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Abstract. This paper proposes a method to improve ID5R, an incremental TDIDT algorithm. The new method
evaluates the quality of attributes selected at the nodes of a decision tree and estimates a minimum number of steps
for which these attributes are guaranteed such a selection. This results in reducing overheads during incremental
learning. The method is supported by theoretical analysis and experimental results.
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1. Introduction

A decision tree is a model of the evaluation of a discrete function (Moret, 1982). This
model represents a step-by-step computation where, in each step, the value of a variable is
determined and according to that value the next action is chosen. Possible actions are the
selection of some other variable for evaluation, the output of the value of the function, or
the remark that for the particular variable-value combination the function is not defined.
In a broad context, a variable may be a combination of other variables rather than a single
variable (Breiman et al., 1984; Pagallo, 1989; Brodley and Utgoff, 1995).

This description suggests a way of building such a decision tree: given a set of training
instances that represent the values of the function at specific points of the pattern space, the
decision tree designer should come up with informative questions about the values of the
variables such that each question builds on the results of previous questions and progresses
towards the computation of the output of the function as fast as possible. This is the basic
concept behind Top-Down Induction of Decision Trees (TDIDT) algorithms.

Building an optimal decision tree is an NP-complete problem (Hyafil and Rivest, 1976;
Naumov, 1991), therefore heuristic methods are used. The most notable algorithm is
probably ID3 (Quinlan, 1983; Quinlan, 1986), which paved the way for numerous other
variations and improvements.

There is a distinct difference between two types of algorithms in this discipline: incremen-
tal algorithms are able to build and refine a concept in a step-by-step basis as new training
instances become available, whereas non-incremental algorithms work in batch mode (off-
line). The relative advantages of incremental techniques are elaborated by Utgoff (1989),
who also presents ID5R, an incremental algorithm as an extension to ID3. ID5R serves as
the basis for the discussion in this paper.
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COBWEB (Fisher, 1987) was one of the early incremental learning systems. ID4 (Schlim-
mer and Fisher, 1986) and ID5 (Utgoff, 1988) were also proposed before ID5R as extensions
to ID3. ID4 may have to reconstruct the tree several times for different training set orderings
and ID5 does not guarantee compatibility between the finally delivered tree and the tree
produced by ID3 (regardless of which attribute selection criterion the ID3-based algorithm
would use). The same can be said for the IDL algorithm (Van de Velde, 1990) that uti-
lizes topological relevance to perform incremental induction and the principles discussed
by Cockett and Zhu (1989), where the concept of association reductions is introduced.

The scope of interest of this paper is the study of incremental algorithms that, at each
step, guarantee compatibility between the incrementally induced tree and the tree produced
by an “off-line” method (for example, ID5R guarantees ID3-compatibility). We discuss
a method of improving the learning speed of the ID5R algorithm and at the same time
guaranteeing that the tree is constructed by exactly the same sequence of operations that
ID5R would perform. The method is analytically evaluated and experimentally validated.
The paper concludes by identifying directions for improvements.

2. Overview of the problem

A brief description of the ID5R algorithm is presented below. For details and a complexity
analysis of some TDIDT algorithms, the reader is referred to the original paper by Utgoff
(1989).

Given a decision tree and a new training pattern to be incorporated into the tree (by
incremental learning), one starts by examining the root node of the tree. The attribute,
according to which the primary partitioning of the pattern space is made, has a score, which
allows it to prevail over competing attributes. However, as the new pattern arrives this score
may change along with the scores of competing attributes. This means that at some point,
splitting on the original attribute is no longer warranted by the current scores. Should this
be the case, the new best attribute is recursively pulled-up to the root of the tree and the
original one is demoted. The pull-up is effected by means oftranspositions(also discussed
by Cockett (1987)), which are structural operations that swap attributes in consecutive levels
of a decision tree. After the demotion of the original root attribute, the rest of the tree is
recursively searched to achieve consistency for all subtrees, taking into account the new
pattern and the restructuring. As the pattern is “propagated” towards a leaf node (possibly
a new one) the scores of all attributes that are available at each node of the decision path
are updated.

The particular drawback of ID5R in its current form (as described) is that, besides the
updating of the scores of the competing attributes, the propagation of a pattern along its
decision path generates a selection process at each node. Such processes determine whether
the current splitting attribute is still the most informative, according to the splitting criterion.
In doing this, the algorithm blindly ignores that an attribute may have outperformed its
competitors by such a margin that it is impossible for it to turn up as a second best within
the next few new patterns. The major topic of the following analysis is to quantify “few”.
The effects of such a blind reconsideration may be detrimental to the speed of the learning
process. This speculation is a motivation to research whether one can guarantee that some
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nodes will bestablein their selection of attribute tests over a number of steps; after this
number of steps one would have to reconsider the situation at that node and possibly pull-up
a new attribute without having to worry that this pull-up should have occurred earlier. This
is the core of the argument to be pursued.

ID5R has been now superseded by ITI (Utgoff, 1994). ITI is an algorithm that handles
numeric attributes and missing values and uses the gain ratio as an attribute selection policy
(Quinlan, 1986; Quinlan, 1993). For the sake of simplicity in the following discussion,
numeric attributes and missing values are ignored, and the information gain is used. The
principle remains the same, however.

3. Description and theoretical analysis of the method

Assume that at a given node two attributes compete and that attributeF1 prevails over
attributeF2. Assume also that during incremental learning, attributeF2 is going to be the
sole competitor forF1 (this is not an optimistic bias of the measure of the ability ofF1 to
withstand competition). LetE1 andE2 be the respective scores of these attributes. The
score refers to the measure of goodness of a particular attribute for splitting. It may be a
form of the information gain, the Gini index (Breiman et al., 1984), or some other.

The information gain criterion for a two-class problem (positive and negative) will be
presented. Extending the analysis to a multi-class problem is straightforward but will be
omitted because it is somewhat more complex and does not enhance the understanding of
the problem.

Note that for the information gain criterion, if an attributeF1 prevails over an attribute
F2, the following hold:

gain(F1) ≥ gain(F2) ⇔ I(p, n)− E(F1) ≥ I(p, n)− E(F2)
⇔ E(F1) ≤ E(F2)
⇔ E1 ≤ E2 (1)

In the expressions above,pi is the number of positive instances with valuei (ni refers to
the negative instances).I(p, n) is the expected information content of a source which may
transmit either ’P’ (positive) or ’N’ (negative) with probabilitiesp/(p+ n) andn/(p+ n)
respectively. E(F ) is the resulting information content after branching on attributeF
(Quinlan, 1986). Hereafter, the scoreEi of an attributeFi will be used to denote the
quantityE(Fi).

The purpose of the analysis below is to bound the number of steps before there can be
any change in attribute preference between attributesF1 andF2 (a new training instance
corresponds to one step).

Suppose that a new training instance arrives and that at this given node it is probed (for
some attribute) and found to have valuej (this instance is also said to belong to bucketj).

The score of the splitting attribute, before the new instance is added, is computed as
follows:

E =
m∑
i=1

pi + ni
p+ n

(
− pi
pi + ni

log
(

pi
pi + ni

)
− ni
pi + ni

log
(

ni
pi + ni

))
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=
ε

p+ n
(2)

where

ε = −
m∑
i=1

(
pi log

(
pi

pi + ni

)
+ ni log

(
ni

pi + ni

))
(3)

and, of courseε ≥ 0.
In the expressions above,m denotes the number of values a given attribute can have. As

a convention of notation,log will denote a logarithm of base 2. Note also that the terms
instanceandpatternwill be used as synonyms.

Without loss of generalization, assume that the new instance is positive. The new score
is computed.

E′ =
−1

p+ n+ 1

m∑
i = 1
i 6= j

(
pi log

(
pi

pi + ni

)
+ ni log

(
ni

pi + ni

))
+

−1
p+ n+ 1

(
−(pj + 1) log

(
pj + 1

pj + nj + 1

)
− nj log

(
nj

pj + nj + 1

))
=

ε+A

p+ n+ 1
(4)

where

A = pj log
(

pj
pj + nj

)
+ nj log

(
nj

pj + nj

)
−

(pj + 1) log
(

pj + 1
pj + nj + 1

)
− nj log

(
nj

pj + nj + 1

)
(5)

By settingx = pj andy = nj , and by some manipulations we obtain:

A = x log x+ (x+ y + 1) log(x+ y + 1)−
(x+ y) log(x+ y)− (x+ 1) log(x+ 1) (6)

The difference in the scores, before and after the consideration of the new training instance,
is now

∆E = E′ − E

=
ε+A

p+ n+ 1
− ε

p+ n

=
A

p+ n+ 1
− ε

(p+ n)(p+ n+ 1)
(7)

Minimum and maximum values are now required for the quantity above; these will allow
the computation of a bound on the rate of convergence of scores between two competing
attributes.
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Consider first the quantity denoted byA. This is a function of two variables, namely
A(x, y) (we define that0× log 0 = 0 for convenience in the following computations).

Lemma 1

0 ≤ A(x, y)

Proof: For a point(x0, y0) to be a local minimum, it must satisfy the following condition:

∂A

∂x
(x0, y0) =

∂A

∂y
(x0, y0) = 0 (8)

One can easily verify that this condition cannot be met by any(x0, y0) point, so local
extrema may only appear as instances of a boundary problem. Under the constraints that
x ∈ [0,+∞) andy ∈ [0,+∞) and the fact thatx andy cannot be both 0, it follows that
Amin = 0 (sinceA(x, 0) = 0 andA(0, y) ≥ log(y + 1)).

Lemma 2

A(x, y) ≤ log(x+ y + 1) + log e

Proof: By manipulating the expression forA, we obtain

(x+ y) log
(
x+ y + 1
x+ y

)
≤ log(x+ 1) + x log

(
x+ 1
x

)
+ log e (9)

It can be proved easily that the sequence

n log
(
n+ 1
n

)
converges tolog e and that its minimum value is 1. We then obtain

(x+ y) log
(
x+ y + 1
x+ y

)
≤ log e (10)

x log
(
x+ 1
x

)
≥ 1 (11)

By substituting inequalities 10 and 11 into inequality 9, the proof is concluded (forx = 0
we work on the original inequality and derive directly the result).

Lemma 3
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ε ≤ p+ n

Proof: ε is a sum ofm terms, each one of the form

−x log
(

x

x+ y

)
− y log

(
y

x+ y

)
Using an argument of extreme values, as in Lemma 1, it follows thatεi ≤ pi + ni and we
obtain

εi ≤ pi + ni ⇒ ε ≤
m∑
i=1

(pi + ni) = p+ n (12)

Putting all the above bounds together, the expressions for the extreme values of the score
differences follow:

∆Emin ≥
−1

p+ n+ 1
(13)

∆Emax ≤
log(x+ y + 1) + log e

p+ n+ 1
=

log (bj + 1) + log e
p+ n+ 1

(14)

The termbj = pj + nj in inequality 14 denotes the number of patterns directed to bucket
j. To cover the worst case, this will be set to the number of patterns in the bucket that holds
most of the patterns during the initial distribution. Note that in such a case the information
content decreases.1

We can now assume that for every one of the followinga instances that arrive at this node,
the worst case will occur regarding the initially selected attribute and the best case will
occur for competing attributes. In such a case we can obtain an overall worst case scenario
for that attribute. For reasons of simplicity, we also assume thata ≤ bj (this, again, is an
assumption that biases the final estimate pessimistically, as we explicitly state that we do
not expect to postpone consideration for more thana steps).

So, in the case where the competing attribute’s score is maximally decremented at each
step and the current preferred attribute’s score grows at a maximum, the score distance that
will be closed between the two attributes aftera steps is

∆Emax,a −∆Emin,a ≤
(

a∑
i=1

log(bj + i) + log e
p+ n+ 1

)
+

a

p+ n+ 1
(15)

The numerator of the quantity in the sum simply reflects that the current preferred attribute
will accumulate all futurea instances into bucketj. If we had tried to derive∆Emax and
∆Emin for each one of thea steps, then the denominator would increase (it is easy to carry
out the original calculations by assuming a start-up population ofp+ n+ 1 instances) and
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the bound would be stronger, but a closed formula would be very difficult to derive. If we
further expand inequality 15 and note thata ≤ bj we obtain

∆Emax,a −∆Emin,a ≤
(

a∑
i=1

log(bj + bj) + log e
p+ n+ 1

)
+

a

p+ n+ 1

≤
(

a∑
i=1

log 2 + log(bj) + log e
p+ n+ 1

)
+

a

p+ n+ 1

≤ a(log(bj) + 2 + log e)
p+ n+ 1

(16)

Using the initial score difference, this is transformed into

E2 − E1 ≥
a(log(bj) + 2 + log e)

p+ n+ 1
⇔ a ≤ (p+ n+ 1)(E2 − E1)

log(bj) + 2 + log e

⇔ amax =
⌊

(p+ n+ 1)(E2 − E1)
log(bj) + 2 + log e

⌋
(17)

The(p+ n+ 1) factor in the above result can be attributed to the distributive nature of the
measure of attribute merit used by the information gain.

The above formula allows room for some insight into the behavior of a decision tree. The
(p+ n+ 1) factor in the numerator indicates that nodes that are higher up in the tree (near
the root) should find it easier to postpone attribute score evaluations, compared to lower
nodes, and that improvement should be easier to observe when large data sets are used. The
log(bj) factor in the denominator indicates that when attributes with many values are used,
they may tend to have a low number of instances in each bucket and thuslog(bj) decreases.
This also results in potentially higher values foramax (denoted simply bya, hereafter).

Table 1 presents the enhanced algorithm (steps to identify leaves and other boundary
conditions are omitted, for the sake of conciseness). The basic idea is to accommodate an
instance in the decision tree and then consider nodes for evaluation of attribute scores. This
is also the basic idea in ITI.

4. Experimental verification

The analysis has been verified by experimenting with the following data sets from the
Machine Learning Repository (Murphy and Aha, 1995), available via anonymousftp from
the ics.uci.edusite, in the directorypub:

• kr-vs-kp : This data set has 3196 instances with thirty-six attributes and nominal at-
tribute values. There are no missing values. It is a database of chess end games, with a
king and a rook on one side and a king and a pawn on the other. The task is to decide
if the position is a win for the side of the rook.

• mushroom: This data set has 8124 instances with twenty-two attributes and nominal
attribute values. There exist some missing values, which are treated here as separate
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Table 1.Description of enhanced ID5R.

algorithmID5R (adapted from Utgoff (1989))
Input: a decision tree, a training instance.
Output: a revised decision tree.

use the decision tree to classify the new instance and add it to the tree

for each node in the classification path decrease its value ofa

for each node affected by the new instance

if its value ofa equals 0

select the most suitable attribute for that node and re-computea

if the selected attribute is not already in that node then

pull-up the attribute from the leaves towards the node

establish best attributes for all subtrees of the node

algorithmpull-up (adapted from Utgoff (1989))
Input: a decision tree, an attribute, a node.
Output: a revised decision tree.

recursively pull up the attribute to the root of each immediate subtree of the current node

transpose the decision tree at the current node

set the value ofa for all subtree root nodes to 0

nominal values. It is a database of mushrooms described in terms of their physical
characteristics and classified as poisonous or edible.

It should be noted that the analysis presented above applies to symbolic attributes only
and that the possible extensions to explicitly handle numeric attributes and missing values
have been left as future work. We expect, however, that such extensions involve mainly
implementation issues rather than a fundamental re-thinking of the analysis.

Experimentation consisted of building a decision tree incrementally using ITI (the pro-
gram, supplied by Paul Utgoff, was modified to use the information gain and incorporate
the above presented improvements). The experiments were conducted on a Sparcstation II
computer. Each data set was used in ten experiments with a different ordering each time.
Although the order in which the training instances are presented has no effect on what tree
ITI will build, order does have an effect on the amount of computations required to produce
the final tree.

A particular feature of the ITI algorithm is that it generates binary tests. In doing so, it
effectively creates competition among attribute-value pairs, rather than among attributes.
This is an implementation detail that does not affect the analysis presented above. However,
binary attributes need special attention as branching on one value is equivalent to branching
on the other. With a naive method of handling them, a binary attribute that would produce
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the best attribute-value test at a node would also produce the second best with the same
score. This would result ina always having value 0. ITI was also modified to avoid this
caveat.

Table 2 shows how the proposed improvement may lead to speed-up in the above domains.
The numbers reported refer to the fraction of the effort expended by the original algorithm
that has been expended by the improved algorithm to solve the same problem (a baseline
performance of 1 refers to the original algorithm). The results are shown in the form
Mean-Value (Standard-Deviation). We report the results with an accuracy of two decimal
digits.

Table 2.Results on the amount of computations.

U-Nodes U-Attributes CPU time
kr-vs-kp 0.60 (0.06) 0.55 (0.06) 0.88 (0.05)
mushroom 0.46 (0.03) 0.41 (0.03) 0.78 (0.06)

The quantities (actually, the ratios) reported are:

• U-Nodes: The number of times a node had to be considered because its test could be
unstable.

• U-Attributes : The number of times an attribute had to have its information gain calcu-
lated because of the instability of the test at the node where the attribute was available.

• CPU time: The CPU time (in seconds) required for an experiment (measured using the
getrusagesystem function).

The results confirm that substantial savings are realized, that translate to direct speed-up
in the running of the algorithm. However, beyond test stability at a node, other aspects
of efficiency in incremental induction must be identified and investigated to examine the
apparent differences in the ratios of theU-Nodes, U-Attributes andCPU time quantities
between the improved and the original versions of the algorithm. This means that the
problem of test stability is not the only bottleneck in the process of incremental induction
and that updating the decision tree with all required information about a new instance is
quite an expensive task.

Some interesting observations can be made regarding the tentative claims made earlier,
about the type of problems where the proposed method would be most effective (we had
indicated that higher nodes could be expected to be more stable in their selection of tests than
lower nodes and that large data sets would show more pronounced improvement). Note that
the results for themushroom domain are more impressive than the ones for thekr-vs-kp
domain. This is reflected in an examination of the training instances of these domains, as
in thekr-vs-kp domain there exists an abundance of binary attributes and fewer instances
are available.

It should be stressed, that this comparison across experimental domains only serves as a
preliminary investigation and simply confirms that there exist many aspects in the problem
of efficient incremental induction that merit attention.
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5. Discussion

The ID5R (ITI) algorithm has been enhanced so that it takes into account the quality
of the available attributes and, thus, saves on the number of times that it evaluates and
compares scores of competing attributes. On the basis of these improvements it has been
shown to perform better on non-trivial induction problems. We believe that the analysis
is representative of the procedure one should employ to evaluate the method with other
attribute selection policies, such as the gain-ratio (Quinlan, 1986), the Gini index (Breiman
et al., 1984), or the de M´antaras distance (de M´antaras, 1991). We hope that similar results
will be established in this direction, in the course of future work.

Note that when a transposition occurs at a given node, all lower nodes may be reconsidered,
in the worst case. This does not affect the analysis above, as new nodes generated by the
transposition are treated as if they were generated during the normal splitting procedure
(we computea for each node, as soon as it is generated). However, we have not studied the
effects of transpositions in greater detail and it is unclear whether they could be used in the
analysis to obtain larger values fora.

Note also that the proposed enhancement does not affect the worst- case complexity of
ID5R. This happens because it is a heuristic approach that aims to exploit regularities that we
expect to exist in most problem domains. Note that any ordering of patterns that makes all
visited nodes to be re-considered after each step, will result in worse overall performance,
when compared to ID5R. This happens because of the overhead incurred to computea,
while a will always be 0.

The proposed approach may be also compared to the sub-sampling problem (Catlett,
1992; Musick et al., 1993), where the objective is to estimate reliably how much the
problem size parameters may be scaled down, without compromising quality. In the context
of incremental learning, we define quality as compatibility with ID3 (as outlined in the
introduction, where the scope of this paper was set out), but one could also take a broader
view.

A special case of performance improvement occurs when the computed value fora (callf
the corresponding attribute) is larger than the number of different values of any competing
attribute (call itg). In such a case we have guaranteedf ’s superiority overg for the
subsequenta steps, assuming thatg places each new pattern at an empty bucket. This
extreme-case assumption, however, cannot hold fora steps, but rather for the number of
different values forg. This means that before thea-th instance is observed,g will have
depleted its pool of possible values and new instances (up to thea-th) will be allocated to
already populated buckets. We refer to this situation as “folding”. When folding occurs,
the value fora is too pessimistic, as maximal score decreases cannot be eventually achieved
for competing attributes and the originally best splitting attribute is further strengthened.
Preliminary attempts to quantify the effect of folding have not been successful in the sense
that the reduction in the number of node checks may not justify the cost of calculatinga, for
every node. We strongly believe, however, that tighter bounds will unveil whether folding
may finally be of any practical value.

A further potential improvement would be to establish a set of values fora, for each node,
where theith component of vectora would refer to theith best attribute for that node. The
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revised algorithm would then need to look at an attribute score according to the value of
a component ofa. Although this would probably save some more computational steps, it
is doubtful whether time savings could be realized, as the additional overhead may be too
high.

Another interesting situation arises when an attribute is only marginally better than its
competitors. In this case it is unlikely that whichever attribute prevails will also assume a
safety margin that will carry it more than one further new instance. If reconsiderations and
pull-ups happen often, swapping of “currently best” attributes for some parts of the tree
may be experienced, which, in extreme cases, may carry on until the end of the learning
process. The applicability of the proposed method in this situation can probably be studied
in conjunction with the requirement that the optimal tree (in the sense of ID3-compatibility)
be available for the learning of each new training instance. No relevant studies have been
conducted, so the above point is offered as speculation only (however, Schlimmer and
Fisher (1986) and Utgoff (1989) do discuss the subject of stability of decision nodes during
incremental learning).

6. Conclusion

A method of incremental decision tree induction has been presented and evaluated, analyt-
ically and experimentally. It was shown to offer significant improvements over an existing
technique and research questions related to it have been identified.
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Notes

1. Note that the original assumption, that a positive instance was available, does not affect the resulting expres-
sions. This supports the generality of the argument.
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