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Abstract. A coxeter matroid is a generalization of matroid, ordinary matroid being the case corresponding to
the family of Coxeter groupsAn, which are isomorphic to the symmetric groups. A basic result in the subject is a
geometric characterization of Coxeter matroid in terms of the matroid polytope, a result first stated by Gelfand and
Serganova. This paper concerns properties of the matroid polytope. In particular, a criterion is given for adjacency
of vertices in the matroid polytope.
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1. Introduction

This paper continues a series of investigations [2, 3, 6–8, 10, 19] devoted to the system-
atic development of the theory of Coxeter matroids. The main result of the present paper
(Theorem 1.2) concerns a geometric characterization of Coxeter matroids. It is used in the
subsequent paper [9] and has inspired the rather unexpected results of [4].

Let W be a finite Coxeter group,P a standard parabolic subgroup inW, and≤ the Bruhat
ordering on the factor setW/P. For definitions concerning Coxeter groups and complexes,
the representation of Coxeter groups as reflection groups, and Bruhat ordering, refer to [15]
or [16]. For each elementw ∈ W define thew-Bruhat ordering≤w of W/P by setting
A ≤w B if w−1A ≤ w−1B. A subsetM ⊆ W/P is called aCoxeter matroid(for W and
P) if it satisfies the following maximality property.

Maximality Property. For everyw ∈ W the setM contains a unique elementA maximal
with respect to thew-Bruhat ordering onW/P.

This means thatB≤w A for all B∈M. The elements of a Coxeter matroid are referred to
asbases.

Coxeter matroids were introduced (under the name ofWP-matroids) by Gelfand and
Serganova [13, 14]. The motivation for the definition is that whenW= An and P is a
maximal parabolic subgroup, Coxeter matroid is equivalent to the classical concept of a
matroid. Non-maximal parabolic subgroupsP yield flag matroids and gaussian greedoids
[13, 14]. Wenzel [22] has shown that the caseW= Bn, with a particular choice of the
parabolic subgroupP, gives rise to symmetric matroids in the sence of Bouchet [11]. More
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generally, Coxeter matroids forBn and a maximal parabolic subgroupP are the symplectic
matroids introduced and studied in [8]. The paper [7] contains examples of new results on
matroids which were originally proven in the more general context of Coxeter matroids and
then specialised for the classical situation.

To motivate our result, first recall a well-known theorem by Gelfand et al. [12] on convex
polytopes associated with (ordinary) matroids. LetB be the collection of bases of a matroid
on the set [n] = {1, 2, . . . ,n}. Two basesA and B of B are obtained from each other by
anelementary exchangeif B = A\{a} ∪ {b} for some elementsa ∈ A\B andb ∈ B\A.
LetRn be then-dimensional real vector space with the canonical baseε1, . . . , εn. For each
basisB ∈ B set

δB =
∑
i∈B

εi ,

and let1=1(B)be the convex hull of{δB | B∈B}. The polytope1 is known as thematroid
polytope ofB. Two vertices of a polytope are said to beadjacentif they are connected by
an edge.

Theorem 1.1 ([12, Theorem 4.1]) The points{δB | B∈B} form the vertex set of1. Two
verticesδA, δB are adjacent if and only if the bases A and B of the matroidB can be
obtained from each other by an elementary exchange.

In this paper, Theorem 1.1 is generalised to Coxeter matroids for an arbitrary finite
Coxeter groupW and a standard parabolic subgroupP. Let V be the space in whichW is
represented as a reflection group, and letδ be a point inV such thatStabW(δ)= P. Then the
W-orbit W · δ of δ is in one-to-one correspondence with the setW P = W/P. If A ∈W P,
denote byδA the corresponding point ofW · δ, so thatδP = δ. Associate with every subset
M of W P the convex hull1 of δ(M) = {δA | A ∈ M}. It is easy to see thatδ(M) is
the set of vertices of the convex polytope1. If M is a Coxeter matroid, then1 is called
thematroid polytope ofM and, up to combinatorial type, does not depend on the pointδ

(Theorem 5.5). The matroid polytope plays a fundamental role in the subject of Coxeter
matroids; this will become apparent later in this paper. The main result of the paper is the
following criterion for adjacency in the matroid polytope.

Theorem 1.2 LetM be a Coxeter matroid for W and P. Then two verticesδA andδB of
1 are adjacent if and only if there isw ∈ W such that the basis A immediately precedes B
inM with respect to the ordering≤w, i.e., B ≤w A and there is no basis C∈M such that
B <w C <w A.

It is instructive to sketch how Theorem 1.1 follows from Theorem 1.2. In fact, Theo-
rem 1.2 is applied to the special caseW = An−1 = Symn, whereSymn is the symmetric
group acting on [n] = {1, 2, . . . ,n}, with the the set of adjacent transpositions as generators.
Let

P = 〈(12)(23), . . . , (k− 1k), (k+ 1k+ 2), . . . , (n− 1n)〉.
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Then the parabolic subgroupP is the stabiliser inSymn of the set [k] = {1, . . . , k}; so the
factor setW/P can be identified with the setPk of all k-element subsets in [n]. The group
W = Symn acts onRn by permuting coordinates. The group is generated by reflections;
reflections correspond inW to transpositions(i j ). The stabiliser inW of the pointδ =
ε1+· · ·+ εk is P. Thus the setting of Theorems 1.1 and 1.2 coincide. The Bruhat ordering
onPk turns out to be the following: if twok-subsets

A = {a1 < a2 < · · · < ak}
and

B = {b1 < b2 < · · · < bk}
are listed in increasing order of elements, thenA ≤ B if and only if

a1 ≤ b1, . . . ,ak ≤ bk.

Though it is difficult to find a proof of this result in the literature, it is well-known; see for
example, [14] or [16, p. 119]. An elementary proof will appear in [5] and a proof of a more
general statement will appear in [21].

We first show, assuming Theorem 1.2, that if the basesA andB of the matroidB can be
obtained from each other by an elementary exchange, then the verticesδA andδB are adja-
cent. IfB ⊆ Pk is a matroid of rankk andA andB are two bases of matroidB related by an
elementary exchange, then they can be writtenA={a1, . . . ,ak} andB={a1, . . . ,ak−1, bk}.
This corresponds to the bases being related by the transposition(akbk). Each permutation
w ∈Symn defines an ordering on [n]. If we choose a permutationw ∈ Symn which gives
an ordering≤w of [n] in which

a1 <
w a2 <

w · · · <w ak−1 <
w bk <

w ak

are the top elements in [n], then obviouslyA immediately preceedsB in the induced ordering
≤w of the setPk. Therefore the verticesδA andδB are adjacent by Theorem 1.2.

Because a transposition inSymn acting on [n] corresponds to a reflection acting onRn,
the converse implication of Theorem 1.1 takes the following form.

(*) If δA andδB are adjacent then there is a reflection t∈ W such that A= tB.

Statement (*) is part of an important geometric realization theorem on Coxeter matroids
and their associated matroid polytopes originally stated by Gelfand and Serganova [14];
also see [19, 23] or Theorem 5.1 below.

For Coxeter matroids in general, the converse of statement (*) does not hold. If, in a
Coxeter matroidM, A= tB for a reflectiont , then the verticesδA andδB of 1 are not
necessarily adjacent. An example is provided byW = Sym3 andP = 1. HereW itself is a
Coxeter matroid. (Notice that this does not fall under conditions for Theorem 1.1 because
P is not maximal.) It is easy to see that the Coxeter polytope1 is a planar hexagon. Two
opposite verticesδ1 andδ(13) are interchanged by the reflectiont = (13) but are not adjacent.
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Section 2 of this paper contains basic notions about Coxeter groups and their associated
Coxeter complexes. Section 3 concerns matroid maps, a concept that provides an equivalent
definition of Coxeter matroid. Combinatorial adjacency in a Coxeter matroid is defined in
Section 4 and is characterized in terms of the matroid map. This is used in Section 5 to
prove the main result, Theorem 1.2, and its corollaries.

2. Coxeter matroids and Coxeter complexes

Throughout this and the next two sections,W is a, possibly infinite, Coxeter group andP a
finite standard parabolic subgroup ofW. It is convenient in this paper to take a geometric
view, regarding the Coxeter group in terms of the associated Coxeter complex. We refer to
Tits [21] or Ronan [17] for the definitions of chamber systems, galleries, geodesic galleries,
residues, panels, walls and half-complexes. Other useful sources on Coxeter complexes are
Hiller [15] and Scharlau [18]. A short review of these concepts can be also found in [2, 3, 10]
and in the forthcoming book [5]. A standard reference for root systems is Humphreys [16].
The Coxeter groupW will be identified with the collection of chambers, denoted byW,
of the Coxeter complex, and, more generally, the collectionW/P of cosets with the set of
residues, denoted byW P. The Bruhat ordering onW P is denoted by the same symbol≤
as the Bruhat ordering onW. Thew-Bruhat ordering a≤w b is defined byw−1a ≤ w−1b.
The notation≥w, <w, and>w have the obvious meaning. The Bruhat ordering onW has
a geometric interpretation as given in [10, Theorem 5.7].

For an infinite Coxeter group, the definition of Coxeter matroid must be modified slightly
from the form given in the introduction. A subsetM ⊆ W P is a Coxeter matroidif M
satisfies the maximality principle, and every element ofM isw-maximal inMwith respect
to somew ∈ W. Again the elements of a Coxeter matroidM are calledbases. A notion
equivalent to Coxeter matroid is that of amatroid mapµ :W→W P, defined by the property
thatµ satisfies thematroid inequality

µ(u) ≤v µ(v) for all u, v ∈W.
The imageM = µ[W] is obviously a Coxeter matroid. Conversely, given a Coxeter matroid
M, a matroid mapµ can be obtained by settingµ(w) equal to thew-maximal element
ofM. Thus there is natural bijection between matroid maps and Coxeter matroids.

Notice, however, that for an infinite Coxeter group, the second condition in the definition,
that every element ofM is w-maximal inM with respect to somew ∈ W, is necessary.
Otherwise the imageM′ = µ[W] of the matroid map associated with a setM satisfying
the maximality property may happen to be a proper subset ofM (the set of all ‘extreme’ or
‘corner’ chambers ofM). For example, take forM a large rectangular block of chambers
in the Coxeter complex for the affine Coxeter groupC̃2 (the group of symmetries of the
tiling of the plane by squares).

3. Characterisation of matroid maps

Two subsetsA andB ofW are calledadjacentif there are two adjacent chambersa ∈ A
andb ∈ B, the common panel ofa andb also being called acommon panelof A and B.
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A set A of chambers isconvexif it contains, with any two chambersa, b ∈ A, all geodesic
galleries connectinga andb.

Lemma 3.1 If A and B are two adjacent convex subsets ofW, then all their common
panels belong to the same wallσ .

Proof: By [18, Proposition 5.1.3] (see also [10, Theorem 5.5]) every convex setA is the in-
tersection of half complexes containingA. From this observation the result is obvious.2

In this situation,σ is called thecommon wallof A and B. The following result is to
appear in [1]. We have included the proof here because its principal idea is similar to that
used in the proof of Theorem 4.1.

Theorem 3.2 A mapµ :W→WP is a matroid map if and only if the following two
conditions are satisfied.
(1) Each fiberµ−1[ A], A ∈W P, is a convex subset ofW.
(2) If two fibersµ−1[ A] andµ−1[B] of µ are adjacent then their images A and B are

symmetric with respect to the common wall ofµ−1[ A] andµ−1[B], and the residues A
and B lie on the opposite sides of the wallσ from the setsµ−1[ A], µ−1[B], respectively.

Proof: If µ is a matroid map then the fact that conditions (1) and (2) are satisfied is the
main result of [10].

Now assume thatµ satisfies conditions (1) and (2). For any two adjacent fibersµ−1[ A]
andµ−1[B] of the mapµ, denote byσAB the wall separating them, and let6 be the set of all
such wallsσAB. Now take two arbitrary residuesA, B ∈ µ[W] and chambersu ∈ µ−1[ A]
andv ∈ µ−1[B]. It suffices to prove thatA ≥u B.

Consider a geodesic gallery

0 = (x0, x1, . . . , xn), x0 = u, xn = v

connecting the chambersu andv. As a chamberx moves along0 from u to v, the cor-
responding residueµ(x) moves fromA=µ(u) to B=µ(v). Since the geodesic gallery
0 intersects every wall no more than once [17, Lemma 2.5], the chamberx crosses each
wall σ in 6 no more than once and, if it crossesσ , it moves from the same side ofσ as
u to the opposite side. But, by the assumptions of the theorem, this means that the residue
µ(x) crosses each wallσ no more than once and moves from the side ofσ oppositeu to
the side containingu. According to the geometric interpretation of the Bruhat order [10,
Theorem 5.7], this means thatµ(x) decreases with respect to theu-Bruhat order at every
such step, ultimately resulting inA = µ(u) ≥u µ(v) = B. 2

4. Adjacency

LetM ⊆W P be a Coxeter matroid. We say that two basesA, B ∈M arecombinatorially
adjacentinM if there exists a chamberw ∈W with the property thatA is maximal inM
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with respect to thew-Bruhat ordering andB immediately preceedsA inM with respect to
thew-Bruhat ordering, i.e., there is no basisC ∈M with B <w C <w A.

Theorem 4.1 LetM ⊆W P be a Coxeter matroid andµ :W →W P the corresponding
matroid map. Two bases A and B ofM are combinatorially adjacent inM if and only if
their preimagesµ−1[ A] andµ−1[B] are adjacent.

Proof: Assume thatA andB are two combinatorially adjacent elements ofM. Select a
chamberw ∈W such thatA is thew-maximal basis ofM andB immediately preceedsA
inM with respect to thew-ordering. Letu ∈ µ−1[ A], v ∈ µ−1[B] and let

0 = (x0, x1, . . . , xn), x0 = u, xn = v

be the geodesic gallery connectingu andv. We can repeat the argument from the previous
proof. As the chamberx moves fromu to v along the gallery0, the corresponding basis
µ(x) of M moves overM from A=µ(u) to B=µ(v) decreasing with respect to the
ordering≤w. SinceB is an immediate predecessor ofA, the imageµ(x) of x can take
only two values,A andB. Therefore the gallery0 is entirely contained in the union of two
fibersµ−1[ A] ∪ µ−1[B]; so these two fibers are obviously adjacent.

Conversely, letµ−1[ A] andµ−1[B] be two adjacent fibers of the matroid mapµ. Take
two chambersu ∈ µ−1[ A] andv ∈ µ−1[B] which are adjacent, i.e., have a common panel
(belonging to the wallσ separatingµ−1[ A] andµ−1[B]). Thenu = vr for some standard
generatorr of W. We claim thatB is an immediate predecessor ofA inM with respect to
theu-Bruhat ordering.

Indeed, assume the contrary and letC be a basis inM distinct fromA andB and with the
propertyB <u C <u A. Denote byb the smallest chamber in the residueB with respect
to theu-Bruhat ordering; similarly for theu-minimal chambersc ∈ C anda ∈ A. Then by
[17, Theorem 2.9]

b <u c <u a.

Denote byd(x, y) the distancel (x−1y) between elementsx andy in the groupW, i.e., the
gallery distance in the Coxeter complexW. Then

d(u,a) > d(u, c) > d(v, b)

and, for this reason,d(u,a) − 2 ≥ d(u, b). Since the chambersu andv are adjacent, we
have

d(u,a)− 1≥ d(u, b)+ 1≥ d(v, b).

SinceB is thev-maximal basis inMwe haveA <v B. If a′ denotes thev-minimal chamber
of A andb′ thev-minimal chamber ofB, then

b ≥v b′ >v a′.
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The crucial observation now is that the wallσ separates all chambersa′′ ∈ Aand the chamber
v from the chamberu, and this implies [17, Proposition 2.6] thatd(u,a′′) = d(v,a′′)+ 1.
Being theu-minimal chamber ofA, a is the chamber inAwith the minimal possible distance
d(u,a) to u. Hencea also has the minimal possible distanced(v,a) to v and therefore is
thev-minimal element ofA. But thenb ≥v b′ >v a and

d(u,a)− 1≥ d(v, b) > d(v,a)

and therefore

d(u,a)− 1≥ d(v,a)+ 1.

But we already know that

d(u,a) = d(v,a)+ 1,

a contradiction. 2

5. The matroid polytope

In this section the Coxeter groupW is finite; hence the spaceV in which W is represented
as a group generated by reflections is Euclidean. Let8 be the root system of this Weyl
group, and denote by6 the collection of all mirrors of reflections inW, i.e., the collection
of hyperplanes normal to roots in8. The walls ofW can be interpreted as the hyperplanes
6. The chambers of the Coxeter complexW, in this finite case, are connected components
of V\⋃H∈6 H . Vectors inV\⋃H∈6 H are calledregular.

Let P be a standard parabolic subgroup inW andδ a point inV such thatStabW(δ) = P.
Then theW-orbit W · δ of δ is in one-to-one correspondence with the setW P. If A ∈W P,
denote byδA the corresponding point ofW · δ so thatδP = δ. Associate with every subset
M of W P the convex hull1 = 1(M, δ) of δ(M) = {δA | A ∈ M}. It is easy to see
thatδ(M) is the set of vertices of the convex polytope1. If M is a Coxeter matroid, then
1 = 1(M, δ) is called thematroid polytope ofM. It is shown later in this section that the
combinatorial type of1 is independent of the choice ofδ.

The following result generalises a classical geometric characterization of Coxeter ma-
troids originally due to Gelfand and Serganova [14]. It is an abridged version of the main
theorem in [19].

Theorem 5.1 In the notation above, the following conditions are equivalent.
(a) M is a Coxeter matroid.
(b) Every edge of1 is perpendicular to one of the mirrors in6.
(c) For any two adjacent verticesα, β of1 there is a reflection s∈ W such that sα = β.
(d) For any regular vectorξ ∈ V , the linear functionalα 7→ (α, ξ) reaches its minimum

on1 at a unique point.

The main result can now be proved.
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Theorem 5.2 LetM be a Coxeter matroid for a finite Coxeter group W and a parabolic
subgroup P, and1 its matroid polytope. Then two verticesδA andδB of1 are adjacent if
and only if there isw ∈ W such that the basis A immediately preceeds B inMwith respect
to the ordering≤w, i.e., B ≤w A and there is no basis C∈M such that B<w C <w A.

Proof: For each basisA ∈M let

0A = {ξ ∈ V | (α, ξ) ≥ (δ(A), ξ) for all α ∈ 1}.

Then0A is a closed convex polyhedral cone. It immediately follows from the previous
theorem that the proper faces of0A belong to hyperplanes in6 and that the system of
conesG = {0A | A ∈M} forms the fan of cones dual to the polytope1. In particular, any
two cones inG intersect along a common face and two cones0A and0B are adjacent, i.e.,
intersect along the common face of maximal dimension, if and only if the corresponding
verticesδA andδB are adjacent.

It is easy to see that a setX of chambers inW is convex in the sense of the theory of
Coxeter complexes if and only if the union of their closures

⋃
X∈X X̄ is convex in the usual

geometric meaning of this word. This follows, for example, from the characterization of
convex subsets ofW as intersections of half complexes [18, Proposition 5.1.3]. So, given
the basisA ∈M, the set of chambers contained in the cone0A is convex. Therefore the
mapµ :W → M, defined by the ruleµ(w) = A if the chamberw belongs to0A, has
convex fibersµ−1[ A]. Moreover, if two fibersµ−1[ A] andµ−1[B] are adjacent, then the
cones0A and0B are adjacent. Therefore these cones have in common a face of maximal
dimension, which is exactly the mirrorσ of symmetry of the edge [δA, δB] of the convex
polytope1. If s is the reflection inσ , thenA = sB. Moreover,A andB lie on the opposite
sides ofσ from the chambers inµ−1[ A] andµ−1[B], respectively. Thereforeµ is a matroid
map by Theorem 3.2, and, obviously, it is the matroid map associated with the matroidM.

Hence two verticesδA andδB of 1 are adjacent if and only if the cones0A and0B are
adjacent if and only if the convex sets of chambersµ−1[ A] andµ−1[B] are adjacent if and
only if, in view of Theorem 4.1, the basesA andB are combinatorially adjacent inM. 2

We shall draw two useful corollaries about matroid polytopes from Theorem 5.2.

Theorem 5.3 LetM be a Coxeter matroid. Up to isomorphism, the graph of the matroid
polytope1(M, δ) is independent of the choice of the pointδ. Moreover, if δ and δ′ are
two points such that StabW(δ)=StabW(δ′)= P, then corresponding edges of1(M, δ) and
1(M, δ′) are parallel.

Proof: The first statement follows directly from Theorem 5.2. Concerning the second
statement, let(α, β) and(α′, β ′) be corresponding edges of1(M, δ) and1(M, δ′), re-
spectively. Corresponding means thatα andα′ (resp.β andβ ′) are associated with the same
coset ofW P, sayU (resp.V). By Theorem 5.1 there is a reflectiont such thattU =V .
Notice that it is enough to prove that there is a unique such reflection. Indeed, the unique-
ness oft implies thattα = β andtα′ = β ′; hence the edges [α, β] and [α′, β ′] are parallel.
Therefore Theorem 5.3 is reduced to the following lemma. 2
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Lemma 5.4 If U and V are two residues in a Coxeter complexW for the Coxeter group
W, then there is at most one reflection t∈ W such that U= tV .

Proof of Lemma: Select chambersu ∈ U andv ∈ V such that the distanced(u, v), is
minimized, and let

0 = (x1, . . . , xn), x1 = u, xn = v,

be a geodesic gallery connectingu andv.
Let τ be the wall of the reflectiont . Becauseu andv lie on opposite sides ofτ , this

wall is the common wall of two adjacent chambersxk andxk+1 in 0. (By [17, Lemma 2.5]
the geodesic gallery0 intersects the wallτ only once; thus the chambersxk andxk+1 are
uniquely determined chambers in0.) We know thatU andV , being residues, aregated sets;
this means that for everyw ∈W there is a unique chamber inU (resp. inV) at the minimal
distance fromw [17, Theorem 2.9], [18, Theorem 5.1.7]. Applying the gated property of
residuesU andV shows thatu andv are uniquely determined as the chambers inU and
V at the minimal distance fromxk andxk+1, respectively. Since the reflectiont mapsU
into V andxk into xk+1, it must be the case thatd(xk, u) = d(xk+1, v) and hencet maps
u ontov. But any element ofW is uniquely determined by its action on a single chamber;
thereforet is uniquely determined. 2

Theorem 5.5 The combinatorial type of the matroid polytope1(M, δ) for the Coxeter
matroidM does not depend on the choice of the pointδ.

Proof: Let δ andδ′ be two points such thatStabW(δ)=StabW(δ′)= P, and1=1(M, δ)

and1′ = 1(M, δ′) the corresponding matroid polytopes. It will suffice to prove that
the correspondence between the vertex sets of1 and1′ which preserves adjacency also
preserves the faces of1 and1′.

Let0 be a face of1and{α1, . . . , αm} its set of vertices. Denote byN = {A1, . . . , Am} the
corresponding set of cosets inW P. We wish to prove that the corresponding set{α′1, . . . , α′m}
of vertices of1′ also forms the vertex set of a face of1′. First notice thatN is, by
Theorem 5.1, a Coxeter matroid. By Theorem 5.3,N ′ is also a Coxeter matroid and, there-
fore, the convex hull0′ of {α′1, . . . , α′m} is a matroid polytope. Moreover, the dimension
of 0 equals of the dimension of the vector space spanned by the vectorsαiα j correspond-
ing to all pairs of adjacent verticesαi , α j in 0. Therefore0′ has the same dimension
as0.

Now let π be a supporting hyperplane of1 which contains the face0. Thenπ is
perpendicular to all the mirrors of reflection for all edges of0. But, by Theorem 5.3, these
mirrors are exactly the mirrors of reflection of edges of0′, and therefore we can find a
hyperplaneπ ′ parallel toπ and containing the convex polytope0′.

To show that0′ is a face of1′, it now suffices to prove thatπ ′ is a supporting hyperplane
of 1′. If α, α′ andβ, β ′ are corresponding vertices of1 and1′ (i.e.,α andα′ correspond
to the same coset inM ⊆ WP), then the proof of Theorem 5.3 implies, not only that the
edges [α, β] and [α′, β ′] are parallel, but that they have the same direction. Now ifβ is any
vertex of1\0 adjacent to a vertexα of 0, then the vectorαβ points to the halfspace ofπ
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containing1. Therefore all vectorsα′β ′ for adjacent verticesα′ ∈ 0′ andβ ′ ∈ 1′\0′ point
into the same halfspace determined by the hyperplaneπ ′. This means thatπ ′ is a supporting
hyperplane for1′. 2
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