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Abstract. We consider the problem of learning DNF formulae in the mistake-bound and the PAC models. We
develop a new approach, which is calledpolynomial explainability, that is shown to be useful for learning some new
subclasses of DNF (and CNF) formulae that were not known to be learnable before. Unlike previous learnability
results for DNF (and CNF) formulae, these subclasses are not limited in the number of terms or in the number of
variables per term; yet, they contain the subclasses ofk-DNF andk-term-DNF (and the corresponding classes of
CNF) as special cases. We apply our DNF results to the problem of learningvisual conceptsand obtain learning
algorithms for several natural subclasses of visual concepts that appear to have no natural boolean counterpart.
On the other hand, we show that learning some other natural subclasses of visual concepts is as hard as learning
the class of all DNF formulae. We also consider the robustness of these results under various types of noise.
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1. Introduction

A central question in computational learning theory is deciding which subclasses of boolean
formulae are learnable under the standard learning models. One of the main open problems,
which has remained open since proposed by Valiant (Valiant, 1984, Valiant, 1985) is the
question of the PAC-learnability of disjunction-normal-form (DNF) formulae.

Despite the efforts devoted to resolving this problem, success was obtained only for
relatively simple subclasses, such ask-DNF (DNF formulae in which each term con-
sists of at mostk literals) andk-term-DNF (DNF formulae withk terms). The widest
subclass of boolean formulae known to be PAC-learnable is that ofk-decision lists (k-
DL) (Rivest, 1987) which contains the above two subclasses as special cases. Instead,
work has been focused recently on other models where, with the added ability of the
learner to make various kinds of queries, a wider collection of subclasses are known to
be learnable; these include, for example, monotone DNF (Valiant, 1984), read-twice DNF
(Hancock, 1991, Aizenstein & Pitt, 1991, Pillapakkamnatt & Raghavan, 1993), Horn for-
mulae (Angluin, Frazier, & Pitt, 1992),logn-term DNF (Blum & Rudich, 1992), Read-k-
Satisfy-j DNF (Aizenstein & Pitt, 1992, Blum et al., 1994), and Decision Trees (Bshouty,
1993). Most recently, Jackson (Jackson, 1994) shows (using the Fourier algorithm of
(Kushilevitz & Mansour, 1993)) how to learn the class of DNF formulae with respect to
theuniform distributionusing membership queries. However, for the DNF problem in the
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PAC model, simple reductions (Kearns et al., 1987) show that the restrictions suggested by
researchers to tackle the problem when queries are available, e.g., limiting the number of
occurrences of a variable, considering monotone formulae etc., are not useful in the query-
less models. Thus the PAC-learnability of DNF formulae (beyond the above mentioned
subclasses) is still a mystery.

One reason for the attraction of the class of DNF, aside from its being a theoretical
puzzle, is that people appear to like it for representing knowledge (Valiant, 1985). Indeed,
in (Shvaytser, 1990) the observation is made, that learnability results on learning DNF
and CNF formulae are useful for the task of learning to recognizevisual conceptsin digital
pictures. By mapping boolean variables to pixels in ann×n digital picture, the equivalence
to learning DNF is shown1. Then, known DNF and CNF learning algorithms are used to
learn the corresponding visual concepts.

We present a new approach to the problem of learning DNF formulae. As a result,
we are able to learn any subclass of DNF which ispolynomially explainable. Informally
speaking, we show that, when learning DNF it is not necessary for the set of candidate
monomials to be of polynomial size (as is the case, for example, withk-DNF formulae);
we can handle DNF formulae defined over a super-polynomial set of monomials, as long as
it is possible, given a (positive) example, to output a list of monomials (theexplanations)
such that one of them is satisfied by the example. Negative examples are then used to
eliminate “false” explanations2. (Similar ideas were developed in different contexts, e.g.
in (Blum, 1992, Blum & Rudich, 1992, Aizenstein & Pitt, 1992).) The same approach is
used for learning subclasses ofCNFformulae. DNF formulae in the subclasses shown to be
learnable are not limited in the number of terms or in the number of variables per terms, and
they contain the subclasses ofk-DNF andk-term-DNF (and the corresponding subclasses
of CNF) as special cases.

We then apply our approach (and results) to the PAC-learnability of visual concepts (in fact,
most of our results hold in the mistake-bound model as well). By a visual concept we mean
a collection ofpatterns(e.g., rectangles, chairs), that are defined by certain characteristics
(e.g., shape, texture). In the learning scenario, examples of pictures (‘scenes’) are given to
a learning algorithm, labeled as positive or negative according to whether they contain at
least one member of an unknown collection of patterns or not. The goal is to acquire the
skill of labeling future pictures accordingly.

We consider two versions of the problem: (1) Astaticversion, in which each pattern in
the visual concept has afixedlocation in the picture and only pictures containing the pattern
in that location are labeled positive; (2) Adynamicversion, in which a pattern might appear
anywhere in the picture, i.e., it might be translated or even rotated and scaled in certain
ways. The dynamic version seems more suitable for possible applications. However, it
is more convenient to consider the static version for demonstrating the correspondence to
the DNF problem. Fortunately, all the algorithms we present for the static version of the
problem can be easily modified to work in the dynamic case3. We hereafter discuss only
the static version of the problem.

We show that structural information on the concept classes, (e.g., all concepts are polygons
with k edges) can be used to devise efficient learning algorithms. This gives some learning
algorithms for several “natural” subclasses of visual concepts. We also exhibit some of the



         

ON LEARNING VISUAL CONCEPTS AND DNF FORMULAE 67

limitations of this method: we use reductions to prove that learning various other visual
concept subclasses is as hard as learning general DNF formulae, although these concept
classes have seemingly helpful structure.

It is a natural question whether the ideas presented here (along with some “engineering”)
can be used to solve some “real-world” problems. We believe that they do; indeed, some
experiments that use these idea to solve problems concerning the recognition of human
motion (Bender & Roth, 1994) and character recognition (Basri, 1994) seem to be encour-
aging. A major problem from the engineering side of the problem is how to generate the
“explanations” in an efficient and compact way.

A more intrinsic difficulty is that our model is very “clean” while “real-world” data (both
the examples and their classifications) is often noisy. Therefore, we discuss the problem
of learning polynomially explainable classes in the presence of various kinds of noise. We
consider classification noise, malicious noise, and a certain type of attribute noise that occurs
in visual concepts (when the target object may be obstructed by other objects). We show
how these kinds of noise can be tolerated in learning polynomially explainable classes.

In the next section we formally define the learning models considered. In Section 3 we
prove the main theorem in terms of DNF (and CNF) formulae. In Section 4 we present the
visual learning problem and some of the results in terms of visual concepts. In section 5
we discuss learning in the presence of noise, and in Section 6 we discuss the results and
briefly describe some other applications of our technique.

2. Preliminaries

We begin by formally defining the learning models discussed in this work – the standard
PAC model (Valiant, 1984) and the mistake-bound model (Littlestone, 1988).

Theinstance spaceX is{0, 1}n, the set of all possible assignments tonboolean variables.
A conceptf is a boolean function onX. Positive(respectively,negative) examples off
are examples (instances) on whichf is 1 (respectively,0). A concept classis a collection
of concepts.

In the learning scenario, we are given a concept classC and there is some unknowntarget
conceptfT ∈ C that we are trying to learn. In themistake-boundmodel, at each learning
stage, an examplex ∈ X is presented; the learning algorithm is asked to predictfT (x) and
is then told whether the prediction was correct. Each time the learning algorithm makes an
incorrect prediction, we charge it onemistake. We say thatC is mistake-bound learnable
if there exists a polynomial-time prediction algorithmA (possibly randomized) that for all
fT ∈ C and any sequence of examples is guaranteed to make at most polynomially many
(in n) mistakes. We say thatC is expected mistake-bound learnableif there existsA, as
above, such that the expected number of mistakes it makes for allfT ∈ C andanysequence
of examples is at most polynomially many (inn). Note that the expectation is taken over
the random choices made byA; there is no probability distribution associated with the
sequences!.

In learning an unknown target functionfT ∈ C in the PAC model, we assume that
there is a fixed but arbitrary and unknowndistributionD over the instance spaceX. The
learning algorithm sees examples drawn independently according toD together with their
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labeling (positive/negative). Then it is required to predict the value offT on another
example drawn according toD. Denote byh(x) the prediction of the algorithm on the
examplex ∈ X. The error of the algorithm with respect tofT andD is measured by
error(h) = Prx∈D{fT (x) 6= h(x)}.

We say thatC is PAC-learnableif there exists a polynomial-time learning algorithmA
and a polynomialp( , , ) such that for alln ≥ 1, all target conceptsfT ∈ C, all distribution
D overX, and allε > 0 and0 < δ ≤ 1, such that if the algorithmA is givenp(n, 1/ε, 1/δ)
examples, then with probability at least1− δ,A’s hypothesis,h, is such thaterror(h) ≤ ε.

It can be shown that if a concept classC is learnable in the expected mistake-bound model
(and thus in the mistake bound model) then it is PAC-learnable (Haussler et al., 1991).

3. The DNF Problem

In this section we present amistake-boundalgorithm for subclasses of DNF formulae satis-
fying certain properties. This, in particular, implies the PAC-learnability of these subclasses
(Littlestone, 1989). The main idea is the following: Consider, for example, Valiant‘s algo-
rithm for learningk-DNF (Valiant, 1984) (many other algorithms share the same structure).
Before seeing any example, the algorithm enumerates the set of all (polynomially many)
monomials of size at mostk. Then, it uses the examples to “eliminate” those monomials
which are not consistent with the examples. This method clearly cannot work for sub-
classes whose underlying set of monomials is super-polynomial. In our approach, we do
not enumerate all possible monomials ahead of time, but rather enumerate monomials that
“explain” the classification of the particular examples that we see (and as before, examples
are also used to eliminate “wrong explanations”). For certain classes in which each example
has only polynomially many explanations this gives a learning algorithm with the desired
behavior. More formally:

Definition. Let x1, x2, . . . , xn be a set ofn boolean variables,M be any collection of
monomials on the literalsx1, x̄1, . . . , xn, x̄n andp(n), q(n) andg(n) be polynomials. Let
CM be the class of all functions which are disjunctions of at mostp(n) monomials inM. We
call CM polynomially explainableif there exists an efficient (polynomial-time) algorithm
A such that for every functionf ∈ CM, and every positive example off as input,A outputs
at mostq(n) monomials (not necessarily all of them are inM) such that with probability
at least1/g(n) at least one of them appears inf (where the probability is taken over the
coin-flips of the algorithmA, in case thatA is a probabilistic algorithm).

We emphasize thatf itself is not given to the algorithmA. Also note that a function
f in the classCM may have few logically-equivalent representations as a disjunction of
monomials inM. The definition requires the output of the algorithmA to satisfy the
above property, independently of which of these representations off is considered. The
importance of this will become clear when we analyze the learning algorithm below.

Theorem 1 If CM is polynomially explainable thenCM is expected mistake-bound learn-
able. Furthermore, ifCM is polynomially explainable by an algorithmA that always outputs
at least one term off (i.e.,g(n) ≡ 1) thenCM is mistake-bound learnable.
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Proof: We present an expected mistake-bound algorithm that learns the classCM (with
expected number of mistakes which isO(p(n) · q(n) · g(n))). The algorithm is similar to
an algorithm presented in (Blum, 1992). The algorithm maintains an hypothesishwhich is
a disjunction of monomials. Initiallyh contains no monomials (i.e.,h ≡ FALSE). Upon
receiving an examplee, the algorithm predictsh(e); if the prediction is correct,h is not
updated. Otherwise, upon a mistaken prediction, it proceeds as follows:

• If e is positive: executeA (the algorithm guaranteed by the assumption thatCM is
polynomially explainable) on the examplee and add the monomials it outputs toh.

• If e is negative: remove from the hypothesish all the monomials that are satisfied bye
(there must be at least one).

To analyze the algorithm we first fix a representation forf as a disjunction of monomials
in M (in casef has more than one possible representation, choose one arbitrarily; The
above definition guarantees that we can work withany representation off that uses only
monomials inM). Now, note that a ‘true’ monomial, i.e., a monomial that appears in
this representation of the target functionf , is never removed fromh. Therefore, since
on a positive examplee, the algorithmA is guaranteed to output at least one monomial
that appears inf , with probability at least1/g(n), then the expected number of mistakes
made on positive examples is at mostp(n) · g(n). This also implies that the expected total
number of monomials included inh during the execution of the algorithm is not more than
p(n) · q(n) · g(n).4 Each mistake on a negative example results in removing at least one
of those monomials that were included inh but do not appear inf . The expected number
of these monomials is therefore at mostp(n) · q(n) · g(n). We get that the expected total
number of mistakes made by the algorithm isO(p(n) · q(n) · g(n)).

Finally, note that in the caseg(n) ≡ 1 we get a truly mistake-bound algorithm, whose
number of mistakes is bounded byp(n) · q(n).

A special case of the above theorem is learningk-DNF formulae. It is obtained by taking
M to be the set of all monomials of sizek. In this caseM itself is of polynomial size.
The following corollary gives another important special case of the theorem, in whichM
might be of exponential size butCM is still learnable.

Corollary 1 LetS1, ..., St be subsets of{x1, . . . , xn}, wheret is polynomial inn. Let
B be an efficient algorithm that on inputn enumerates these sets (and possibly some more).
LetM be any collection of monomials with the property that for everym ∈ M the set of
variables inm is Si for some1 ≤ i ≤ t (i.e., any setSi may correspond to at most2|Si|

monomials inM, by choosing for eachxj ∈ Si whetherxj or x̄j appears in the monomial).
Then,CM is mistake-bound learnable.

Proof: We use the algorithmB to construct an algorithmA, as required in the conditions
of Theorem 1. The algorithmA works as follows: given a positive examplee, it first uses
B to produce the setsS1, . . . , St (and possibly others). Then, for each such setSi there is
exactly one monomialme

i which contains all the variables ofSi and is satisfied bye (for
eachxj ∈ Si the monomial containsxj if the j-th bit of e is 1 and x̄j if the j-th bit is
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0). A outputsme
1, . . . ,m

e
t . Notice that for each positive examplee, at least one of these

monomial must be inM (but some may not).

The following examples are all special cases of the this Corollary. Other examples can
be obtained by “translating” the examples of visual concept subclasses, that are given in
Section 4 below, to the terminology of DNF formulae; however, the resulted subclasses of
DNF seem to be somewhat artificial.

Example: Consider the class of all DNF formulae in which each term containsat leastn−k
literals (for some constantk). This class was previously considered in (Li & Vitanyi, 1989).
In spite of its similarity to the class ofk-DNF formulae (where each term containsat most
k literals) its learnability seems to be more difficult. This is because in this case there are
exponentially many possible monomials to choose from (as opposed to the case ofk-DNF
where there are only polynomially many possible monomials). Nevertheless, Corollary 1
implies that this class is learnable5.

Example: Consider the class of all DNF formulae in which the variables in each monomial
have consecutive indices; e.g.,x1x̄2x3x4∨ x̄4x̄5x6∨x8x9. The above corollary shows that
this class of functions can be efficiently learned since the

(
n
2

)
< n2 setsSi,j (1 ≤ i ≤ j ≤ n)

defined bySi,j = {xi, xi+1, . . . , xj} satisfy the above condition.

3.1. The CNF Problem

The polynomial explainability approach can be easily extended to deal with CNF formulae.
To show that, we prove the following theorem, which is an analog of Corollary 1. This
result includes as special case the learnability ofk-CNF formulae (and therefore also the
learnability ofk-term-DNF formulae).

Theorem 2 Letp(n) be a polynomial. LetS1, . . . , St be subsets of{x1, . . . , xn}, where
t is polynomial inn. LetB be an efficient algorithm that on inputn enumerates these sets
(and possibly some more). LetD be any collection of disjunctions with the property that for
everyd ∈ D the set of variables ind is Si for some1 ≤ i ≤ t. Then, the concept classCD
of all functions which are conjunctions of at mostp(n) disjunctions inD, is mistake-bound
learnable.

Proof: We present a learning algorithm which is dual to the algorithm in the proof of
Theorem 1. The algorithm maintains an hypothesishwhich is a conjunction of disjunctions
(i.e., a CNF formula). Initiallyh contains no disjunctions (i.e.,h ≡ TRUE). Upon receiving
an examplee, the algorithm predictsh(e); if the prediction is correct,h is not updated.
Otherwise, upon a mistaken prediction, it proceeds as follows:

• If e is negative: this means that the hypothesis is still missing at least one disjunction that
is not satisfied by the examplee. For eachSi there is exactly one candidate disjunction
like that. We add all these disjunctions toh.
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• If e is positive: this means thath contains at least one disjunction that does not appear
in the target function. We remove fromh all the disjunctions that are not satisfied bye.

With an argument similar to the one used in the proof of Theorem 1 it can be shown that
the number of mistakes made is at mostp(n) · t.

Example: Consider the class of all CNF formulae in which the variables in each disjunction
have consecutive indices; e.g.,(x3 ∨ x̄4 ∨ x5 ∨ x6)∧ (x̄5 ∨ x̄6 ∨ x7 ∨ x8 ∨ x9). The above
theorem shows that this class of functions is efficiently learnable.

Figure 1. Shape Pattern

4. Learning Visual Concepts

In this section we discuss the learnability of classes of visual concepts. We give positive and
negative results in terms of some properties of these classes. We start with some definitions.

Given ann× n array, ashapeof sizek is a collection ofk points of the array,

S = {(i`, j`); 1 ≤ i`, j` ≤ n, 1 ≤ ` ≤ k}.

A binary pattern, associated with a shapeS, is defined by giving a boolean value to every
point inS. Formally,

P = {{(i`, j`), b`}; (i`, j`) ∈ S, b` ∈ {0, 1}} .

In this way, any shape of sizek can be associated with up to2k different patterns. Ann×n
pictureis a pattern whose shape is of sizen2, that is, every point of then×n array is given
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Proof: For the proof, it is convenient to consider the subclass of DNF formulae corre-
sponding toCP (by the correspondence described above). In this terminology, restricting
the set of shapes to be polynomially enumerable means that we can enumerate the sets of
variables over which the monomials (in the corresponding subclass of DNF formulae) are
defined. Hence, we can apply Corollary 1 to get the result.

Figure 3. Positive Example Negative Example

To present concrete examples of interesting classes of patterns that are learnable, it will
be convenient to think of the picture as embedded in the real plane, where the point(i, j)
of the picture corresponds to the square defined by the real points(i − 1, j − 1), (i −
1, j), (i, j − 1), (i, j). Thus, a shape corresponds to a set of polygons with integer vertices
and edges which are axis-parallel (see Figure 1). Anedgeof a shape is any of the edges of
the associated polygons. Theperimeterof a shape is the total perimeter of the associated
polygons.

Corollary 2 CP is learnable for the following collections of patterns:

• P is a collection of patterns whose shapes have a constant number of edges (e.g.,
rectangles).

• P is a collection of patterns whose shapes consist of a constant number of polygons,
each with perimeterO(logn).

Proof: Using Theorem 3, it is enough to show that the set of shapes corresponding to each
of these collections is polynomially enumerable (actually, we only argue that these sets are
of polynomial size; the computation involved with enumerating them is very easy):
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• The number of shapes with constant number (c) of edges is polynomial since each of
them can be specified by a list ofc integer points, and there are(n + 1)2 such points
(so there are at most(n+ 1)2c such shapes6). Hence, this set of shapes is polynomially
enumerable.

• The number of shapes with constant number of polygons with perimeterO(logn) is
polynomial since each of these polygons can be specified by specifying an integer
starting point and thenO(logn) times specifying one of the directions:up, down, left,
right (so there are at most4O(log n) = poly(n) such shapes). Hence, this set of shapes
is polynomially enumerable.

In fact, the result above can be extended in many ways. One can consider, for example,
polygons with integer vertices and constant number of edges which are not necessarily
axis-parallel, and define the shape corresponding to this polygon to be, say, the set of all
unit squares (i.e,(i− 1, j − 1), (i− 1, j), (i, j − 1), (i, j)) contained in the polygon7. The
number of such shapes is polynomial (using the same proof as we used above for the case
of axis-parallel edges) and only the computation of which pixels are in the shape is a bit
different. Other families can be defined, for example, by the set of all circles, ellipses etc.
(where the corresponding shapes are defined in a similar way). In this way, for example,
scaling does not affect the actual number of edges of a polygonal shapes, and thus their
learnability.

As remarked before, the problem of learningCP , whereP is not restricted, is equivalent
to learning general DNF formulae. Next we show that the problem remains difficult even if
we are restricted to a family of patterns with a fairly simple shape; in particular, we prove
it for the case where the shape is a single (simple) polygon.

Theorem 4 Let P be the family of patterns whose shape is a simple polygon. Then,
learningCP is equivalent to learning DNF.

Proof: We show, using a reduction, that given an algorithm for learningCP we can learn
the class of DNF formulae. The result holds in both the PAC and the mistake-bound models.
For simplicity we present it in the mistake-bound model.

Let φ(x1, . . . , xn) = m1 ∨ m2 ∨ . . . ∨ mt be the target DNF function, where each of
themi’s is a monomial. With eachmi we associate a patternpi as follows: the pattern
pi includes all the points(1, j) with the value1. In addition, the point(2, j) is included
in the pattern if and only ifxj or x̄j appear inmi: it is included with the value ‘1’ if
xj appears inmi and with the value ‘0’ if x̄j appears inmi. Note that the construction
immediately impliespi ∈ P (including the points(1, j), for all j, in the pattern guarantees
that the corresponding shape is a simple polygon). LetT = {p1, . . . , pt} and letfT be the
corresponding boolean function.

Using the above definitions, we now show how to construct a mistake-bound algorithm
A for learning DNF, given a mistake-bound algorithmB, for learning the concept classCP
defined above. Given an examplex = (x1, . . . , xn), the algorithmA constructs a picturêx
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by letting all its points contain ‘1’ except for each of the points(2, j) whose value is the value
of the corresponding variablexj . The main observation is that for allx, φ(x) = fT (x̂).
AlgorithmA feedsx̂ as an input toB, and uses the prediction ofB on x̂ as its prediction on
x. When it receives the label ofx it feeds it toB as the label of̂x. Clearly,A has the same
running-time asB. Also, asB is guaranteed to make at most polynomially many mistake
on anyfT ∈ CP andanysequence of examples, then in particular this is true forfT and
the examples as defined above. By the observation,A makes at most polynomially many
mistakes as well.

Our positive result shows, in particular, that patterns whose shapes are bounded byk
edges are learnable (even though these patterns might correspond to monomials ofO(n)
variables). On the other hand we have:

Corollary 3 LetP be a collection of patterns whose shape is bounded byk(n) edges.
LearningP is as hard as learning4(k(n)− 1)-DNF .

Proof: We use the same reduction as in the proof of Theorem 4. The result follows since a
monomialmi of lengthk(n) is mapped to a patternpi whose shape has at most4(k(n)+1)
edges.

5. Noisy Data

In this section we consider the robustness of learningpolynomially explainableclasses.
First we consider a type of noise that is relevant for the class of visual concepts. We define
obstruction noise, a type of noise that occurs in pictures, and give a learning algorithm that
can tolerate this type of noise. Then we consider more general types of noise that have been
considered previously in learning, namely, classification noise (Angluin & Laird, 1988)
and malicious noise (Valiant, 1985, Kearns & Li, 1993). We show that any polynomially
explainable class can be learned using statistical queries (Kearns, 1993), and therefore can
be learned in the presence of classification noise with error rate of up to1/2, and in the
presence of a certain amount of malicious error.

5.1. Obstruction Noise

In this section we consider the problem of learning a pattern in the presence of “noise” in
the pictures (but not on their labeling). The type of noise we allow is the one that usually
occurs when other objects appear in the picture, behind or in front of the target object (see
Figure 4). We also restrict ourselves to the case where the concept consists of asingle
pattern. We first define formally the type of noise considered:

Let p1, p2 be two patterns. We say thatp1 k(n)-dominatesp2 if p1 can be obtained from
p2 by changing at mostk(n) of the ‘0’s of p2 to ‘1’s. Formally, (a) both patterns have the
same shape, (b) all the ‘0’s of p1 are also ‘0’ in p2, and (c) all but at mostk(n) of the ‘1’s
of p1 are ‘1’s in p2.
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Figure 4. Noise

Let P be a collection of patterns, whose corresponding set of shapes is polynomially
enumerable. We associate withP a concept classCP,k(n) = {fp,k(n)|p ∈ P} where
fp,k(n) is defined to be positive if and only if the input picture contains a patternp′ (not
necessarily inP) thatk(n)-dominatesp.

Theorem 5 Let P be a collection of patterns, whose corresponding set of shapes is
polynomially enumerable. Then the concept classCP,k(n) is PAC-learnable.

Proof: Let {S1, . . . , St} be the polynomial-size set of shapes guaranteed by the assump-
tion thatP is polynomially enumerable. We give an “Occam” algorithm that learnsCP,k(n)

usingCP′,k′(n) as the hypothesis space, whereP ′ is the collection ofall patterns whose
shapes are in{S1, . . . , St}, andk′(n) ≤ n2. Given a sample ofm labeled examples, we
show how to construct in polynomial time a consistent hypothesis of size that is independent
of m. Blumer et al. (Blumer et al., 1987) show that this is sufficient for PAC-learnability.

Given a sample of sizem, the learner starts by enumerating all the shapes. For each shape
Si, assuming it is the true shape, the learner identifies a target patternpi and a threshold
ki, and construct a hypothesisfi = fpi,ki ∈ CP′,k′(n). The algorithm finally returns the
lowest indexedfi that is consistent with all the examples in the sample.

For a particular shapeSi (i = 1, . . . , t), a pair(pi, ki) is identified as follows:

• Finding the pattern:The learner considers only the positive examples in the sample.
The setTi ⊆ Si is defined to be the set of all the points inSi with value ‘1’ in all the
positive examples. The patternpi is defined to be1 on points ofTi and0 on points of
Si \ Ti.
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• Finding a threshold:The learner considers the negative examples in the sample that
have1’s in all the points ofTi. For each such example, it computes the number of
points inSi \Ti which are ‘1’ in the example. It takeski to be minimum of these values
minus1. If no such example exists it chooseski arbitrarily.

The correctness of the algorithms relies on the observation that ifS = Sr is the correct
shape then the hypothesisfr = fpr,kr found in ther-th round of the algorithm is consistent
with all the examples in the sample. Notice that a hypothesis determined based on a wrong
shape is not necessarily consistent with all the examples.

Denote byTS the set of1’s of the true pattern in the true shapeS, and bykS the
true threshold. To see thatfr is indeed consistent with the examples, notice that by the
construction ofTr, TS ⊆ Tr, but |Tr| ≤ |TS |+ kS . Let e be a picture in the sample, that is
labeled positive by the hypothesisfr: either the set of1’s in S is the setTr, in which case
e is indeed a positive example by the above inequality, or that the number of1’s in S \ Tr
is less thankr (by the definition ofkr and sincee is labeled positive byfr), and again, it
must be a positive example by the waykr was determined. Similarly, given a picturee that
is labeled negative by the hypothesisfr, it either has a0 insideTr, which implies, by the
wayTr was constructed, thate is indeed a negative example, or, there are more thankr 1’s
in S \ Tr, which again implies, by the waykr was determined, that it must be a negative
example.

Thus, the algorithm above produces, in polynomial time, a hypothesis inCP′,k′(n) that
is consistent with the sample. To represent this hypothesis we needO(n2) bits (n2 bits to
specify the shape,n2 bits to specify values for the bits of the shape, and2 logn to specify the
threshold) which is independent of the sample size,m. As shown in (Blumer et al., 1987),
using a sample size that is proportional tolog |CP′,k′(n)| is sufficient for PAC-learnability.

Note that we do not use any “structure” of the patterns inP, except the fact that the
corresponding shapes are polynomially enumerable.

A dual type of noise, in which the target concept is “over-exposed to the light” rather
than obstructed, can also be defined. Formally, ifp1, p2 be two patterns, we say thatp1 is
k(n)-dominatedby p2 if p1 can be obtained fromp2 by changing at mostk(n) of the ‘1’s
of p2 to ‘0’s (that is,p2 k(n)-dominatesp1). Similarly, given a collectionP of patterns,
whose corresponding set of shapes is polynomially enumerable, we can associate with it a
concept classC

′

P,k(n); in this case an input picture is defined to be positive if and only if it
contains a patternp′ (not necessarily inP) that isk(n)-dominated byp ∈ P. It is not hard
to see that the same algorithm used in the proof of Theorem 5, when exchanging the roles
of 0 and1 there, leads to the analogous result with respect to this type of noise.

It is worth noticing why the results above are restricted to the case where the concept
consists of asingle pattern. The problem is a “credit assignment” type problem: the
technique we use in order to find the minimal “1”-part of the pattern does not work even if
there are two possible patterns that can make a picture positive.
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5.2. Classification Noise

In this section we discuss PAC learning withclassification noise(Angluin & Laird, 1988).
In this case, whenever we get an example, there is some probabilityη < 1/2 (usually
referred to as theerror rate) that the label of this example is flipped (from 0 to 1 or vice
versa). Before proving that polynomially explainable concept classes can be learned in the
presence of classification noise, we show a robustness property of these classes that will be
useful for the proof.

Lemma 1 If CM is polynomially explainable, then there exists an efficient (polynomial
time) algorithmB such that for every functionf ∈ CM, given any positive examplez of
f as input,B outputs a list of at mostq(n) monomials such that with probability at least
1/2 all the terms inf that satisfyz appear in the list. (As before, this is independent of the
representation off .)

Proof: SinceCM is polynomially explainable, then there exists an efficient algorithmA
such that for every functionf ∈ CM, given any positive examplez of f as input,A outputs
a list of at mostq′(n) monomials such that with probability at least1/g(n) there exists a
term off that satisfiesz and appears in the list. We defineB to be as follows: on a positive
examplez it executesA for n · g(n) times and outputs all terms produced byA in those
executions (i.e, at mostq(n) = n · g(n) · q′(n) terms).

Our first claim is that for every functionf ∈ CM and every positive examplez of f ,

Prob[B fails to output a term off that satisfiesz] ≤ 1
en
. (1)

This is because the probability thatA fails to output such term in a single execution is at
most1− 1/g(n). Therefore the probability thatA fails in alln · g(n) executions is at most
(1− 1/g(n))n·g(n) ≤ e−n.

We now show thatB has the property required in the lemma. Otherwise, there exists a
functionf ∈ CM and a positive examplez, such that the probability thatB outputs all the
terms inf that satisfyz is less than1/2. Let t1, . . . , td be all the terms inf that satisfy
z. Since with probability greater than1/2 the algorithmB fails to output one of the terms
t1, . . . , td, then there exists a termti (1 ≤ i ≤ d) such that the probability thatB “misses”
it is greater than1/2d. Consider now the functionf ′ ≡ ti. Clearly,f ′ ∈ CM andz is a
positive example for it as well. However,

Prob[B fails to output a term off ′ that satisfiesz] ≥ 1
2d
, (2)

whered is bounded by a polynomial inn. This contradicts Eq. (1) above, and proves the
lemma.

For the main theorem of this section we use a the “statistical queries” (SQ) model recently
introduced by Kearns (Kearns, 1993). The SQ learning model can be viewed as a tool for
demonstrating that a PAC learning algorithm is noise-tolerant. We first introduce the SQ
learning model and state Kearns result, and in the next theorem give a statistical queries
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algorithm for the classCM. In the SQ model, the example oracleEX(f,D) of the standard
PAC model, which provides examples of the functionf drawn randomly according to the
distributionD, is replaced by a statistics oracleSTAT (f,D). An SQ algorithm queries
theSTAT oracle for the values of various statistics on the distribution of labeled examples
(e.g., ”What is the probability that a randomly chosen labeled example(e, l) has variable
xi = 1 andl = 0 ?”), and theSTAT oracle returns the requested statistics to within some
specified additive error. Formally, a statistical query is of the form[χ, τ ]. Hereχ is a
mapping from labeled examples to{0, 1} corresponding to an indicator function for those
labeled examples about which the statistics are to be gathered, whileτ is an additive error
parameter, thetoleranceof the query. A call[χ, τ ] toSTAT (f,D) returns an estimatêPχ
of Pχ = PrD[χ(x, f(x))] which satisfies|P̂χ − Pχ| ≤ τ . An SQ algorithm is said to be
efficient if 1/τ , the time required to evaluateχ and the running time of the algorithm are
all polynomial.

In addition to the oracleSTAT (f,D) we will provide the learner access to a source of
unlabeledexamples drawn randomly according to the distributionD. To summarize, we
formally define learnability in the SQ model:

We say that a classC of concepts overX is efficiently learnable from statistical queries
if there exists a learning algorithmA and polynomialsp(., ., .), q(., .) andr(., ., .) such that
for anyf ∈ C over input of lengthn, for any distributionD overX, and for any0 < ε ≤ 1
and0 < δ ≤ 1 the following holds: ifA is given inputsε, δ, n andsize(f), andA is given
access toSTAT (f,D) and a sourceEX(f,D) of unlabeled examples, then (1) for every
query[χ, τ ] made byA, χ can be evaluated in timeq(n, size(f)) and1/τ is bounded by
r(1/ε, n, size(f)), and (2)A halts in time bounded byp(1/ε, 1/δ, n, size(f)) and with
probability at least1− δ outputs a hypothesish that satisfieserror(h) ≤ ε.

Notice that this variation of the SQ model, that allows the learner to obtain unlabeled
examples, does not give the learner any advantage towards tolerating classification noise
over the “pure” SQ model. This is clear from the fact that when learning with noise, the
learner also has access to this oracle (simply by ignoring the (possibly noisy) labels). The
access to the source of random examples, though, reintroduces the confidence parameterδ
into this model, since the learning algorithm is allowed a small probability of error, due to
an unrepresentative sample fromEX(f,D). We now state the result we use later in this
section:

Theorem 6 ((Kearns, 1993)) LetC be a class of concepts overX and suppose that
C is efficiently learnable from statistical queries using an algorithmA. Then, for any noise
rate 0 ≤ η < 1/2, C is learnable with classification noise. The running time of the noise
tolerant algorithm is proportional to the running time of the SQ algorithm and to1/τ and
1/(1 − 2η)2. (Hereτ is a lower bound on the tolerance of the statistical queries used in
A.)

Theorem 7 If CM is polynomially explainable thenCM is PAC learnable with classifi-
cation noise of rate0 ≤ η < 1/2.

Proof: Using Kearns results stated in Theorem 6 it is sufficient to prove that such a concept
class can be learned using a “statistical queries” algorithm.
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LetB be the algorithm guaranteed by Lemma 1 andq(n) an upper bound on the number
of monomialsB outputs given an example. Letp(n) be an upper bound on the size of
functions inCM. We now describe a “statistical queries” algorithm for the classCM.

• Collecting terms: The learner drawsN = 4p2(n)
ε · ln p(n)

δ examples. For each of
them it executes the algorithmB to get at mostq(n) terms. (We assume, without loss
of generality, thatB halts in polynomial time even if the example is negative). Let
N ′ ≤ N · q(n) be the number of terms generated in this step. Denote these terms by
t1, . . . , tN ′ .

• Eliminating terms:For each termti (1 ≤ i ≤ N ′) the learner asks for an estimation,

within toleranceτ = ε/4N ′, of pi
4
= Prx∈D[ti(x) = 1 ∧ f(x) = 0]. If the answer is

greater thanε/4N ′ then it eliminates the termti.

• The hypothesish is the disjunction of all remaining terms.

Clearly, the estimation of the probabilitiespi’s falls into the statistical queries model by
settingχi(x, l) = 1 if and only if ti(x) = 1 andl = 0. The evaluation ofχi is polynomial,
and therefore all the algorithm runs in polynomial time.

To evaluate the probability thath(x) 6= f(x) we consider two types of mistakes. Either
h(x) = 1 andf(x) = 0 or h(x) = 0 andf(x) = 1. For eachx of the first type there exists
(at least one)bad term ti, for which ti(x) = 1, that we added in the first step and failed
to eliminate in the second step. For every badti we havepi > 0. Moreover, ifti is not
eliminated it must be the case thatpi < ε/4N ′+τ = ε/4N ′+ε/4N ′ = ε/2N ′ (otherwise
the answer that we get to the query aboutpi must be greater thanε/4N ′ and the term will
be eliminated). Therefore, sinceN ′ terms are generated in “collecting terms”, there can be
at mostN ′ bad terms, and

Prx∈D[(h(x) = 1) ∧ (f(x) = 0)] ≤
∑

badti

ε/2N ′ ≤ ε/2.

Eachx of the second type is caused by a termti which appears in the function but is not
found in the “collecting terms” step. We call a termti importantif Prx∈D[ti(x) = 1] ≥
ε

2p(n) (note that once a term which appears in the function is found, it cannot be eliminated
as the corresponding probabilitypi equals0). First, we claim that if we find all the important
terms in the “collecting terms” step (and therefore they all appear inh) then the total error
of the second type is bounded byε/2. This is because in this case

Prx∈D[(h(x) = 0) ∧ (f(x) = 1)]

≤
∑

non-importantti

Prx∈D[(h(x) = 0) ∧ (ti(x) = 1)]

≤
∑

non-importantti

Prx∈D[ti(x) = 1]

≤ p(n) · ε

2p(n)
=
ε

2
.
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Therefore, it is enough to show that the probability that all important terms are found is at
least1 − δ. Consider an important termti and a single example drawn in the “collecting
terms” step. The probability thatti is found by this example is at least the probability that
this example is satisfied byti, times the probability thatB will output all the terms satisfied
by the example, which is therefore at leastε2p(n) ·

1
2 = ε

4p(n) . Therefore, the probability

thatti will not be found using4p(n)
ε · ln p(n)

δ examples is at most

(
1− ε

4p(n)

) 4p(n)
ε ·ln p(n)

δ

≤ δ

p(n)
.

Thus, after drawingp(n) · 4p(n)
ε · ln p(n)

δ examples the probability that we fail to find an
important term is at mostδ. Hence choosingN as in the algorithm suffices.

All together, we get that with probability at least1 − δ the algorithm finds a hypothesis
h such thatPr[h(x) 6= f(x)] ≤ ε. This completes the proof of the theorem.

We note that in the proof we have used “statistical-queries” with tolerance
τ = ε2

16p2(n)q(n) ln
p(n)
δ

.

5.3. Malicious Noise

In the model of PAC learning with malicious error ((Valiant, 1985, Kearns & Li, 1993)),
when a learner sees an example, only with probability1−β it is drawn from the probability
distributionD, and is labeled correctly according to the target concept. With probability
β a malicious adversary may select any example and label it either positive or negative.
Let q(n) be an upper bound on the number of monomials produced by the algorithmB in
Lemma 1 andp(n) be an upper bound on the size of functions inCM. We show:

Theorem 8 If CM is polynomially explainable thenCM is PAC learnable in the presence
of malicious error of rate less thanβ = ε

ln 1
ε ·16p2(n)q(n)·ln p(n)

δ

.

Proof: By a result of Decatur (Decatur, 1993), the existence of a “statistical-queries”
learning algorithm with toleranceτ for C implies that there exists a PAC learning algorithm
for C that can tolerate malicious error rateΩ(τ).

In the proof of Theorem 7 we present a statistical queries algorithm forCM with tolerance
τ = ε2

16p2(n)q(n) ln
p(n)
δ

. It is shown in (Aslam & Decatur, 1993) that by using hypothesis

boosting techniques, this tolerance can be made smaller. In particular, theε2 factor can be
reduced to ε

ln 1
ε

. Putting those together yields the desirable error rate.

We have considered above classification noise, malicious noise and a type of attribute
noise that is relevant to visual concepts. The known technique for handling (unrestricted)
attribute noise in learning DNF formulae (Shackelford & Volper, 1988) works in cases
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where the noise-free algorithm uses at any point only a small number of attributes to update
its hypothesis. In this way, with non-negligible probability, the noise-tolerant algorithm
will get examples in which this small set of attributes is noise-free, and will learn using the
noise-free algorithm. This technique was used to learnk-DNF in the presence of attribute
noise (with a fixed error rate) (Shackelford & Volper, 1988). It is not hard to see that the
same technique, coupled with the SQ algorithm presented in Section 5.2, can be used to learn
a wider class of functions. In particular, we could learn the class of all functions which are
disjunctions of polynomially many monomials fromM∩L, whereCM is a polynomially
explainable class corresponding toM andL is the set of all monomials of size at mostlogn.
This restriction guarantees that, when allowing attribute noise of up to1/2, by seeingn
times more examples in thecollection step, the algorithm receives, for every term, a noise-
free example. Hence, the collection succeeds with high probability in spite of the attribute
noise. Then, theelimination stepuses the algorithm of (Shackelford & Volper, 1988).

6. Discussion

We present a new approach,polynomial explainability, to the problem of learning DNF
formulae from examples and use it to learn some subclasses of DNF (and CNF) which were
not known to be learnable before. As mentioned, polynomial-explainable classes discussed
here contain the subclasses ofk-DNF andk-term-DNF as special cases. It is natural to
ask how these results relate to the learnability ofk-DL (Rivest, 1987) (for some constant
k), which was the widest subclass of boolean formulae known to be PAC-learnable from
examples. We show that the results are incomparable. To see that polynomially explainable
subclasses may contain functions which are not expressible by anyk-DL (of any size), it is
convenient to use the terminology of visual concepts. Letm be a parameter (say,m =

√
n).

Consider the functionf which is 1 if and only if the picture contains anm × m square
all of its pixels are1 (this can be expressed as a DNF withn2 terms each of sizem2).
Suppose that there exists ak-DL for this functionf and consider its first node. In this
node,k literals are examined and if they are all satisfied by the assignment (the picture) the
function is evaluated to have some valueσ ∈ {0, 1}. However, sincek ¿ m, no matter
whatk literals are examined, the picture can always be extended in two ways, one which
contains anm×m square as required and one which does not. Hence, no matter what the
value ofσ is the decision list must err on some of the inputs.

On the other hand, to see thatk-DL (even fork = 1) may sometimes be stronger than
polynomially explainable classes, we look at the set of all monomials. This set is in1-DL but
is not learnable by the algorithm of Theorem 1, as each positive example can be “explained”
by exponentially many monomials. This class is learnable however in terms of CNF (i.e.,
by Theorem 2). Similarly, the dual example, of all disjunctions, is also in1-DL and is not
learnable by Theorem 2 (but is learnable by Theorem 1). By combining these two examples
(e.g., by considering the set of all functions of the typexi1 ∨ . . .∨ xim ∨ (yj1 ∧ . . .∧ yjp))
we get a family of functions which is in1-DL and is not learnable neither by the algorithm
of Theorem 1 nor by the algorithm of Theorem 2 (as by fixing all thex’s to 0 we can get all
the monomials on they’s, and on the other hand, by fixing all they’s to 0 we can get all the
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disjunctions on thex’s). It may be the case, however, that these functions are still in some
“polynomially explainable” class, using another representation (other than DNF or CNF).

We believe that the approach used in this paper will be found useful in tackling other
problems as well. For example, Angluin (Angluin, 1980) considered the problem of learning
pattern languages8, where a patternp is a string consists of bits ({0, 1}) and variables, and
its language,L(p), is the set of all strings that can be obtained fromp by substituting a
string (in {0, 1}∗) for each of the variables (for example,L(x00xy) contains the string
1100110 which is obtained by substitutingx = 11, y = 0). (Schapire, 1990) showed the
hardness of learningpattern languages. (Kearns & Pitt, 1989) showed how to PAC-learn
such languages, assuming that the number of variables is constant (though each variable may
appear many times in the pattern) and with some limitations on the underlying distribution.
Using the technique presented in this paper we can show how to learn (in the mistake-
bound and also in the “statistical-queries” model) the languageL = L(p1, p2, . . . , pt) =
∪ti=1L(pi) (i.e.,L is the language of all strings that can be obtained fromanyof the patterns),
wheret is polynomial inn, and the total number of occurrences of variables in each pattern
pi is constant (note that the patterns here are more restricted than those considered in
(Kearns & Pitt, 1989); however, we are not restricted to a single pattern but rather allow a
collection of patterns). Loosely speaking, this is possible since given a positive example, we
can enumerate the polynomially-many (in the length of the example) patterns of the above
form from which the example can be obtained. To do so, given a lengthn string which is
a positive example, we go over all theO(n2c) possibilities to choosec (non-overlapping)
substrings of it (we choose a substring by choosing a starting point and an end point). For
each of these choices there arecc possibilities to choose a variable name for each substring.
Then, we enumerate only the patterns in which all the substrings that correspond to the
same variable are the same (i.e., the substitution is consistent). As long asc is fixed, this
gives a polynomial algorithm.

Jerrum (Jerrum, 1991) showed that learningtranslation-invariantDNF (when the learner
is required to use the same representation as the output representation) is NP-hard. Note that
the notion of atranslation-invariantterm and our notion ofdynamicpattern are closely re-
lated; that is, the dynamic version of our visual learning problem is a subclass of translation-
invariant DNF. In contrast to the general translation-invariant DNF, this subclass is still
PAC-learnable.

In (Valiant, 1985) a hierarchical approach for learning DNF was discussed in which one
learns a collection of monomials, in a supervised or unsupervised manner, and only then
learns a DNF formula as a disjunction over this set of monomials. The method developed in
this paper can be described as an instance of this approach, in which the set of “interesting”
monomials, explaining the data seen, can be generated efficiently. It is interesting to note that
in particular, all classes learnable within this framework (e.g. in the context of membership
queries, (Blum, 1992, Blum & Rudich, 1992, Aizenstein & Pitt, 1992, Blum et al., 1994).)
are shown here to be learnable even in the presence of noise.



           

84 E. KUSHILEVITZ AND D. ROTH

Acknowledgments

We wish to thank Les Valiant for helpful discussions and comments. We thank the referees
for helpful suggestions that improved the presentation of this work.

Eyal Kushilevitz was supported by research contracts ONR-N0001491-J-1981 and NSF-
CCR-90-07677. Dan Roth was supported by NSF grant CCR-92-00884 and by DARPA
AFOSR-F4962-92-J-0466.

Notes

1. We assume that each pixel can be eitherblackor white. The results can be extended to handle more values in
a straightforward way.

2. This should not be confused with the approach ofexplanation based learning (EBL)(see, e.g., (Mitchell, Keller,
& Kedar-Cabelli, 1986)). In the EBL framework, a learner receives a single example, and tries to generalize
it in a way that can be justified by deduction from the prior knowledge the learner has about the domain.

3. with a polynomial penalty in the complexity of the algorithms; This is because a pattern in the dynamic case
can be replaced by a polynomial number (in the size of the picture) of patterns in the static case (e.g.,O(n2)
if only translations are considered and the size of the picture isn× n).

4. Note that ifA was guaranteed only to give a monomial that appears insomerepresentation off then this
bound is false (as it could be the case that the “true” monomials in different executions ofA belong to different
representations off ). This explains the seemingly too strong requirement of the definition.

5. This class can be learned also in a different way, using the observation that every function in this class has a
polynomial number of satisfying assignments.

6. This bound can be slightly improved to(2n)c using the axis-parallel property.

7. Alternatively, the shape can be the set of all those squares for which at least50% of the area is contained
in the polygon or any other way, consistent with the way digitization is made, namely, the method by which
real-world pictures are converted ton× n pictures.

8. There is no relation between this notion of pattern and the notion of pattern used in our work.
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