Björner-Kalai theorem characterizes which pairs of vectors can be thef -vector and
Betti sequence of a single simplicial complex. Our main results, Theorems 1.1 and 1.2,
describe strong necessary conditions on which 5-tuples of vectors can be the twof -vectors,
two Betti sequences, and one relative Betti sequence (measuring relative homology) of a
singlepair of simplicial complexes. These theorems depend primarily upon the technique
of combinatorial decompositions, used previously [3, 10] to sharpen the Bj¨orner-Kalai
theorem.

For basic definitions of simplicial complexes and their homology and relative homology,
see, e.g., [8, Chapter 1] or [11, Section 0.3]. We allow the empty simplicial complex∅
consisting of no faces; all other complexes must contain the empty set as a(−1)-dimensional
face. We also allow the complex{∅} consisting of only the empty face, but we do distinguish
between the two complexes∅ and{∅}. Throughout this paper, asequenceθ will refer to
the special case of a sequence of integersθ = (θ−1, θ0, θ1, . . .) starting with index−1, and
having only a finite number of non-zero terms. Thef -vector of a simplicial complex1 is
the sequencef (1)= ( f−1, f0, f1, . . .), where fi = #{F ∈1 : dim F = i }. The same notion
of f -vector will apply in this paper to every finite collection of sets.

Let K be a field, fixed throughout the paper. TheBetti sequenceof a simplicial com-
plex 1 is the sequenceβ(1)= (β−1, β0, β1, . . .), where H̃i (1)= H̃i (1; K ) is the i th
reduced homology group of1 with respect toK , and βi = dimK H̃i (1). Similarly,
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the relative Betti sequenceof a pair of simplicial complexes0⊆1 is the sequence
η(1,0)= (η−1, η0, η1, . . .), where H̃i (1, 0)= H̃i (1, 0; K ) is the i th reducedrelative
homology groupof the pair(1, 0)with respect toK , andηi = dimK H̃i (1, 0). “Reduced”
homology means precisely to treat the empty set as a face of any non-empty complex, so
β0 is one less than the number of connected components of1, and hence one less than the
“unreduced”β0. Furthermore,β−1= 0, unless1={∅}, in which caseβ−1 = 1. Reduced
relative homology, which also treats the empty set as a face of any non-empty complex, is
the same as unreduced relative homology, except thatη−1({∅}, ∅)= 1; for any other pair of
complexes,η−1= 0.

The necessary conditions in Theorems 1.1 and 1.2 use several sequence functions and
relations which we now introduce. Define the usual componentwise partial order on seq-
uencesθ andσ by settingθ ≤ σ whenθi ≤ σi for all i ≥−1, and the usual componentwise
sum of sequencesθ andσ by setting(θ+σ)i = θi + σi for all i ≥−1. Let θ− be the sequence
defined by(θ−)i = θi−1 for i ≥ 0, and(θ−)−1= 0, soθ− = (0, θ−1, θ0, . . .) (Stanley [9] uses
the notationEθ = θ−).

Given an integerk ≥ 1, any integern ≥ 1 can be written uniquely in the form

n =
(

ak

k

)
+
(

ak−1

k− 1

)
+ · · · +

(
ai

i

)
such thatak > · · · > ai ≥ i > 0. Define

∂k−1(n) =
(

ak

k− 1

)
+
(

ak−1

k− 2

)
+ · · · +

(
ai

i − 1

)
(see, e.g., [4]). Further, define

∂−1(n) =
{

0 if n = 1

1 if n > 1

and∂k−1(0)= 0 fork ≥ 0. Finally, let∂θ be the sequence defined by(∂θ)i = ∂i θi for i ≥−1.
The significance of∂ is given by the Kruskal-Katona theorem (Theorem 2.1).

Let θ∗ denote the sequence whose elements are given by

θ∗i−1 = θi − θi+1+ θi+2− · · · =
∑
n≥i

(−1)n−i θn.

As a result,

θ = θ∗ + θ∗−

(because(θ−)∗ = (θ∗)−, we writeθ∗− for either). The∗ operation is linear. See Eq. (11) for
the significance of∗.
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Theorem 1.1 If 0⊆1 are simplicial complexes, and f= f (1), g= f (0), β =β(1),
γ =β(0), andη= η(1,0), then

∂(χ + β) ≤ χ−, (1)

∂(ψ + γ ) ≤ ψ−, (2)

γ ′ ≤ γ, (3)

γ ′ ≤ χ − ψ, (4)

γ ′ ≥ γ − β, (5)

χ,ψ, η, γ, β, γ ′ ≥ 0, (6)

whereχ = ( f − β)∗, ψ = (g− γ )∗, andγ ′ = (η − (β − γ ))∗.

These conditions are more easily stated in terms ofχ andψ , and it is not hard to see that
knowingχ , ψ , β, andγ is equivalent to knowingf , g, β, andγ . We therefore call the set
of vectors(χ, ψ, β, γ, η) theparametersof the pair0⊆1.

Conditions (3)–(5) and the non-negativity of the new parameterγ ′ (and ofη) are new,
while the other conditions are immediate consequences of the Bj¨orner-Kalai theorem applied
separately to1 and0.

The necessary conditions of Theorem 1.1 are insufficient (Example 4.2), but if onlyβ − γ
is specified, and notβ andγ individually, then we can find necessary and sufficient condi-
tions; this characterization is Theorem 1.2, below. In this case, the characterization for all
pairs is the same as the characterization for pairs of “near-cones,” a special combinatorially
defined class of simplicial complexes that are each homotopic to a wedge of spheres (see
Section 2).

Define thereduced parametersfor a pair of simplicial complexes to be(χ, ψ, φ, η),
whereφ=β − γ and the other parameters are as defined in Theorem 1.1.

Theorem 1.2 The following are equivalent:
(a) (χ, ψ, φ, η) are the reduced parameters for some pair of simplicial complexes0⊆1;
(b)

∂(χ + β ′) ≤ χ−, (7)

∂(ψ + γ ′) ≤ ψ−, (8)

γ ′ ≤ χ − ψ, (9)

χ,ψ, η, γ ′, β ′ ≥ 0, (10)

whereγ ′ = (η−φ)∗ andβ ′ =φ+ γ ′; and
(c) (χ, ψ, φ, η) are the reduced parameters for some pair of near-cones0⊆1.

Knowing the reduced parameters(χ, ψ, φ, η) is not the same as knowing( f, g, φ, η),
since we needβ andγ individually to computef andg fromψ andχ , but this still appears
to be the best set of four parameters to pick in an incomplete characterization.
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The proofs of Theorems 1.1 and 1.2 depend primarily upon Theorem 3.10, a decompo-
sition of the larger complex1 that captures most of the information about homology and
relative homology of the pair(1, 0). Section 3 is devoted to proving Theorem 3.10.

Some basic techniques off -vectors and Betti sequences are discussed in Section 2. The
proofs of Theorems 1.1 and 1.2 are in Sections 4 and 5, respectively.

2. Compression

A key technique in characterizingf -vectors, and one that we will use in all of our con-
structions, is compression, a canonical way to construct a simplicial complex with given
f -vector.

Definition Let S={xi1 < · · · < xik} andT ={xj1 < · · · < xjk} bek-subsets of a totally
ordered setV ={x1 < · · · < xn}. ThenS<AL T under theanti-lexicographic order if
there is aq such thatiq < jq and i p= j p for p > q. A collectionC of k-subsets ofV is
compressedif S≤AL T andT ∈ C together imply thatS∈ C, and a simplicial complex1
is compressedif 1k is compressed for everyk.

Theorem 2.1 (Kruskal-Katona [7, 6]) For a sequence f, the following are equivalent:
(a) there is a simplicial complex whose f -vector is f;
(b) ∂ f ≤ f−; and
(c) there is a(unique) compressed simplicial complex whose f -vector is f .

For a proof of the Kruskal-Katona theorem, and further discussion of the uses and gener-
alizations of compression, see [4, Section 8]. We will use the following simple observation
repeatedly in our constructions.

Lemma 2.2 If 0 and1 are compressed simplicial complexes, then f(0)≤ f (1) implies
0⊆1.

Proof: The anti-lexicographic order≤AL use to build compressed complexes is a total
order, sofk(0)≤ fk(1) implies0k⊆1k, for everyk, and the lemma follows. 2

Corollary 2.3 For sequences f and g, the following are equivalent:
(a) there is a pair of simplicial complexes0⊆1 such that f= f (1) and g= f (0);
(b)

g ≤ f,

∂g ≤ g−,

∂ f ≤ f−.
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Proof:

(a)⇒(b) Thatg≤ f is immediate from0⊆1; the other two conditions are just the Kruskal-
Katona conditions (Theorem 2.1).

(b)⇒(a) Let0 and1be the (unique) compressed simplicial complexes withf -vectorsgand
f respectively, guaranteed to exist because of the Kruskal-Katona theorem (Theorem 2.1).
Then Lemma 2.2 implies0⊆1. 2

Remark The explicit statement of Corollary 2.3 appears to be new, though implicit in the
literature. (I am grateful to Richard Stanley and Curtis Greene for pointing this out to me.)

Remark The statement and proof of Corollary 2.3 extend easily to chains of simplicial
complexes.

Björner and Kalai improved upon the Kruskal-Katona theorem by characterizing the
f -vector of a simplicial complex with prescribed Betti sequences. The characterization
uses near-cones [2, Section 4].

Definition A near-conewith apexv0 is a simplicial complex1 satisfying the following
property: For allF ∈1, if v0 6∈ F andw ∈ F , then

(F − {w}) ∪ {v0} ∈ 1.

For1a near-cone with apexv0, letB(1)={F ∈1 : F ∪ {v0} 6∈1}and1′ = {F ∈1 : v0 6∈ F,
F ∪ {v0} ∈1}; then

1 = (v0 ∗1′) ∪̇ B(1),

where∗ denotes topological join (sov0 ∗ 1′ =1′ ∪̇ {{v0} ∪̇ F : F ∈ 1′}). Both1′ and
1′ ∪̇ B(1) are subcomplexes of1. If B(1)=∅, then1 is simply acone.

Note, in particular, that∅ and{∅} are near-cones (the condition in the definition is vacuous
in this case) and that∅= v0 ∗ ∅ and{∅}= (v0 ∗ ∅) ∪̇ {∅}. If 1 is a near-cone with apexv0,
thenv0 is one of the vertices of1, unless1=∅ or {∅}.

EveryF ∈ B(1) is maximal in1, so the collection of faces inB(1) forms an antichain.
Further, f (B(1))=β(1), which follows by contractingv0 ∗1′ to v0, leaving a sphere for
every face inB(1) [2, Theorem 4.3]. Also note [2, p. 292] that

f (1′) = ( f (1)− β(1))∗. (11)

Theorem 2.4 (Björner-Kalai [2]) For sequences f andβ, the following are equivalent:
(a) there is a simplicial complex1 such that f= f (1) andβ =β(1);
(b) there is a near-cone1 such that f= f (1) andβ =β(1);
(c) ∂(χ + β)≤χ−, whereχ = ( f − β)∗.
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Proof: We will not reproduce the proof, but mention for our constructions that in the
near-cone1 = (v0 ∗1′) ∪̇ B that Björner and Kalai construct in order to prove (c)⇒(b),
1′ and1′ ∪̇ B are compressed subcomplexes, andχ = f (1′). 2

Remark Björner and Kalai [2] state the numerical condition (c) of Theorem 2.4 slightly
differently. In particular, they explicitly include the Euler-Poincar´e relation: If1 has at least
one vertex, then

1= ( f0− f1+ f2− · · ·)− (β0− β1+ β2− · · ·).

To see why Theorem 2.4(c) implies this equation, rewrite the right-hand side as

( f0− β0)− ( f1− β1)+ ( f2− β2)− · · · = ( f − β)∗−1 = χ−1.

Thus the Euler-Poincar´e relation is thatχ−1= 1 (this is how it is stated in [2]); it is not hard
to show that this condition is implicitly contained in condition (c).

3. Decomposition

In this section, we prove the decomposition theorem (Theorem 3.10) from which
Theorems 1.1 and 1.2 follow. Our model is the following theorem that implies and sharpens
the Björner-Kalai theorem (Theorem 2.4); see [3, Section 2] for details. The acyclic case
is due to Stanley [10, Theorem 1.2].

Theorem 3.1 ([3, Theorem 1.1]) Every( finite) simplicial complex1 can be written as
a disjoint union1=1′ ∪̇ B ∪̇Ä, where:
(a) 1′ is a subcomplex of1;
(b) f (B)=β(1) and B is an antichain;
(c) 1′ ∪̇ B is a subcomplex of1; and
(d) there exists a bijectionη :1′ → Ä such that for all F∈ 1′ we have F⊂ η(F) and
|η(F)− F | = 1.

Theorem 3.10 generalizes Theorem 3.1 to pairs of simplicial complexes and relative
homology.

Corollary 3.2 If 1=1′ ∪̇ B ∪̇ Ä is the decomposition of a simplicial complex1 des-
cribed in Theorem3.1, then f(1)= f (1′)+ β(1)+ f−(1′)

Proof: From the given decomposition, condition (d) impliesf (Ä)= f−(1′), and con-
dition (b) implies f (B)=β(1). Then the decomposition yieldsf (1)= f (1′) + f (B)
+ f (Ä)= f (1′)+ β(1) + f−(1′). 2

The rest of this section is devoted to proving Theorem 3.10. We start with some al-
gebraic preliminaries. Recall thatK is a field. Let1 be a simplicial complex on vertex
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setV ={x1, . . . , xn}. Let3(KV) denote the exterior algebra of the vector spaceKV ; it
has aK -vector space basis consisting of all the monomialsxF := xi1 ∧ · · · ∧ xik where
F ={xi1, . . . , xik} ⊆ V . Let I1 be the ideal of3(KV) generated by all{xF : F 6∈1}. The
quotient algebra3[1] :=3(KV)/I1 is called theexterior face ring of1 (overK ) (see [2]
or [3] for more details).

BecauseK is a field, dimK H̃ i (1; K )= dimK H̃i (1;K ) [8, Section 53], wherẽHi (1;K )
denotes thei th reduced cohomology group with respect toK , and may be computed with
a coboundary operator [8, Section 42]. It is not hard to see that, in the exterior face ring,
the standard coboundary operatorδ :3[1]→3[1] is simply right multiplication by
v= x1+ · · · + xn ∈ 3[1]; i.e., δy= y ∧ v.

Let 0 be a subcomplex of1. Since0 ⊆ 1 is a simplicial complex in its own right, we
may define3[0] andδ0 in exactly the same way.

Now let6=1 − 0, the poset of faces in1 but not0. Relative (co)homology of the
pair (1, 0) depends only6; in particular, we may compute relative (co)homology of
(1, 0) by a (co)boundary operator on6 (see, e.g., [8, Section 43]). Define3[6] to be
the ideal in3[1] generated by the faces in6. (This is analogous to the commutative case
[9, p. 205].) Because3[6] is an ideal,s∈3[6] implies δs∈3[6]. The coboundary
operatorδ6 :3[6]→3[6] is just the restriction ofδ to 3[6], i.e., δ6x= δx (for all
x ∈3[6]).

Also because3[6] is an ideal, we may interpret3[0] as a quotient algebra3[1]/3[6];
for x ∈3[1], definex̃= x+3[6] ∈3[0]. Then forx ∈3[1], we haveδ0 x̃= δx+3[6].
From now on, we will interpret3[0] andδ0 in this way.

Lemma 3.3 For any0 ⊆ 1 and6=1− 0,
(a) kerδ0 ={x ∈3[1] : δx ∈3[6]}; and
(b) imδ0 = im δ +3[6].

Proof: By the definitions of3[0] (as the quotient algebra3[1]/3[6]) andδ0,

kerδ0 = {x̃ ∈3[0] : δx +3[6] ∈ 3[6]}= {x +3[6] : x ∈ 3[1], δx ∈ 3[6]}
= {x ∈3[1] : δx ∈ 3[6]} +3[6]

= {x ∈3[1] : δx ∈ 3[6]},
proving (a).

The definitions of3[0] andδ0 also imply imδ0 ={δx +3[6] : x ∈ 3[1]}= {δx : x ∈
3[1]} +3[6]= im δ +3[6], proving (b). 2

Lemma 3.4 If 0 ⊆ 1, then3[0]/(kerδ0) ∼= 3[1]/{x ∈ 3[1] : δx ∈ 3[6]}.
Proof: Let6 = 1− 0 as before. Then by Lemma 3.3(a),

3[0]/ kerδ0 ∼= (3[1]/3[6])/ kerδ0 ∼= 3[1]/(kerδ0 +3[6])

∼= 3[1]/({x ∈ 3[1] : δx ∈ 3[6]} +3[6])

∼= 3[1]/{x ∈ 3[1] : δx ∈ 3[6]},
as desired. 2
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Lemma 3.5 For any0 ⊆ 1 and6 = 1− 0,
(a) kerδ6 = kerδ ∩3[6]; and
(b) imδ6 ={δx : x ∈ 3[6]}.

Proof: Part (b) is immediate from the definition ofδ6 . The definition ofδ6 also implies
kerδ6 ={x ∈ 3[6] : δx = 0}= kerδ ∩3[6]. 2

Extend the f− notation from sequences to graded vector spaces in the obvious way.
Namely, for a graded vector spaceV whosei th graded component isVi , let V− denote the
graded vector space withi th graded component(V−)i =Vi−1.

Lemma 3.6 As graded vector spaces,

{x ∈ 3[1] : δx ∈ 3[6]}−/(kerδ +3[6])− ∼= (im δ ∩3[6])/{δs : s ∈ 3[6]}.

Proof: The isomorphism is induced byδ. The lemma then follows from the following
four simple claims, the first two of which establish that the mapδ is well-defined on the
whole space and on the quotient space, respectively, and the last two of which establish
injectivity and surjectivity, respectively.

Claim 1. δ{x ∈ 3[1] : δx ∈ 3[6]} ⊆ im δ ∩3[6].
This is obvious.

Claim 2. δ(kerδ +3[6]) ⊆ {δs : s∈3[6]}.
Let x ∈ kerδ+3[6], sox = z+s, wherez ∈ kerδ ands ∈ 3[6]. Thenδx= δz+ δs=
0+ δs ∈ {δs : s∈3[6]}.

Claim 3. If δx ∈ {δs : s ∈ 3[6]}, thenx ∈ kerδ+3[6].
If δx ∈ {δs : s∈3[6]}, thenδx= δs for somes∈3[6]. Thereforeδ(x − s) = 0, so
x − s ∈ kerδ, and thusx = (x − s)+ s ∈ kerδ +3[6].

Claim 4. If y∈ im δ∩3[6], then there is anx ∈ {x ∈3[1] : δx ∈3[6]}such thatδx = y. If
y∈ im δ∩3[6], theny∈ im δ, so there is anx such thatδx= y. But thenδx= y∈3[6],
sox ∈ {x ∈3[1] : δx ∈3[6]}. 2

We need an improved version of the following lemma.

Lemma 3.7 ([3, Lemma 3.2]) Let1 be any simplicial complex with simplicial cobound-
ary operatorδ :3[1] → 3[1]. If k ∈ kerδ and x is a vertex of1, then k∧ x ∈ im δ.

Corollary 3.8 If δk∈3[6] and x is a vertex of1, then k∧ x ∈ im δ +3[6].

Proof: If x ∈6, thenk∧ x ∈3[6]. Otherwise,x ∈ 0, and we may apply Lemma 3.7 to
0 and coboundary operatorδ0 :3[0] → 3[0]. By Lemma 3.3, kerδ0 = {k ∈ 3[1] : δk ∈
3[6]} and imδ0 = im δ +3[6], and then the corollary follows. 2
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The acyclic version (imµ= kerµ) of the following result is due to Stanley [10,
Lemma 1.1].

Lemma 3.9 ([3, Lemma 3.1]) Let D be a directed graph on the vertex set X, and let KX
be the K-vector space with basis X. Suppose there is a linear transformationµ : KX→ KX
satisfying
(a) if x ∈ X, thenµ(x) ∈ spanK {y ∈ X : (x, y) is an edge of D}; and

(b) imµ ⊆ kerµ (i.e., µ2 = 0).
Also assume that Y is a subset of X whose image in KX/(imµ) is a basis for KX/(imµ)

and that Z is a subset of Y whose image in KX/(kerµ) is a basis for KX/(kerµ). Then
there is a matching of Z and X− Y in D.

The following theorem is at the heart of our main results (Theorems 1.1 and 1.2). The
statement and proof reduce to those of Theorem 3.1 in the case of0 = ∅.

Theorem 3.10 Let0 ⊆ 1 be a pair of simplicial complexes. Then1 can be written as a
disjoint union1 = 0′ ∪̇ G′ ∪̇6′ ∪̇ Ḡ ∪̇ B′ ∪̇Ä such that(see figure1)
(a) 0′, 0′ ∪̇ G′, 0′ ∪̇ G′ ∪̇ 6′, 0′ ∪̇ G′ ∪̇ 6′ ∪̇ Ḡ, and0′ ∪̇ G′ ∪̇ 6′ ∪̇ Ḡ ∪̇ B′ are sub-

complexes;
(b) G′ andḠ ∪̇ B′ are antichains;
(c)

f (0) = f (0′)+ f−(0′)+ f (G′)+ f (Ḡ), (12)

β(0) = f (G′)+ f (Ḡ), (13)

β(1) = f (Ḡ)+ f (B′), (14)

η(1,0) = f−(G′)+ f (B′); (15)

and

(d) there exists a bijectionµ : (0′ ∪̇G′ ∪̇6′)→Äsuch that F⊆ µ(F)and |µ(F)− F | =1
for all F ∈ 0′ ∪̇ G′ ∪̇6′.

Figure 1. Theorem 3.10.
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Proof: Define ideals of3[1]

I1 = {x ∈ 3[1] : δx ∈ 3[6]},
I2 = kerδ +3[6],

I3 = kerδ,

I4 = kerδ ∩ (im δ +3[6]), and

I5 = im δ

(these definitions are not so odd, in light of Lemmas 3.3–3.6). Also let

Qi = 3[1]/Ii

for eachi . It is not hard to see that, for eachi , Ii ⊇ Ii+1, and thusQi ⊆ Qi+1.
We now inductively define a set of face monomials, using the lexicographic total order

from Section 2. LetLi be the lexicographically least set of face monomials such that
L1 ∪̇ · · · ∪̇ Li is a basis forQi (i = 1, . . . ,5). (SoL1 is the lexicographically least basis for
Q1; L2 is lexicographically least such thatL1 ∪̇ L2 is a basis forQ2; etc.) Thus, ifF ∈1,
thenxF 6∈ L1 ∪̇ · · · ∪̇ Li if and only if

xF =a1xF1 + · · · + at x
Ft + k, (16)

wherek ∈ Ii and, for eachj , we haveaj ∈ K , Fj ∈ 1, andFj <L F . It also follows that
Li is a basis forIi−1/Ii (let I0 = 3[1]). Finally, let

0′ = {F ∈ 1 : xF ∈ L1},
G′ = {F ∈ 1 : xF ∈ L2},
6′ = {F ∈ 1 : xF ∈ L3},
Ḡ = {F ∈ 1 : xF ∈ L4}, and

B′ = {F ∈ 1 : xF ∈ L5}

(see figure 1).

Proof of (a). SupposexF 6∈ L1 ∪̇ · · · ∪̇ Li andF ⊂ H . We need to show thatxH 6∈ L1 ∪̇ · · ·
∪̇ Li . Multiply Eq. (16) on the right byxH−F :

xH = ±(xF ∧ xH−F ) = ±
(

t∑
i=1

ai x
Fi ∧ xH−F

)
± (k ∧ xH−F )

=

 ∑
Fi ∪̇(H−F)∈1
Fi∩(H−F)=∅

±ai x
Fi ∪̇(H−F)

± (k ∧ xH−F ). (17)
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Now, Fi ∪̇(H−F)<L F ∪̇ (H−F)= H , andk∧xH−F ∈ Ii , so Eq. (17) impliesxH 6∈ L1 ∪̇
· · · ∪̇ Li .

Proof of (b). The proofs thatG′ andḠ ∪̇ B′ are antichains are similar, so we prove them
simultaneously, with the argument forG′ in brackets. The technique is similar to that used
in (a). To show that̄G ∪̇ B′ is an antichain [G′ is an antichain], suppose thatxF ∈ L4 ∪̇ L5

[xF ∈ L2] andF ⊂ H . We need to show thatxH 6∈ L4 ∪̇ L5 [xH 6∈ L2]. Let xj ∈ H − F , and
let F ′ = H −{xj }. Since0′ ∪̇ G′ ∪̇ 6′ is a subcomplex [0′ is a subcomplex] andF 6∈ 0′
∪̇G′ ∪̇6′ [F 6∈ 0′], it follows that F ′ 6∈0′ ∪̇G′ ∪̇6′ [F ′ 6∈0′] also, soxF ′ 6∈ L1 ∪̇ L2 ∪̇ L3

[xF ′ 6∈ L1] and

xF ′ =
t∑

i=1

ai x
Fi + k,

wherek ∈ kerδ [δk ∈ 3[6]], ai ∈ K , andFi <L F ′.
Thus,

xH = ±(xF ′ ∧ xj ) = ±
(

t∑
i=1

ai x
Fi ∧ xj

)
± (k ∧ xj )

=

 ∑
Fi∪{xj }∈1

xj 6∈Fi

±ai x
Fi∪{xj }

± (k ∧ xj ). (18)

Now, Fi ∪ {xj }<L F ′ ∪ {xj }= H , andk∧ xj ∈ im δ [k∧ xj ∈ im δ+3[6] ⊆ kerδ+3[6]]
by Lemma 3.7 [Corollary 3.8], so Eq. (18) impliesxH 6∈ L4 ∪̇ L5 [xH 6∈ L2].

Proof of (d). Let D be the directed graph whose vertex set is1, and whose edges are the
pairs(F, H)with F ⊂ H ∈ 1and|H−F | =1. Becauseδ :3[1] → 3[1] is a coboundary
operator,µ = δ satisfies all the conditions of Lemma 3.9. TakingZ = 0′ ∪̇ G′ ∪̇ 6′ and
Y = 0′ ∪̇ G′ ∪̇6′ ∪̇ Ḡ ∪̇ B′, Lemma 3.9 gives a matching

µ :0′ ∪̇ G′ ∪̇6′ → 1− (0′ ∪̇ G′ ∪̇6′ ∪̇ Ḡ ∪̇ B′) = Ä
satisfying the conditions in (d).

Proof of (c). The unionL4 ∪̇ L5 is a basis of kerδ/im δ, and thusβ(1) = f (Ḡ)+ f (B′),
proving Eq. (14).

Similarly, L2 is a basis for

{x ∈ 3[1] : δx ∈ 3[6]}/(kerδ +3[6]);
meanwhile,L4 is a basis for

kerδ/(kerδ ∩ (im δ +3[6])) ∼= (kerδ + (im δ +3[6]))/(im δ +3[6])

∼= (kerδ +3[6])/(im δ +3[6]),
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where the first isomorphism is via the standard isomorphismM/(N ∩ M) ∼= (M + N)/N
(e.g., [5, p. 176]) and the second follows from imδ ⊆ kerδ. Therefore

f (G′)+ f (Ḡ) = dim{x ∈ 3[1] : δx ∈ 3[6]}/(kerδ +3[6])

+ dim(kerδ +3[6])/(im δ +3[6])

= dim{x ∈ 3[1] : δx ∈ 3[6]}/(im δ +3[6])

= β(0), (19)

by Lemma 3.3, proving Eq. (13).
Now, L2 is a basis for{x ∈ 3[1] : δx ∈ 3[6]}/(kerδ +3[6]), which is isomorphic to

(im δ ∩3[6])/{δx : x ∈ 3[6]} with a dimension shift, by Lemma 3.6, so

f−(G′) = dim(im δ ∩3[6])/{δx : x ∈ 3[6]}.

And L5 is a basis for

(kerδ ∩ (im δ +3[6]))/im δ ∼= (im δ + (kerδ ∩3[6]))/im δ

∼= (kerδ ∩3[6])/(im δ ∩ (kerδ ∩3[6]))
∼= (kerδ ∩3[6])/(im δ ∩3[6]),

where the first and third isomorphisms are because imδ ⊆ kerδ, and the second isomor-
phism isM/(N ∩ M) ∼= (M + N)/N again, so

f (B′) = dim((kerδ ∩3[6])/(im δ ∩3[6])).

Therefore,

f (B′)+ f−(G′) = dim((kerδ ∩3[6])/(im δ ∩3[6]))

+ dim((im δ ∩3[6])/{δx : x ∈ 3[6]})
= dim((kerδ ∩3[6])/{δx : x ∈ 3[6]})
= η(1,0),

by Lemma 3.5, proving Eq. (15).
Finally, to establish Eq. (12), note thatL1 is the lexicographically least basis of3[1]/{x ∈

3[1] : δx ∈ 3[6]}, which is isomorphic to3[0]/ kerδ0, by Lemma 3.4. This is precisely
the definition ofL1, and hence of0′, needed to ensure that0 = 0′ ∪̇G∗ ∪̇Ä0 (for someG∗

andÄ0) is the decomposition of0 described by Theorem 3.1. Corollary 3.2 and Eq. (19)
then imply f (0) = f (0′)+ β(0)+ f−(0′) = f (0′)+ f (G′)+ f (Ḡ)+ f−(0′). 2

4. Numerical conditions

In this section, we use the decomposition of Theorem 3.10 to prove the necessary numerical
conditions of Theorem 1.1, and a corollary (Corollary 4.1) stating necessary and sufficient
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conditions for(χ, ψ, β, γ ) only. We also demonstrate that the necessary conditions of
Theorem 1.1 are not sufficient (Example 4.2).

Proof of Theorem 1.1: Conditions (1) and (2) are immediate from the Bj¨orner-Kalai
theorem (Theorem 2.4), since both1 and0 are simplicial complexes.

We next establish combinatorial interpretations ofψ , χ , andγ ′. First, note that the
matching of Theorem 3.10 implies

f (Ä)= f−(0′)+ f−(G′)+ f−(6′). (20)

The first line in each of the following equations is a direct application of Theorem 3.10, and
the remaining lines use simple sequence manipulations and Eq. (20):

ψ = (g− γ )∗ = (( f (0′)+ f−(0′)+ f (G′)+ f (Ḡ))− ( f (G′)+ f (Ḡ)))∗

= ( f (0′)+ f−(0′))∗

= f (0′);
χ = ( f − β)∗ = (( f (0′)+ f (G′)+ f (6′)+ f (Ḡ)+ f (B′)+ f (Ä))

− ( f (Ḡ)+ f (B′)))∗

= ( f (0′)+ f (G′)+ f (6′)+ f (Ä))∗

= ( f (0′)+ f (G′)+ f (6′)+ ( f−(0′)+ f−(G′)+ f−(6′))∗

= f (0′)+ f (G′)+ f (6′);
γ ′ = (η − (β − γ ))∗ = ( f−(G′)+ f (B′)− (( f (Ḡ)+ f (B′))− ( f (G′)+ f (Ḡ)))∗

= ( f−(G′)+ f (G′))∗

= f (G′).

Inequalities (3), (4), and (5) now follow easily from the non-negativity off (Ḡ), f (6′),
and f (B′), respectively

γ ′ = f (G′)
≤ f (G′)+ f (Ḡ) = γ ;

χ − ψ = ( f (0′)+ f (G′)+ f (6′))− f (0′) = f (G′)+ f (6′)
≥ f (G′) = γ ′;

γ − β = ( f (G′)+ f (Ḡ))− ( f (Ḡ)+ f (B′)) = f (G′)− f (B′)
≤ f (G′) = γ ′.

Finally, we establish condition (6). Thatη, γ , andβ are non-negative is trivial. And the
non-negativity ofχ ,ψ , andγ ′ follows from their combinatorial interpretation asf -vectors.
(Of course, the non-negativity ofχ andψ is also a result of the Bj¨orner-Kalai theorem,
Theorem 2.4, since1 and0 are simplicial complexes.) 2
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Corollary 4.1 For sequences f, β, g, andγ, the following are equivalent:
(a) there is a pair of simplicial complexes0⊆1such that f= f (1), β =β(1), g= f (0),

andγ = β(0);
(b)

ψ ≤ χ, (21)

ψ + γ ≤ χ + β, (22)

∂(χ + β) ≤ χ−, (23)

∂(ψ + γ ) ≤ ψ−, (24)

whereχ = ( f − β)∗ andψ = (g− γ )∗; and
(c) there is a pair of near-cones0⊆1with common apex, such that f= f (1), β =β(1),

g = f (0), andγ = β(0).

Proof:

(c)⇒(a) is obvious.
(a)⇒(b) Conditions (23) and (24) are simply conditions (1) and (2). Equation (4) and the

non-negativity ofγ ′ together imply 0≤ γ ′ ≤ χ − ψ , and henceψ ≤ χ . Equations (4)
and (5) together implyγ − β ≤ γ ′ ≤ χ − ψ , and henceψ + γ ≤ χ + β.

(b)⇒(c) By the Björner-Kalai theorem (Theorem 2.4) and conditions (23) and (24), we can
construct near-cones1 = (v0∗1′) ∪̇ B and0 = (v0∗0′) ∪̇G, each with the appropriate
f -vector and Betti sequence, such that1′, 1′ ∪̇ B, 0′, and0′ ∪̇ G are compressed
simplicial complexes. By Lemma 2.2, inequalities (21) and (22) imply0′ ⊆1′ and
0′ ∪̇ G ⊆ 1′ ∪̇ B, respectively. Then0′ ⊆ 1′ implies v0 ∗ 0′ ⊆ v0 ∗ 1′, and thus
0 = (v0 ∗ 0′) ∪̇ G ⊆ (v0 ∗1′) ∪̇ B = 1. 2

Remark The implication (a)⇒(b) can also be easily proved by the techniques of algebraic
shifting (e.g., [2]) (the proof is omitted). This allows the generalization of Corollary 4.1 to
chains of simplicial complexes to follow readily.

The necessary conditions of Theorem 1.1 are not sufficient:

Example 4.2 The following parameters satisfy the necessary conditions in Theorem 1.1,
but there is no pair of simplicial complexes with these parameters:ψ = (1, 3), β = γ =
(0, 0, 3), χ = (1, 4, 3, 1), andη = 0.

Proof: First, we verify that the parameters satisfy Theorem 1.1. Fromβ = γ andη = 0, it
follows thatγ ′ = (0−0)∗ = 0. Conditions (3)–(6) are then easily verified. By the Kruskal-
Katona theorem (Theorem 2.1), conditions (1) and (2) are equivalent to the existence of
simplicial complexes0′ ∪̇ G and1′ ∪̇ B, whereG and B are each maximal antichains,
with f -vectors f (0′)=ψ, f (G)= γ, f (1′)=χ, f (B)=β. The simplicial complexes
in figure 2 have the appropriatef -vectors, and thus show that conditions (1) and (2) are
satisfied.
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Figure 2. Complexes for Example 4.2.

Yet there is no pair of simplicial complexes with these parameters. Any such pair0 ⊆ 1
would havef -vectors f (0) = ψ +ψ− + γ = (1, 3)+ (0, 1, 3)+ (0, 0, 3) = (1, 4, 6) and
f (1) = χ + χ− + β = (1, 4, 3, 1)+ (0, 1, 4, 3, 1)+ (0, 0, 3) = (1, 5, 10, 4, 1). The only
simplicial complexes with thesef -vectors are0 = (v0 ∗ 0′) ∪̇ G and1 = (v0 ∗1′) ∪̇ B
as in figure 2. And, up to symmetry, there are only two ways to choose0 as a subcomplex
of 1; the relative Betti sequence is either(0, 0, 1, 1) or (0, 0, 3, 3), depending on whether
or not0 is chosen to contain vertexq, contradictingη = 0. 2

5. Reduction

Although Example 4.2 shows that the necessary conditions on parameters of pairs of sim-
plicial complexes in Theorem 1.1 are not sufficient, we can establish “partial sufficiency”
by constructing a pair of near-cones with almost the right parameters (Lemma 5.2). This
construction and Theorem 1.1 readily lead to an almost complete characterization of the
parameters of pairs of simplicial complexes (Theorem 1.2).

First, we generalize Bj¨orner and Kalai’s argument (Section 2) that the Betti sequence of
a near-cone1 = (v0 ∗1′) ∪̇ B is β(1) = f (B).

Lemma 5.1 If 0 ⊆ 1 are a pair of near-cones with a common apex, 1 = (v0 ∗1′) ∪̇ B
and0 = (v0 ∗ 0′) ∪̇ G, thenη(1,0) = f (B)− f (G ∩ B)+ f−(G ∩1′).

Proof: We will slightly alter1 and0, in ways whose effects on relative homology are
easy to measure, replacing them by a pair of near-cones whose relative homology is easy to
determine. (See [8, Sections 9 and 43] for details of the basic relative homology techniques
we use.)

The first step is to remove some common faces. Faces inG cannot contain the common
apexv0, soG ⊆ 1′ ∪̇ B, and thusG = (G ∩ 1′) ∪̇ (G ∩ B). SinceB andG are sets of
maximal faces in1 and0 respectively,G ∩ B = G\1′ is a set of faces that are maximal
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in both1 and0; therefore1(1)=1 − (G ∩ B) and0(1) = 0 − (G ∩ B) are simplicial
complexes. Removing the same set of faces from a pair of simplicial complexes does not
change their relative homology, so

η(1,0) = η(1(1), 0(1)
)
. (25)

Let G′ =G − (G∩ B)=G∩1′, soG′ ⊆1′ and0(1)= (v0 ∗0′) ∪̇ G′. Also let B′ = B−
(G ∩ B), so1(1) = (v0 ∗1′) ∪̇ B′, and

β
(
1(1)

) = f (B′) = f (B)− f (G ∩ B). (26)

The second step is to turn0(1) into a cone by adding faces, keeping track of which faces
are added. Let0(2) = v0 ∗ (0′ ∪̇G′), a cone. The only difference between(1(1), 0(2)) and
(1(1), 0(1)) is that for everyi -dimensional faceF ∈ G′, there is an (i + 1)-dimensional
facev0 ∗ F ∈ 1(1) whose entire boundary is in both0(1) and0(2), but is itself in0(2) and
not in0(1). Thus, the difference betweenη(1(1), 0(1)) andη(1(1), 0(2)) is counted, with a
dimension shift of 1, byf (G′) = f (G ∩1′), so

η
(
1(1), 0(1)

) = η(1(1), 0(2)
)+ f−(G ∩1′). (27)

Finally, since0(2) is a cone and hence acyclic, [8, Theorem 43.1] implies

η
(
1(1), 0(2)

) = β(1(1)
)
. (28)

The lemma follows by stringing together Eqs. (25)–(28). 2

The proof of Lemma 5.1 shows that, at least for near-cones, faces inG∩ B are somewhat
extraneous, in that they affect neitherη nor f −g. For a pair of complexes that are not near-
cones, we will remove the “equivalent” ofG∩ B, in order to construct a pair of near-cones
with almost the right parameters. Equations (13) and (14) suggest that the “equivalent” of
G ∩ B in Theorem 3.10 isḠ; the proof of Theorem 1.1 shows thatf (G′)= γ ′, and then
Eq. (13) implies thatf (Ḡ)= γ − f (G′)= γ − γ ′. We therefore subtractγ − γ ′ from both
γ andβ, and useγ ′ andβ ′ = β − (γ − γ ′) in place ofγ andβ, respectively.

Lemma 5.2 If (χ, ψ, β, γ, η) satisfy conditions(1)–(6), then (χ, ψ, β ′, γ ′, η) are the
parameters for a pair of near-cones, whereγ ′ = (η − (β − γ ))∗ andβ ′ = (β − γ )+ γ ′.

Proof: By (5) and (6),γ ′ andβ ′ are non-negative; by (3),γ ′ ≤ γ andβ ′ ≤ β. It follows
from (1) and (2), respectively, then, that

∂(χ + β ′) ≤ ∂(χ + β) ≤ χ−,

and

∂(ψ + γ ′) ≤ ∂(ψ + γ ) ≤ ψ−.
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Also, condition (4) may be restated as

ψ + γ ′ ≤ χ,

and henceψ + γ ′ ≤ χ ≤ χ + β ′ andψ ≤ ψ + γ ′ ≤ χ , sinceγ ′ andβ ′ are non-negative.
Corollary 4.1 then implies that we may construct a pair of near-cones,0 = (v0 ∗0′) ∪̇ G′

and1 = (v0∗1′)∪̇B′, each with the properf -vector and Betti sequence, such that0 ⊆ 1.
It only remains to show thatη(1,0) = η. Examining the proof of Corollary 4.1, we see

that f (B′)=β(1)=β ′ and f (G′)=β(0)= γ ′, and so, by Eq. (11),f (1′) = ( f−β ′)∗ =χ
and f (0′)= (g− γ ′)∗ =ψ . We also see that0′ ∪̇ G′ and1′ are each compressed. Now,
f (0′ ∪̇G′) = ψ + γ ′ ≤ χ = f (1′), so by Lemma 2.2,0′ ∪̇G′ ⊆ 1′. ThenG′ ∩1′ = G′,
and, since1′ andB′ are disjoint,G′ ∩ B′ = ∅. Lemma 5.1 then implies that

η(1,0) = f (B′)+ f−(G′) = β ′ + γ ′− = β − γ + γ ′ + γ ′−
= β − γ + (η − (β − γ ))∗ + (η − (β − γ ))∗− = β − γ + (η − (β − γ ))
= η. 2

Subtracting the same quantity from bothγ andβ does not changeβ − γ , orχ,ψ, η, or
evenγ ′, since the definition ofγ ′ is in terms ofβ − γ where it involvesβ andγ at all.
Thus, if we only care aboutβ − γ , and notβ andγ separately, we do have a complete
characterization of parameters (Theorem 1.2); furthermore, the characterization for all pairs
of simplicial complexes reduces to the characterization for pairs of near-cones, as in the
single simplicial complex case.

Proof of Theorem 1.2:

(c)⇒(a) is trivial.
(a)⇒(b) Let1and0 be the pair of complexes achieving the reduced parameters(χ, ψ, φ, η),

and let1 and0 have (non-reduced) parameters(χ, ψ, β, γ, η), soφ = β−γ . We show
that the necessary conditions (1)–(6) of Theorem 1.1 imply the conditions in (b). Con-
ditions (2) and (3) imply condition (8). Condition (3) and the definition ofβ ′ imply
β ′ ≤ β; along with condition (1), this implies condition (7). The non-negativity ofβ ′

follows from condition (5), and the non-negativity of the other parameters in (10) follows
from condition (6). Finally, condition (9) is simply condition (4).

(b)⇒(c) Sinceβ ′ is defined to beφ + γ ′, it suffices to show that(χ, ψ, β ′, γ ′, η) are the
parameters for a pair of near-cones. But by Lemma 5.2, then, we only need findβ andγ
so that:γ ′ = (η− (β − γ ))∗; β ′ = (β − γ )+ γ ′; and(χ, ψ, β, γ, η) satisfy conditions
(1)–(6). Letβ = β ′ andγ = γ ′; then(η−(β−γ ))∗ = (η− (β ′ −γ ′))∗ = (η−φ)∗ = γ ′
and(β − γ ) + γ ′ = (β ′ − γ ′) + γ ′ = β ′, as desired, so it only remains to show that
(χ, ψ, β ′, γ ′, η) satisfy conditions (1)–(6). Conditions (1), (2), (4), and (6) are simply
restatements of conditions (7), (8), (9), and (10), respectively. The non-negativity ofβ ′

implies condition (5). And condition (3) is satisfied with equality. 2
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Remark The implication (a)⇒(c) of Theorem 1.2 also follows directly from the decom-
position of Theorem 3.10: Simply construct a pair of near-cones usingG′ and B′ as in
Lemma 5.2, ignoringḠ.
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