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Abstract. We consider the problem of learning DNF formulae in the mistake-bound and the PAC models. We
develop a new approach, which is calfgglynomial explainabilitythat is shown to be useful for learning some new
subclasses of DNF (and CNF) formulae that were not known to be learnable before. Unlike previous learnability
results for DNF (and CNF) formulae, these subclasses are not limited in the number of terms or in the number of
variables per term; yet, they contain the subclassés@RNF andk-term-DNF (and the corresponding classes of

CNF) as special cases. We apply our DNF results to the problem of learisimg conceptand obtain learning
algorithms for several natural subclasses of visual concepts that appear to have no natural boolean counterpart.
On the other hand, we show that learning some other natural subclasses of visual concepts is as hard as learning
the class of all DNF formulae. We also consider the robustness of these results under various types of noise.
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1. Introduction

A central question in computational learning theory is deciding which subclasses of boolean
formulae are learnable under the standard learning models. One of the main open problems,
which has remained open since proposed by Valiant (Valiant, 1984, Valiant, 1985) is the
guestion of the PAC-learnability of disjunction-normal-form (DNF) formulae.

Despite the efforts devoted to resolving this problem, success was obtained only for
relatively simple subclasses, such la®NF (DNF formulae in which each term con-
sists of at mosk: literals) andk-term-DNF (DNF formulae withk terms). The widest
subclass of boolean formulae known to be PAC-learnable is thatdwcision lists k-
DL) (Rivest, 1987) which contains the above two subclasses as special cases. Instead,
work has been focused recently on other models where, with the added ability of the
learner to make various kinds of queries, a wider collection of subclasses are known to
be learnable; these include, for example, monotone DNF (Valiant, 1984), read-twice DNF
(Hancock, 1991, Aizenstein & Pitt, 1991, Pillapakkamnatt & Raghavan, 1993), Horn for-
mulae (Angluin, Frazier, & Pitt, 1992)og n-term DNF (Blum & Rudich, 1992), Reak-
Satisfys DNF (Aizenstein & Pitt, 1992, Blum et al., 1994), and Decision Trees (Bshouty,
1993). Most recently, Jackson (Jackson, 1994) shows (using the Fourier algorithm of
(Kushilevitz & Mansour, 1993)) how to learn the class of DNF formulae with respect to
theuniform distributionusing membership queries. However, for the DNF problem in the
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PAC model, simple reductions (Kearns et al., 1987) show that the restrictions suggested by
researchers to tackle the problem when queries are available, e.g., limiting the number of
occurrences of a variable, considering monotone formulae etc., are not useful in the query-
less models. Thus the PAC-learnability of DNF formulae (beyond the above mentioned
subclasses) is still a mystery.

One reason for the attraction of the class of DNF, aside from its being a theoretical
puzzle, is that people appear to like it for representing knowledge (Valiant, 1985). Indeed,
in (Shvaytser, 1990) the observation is made, that learnability results on learning DNF
and CNF formulae are useful for the task of learning to recogrigael concepti digital
pictures. By mapping boolean variables to pixels imann digital picture, the equivalence
to learning DNF is shown Then, known DNF and CNF learning algorithms are used to
learn the corresponding visual concepts.

We present a new approach to the problem of learning DNF formulae. As a result,
we are able to learn any subclass of DNF whichasynomially explainable Informally
speaking, we show that, when learning DNF it is not necessary for the set of candidate
monomials to be of polynomial size (as is the case, for example, sidiNF formulae);
we can handle DNF formulae defined over a super-polynomial set of monomials, as long as
it is possible, given a (positive) example, to output a list of monomialsgxpéanationy
such that one of them is satisfied by the example. Negative examples are then used to
eliminate “false” explanatiors (Similar ideas were developed in different contexts, e.g.
in (Blum, 1992, Blum & Rudich, 1992, Aizenstein & Pitt, 1992).) The same approach is
used for learning subclassestifiFformulae. DNF formulae in the subclasses shown to be
learnable are not limited in the number of terms or in the number of variables per terms, and
they contain the subclassesioDNF andk-term-DNF (and the corresponding subclasses
of CNF) as special cases.

We then apply our approach (and results) to the PAC-learnability of visual concepts (in fact,
most of our results hold in the mistake-bound model as well). By a visual concept we mean
a collection ofpatterns(e.g., rectangles, chairs), that are defined by certain characteristics
(e.g., shape, texture). In the learning scenario, examples of pictures (‘scenes’) are given to
a learning algorithm, labeled as positive or negative according to whether they contain at
least one member of an unknown collection of patterns or not. The goal is to acquire the
skill of labeling future pictures accordingly.

We consider two versions of the problem: (1)sfaticversion, in which each pattern in
the visual concept hadixedlocation in the picture and only pictures containing the pattern
in that location are labeled positive; (2)dnamicversion, in which a pattern might appear
anywhere in the picture, i.e., it might be translated or even rotated and scaled in certain
ways. The dynamic version seems more suitable for possible applications. However, it
is more convenient to consider the static version for demonstrating the correspondence to
the DNF problem. Fortunately, all the algorithms we present for the static version of the
problem can be easily modified to work in the dynamic éas&e hereafter discuss only
the static version of the problem.

We show that structural information on the concept classes, (e.g., all concepts are polygons
with k edges) can be used to devise efficient learning algorithms. This gives some learning
algorithms for several “natural” subclasses of visual concepts. We also exhibit some of the
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limitations of this method: we use reductions to prove that learning various other visual
concept subclasses is as hard as learning general DNF formulae, although these concept
classes have seemingly helpful structure.

Itis a natural question whether the ideas presented here (along with some “engineering”)
can be used to solve some “real-world” problems. We believe that they do; indeed, some
experiments that use these idea to solve problems concerning the recognition of human
motion (Bender & Roth, 1994) and character recognition (Basri, 1994) seem to be encour-
aging. A major problem from the engineering side of the problem is how to generate the
“explanations” in an efficient and compact way.

A more intrinsic difficulty is that our model is very “clean” while “real-world” data (both
the examples and their classifications) is often noisy. Therefore, we discuss the problem
of learning polynomially explainable classes in the presence of various kinds of noise. We
consider classification noise, malicious noise, and a certain type of attribute noise that occurs
in visual concepts (when the target object may be obstructed by other objects). We show
how these kinds of noise can be tolerated in learning polynomially explainable classes.

In the next section we formally define the learning models considered. In Section 3 we
prove the main theorem in terms of DNF (and CNF) formulae. In Section 4 we present the
visual learning problem and some of the results in terms of visual concepts. In section 5
we discuss learning in the presence of noise, and in Section 6 we discuss the results and
briefly describe some other applications of our technique.

2. Preliminaries

We begin by formally defining the learning models discussed in this work — the standard

PAC model (Valiant, 1984) and the mistake-bound model (Littlestone, 1988).
Theinstance spac&’ is{0, 1}", the set of all possible assignmentstooolean variables.

A conceptf is a boolean function oX. Positive(respectivelynegativé examples off

are examples (instances) on whiglis 1 (respectivelyp). A concept classs a collection

of concepts.

In the learning scenario, we are given a concept camsd there is some unknovtarget
conceptfr € C that we are trying to learn. In thaistake-boundnodel, at each learning
stage, an example € X is presented; the learning algorithm is asked to preffi¢t:) and
is then told whether the prediction was correct. Each time the learning algorithm makes an
incorrect prediction, we charge it omaistake We say that is mistake-bound learnable
if there exists a polynomial-time prediction algorithdn(possibly randomized) that for all
fr € C and any sequence of examples is guaranteed to make at most polynomially many
(in n) mistakes. We say that is expected mistake-bound learnalfi¢here existsA4, as
above, such that the expected number of mistakes it makes ffar &llC andanysequence
of examples is at most polynomially many ¢if). Note that the expectation is taken over
the random choices made by; there is no probability distribution associated with the
sequences!.

In learning an unknown target functiofy € C in the PAC model, we assume that
there is a fixed but arbitrary and unknowistribution D over the instance spacé. The
learning algorithm sees examples drawn independently accordibgdagether with their
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labeling (positive/negative). Then it is required to predict the valug;obn another

example drawn according tB. Denote byh(x) the prediction of the algorithm on the
exampler € X. The error of the algorithm with respect fg- and D is measured by
error(h) = Pryep{fr(z) # h(z)}.

We say that is PAC-learnabléf there exists a polynomial-time learning algorith#
and a polynomiap(, ,) such that for alh > 1, all target conceptg, € C, all distribution
DoverX,andalle > 0and0 < 6 < 1, such that if the algorithml is givenp(n, 1 /¢, 1/6)
examples, then with probability at ledst 6, A’s hypothesish, is such thaerror(h) < e.

It can be shown that if a concept cldss learnable in the expected mistake-bound model
(and thus in the mistake bound model) then it is PAC-learnable (Haussler et al., 1991).

3. The DNF Problem

In this section we presentaistake-boundlgorithm for subclasses of DNF formulae satis-
fying certain properties. This, in particular, implies the PAC-learnability of these subclasses
(Littlestone, 1989). The main idea is the following: Consider, for example, Valiant's algo-
rithm for learningk-DNF (Valiant, 1984) (many other algorithms share the same structure).
Before seeing any example, the algorithm enumerates the set of all (polynomially many)
monomials of size at mogt Then, it uses the examples to “eliminate” those monomials
which are not consistent with the examples. This method clearly cannot work for sub-
classes whose underlying set of monomials is super-polynomial. In our approach, we do
not enumerate all possible monomials ahead of time, but rather enumerate monomials that
“explain” the classification of the particular examples that we see (and as before, examples
are also used to eliminate “wrong explanations”). For certain classes in which each example
has only polynomially many explanations this gives a learning algorithm with the desired
behavior. More formally:

Definition. Let xq,29,...,2, be a set ofn boolean variablesM be any collection of
monomials on the literals,, 1, .. ., z,, Z, andp(n), ¢(n) andg(n) be polynomials. Let
Cm be the class of all functions which are disjunctions of at posj monomials inM. We
call Cxq polynomially explainabldf there exists an efficient (polynomial-time) algorithm
A such that for every functiofi € C,, and every positive example dfas input,4 outputs
at mostg(n) monomials (not necessarily all of them are/it) such that with probability
at leastl /g(n) at least one of them appears fifwhere the probability is taken over the
coin-flips of the algorithm4, in case that4 is a probabilistic algorithm).

We emphasize thaf itself is not given to the algorithmA. Also note that a function
f in the clas< may have few logically-equivalent representations as a disjunction of
monomials inM. The definition requires the output of the algorith#to satisfy the
above property, independently of which of these representatiofisotonsidered. The
importance of this will become clear when we analyze the learning algorithm below.

THEOREM 1 If Cpis polynomially explainable thefy is expected mistake-bound learn-
able. Furthermore, i€ o, is polynomially explainable by an algorithrithat always outputs
at least one term of (i.e.,g(n) = 1) thenC,, is mistake-bound learnable.
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Proof: We present an expected mistake-bound algorithm that learns theCglaésith
expected number of mistakes which¢p(n) - g(n) - g(n))). The algorithm is similar to
an algorithm presented in (Blum, 1992). The algorithm maintains an hypothesigsh is
a disjunction of monomials. Initiallys contains no monomials (i.eh,= FALSFE). Upon
receiving an example, the algorithm predicté(e); if the prediction is correcth is not
updated. Otherwise, upon a mistaken prediction, it proceeds as follows:

o If e¢is positive: executed (the algorithm guaranteed by the assumption thatis
polynomially explainable) on the examplend add the monomials it outputs/o

e If eis negative: remove from the hypothesiall the monomials that are satisfied by
(there must be at least one).

To analyze the algorithm we first fix a representationffas a disjunction of monomials
in M (in casef has more than one possible representation, choose one arbitrarily; The
above definition guarantees that we can work witly representation of that uses only
monomials inM). Now, note that a ‘true’ monomial, i.e., a monomial that appears in
this representation of the target functignis never removed fromh. Therefore, since
on a positive example, the algorithmA is guaranteed to output at least one monomial
that appears irf, with probability at least /g(n), then the expected number of mistakes
made on positive examples is at mpé&t) - g(n). This also implies that the expected total
number of monomials included fduring the execution of the algorithm is not more than
p(n) - q(n) - g(n).* Each mistake on a negative example results in removing at least one
of those monomials that were includedrirbut do not appear irf. The expected number
of these monomials is therefore at mpét) - ¢(n) - g(n). We get that the expected total
number of mistakes made by the algorithnOigp(n) - g(n) - g(n)).

Finally, note that in the casgn) = 1 we get a truly mistake-bound algorithm, whose
number of mistakes is bounded pin) - g(n). [ |

A special case of the above theorem is learrkisigNF formulae. Itis obtained by taking
M to be the set of all monomials of size In this caseM itself is of polynomial size.
The following corollary gives another important special case of the theorem, in wHich
might be of exponential size bat, is still learnable.

COROLLARY 1 LetSy, ..., S; be subsets ofzy, ..., x,}, wheret is polynomial inn. Let

B be an efficient algorithm that on inputenumerates these sets (and possibly some more).
Let M be any collection of monomials with the property that for ewarg M the set of
variables inm is S; for somel < i < ¢ (i.e., any setS; may correspond to at mogtS:!
monomials inM, by choosing for each; € .S; whetherz; or z; appears in the monomial).
Then,C 4 is mistake-bound learnable.

Proof: We use the algorithr to construct an algorithma, as required in the conditions
of Theorem 1. The algorithiml works as follows: given a positive examplgit first uses
B to produce the setS;, . .., .S; (and possibly others). Then, for each such%ehere is
exactly one monomiah$ which contains all the variables &f and is satisfied by (for
eachx; € S; the monomial containg; if the j-th bit of e is 1 andz; if the j-th bit is
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0). A outputsmg,...,m{. Notice that for each positive exampleat least one of these
monomial must be ioM (but some may not). [ |

The following examples are all special cases of the this Corollary. Other examples can
be obtained by “translating” the examples of visual concept subclasses, that are given in
Section 4 below, to the terminology of DNF formulae; however, the resulted subclasses of
DNF seem to be somewhat artificial.

Example: Consider the class of all DNF formulae in which each term conttiteastn — &

literals (for some constai). This class was previously considered in (Li & Vitanyi, 1989).

In spite of its similarity to the class éf-DNF formulae (where each term contaatamost

k literals) its learnability seems to be more difficult. This is because in this case there are
exponentially many possible monomials to choose from (as opposed to the ¢aBdNGT
where there are only polynomially many possible monomials). Nevertheless, Corollary 1
implies that this class is learnable O

Example: Consider the class of all DNF formulae in which the variables in each monomial
have consecutive indices; e.g1Z2x3x4 V Z4T5x6 V 25x9. The above corollary shows that
this class of functions can be efficiently learned since(gﬁe< n?setsS; ; (1 <i<j<n)
defined bysS; ; = {x;, z;11, ..., z;} satisfy the above condition. O

3.1. The CNF Problem

The polynomial explainability approach can be easily extended to deal with CNF formulae.
To show that, we prove the following theorem, which is an analog of Corollary 1. This
result includes as special case the learnability-@NF formulae (and therefore also the
learnability ofk-term-DNF formulae).

THEOREM 2 Letp(n) be a polynomial. Le$, ..., S; be subsets dfzy, . .., z,}, where

t is polynomial inn. LetB be an efficient algorithm that on inputenumerates these sets
(and possibly some more). LBtbe any collection of disjunctions with the property that for
everyd € D the set of variables id is .S; for somel < i < t. Then, the concept clags

of all functions which are conjunctions of at m@s$t) disjunctions inD, is mistake-bound
learnable.

Proof: We present a learning algorithm which is dual to the algorithm in the proof of
Theorem 1. The algorithm maintains an hypothésiich is a conjunction of disjunctions
(i.e., aCNF formula). Initially» contains no disjunctions (i.é1,= TRUE). Upon receiving

an examplee, the algorithm predicté(e); if the prediction is correcth is not updated.
Otherwise, upon a mistaken prediction, it proceeds as follows:

e If cisnegative: this means that the hypothesis is still missing at least one disjunction that
is not satisfied by the exampte For eachS; there is exactly one candidate disjunction
like that. We add all these disjunctions#o
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e If eis positive: this means thatcontains at least one disjunction that does not appear
in the target function. We remove frolnall the disjunctions that are not satisfieddoy

With an argument similar to the one used in the proof of Theorem 1 it can be shown that
the number of mistakes made is at mp&t) - ¢. [ |

Example: Consider the class of all CNF formulae in which the variables in each disjunction
have consecutive indices; e.gvg V T4 V a5V x6) A (T5 V Tg V 27 V 23 V 29). The above
theorem shows that this class of functions is efficiently learnable. O

|
.

7

Figure 1. Shape Pattern

4. Learning Visual Concepts

In this section we discuss the learnability of classes of visual concepts. We give positive and
negative results in terms of some properties of these classes. We start with some definitions.
Given ann x n array, ashapeof sizek is a collection ofk points of the array,

S - {(lfvjl)71 S ilvjf S nv]- S L S k}

A binary pattern associated with a shapg is defined by giving a boolean value to every
pointin S. Formally,

P = {{(ic, je), be}; (ie, jo) € S, be € {0,1}}.

In this way, any shape of sizecan be associated with up26 different patterns. Am x n
pictureis a pattern whose shape is of sizg that is, every point of the x n array is given
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Figure 2. A Visual concept

a hoolean valuc. Throughout the paper we constder shapes and patterns embedded inn x n
pictures, without mentioning the dependence on n explicitly.

Figure | gives examples of a shape and a pattern associated with it. (We associate the
boolean value 1 with, say, black squares and 0 with white squares.)

Given a collection P of patterns and a polynomial p(n), the class of all visual concepts
over P is defined by

Cp — {17 € P . Pisasctof patterns and || < p{n)}.

A visual concept T' is thus a collection of at most p(n) many patterns from P.

We consider the following problem: given n X 7t pictures, labeled as positive or negative
according to whether they contain a pattern from an unknown cotlection I' € C¢ or not, we
try to “learn” 7' In Figure 3 positive and negative examples are labeled with respect to the
concept defined in Figure 2.

A set I" € P as above defines a boolean concept in a natural way; moreover, it has a
simple translation to the terminology of DNF formulae: the n? pixcls can be viewed as
a set of n? boolean variables, each shape is just a subset of these variables, each pattern
in 1" corresponds to a monomial over the set of variables defined by its shape, and the
boolean visual concept is the disjunction of those monomials (i.c., it is a DNF formulae).
The concept class Cp is the collection of all those concepts.

When no restrictions are made on the patterns collection P (i.e., P is the set of all
possible patterns), the problem of learning the concept class Cp is clearly equivalent to that
of learning the class of all DNF formulae on % variables. The following theorem shows
that some non-trivial pattern collections can still be learned. (We consider learning in the
mistake-bound model, which implies, as mentioned, PAC-learnability.)

We say that a collection &, of shapes on the n x n array is polyromially enumerable if
there exists an algorithm that enumerates all the shapes in S, in time polynomial in n. In
particular, this implies that the sct of shapes is of polynomial size.

THEOREM 3 Ler P be a collection of parierns on the n x n array, whose corresponding
set of shapes is polynomially enumerable. {Notice that P may be of super-polynomial size).
Then, Cp is mistake-bound learnable.
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Proof: For the proof, it is convenient to consider the subclass of DNF formulae corre-
sponding taCp (by the correspondence described above). In this terminology, restricting
the set of shapes to be polynomially enumerable means that we can enumerate the sets of
variables over which the monomials (in the corresponding subclass of DNF formulae) are
defined. Hence, we can apply Corollary 1 to get the result. ]

Figure 3. Positive Example Negative Example

To present concrete examples of interesting classes of patterns that are learnable, it will
be convenient to think of the picture as embedded in the real plane, where théippint
of the picture corresponds to the square defined by the real p@intsl,j — 1), (i —
1,7),(,7—1),(4,4). Thus, a shape corresponds to a set of polygons with integer vertices
and edges which are axis-parallel (see Figure 1)edgeof a shape is any of the edges of
the associated polygons. Therimeterof a shape is the total perimeter of the associated
polygons.

COROLLARY 2 Cp is learnable for the following collections of patterns:

e P is a collection of patterns whose shapes have a constant number of edges (e.g.,
rectangles).

e P is a collection of patterns whose shapes consist of a constant number of polygons,
each with perimete© (log n).

Proof: Using Theorem 3, itis enough to show that the set of shapes corresponding to each
of these collections is polynomially enumerable (actually, we only argue that these sets are
of polynomial size; the computation involved with enumerating them is very easy):
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e The number of shapes with constant numbgof edges is polynomial since each of
them can be specified by a list einteger points, and there afe + 1)? such points
(so there are at mogt + 1)2¢ such shapé$. Hence, this set of shapes is polynomially
enumerable.

e The number of shapes with constant number of polygons with perimikieg n) is
polynomial since each of these polygons can be specified by specifying an integer
starting point and the® (log n) times specifying one of the directionsp, down, left,
right (so there are at mogf’(°s™) = poly(n) such shapes). Hence, this set of shapes
is polynomially enumerable.

In fact, the result above can be extended in many ways. One can consider, for example,
polygons with integer vertices and constant number of edges which are not necessarily
axis-parallel, and define the shape corresponding to this polygon to be, say, the set of all
unit squares (i.€i — 1,5 — 1), (i — 1,4), (4,5 — 1), (4, §)) contained in the polygdn The
number of such shapes is polynomial (using the same proof as we used above for the case
of axis-parallel edges) and only the computation of which pixels are in the shape is a bit
different. Other families can be defined, for example, by the set of all circles, ellipses etc.
(where the corresponding shapes are defined in a similar way). In this way, for example,
scaling does not affect the actual number of edges of a polygonal shapes, and thus their
learnability.

As remarked before, the problem of learnifyg, whereP is not restricted, is equivalent
to learning general DNF formulae. Next we show that the problem remains difficult even if
we are restricted to a family of patterns with a fairly simple shape; in particular, we prove
it for the case where the shape is a single (simple) polygon.

THEOREM 4 Let P be the family of patterns whose shape is a simple polygon. Then,
learningCp is equivalent to learning DNF.

Proof: We show, using a reduction, that given an algorithm for lear@ingve can learn
the class of DNF formulae. The result holds in both the PAC and the mistake-bound models.
For simplicity we present it in the mistake-bound model.

Let ¢(x1,...,2,) = my Vma V...V m,; be the target DNF function, where each of
them;’s is a monomial. With eaclm; we associate a pattegn as follows: the pattern
p; includes all the pointél, j) with the valuel. In addition, the point2, j) is included
in the pattern if and only ifc; or z; appear inm;: it is included with the valuel” if
x; appears inm; and with the value(’ if z; appears inn;. Note that the construction
immediately impliep; € P (including the pointg1, j), for all j, in the pattern guarantees
that the corresponding shape is a simple polygon)dLet {p,...,p:} and letfr be the
corresponding boolean function.

Using the above definitions, we now show how to construct a mistake-bound algorithm
A for learning DNF, given a mistake-bound algoritiinfor learning the concept clags
defined above. Given an example= (x4, ..., x,), the algorithmA constructs a picture
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by letting all its points containl’ except for each of the pointg, j) whose value is the value

of the corresponding variable;. The main observation is that for all ¢(z) = fr(&).
Algorithm A feedst as an input td3, and uses the prediction 8fon & as its prediction on

x. When it receives the label afit feeds it toBB as the label of. Clearly,.A has the same
running-time ad3. Also, asB5 is guaranteed to make at most polynomially many mistake
onany fr € Cp andanysequence of examples, then in particular this is trueffoand

the examples as defined above. By the observatilomakes at most polynomially many
mistakes as well. [ ]

Our positive result shows, in particular, that patterns whose shapes are bounéed by
edges are learnable (even though these patterns might correspond to monomiat$ of
variables). On the other hand we have:

COROLLARY 3 LetP be a collection of patterns whose shape is boundekl(by edges.
LearningP is as hard as learning(k(n) — 1)-DNF'.

Proof: We use the same reduction as in the proof of Theorem 4. The result follows since a
monomialm; of lengthk(n) is mapped to a pattefn whose shape has at mdgk(n) + 1)
edges. [ |

5. Noisy Data

In this section we consider the robustness of learmialynomially explainablelasses.

First we consider a type of noise that is relevant for the class of visual concepts. We define
obstruction noisga type of noise that occurs in pictures, and give a learning algorithm that
can tolerate this type of noise. Then we consider more general types of noise that have been
considered previously in learning, namely, classification noise (Angluin & Laird, 1988)
and malicious noise (Valiant, 1985, Kearns & Li, 1993). We show that any polynomially
explainable class can be learned using statistical queries (Kearns, 1993), and therefore can
be learned in the presence of classification noise with error rate of Uf2tcand in the
presence of a certain amount of malicious error.

5.1. Obstruction Noise

In this section we consider the problem of learning a pattern in the presence of “noise” in
the pictures (but not on their labeling). The type of noise we allow is the one that usually
occurs when other objects appear in the picture, behind or in front of the target object (see
Figure 4). We also restrict ourselves to the case where the concept consisitnglea
pattern. We first define formally the type of noise considered:

Let p1, p2 be two patterns. We say thet k(n)-dominatess if p; can be obtained from
p2 by changing at most(n) of the ‘0's of ps to ‘1's. Formally, (a) both patterns have the
same shape, (b) all thé’s of p; are also 0’ in p,, and (c) all but at most(n) of the ‘1’s
of p; are ‘1'sin p».
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Figure 4. Noise

Let P be a collection of patterns, whose corresponding set of shapes is polynomially
enumerable. We associate witha concept clas€’p yn) = {fp.r(m)lp € P} Where
Ip.k(n) 1S defined to be positive if and only if the input picture contains a pagte(not
necessarily irP) thatk(n)-dominate.

THEOREM 5 Let P be a collection of patterns, whose corresponding set of shapes is
polynomially enumerable. Then the concept cldss, ., is PAC-learnable.

Proof: Let{Si,...,S;:} bethe polynomial-size set of shapes guaranteed by the assump-
tion thatP is polynomially enumerable. We give an “Occam” algorithm that leéfgs, ,,
usingC'pr 1/(n) @s the hypothesis space, whéreis the collection ofall patterns whose
shapes are i§Sy, ..., S}, andk’(n) < n?. Given a sample ofn labeled examples, we
show how to construct in polynomial time a consistent hypothesis of size that is independent
of m. Blumer et al. (Blumer et al., 1987) show that this is sufficient for PAC-learnability.
Given a sample of size, the learner starts by enumerating all the shapes. For each shape
S;, assuming it is the true shape, the learner identifies a target pattand a threshold
k;, and construct a hypothesfs = f,,, x, € Cps 1(n). The algorithm finally returns the
lowest indexedf; that is consistent with all the examples in the sample.
For a particular shap$§; (i = 1, ... ,t), a pair(p;, k;) is identified as follows:

e Finding the pattern:The learner considers only the positive examples in the sample.
The setl; C S; is defined to be the set of all the pointsSawith value 1’ in all the
positive examples. The patteppis defined to bd on points ofl; and0 on points of
Si\T;.
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e Finding a threshold:The learner considers the negative examples in the sample that
havel’s in all the points of7;. For each such example, it computes the number of
points inS; \ T; which are 1’ in the example. It takek; to be minimum of these values
minus1. If no such example exists it choosesarbitrarily.

The correctness of the algorithms relies on the observation tlsa&ifs,. is the correct
shape then the hypothegis= f,, x, found in ther-th round of the algorithm is consistent
with all the examples in the sample. Notice that a hypothesis determined based on a wrong
shape is not necessarily consistent with all the examples.

Denote byTys the set ofl’s of the true pattern in the true shape and bykgs the
true threshold. To see thdt is indeed consistent with the examples, notice that by the
construction off., Ts C T,., but|T,.| < |Ts| + ks. Lete be a picture in the sample, that is
labeled positive by the hypothesfs: either the set of’s in S is the sefl’., in which case
e is indeed a positive example by the above inequality, or that the numbé&riof S \ 7.
is less thark,. (by the definition ofk, and sincee is labeled positive by,.), and again, it
must be a positive example by the wigywas determined. Similarly, given a picturéhat
is labeled negative by the hypothegis it either has & insideT’., which implies, by the
way T, was constructed, thatis indeed a negative example, or, there are more thars
in S\ T, which again implies, by the wak,. was determined, that it must be a negative
example.

Thus, the algorithm above produces, in polynomial time, a hypothegisin. ,, that
is consistent with the sample. To represent this hypothesis weeed bits (n? bits to
specify the shape,? bits to specify values for the bits of the shape, ahsk » to specify the
threshold) which is independent of the sample size As shown in (Blumer et al., 1987),
using a sample size that is proportionaldg |C»/ ()| is sufficient for PAC-learnability.

]

Note that we do not use any “structure” of the pattern®inexcept the fact that the
corresponding shapes are polynomially enumerable.

A dual type of noise, in which the target concept is “over-exposed to the light” rather
than obstructed, can also be defined. Formally; ifp. be two patterns, we say that is
k(n)-dominateddy p- if p; can be obtained from, by changing at most(n) of the ‘1's
of p2 to ‘0’s (that is,ps k(n)-dominates;). Similarly, given a collectiorP of patterns,
whose corresponding set of shapes is polynomially enumerable, we can associate with it a
concept clasé?;;’k(n); in this case an input picture is defined to be positive if and only if it
contains a patterp’ (not necessarily ifP) that isk(n)-dominated by € P. Itis not hard
to see that the same algorithm used in the proof of Theorem 5, when exchanging the roles
of 0 and1 there, leads to the analogous result with respect to this type of noise.

It is worth noticing why the results above are restricted to the case where the concept
consists of asingle pattern. The problem is a “credit assignment” type problem: the
technigue we use in order to find the minima!-part of the pattern does not work even if
there are two possible patterns that can make a picture positive.
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5.2. Classification Noise

In this section we discuss PAC learning witlassification nois¢Angluin & Laird, 1988).

In this case, whenever we get an example, there is some probapiktyl /2 (usually
referred to as therror rate) that the label of this example is flipped (from 0 to 1 or vice
versa). Before proving that polynomially explainable concept classes can be learned in the
presence of classification noise, we show a robustness property of these classes that will be
useful for the proof.

LEMMA 1 If Cpq is polynomially explainable, then there exists an efficient (polynomial
time) algorithmB such that for every functiofi € C4, given any positive exampleof

f as input,B outputs a list of at mosi(n) monomials such that with probability at least
1/2 all the terms inf that satisfyz appear in the list. (As before, this is independent of the
representation of'.)

Proof: SinceC,, is polynomially explainable, then there exists an efficient algorithm
such that for every functiofi € Cr4, given any positive exampleof f as input,A outputs
a list of at mosty’(n) monomials such that with probability at ledsty(n) there exists a
term of f that satisfieg and appears in the list. We defiigo be as follows: on a positive
examplez it executesA for n - g(n) times and outputs all terms produced Ayin those
executions (i.e, at mog{n) = n - g(n) - ¢'(n) terms).

Our first claim is that for every functiofi € Cx, and every positive exampleof f,

L

Prob[ fails to output a term of that satisfies] < —.
€

1)
This is because the probability thdtfails to output such term in a single execution is at
mostl — 1/g(n). Therefore the probability thad fails in alln - g(n) executions is at most
(1=1/g(n)" 9™ < e,

We now show thaB3 has the property required in the lemma. Otherwise, there exists a
function f € Cx( and a positive example such that the probability th#t outputs all the
terms inf that satisfyz is less thanl /2. Letty, ..., t; be all the terms irf that satisfy
z. Since with probability greater thaly2 the algorithms3 fails to output one of the terms
ty,...,tq, then there exists a term (1 < i < d) such that the probability tha “misses”
it is greater thari /2d. Consider now the functioifi’ = ¢;. Clearly, /' € Cpq andz is a
positive example for it as well. However,

. - 1
Prob[B fails to output a term of’ that satisfieg] > 20’ 2

whered is bounded by a polynomial in. This contradicts Eq. (1) above, and proves the
lemma. [ |

For the main theorem of this section we use a the “statistical queries” (SQ) model recently
introduced by Kearns (Kearns, 1993). The SQ learning model can be viewed as a tool for
demonstrating that a PAC learning algorithm is noise-tolerant. We first introduce the SQ
learning model and state Kearns result, and in the next theorem give a statistical queries
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algorithm for the clas€ v¢. Inthe SQ model, the example oradlé( ( f, D) of the standard
PAC model, which provides examples of the functipdrawn randomly according to the
distribution D, is replaced by a statistics orac}dd" AT'(f, D). An SQ algorithm queries
the ST AT oracle for the values of various statistics on the distribution of labeled examples
(e.g., "What is the probability that a randomly chosen labeled exafaplé has variable

x; = 1 andl = 0 ?"), and theST AT oracle returns the requested statistics to within some
specified additive error. Formally, a statistical query is of the fogr]. Herey is a
mapping from labeled examples{6, 1} corresponding to an indicator function for those
labeled examples about which the statistics are to be gathered,mikin additive error
parameter, theoleranceof the query. A cally, 7] to STAT(f, D) returns an estimatg,

of P, = Prp[x(z, f(z))] which satisfiesP, — P,| < 7. An SQ algorithm is said to be
efficient if 1/7, the time required to evaluajeand the running time of the algorithm are
all polynomial.

In addition to the oracl&T AT'(f, D) we will provide the learner access to a source of
unlabeledexamples drawn randomly according to the distributionTo summarize, we
formally define learnability in the SQ model:

We say that a clags of concepts oveX is efficiently learnable from statistical queries
if there exists a learning algorithd and polynomialg(., ., .), ¢(.,.) andr(., ., .) such that
forany f € C over input of lengthz, for any distributionD over X, and foranyd < ¢ <1
and0 < 6 < 1 the following holds: ifA is given inputs:, 6, n andsize(f), andA is given
access t&6TAT(f, D) and a sourc& X (f, D) of unlabeled examples, then (1) for every
query|x, 7] made byA, x can be evaluated in timgn, size(f)) and1/7 is bounded by
r(1/e,n,size(f)), and (2).4 halts in time bounded by(1/e,1/6,n, size(f)) and with
probability at leasl — ¢ outputs a hypothesisthat satisfiegrror(h) < e.

Notice that this variation of the SQ model, that allows the learner to obtain unlabeled
examples, does not give the learner any advantage towards tolerating classification noise
over the “pure” SQ model. This is clear from the fact that when learning with noise, the
learner also has access to this oracle (simply by ignoring the (possibly noisy) labels). The
access to the source of random examples, though, reintroduces the confidence parameter
into this model, since the learning algorithm is allowed a small probability of error, due to
an unrepresentative sample fradX (f, D). We now state the result we use later in this
section:

THEOREM 6 ((KEARNS, 1993)) LetC be a class of concepts ovér and suppose that

C is efficiently learnable from statistical queries using an algoritAmThen, for any noise
rate0 < n < 1/2, C is learnable with classification noise. The running time of the noise
tolerant algorithm is proportional to the running time of the SQ algorithm antltoand
1/(1 — 2n)2. (Herer is a lower bound on the tolerance of the statistical queries used in
A)

THEOREM 7 If Cpq is polynomially explainable thefiy, is PAC learnable with classifi-
cation noise of rat® < 7 < 1/2.

Proof: Using Kearns results stated in Theorem 6 itis sufficient to prove that such a concept
class can be learned using a “statistical queries” algorithm.
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Let B be the algorithm guaranteed by Lemma 1 afwl) an upper bound on the number
of monomialsB outputs given an example. Lgfn) be an upper bound on the size of
functions inC .. We now describe a “statistical queries” algorithm for the class
e Collecting terms: The learner drawgv = @ . 1n@ examples. For each of
them it executes the algorithiito get at most(n) terms. (We assume, without loss
of generality, that3 halts in polynomial time even if the example is negative). Let
N’ < N - q(n) be the number of terms generated in this step. Denote these terms by

t, .ot

e Eliminating terms:For each ternt; (1 < i < N’) the learner asks for an estimation,

within tolerancer = ¢/4N’, of p; 2 Pryeplti(z) = 1A f(x) = 0]. If the answer is
greater tham /4N’ then it eliminates the term.

e The hypothesi is the disjunction of all remaining terms.

Clearly, the estimation of the probabilitigs's falls into the statistical queries model by
settingy;(x,!) = lifand only ift;(x) = 1 andl = 0. The evaluation of; is polynomial,
and therefore all the algorithm runs in polynomial time.

To evaluate the probability that(x) # f(z) we consider two types of mistakes. Either
h(z) =1landf(x) =0orh(x) =0andf(x) = 1. For eachr of the first type there exists
(at least onepadtermt;, for whicht;(z) = 1, that we added in the first step and failed
to eliminate in the second step. For every bad/e havep; > 0. Moreover, ift; is not
eliminated it must be the case that< ¢ /AN’ +7 = ¢/4N'+¢/4N' = /2N’ (otherwise
the answer that we get to the query abputust be greater thaay4N’ and the term will
be eliminated). Therefore, siné¢€ terms are generated in “collecting terms”, there can be
at mostN’ bad terms, and

Pryepl(h(z) =1) A (f(x) =0)] < Z g/2N’' <¢e/2.
bad:;

Eachz of the second type is caused by a terrwhich appears in the function but is not
found in the “collecting terms” step. We call a tetmimportantif Pr,cplt;(x) = 1] >
% (note that once a term which appears in the function is found, it cannot be eliminated
as the corresponding probabiljtyequal®)). First, we claim that if we find all the important
terms in the “collecting terms” step (and therefore they all appehy then the total error

of the second type is bounded by2. This is because in this case

Preep[(h(z) = 0) A (f(z) = 1)]
< > Preep[(h(z) = 0) A (ti(z) = 1)]

non-important;,

< Z Preeplti(z) = 1]

non-important;

3 9
=P g
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Therefore, it is enough to show that the probability that all important terms are found is at
leastl — 6. Consider an important termy and a single example drawn in the “collecting
terms” step. The probability that is found by this example is at least the probability that
this example is satisfied liy, times the probability thaf will outputall the terms satisfied

by the example, which is therefore at Iegﬁn—) : % = ﬁ(n). Therefore, the probability
4ap(n

that¢; will not be found usingh) -In @ examples is at most

dp(n) 31 p(én)

(1 =N < 6
4p(n) ~p(n)
Thus, after drawing(n) - 41’?(") -In @ examples the probability that we fail to find an

important term is at most Hence choosingv as in the algorithm suffices.
All together, we get that with probability at leakt- 6 the algorithm finds a hypothesis
h such thatPr[h(x) # f(x)] < e. This completes the proof of the theorem. [ |

We note that in the proof we have used “statistical-queries” with tolerance

2
€

= (DN
16p2(n)g(n) In pT

5.3. Malicious Noise

In the model of PAC learning with malicious error ((Valiant, 1985, Kearns & Li, 1993)),
when a learner sees an example, only with probahilitys it is drawn from the probability
distribution D, and is labeled correctly according to the target concept. With probability
(£ a malicious adversary may select any example and label it either positive or negative.
Let ¢(n) be an upper bound on the number of monomials produced by the algdsiihm
Lemma 1 anch(n) be an upper bound on the size of function€jn. We show:

THEOREM 8 If C,qis polynomially explainable thefy is PAC learnable in the presence
of malicious error of rate less thafi =

€
In 1-16p2(n)q(n)-In % ’

Proof: By a result of Decatur (Decatur, 1993), the existence of a “statistical-queries”
learning algorithm with tolerancefor C implies that there exists a PAC learning algorithm
for C that can tolerate malicious error rdgr).

Inthe proof of Theorem 7 we present a statistical queries algorith@ufowith tolerance

= ;@) It is shown in (Aslam & Decatur, 1993) that by using hypothesis
16p2(n)q(n)In 252
boosting techniques, this tolerance can be made smaller. In particulaf, fdngtor can be

reduced to=r. Putting those together yields the desirable error rate.
[ |
We have considered above classification noise, malicious noise and a type of attribute

noise that is relevant to visual concepts. The known technique for handling (unrestricted)
attribute noise in learning DNF formulae (Shackelford & Volper, 1988) works in cases
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where the noise-free algorithm uses at any point only a small number of attributes to update
its hypothesis. In this way, with non-negligible probability, the noise-tolerant algorithm
will get examples in which this small set of attributes is noise-free, and will learn using the
noise-free algorithm. This technique was used to léabBNF in the presence of attribute
noise (with a fixed error rate) (Shackelford & Volper, 1988). It is not hard to see that the
same technique, coupled with the SQ algorithm presented in Section 5.2, can be usedtolearn
a wider class of functions. In particular, we could learn the class of all functions which are
disjunctions of polynomially many monomials frast N £, whereC is a polynomially
explainable class correspondingtd and. is the set of all monomials of size at mast n.

This restriction guarantees that, when allowing attribute noise of ug2pby seeingn

times more examples in tfomllection stepthe algorithm receives, for every term, a noise-
free example. Hence, the collection succeeds with high probability in spite of the attribute
noise. Then, thelimination stepuses the algorithm of (Shackelford & Volper, 1988).

6. Discussion

We present a new approaghglynomial explainability to the problem of learning DNF
formulae from examples and use it to learn some subclasses of DNF (and CNF) which were
not known to be learnable before. As mentioned, polynomial-explainable classes discussed
here contain the subclassesiteDNF andk-term-DNF as special cases. It is natural to
ask how these results relate to the learnability;-@L (Rivest, 1987) (for some constant

k), which was the widest subclass of boolean formulae known to be PAC-learnable from
examples. We show that the results are incomparable. To see that polynomially explainable
subclasses may contain functions which are not expressible by-Brwy(of any size), it is
convenient to use the terminology of visual concepts.nh.&e a parameter (say, = /n).
Consider the functiorf which is 1 if and only if the picture contains am x m square

all of its pixels arel (this can be expressed as a DNF with terms each of sizen?).
Suppose that there existskeDL for this function f and consider its first node. In this
node,k literals are examined and if they are all satisfied by the assignment (the picture) the
function is evaluated to have some vatlues {0,1}. However, sincé < m, no matter
whatf literals are examined, the picture can always be extended in two ways, one which
contains ann x m square as required and one which does not. Hence, no matter what the
value ofo is the decision list must err on some of the inputs.

On the other hand, to see thaDL (even fork = 1) may sometimes be stronger than
polynomially explainable classes, we look at the set of all monomials. This sétBlirbut
is not learnable by the algorithm of Theorem 1, as each positive example can be “explained”
by exponentially many monomials. This class is learnable however in terms of CNF (i.e.,
by Theorem 2). Similarly, the dual example, of all disjunctions, is alseM_ and is not
learnable by Theorem 2 (but is learnable by Theorem 1). By combining these two examples
(e.g., by considering the set of all functions of the typeV ...V x;,, V (y;, A... Ay;,))
we get a family of functions which is itrDL and is not learnable neither by the algorithm
of Theorem 1 nor by the algorithm of Theorem 2 (as by fixing allitlseo 0 we can get all
the monomials on thg's, and on the other hand, by fixing all this to 0 we can get all the
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disjunctions on the's). It may be the case, however, that these functions are still in some
“polynomially explainable” class, using another representation (other than DNF or CNF).

We believe that the approach used in this paper will be found useful in tackling other
problemsaswell. Forexample, Angluin (Angluin, 1980) considered the problem of learning
pattern languagé’s where a patterp is a string consists of bit§(, 1}) and variables, and
its languageL(p), is the set of all strings that can be obtained frprby substituting a
string (in {0, 1}*) for each of the variables (for exampl&(x00zy) contains the string
1100110 which is obtained by substituting = 11,y = 0). (Schapire, 1990) showed the
hardness of learningattern languages(Kearns & Pitt, 1989) showed how to PAC-learn
such languages, assuming that the number of variables is constant (though each variable may
appear many times in the pattern) and with some limitations on the underlying distribution.
Using the technique presented in this paper we can show how to learn (in the mistake-
bound and also in the “statistical-queries” model) the language L(p1,ps, ..., p:) =
Ut_, L(p;) (i.e., Lis the language of all strings that can be obtained faoyof the patterns),
wheret is polynomial inn, and the total number of occurrences of variables in each pattern
p; is constant (note that the patterns here are more restricted than those considered in
(Kearns & Pitt, 1989); however, we are not restricted to a single pattern but rather allow a
collection of patterns). Loosely speaking, this is possible since given a positive example, we
can enumerate the polynomially-many (in the length of the example) patterns of the above
form from which the example can be obtained. To do so, given a lengtting which is
a positive example, we go over all ti&n>°) possibilities to choose (non-overlapping)
substrings of it (we choose a substring by choosing a starting point and an end point). For
each of these choices there atgossibilities to choose a variable name for each substring.
Then, we enumerate only the patterns in which all the substrings that correspond to the
same variable are the same (i.e., the substitution is consistent). As lerig fised, this
gives a polynomial algorithm.

Jerrum (Jerrum, 1991) showed that learrtiiagslation-invariantONF (when the learner
is required to use the same representation as the output representation) is NP-hard. Note that
the notion of aranslation-invarianterm and our notion oflynamicpattern are closely re-
lated; that is, the dynamic version of our visual learning problem is a subclass of translation-
invariant DNF. In contrast to the general translation-invariant DNF, this subclass is still
PAC-learnable.

In (Valiant, 1985) a hierarchical approach for learning DNF was discussed in which one
learns a collection of monomials, in a supervised or unsupervised manner, and only then
learns a DNF formula as a disjunction over this set of monomials. The method developed in
this paper can be described as an instance of this approach, in which the set of “interesting”
monomials, explaining the data seen, can be generated efficiently. Itisinterestingto note that
in particular, all classes learnable within this framework (e.g. in the context of membership
queries, (Blum, 1992, Blum & Rudich, 1992, Aizenstein & Pitt, 1992, Blum et al., 1994).)
are shown here to be learnable even in the presence of noise.
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Notes

1. We assume that each pixel can be eitllackor white The results can be extended to handle more values in
a straightforward way.

2. This should notbe confused with the approaatwpianation based learning (EB(See, e.g., (Mitchell, Keller,
& Kedar-Cabelli, 1986)). In the EBL framework, a learner receives a single example, and tries to generalize
itin a way that can be justified by deduction from the prior knowledge the learner has about the domain.

3. with a polynomial penalty in the complexity of the algorithms; This is because a pattern in the dynamic case
can be replaced by a polynomial number (in the size of the picture) of patterns in the static caé¥(€.y.,
if only translations are considered and the size of the pictunesn).

4. Note that if. A was guaranteed only to give a monomial that appeasoinerepresentation of then this
bound is false (as it could be the case that the “true” monomials in different executidrsaddng to different
representations of). This explains the seemingly too strong requirement of the definition.

5. This class can be learned also in a different way, using the observation that every function in this class has a
polynomial number of satisfying assignments.

6. This bound can be slightly improved (@n)¢ using the axis-parallel property.

7. Alternatively, the shape can be the set of all those squares for which ab08asif the area is contained
in the polygon or any other way, consistent with the way digitization is made, namely, the method by which
real-world pictures are converted#ox n pictures.

8. There is no relation between this notion of pattern and the notion of pattern used in our work.
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