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Abstract. A coxeter matroid is a generalization of matroid, ordinary matroid being the case corresponding to
the family of Coxeter groups\,, which are isomorphic to the symmetric groups. A basic result in the subjectis a
geometric characterization of Coxeter matroid in terms of the matroid polytope, a result first stated by Gelfand and
Serganova. This paper concerns properties of the matroid polytope. In particular, a criterion is given for adjacency
of vertices in the matroid polytope.
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1. Introduction

This paper continues a series of investigations [2, 3, 6-8, 10, 19] devoted to the system-
atic development of the theory of Coxeter matroids. The main result of the present paper
(Theorem 1.2) concerns a geometric characterization of Coxeter matroids. It is used in the
subsequent paper [9] and has inspired the rather unexpected results of [4].

Let W be a finite Coxeter grouf? a standard parabolic subgroupM and< the Bruhat
ordering on the factor s&V/P. For definitions concerning Coxeter groups and complexes,
the representation of Coxeter groups as reflection groups, and Bruhat ordering, refer to [15]
or [16]. For each element € W define thew-Bruhat ordering<” of W/P by setting
A <" Bif w™A < w!B. A subsetM C W/P is called aCoxeter matroidfor W and
P) if it satisfies the following maximality property.

Maximality Property. Foreveryw € W the setM contains a unigue elemeAtmaximal
with respect to thev-Bruhat ordering otw/ P.

This means thaB <" Afor all B € M. The elements of a Coxeter matroid are referred to
asbases

Coxeter matroids were introduced (under the nam&/&matroids) by Gelfand and
Serganova [13, 14]. The motivation for the definition is that whée= A, and P is a
maximal parabolic subgroup, Coxeter matroid is equivalent to the classical concept of a
matroid. Non-maximal parabolic subgrouBsyield flag matroids and gaussian greedoids
[13, 14]. Wenzel [22] has shown that the cask= B,,, with a particular choice of the
parabolic subgroup, gives rise to symmetric matroids in the sence of Bouchet [11]. More
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generally, Coxeter matroids f&, and a maximal parabolic subgro®pare the symplectic
matroids introduced and studied in [8]. The paper [7] contains examples of new results on
matroids which were originally proven in the more general context of Coxeter matroids and
then specialised for the classical situation.

To motivate our result, first recall a well-known theorem by Gelfand et al. [12] on convex
polytopes associated with (ordinary) matroids. Bete the collection of bases of a matroid
on the setii] = {1, 2, ..., n}. Two basesA andB of B are obtained from each other by
anelementary exchangé B = A\{a} U {b} for some elementa € A\B andb € B\ A.
LetR" be then-dimensional real vector space with the canonical lease ., €. For each
basisB € B set

) =Z€i,

ieB

and letA = A(B) be the convex hull ofsg | B € B}. The polytopeA is known as thenatroid
polytope of3. Two vertices of a polytope are said to &ddjacentif they are connected by
an edge.

Theorem 1.1 ([12, Theorem 4.1]) The pointgdg | B € B} form the vertex set ak. Two
verticeséa, g are adjacent if and only if the bases A and B of the matiBidan be
obtained from each other by an elementary exchange.

In this paper, Theorem 1.1 is generalised to Coxeter matroids for an arbitrary finite
Coxeter groupV and a standard parabolic subgroRpLet V be the space in whict is
represented as a reflection group, and le a point inv such thaGStahy (§) = P. Thenthe
W-orbit W - § of § is in one-to-one correspondence with theXd&t = W/P. If A WP,
denote bys 5 the corresponding point & - §, so thatsp = §. Associate with every subset
M of WP the convex hullA of §(M) = {8a | A € M}. Itis easy to see that(M) is
the set of vertices of the convex polytope If M is a Coxeter matroid, then is called
the matroid polytope o\ and, up to combinatorial type, does not depend on the point
(Theorem 5.5). The matroid polytope plays a fundamental role in the subject of Coxeter
matroids; this will become apparent later in this paper. The main result of the paper is the
following criterion for adjacency in the matroid polytope.

Theorem 1.2 Let M be a Coxeter matroid for W and P. Then two vertidgandsg of

A are adjacent if and only if there i® € W such that the basis A immediately precedes B
in M with respect to the ordering”, i.e.,, B <* A and there is no basis € M such that

B <¥ C <% A.

It is instructive to sketch how Theorem 1.1 follows from Theorem 1.2. In fact, Theo-
rem 1.2 is applied to the special cade= A,_1 = Sym, whereSym is the symmetric
group actingonij] = {1, 2, ..., n}, with the the set of adjacent transpositions as generators.
Let

P=(12(23),...,(k—1Kk), (K+1k+2), ..., (n — 1n)).
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Then the parabolic subgroupis the stabiliser irbym, of the setk] = {1, ..., k}; so the
factor setW/ P can be identified with the s@¥ of all k-element subsets im]. The group

W = Sym, acts onR" by permuting coordinates. The group is generated by reflections;
reflections correspond i to transpositionsij). The stabiliser inW of the point§ =

€1+ ---+ e is P. Thus the setting of Theorems 1.1 and 1.2 coincide. The Bruhat ordering
on Py turns out to be the following: if twé-subsets

A={las<a < - <&l

and
B={b; <by < - <hby}

are listed in increasing order of elements, thfer: B if and only if
a <bg,..., <b.

Though it is difficult to find a proof of this result in the literature, it is well-known; see for
example, [14] or [16, p. 119]. An elementary proof will appear in [5] and a proof of a more
general statement will appear in [21].

We first show, assuming Theorem 1.2, that if the basasd B of the matroid3 can be
obtained from each other by an elementary exchange, then the véitiaadsg are adja-
cent. If B C Py is a matroid of rank and A andB are two bases of matrofirelated by an
elementary exchange, thenthey can be writea{a,, ..., ax}andB ={ay, ..., ax_1, bk}

This corresponds to the bases being related by the transpa@itiny). Each permutation
w € Sym, defines an ordering om]. If we choose a permutatiom € Sym, which gives
an ordering<® of [n] in which

w

a]_ < az <w .. <w ak—l <‘ll) bk <w ak

arethetop elementsin], then obviouslyAimmediately preceed®in the induced ordering

<" of the setP. Therefore the vertice$s andsg are adjacent by Theorem 1.2.
Because a transposition 8ym acting on p] corresponds to a reflection acting &,

the converse implication of Theorem 1.1 takes the following form.

(*) If 4 andsg are adjacent then there is a reflectiortW such that A= tB.

Statement (*) is part of an important geometric realization theorem on Coxeter matroids
and their associated matroid polytopes originally stated by Gelfand and Serganova [14];
also see [19, 23] or Theorem 5.1 below.

For Coxeter matroids in general, the converse of statement (*) does not hold. If, in a
Coxeter matroidM, A=tB for a reflectiont, then the vertices, andsg of A are not
necessarily adjacent. An example is provided¥y= Sym andP = 1. HereW itself is a
Coxeter matroid. (Notice that this does not fall under conditions for Theorem 1.1 because
P is not maximal.) It is easy to see that the Coxeter polytage a planar hexagon. Two
opposite vertice8; ands13 are interchanged by the reflectiba:- (13) but are not adjacent.
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Section 2 of this paper contains basic notions about Coxeter groups and their associated
Coxeter complexes. Section 3 concerns matroid maps, a concept that provides an equivalent
definition of Coxeter matroid. Combinatorial adjacency in a Coxeter matroid is defined in
Section 4 and is characterized in terms of the matroid map. This is used in Section 5 to
prove the main result, Theorem 1.2, and its corollaries.

2. Coxeter matroids and Coxeter complexes

Throughout this and the next two sectiokéjs a, possibly infinite, Coxeter group afda

finite standard parabolic subgroup\f. It is convenient in this paper to take a geometric
view, regarding the Coxeter group in terms of the associated Coxeter complex. We refer to
Tits [21] or Ronan [17] for the definitions of chamber systems, galleries, geodesic galleries,
residues, panels, walls and half-complexes. Other useful sources on Coxeter complexes are
Hiller [15] and Scharlau [18]. A shortreview of these concepts can be alsofoundin[2, 3, 10]
and in the forthcoming book [5]. A standard reference for root systems is Humphreys [16].
The Coxeter groupV will be identified with the collection of chambers, denotedby

of the Coxeter complex, and, more generally, the collectdiP of cosets with the set of
residues, denoted ByP. The Bruhat ordering obV" is denoted by the same symbol

as the Bruhat ordering oV. Thew-Bruhat ordering a<” bis defined byw~'a < w='b.

The notation=", <*, and>" have the obvious meaning. The Bruhat ordering/@ras

a geometric interpretation as given in [10, Theorem 5.7].

For an infinite Coxeter group, the definition of Coxeter matroid must be modified slightly
from the form given in the introduction. A subsét < WP is a Coxeter matroidf M
satisfies the maximality principle, and every elememtfs w-maximal inM with respect
to somew € W. Again the elements of a Coxeter matroid are calledbases A notion
equivalent to Coxeter matroid is that afatroid magu : W — WP, defined by the property
that . satisfies thenatroid inequality

w) < u) forallu,veWw.

TheimageM = p[W]is obviously a Coxeter matroid. Conversely, given a Coxeter matroid

M, a matroid mapu can be obtained by setting(w) equal to thew-maximal element

of M. Thus there is natural bijection between matroid maps and Coxeter matroids.
Notice, however, that for an infinite Coxeter group, the second condition in the definition,

that every element oM is w-maximal in M with respect to some € W, is necessary.

Otherwise the imagat’ = u[W] of the matroid map associated with a get satisfying

the maximality property may happen to be a proper subst ¢the set of all ‘extreme’ or

‘corner’ chambers oM). For example, take faM a large rectangular block of chambers

in the Coxeter complex for the affine Coxeter grabp(the group of symmetries of the

tiling of the plane by squares).

3. Characterisation of matroid maps

Two subsetsA and B of W are calledadjacentif there are two adjacent chambers A
andb € B, the common panel af andb also being called aommon panebf A and B.
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A set A of chambers isonvexf it contains, with any two chambegs b € A, all geodesic
galleries connecting andb.

Lemma 3.1 If A and B are two adjacent convex subset3/f then all their common
panels belong to the same wall

Proof: By[18, Proposition5.1.3] (seealso[10, Theorem 5.5]) every conveXisdhe in-
tersection of half complexes containig From this observation the result is obviousl

In this situation,o is called thecommon wallof A and B. The following result is to
appear in [1]. We have included the proof here because its principal idea is similar to that
used in the proof of Theorem 4.1.

Theorem 3.2 A mapu: W — WP is a matroid map if and only if the following two

conditions are satisfied.

(1) Eachfiberu=[A], A € WP, is a convex subset of).

(2) If two fibersp~Y[A] and n~Y[B] of 1 are adjacent then their images A and B are
symmetric with respect to the common wallkof[ A] and . —1[B], and the residues A
and B lie on the opposite sides of the wafrom the setg [ A], . ~1[ B], respectively.

Proof. If u is a matroid map then the fact that conditions (1) and (2) are satisfied is the
main result of [10].

Now assume that satisfies conditions (1) and (2). For any two adjacent fiper§ A]
andu~1[B] of the mapu, denote by g the wall separating them, and [Etbe the set of all
such wallssag. Now take two arbitrary residues, B € u[W] and chambers e p [ A]
andv € uY[B]. It suffices to prove thaf >" B.

Consider a geodesic gallery

I'=(Xp, X1,...,%n), Xo=U,Xp =10

connecting the chambetsandv. As a chambex moves alond™ from u to v, the cor-
responding residug (x) moves fromA=p(u) to B= u(v). Since the geodesic gallery

" intersects every wall no more than once [17, Lemma 2.5], the charmbersses each

wall o in ¥ no more than once and, if it crossesit moves from the same side ofas

u to the opposite side. But, by the assumptions of the theorem, this means that the residue
w(X) crosses each wadt no more than once and moves from the side afppositeu to

the side containingl. According to the geometric interpretation of the Bruhat order [10,
Theorem 5.7], this means that{x) decreases with respect to theBruhat order at every

such step, ultimately resulting i = p(u) > w(v) = B. O

4. Adjacency

Let M < WP be a Coxeter matroid. We say that two bade® e M arecombinatorially
adjacentin M if there exists a chamber € WV with the property thafA is maximal inM
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with respect to thev-Bruhat ordering an@® immediately preceeda in M with respect to
thew-Bruhat ordering, i.e., there is no baSlse M with B <¥ C <% A.

Theorem 4.1 Let M C WP be a Coxeter matroid and : WW — WP the corresponding
matroid map. Two bases A and B.bt are combinatorially adjacent itM if and only if
their preimageg. [ A] and [ B] are adjacent.

Proof: Assume thatA and B are two combinatorially adjacent elements/ef. Select a
chambem € W such thatA is thew-maximal basis of\l and B immediately preceeda
in M with respect to thev-ordering. Letu € u[A], v € n~![B] and let

FZ(XO5X15"-7XH)7 XOZUaanv

be the geodesic gallery connectingndv. We can repeat the argument from the previous
proof. As the chambex moves fromu to v along the galleny”, the corresponding basis
un(x) of M moves overM from A= u(u) to B=u(v) decreasing with respect to the
ordering<". SinceB is an immediate predecessor Af the imageu(x) of x can take
only two values A andB. Therefore the gallery is entirely contained in the union of two
fiberspu Y[ A] U n~1[B]; so these two fibers are obviously adjacent.

Conversely, let Y[ A] and ;. ~1[ B] be two adjacent fibers of the matroid map Take
two chambersi € n~Y[A] andv € n~![B] which are adjacent, i.e., have a common panel
(belonging to the wal separating:~*[A] and «~[B]). Thenu = vr for some standard
generator of W. We claim thatB is an immediate predecessorAdin M with respect to
theu-Bruhat ordering.

Indeed, assume the contrary andddte a basis io\ distinct fromA andB and with the
propertyB <Y C <" A. Denote byb the smallest chamber in the residBewith respect
to theu-Bruhat ordering; similarly for the-minimal chambers € C anda € A. Then by
[17, Theorem 2.9]

b<Yc<"a.

Denote byd(x, y) the distancé(x~'y) between elementsandy in the groupW, i.e., the
gallery distance in the Coxeter complEX. Then

d(u,a) > d(u,c) > d(v, b)

and, for this reasord(u, a) — 2 > d(u, b). Since the chambersandv are adjacent, we
have

d(u,a) —1>d(u,b)+1>d(v,b).

SinceB is thev-maximal basis ifM we haveA <V B. If a’ denotes the-minimal chamber
of A andb’ thev-minimal chamber oB, then

b>Yb >"4d.
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The crucial observation now is that the walieparates all chambex’s € Aand the chamber
v from the chambeu, and this implies [17, Proposition 2.6] thatu, a”) = d(v, a") + 1.
Being theu-minimal chamber o, a is the chamber i with the minimal possible distance
d(u, a) to u. Hencea also has the minimal possible distarti@, a) to v and therefore is
thev-minimal element ofA. But thenb >" b’ >¥ a and

d(u,a) —1>d(v,b) > d(v, a)
and therefore

d(u,a)—1>d(v,a) + 1.
But we already know that

d(u,a) =d(v,a) + 1,

a contradiction. O

5. The matroid polytope

In this section the Coxeter groW is finite; hence the spadé in which W is represented
as a group generated by reflections is Euclidean.d & the root system of this Weyl
group, and denote b¥ the collection of all mirrors of reflections W, i.e., the collection
of hyperplanes normal to roots éh. The walls of\V can be interpreted as the hyperplanes
3. The chambers of the Coxeter compléx in this finite case, are connected components
of V\ Uyex H. VectorsinV\ |, H are calledegular.

Let P be a standard parabolic subgroup¥ands a pointinV such thaStaky (§) = P.
Then thew-orbit W - § of § is in one-to-one correspondence with theld&t. If A € WP,
denote by A the corresponding point & - § so thatsp = §. Associate with every subset
M of WP the convex hullA = A(M, §) of 8(M) = {8a] A € M]}. ltis easy to see
thats (M) is the set of vertices of the convex polytope If M is a Coxeter matroid, then
A = A(M, §) is called thematroid polytope of\. It is shown later in this section that the
combinatorial type ofA is independent of the choice &f

The following result generalises a classical geometric characterization of Coxeter ma-
troids originally due to Gelfand and Serganova [14]. It is an abridged version of the main
theorem in [19].

Theorem 5.1 In the notation abovghe following conditions are equivalent.

(a) M is a Coxeter matroid.

(b) Every edge oA\ is perpendicular to one of the mirrors 8.

(c) For any two adjacent verticas, 8 of A there is a reflection € W such thate = 8.

(d) For any regular vectog € V, the linear functionak — (e, &) reaches its minimum
on A at a unique point.

The main result can now be proved.
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Theorem 5.2 Let M be a Coxeter matroid for a finite Coxeter group W and a parabolic
subgroup P and A its matroid polytope. Then two verticés anddg of A are adjacent if
and only if there isv € W such that the basis A immediately preceeds Bfimith respect

to the ordering<®, i.e, B <¥ A and there is no basis € M such that B<” C <" A.

Proof: For each basig\ € M let
Fa={eV|(aé& > @A),&) forala e Al

ThenT 4 is a closed convex polyhedral cone. It immediately follows from the previous
theorem that the proper faces Bj belong to hyperplanes i& and that the system of
coneyy = {I'a | A € M} forms the fan of cones dual to the polytofieln particular, any

two cones ing intersect along a common face and two cofigandI'g are adjacent, i.e.,
intersect along the common face of maximal dimension, if and only if the corresponding
verticess 5 andég are adjacent.

It is easy to see that a s&t of chambers inV is convex in the sense of the theory of
Coxeter complexes if and only if the union of their closurgs. , X is convex in the usual
geometric meaning of this word. This follows, for example, from the characterization of
convex subsets 0fV as intersections of half complexes [18, Proposition 5.1.3]. So, given
the basisA € M, the set of chambers contained in the coneis convex. Therefore the
mapu : W — M, defined by the rulg.(w) = A if the chambemw belongs tol', has
convex fibersu [ A]. Moreover, if two fibersu [ A] and [ B] are adjacent, then the
conesl'p andI'g are adjacent. Therefore these cones have in common a face of maximal
dimension, which is exactly the mirrer of symmetry of the edgeSh, §g] of the convex
polytopeA. If sis the reflection irr, thenA = sB. Moreover,A andB lie on the opposite
sides of from the chambers in X[ A] and . ~[ B], respectively. Thereforg is a matroid
map by Theorem 3.2, and, obviously, it is the matroid map associated with the m#&troid

Hence two vertices, andég of A are adjacent if and only if the con&s andl'g are
adjacent if and only if the convex sets of chamherd[ A] and . ~1[ B] are adjacent if and
only if, in view of Theorem 4.1, the basésandB are combinatorially adjacent iv. O

We shall draw two useful corollaries about matroid polytopes from Theorem 5.2.

Theorem 5.3 Let M be a Coxeter matroid. Up to isomorphisthe graph of the matroid
polytopeA (M, §) is independent of the choice of the paintMoreover if § and§’ are
two points such that StajJ(§) = Stahy (8') = P, then corresponding edgesaf M, §) and
A(M, §') are parallel.

Proof: The first statement follows directly from Theorem 5.2. Concerning the second
statement, leta, ) and(«’, ') be corresponding edges 8fi M, §) and A(M, §'), re-
spectively. Corresponding means thatnda’ (resp.8 andp’) are associated with the same
coset of WP, sayU (resp.V). By Theorem 5.1 there is a reflectiorsuch thatU = V.

Notice that it is enough to prove that there is a unique such reflection. Indeed, the unique-
ness ot implies thate = 8 andta’ = 8’; hence the edge&[g] and [v’, 8] are parallel.
Therefore Theorem 5.3 is reduced to the following lemma. O
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Lemmab5.4 IfU and V are two residues in a Coxeter compléxfor the Coxeter group
W, then there is at most one reflectiostW such that U=tV .

Proof of Lemma: Select chambens € U andv € V such that the distana#(u, v), is
minimized, and let

F'=X4,.... %), X1=UXp =,

be a geodesic gallery connectingndv.

Let ¢ be the wall of the reflectioh. Becausau andv lie on opposite sides of, this
wall is the common wall of two adjacent chambggsandx,1 in . (By [17, Lemma 2.5]
the geodesic gallery intersects the walt only once; thus the chambexg andx; are
uniquely determined chamberslin) We know that) andV, being residues, agated sets
this means that for every € W there is a unique chamberlih(resp. inV) at the minimal
distance fromw [17, Theorem 2.9], [18, Theorem 5.1.7]. Applying the gated property of
residuedJ andV shows thau andv are uniquely determined as the chambert iand
V at the minimal distance fromy andx.1, respectively. Since the reflectiarmapsU
into V andxy into X1, it must be the case thdix, u) = d(xk,1, v) and hence maps
u ontov. But any element ofV is uniquely determined by its action on a single chamber;
thereforet is uniquely determined. O

Theorem 5.5 The combinatorial type of the matroid polytopg M, §) for the Coxeter
matroid M does not depend on the choice of the péint

Proof: Letd ands’ be two points such th&taky (§) = Stahky (8') = P, andA = A(M, §)
and A’ = A(M, §’) the corresponding matroid polytopes. It will suffice to prove that
the correspondence between the vertex sets ahd A’ which preserves adjacency also
preserves the faces af andA’.

Letl" be aface ofA and{ay, ..., am} its setof vertices. Denote by = {Aq, ..., Ay} the
corresponding set of cosetsivi”. We wish to prove that the correspondingiegt . . . , o}
of vertices of A’ also forms the vertex set of a face of. First notice that\/ is, by
Theorem 5.1, a Coxeter matroid. By Theorem 3/3s also a Coxeter matroid and, there-
fore, the convex hull of {«], ..., a;,} is @ matroid polytope. Moreover, the dimension
of I' equals of the dimension of the vector space spanned by the vegigrsorrespond-
ing to all pairs of adjacent verticeg, «; in I'. ThereforeI” has the same dimension
asrl.

Now let = be a supporting hyperplane @ which contains the fac&. Thenx is
perpendicular to all the mirrors of reflection for all edge$’ofBut, by Theorem 5.3, these
mirrors are exactly the mirrors of reflection of edgedldf and therefore we can find a
hyperplaner’ parallel tor and containing the convex polytope.

To show thaf™ is a face ofA’, it now suffices to prove that’ is a supporting hyperplane
of A’. If , o’ andg, B’ are corresponding vertices afand A’ (i.e.,« anda’ correspond
to the same coset iM < WP), then the proof of Theorem 5.3 implies, not only that the
edges§, ] and [/, 8] are parallel, but that they have the same direction. Ngiig any
vertex of A\T" adjacent to a vertex of I, then the vectoeg points to the halfspace aof
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containingA. Therefore all vectors’ 8’ for adjacent vertices’ € I andg’ e A’\I'"" point
into the same halfspace determined by the hyperptankhis means that’ is a supporting

hyperplane forA’. O
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