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Abstract. Various criteria have been proposed for deciding which split is best at a given node of a binary
classification tree. Consider the question: given a goodness-of-split criterion and the class populations of the
instances at a node, what distribution of the instances between the two children nodes maximizes the goodness-
of-split criterion? The answers reveal an interesting distinction between the gini and entropy criterion.
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1. Introduction

There are different splitting criteria in use for growing binary decision trees. The CART
program offers the choice of the gini or twoing criteria. Many other programs use the entropy
criterion. Recently Fayyad (1991) and Fayyad and Irani (1990, 1992, 1993) proposed other
criteria, which give improved accuracy on a number of data sets. Taylor and Silverman
(1993) also explore alternative criteria, and Buntine and Niblet (1992) compare various
splitting rules.

To be more specific, suppose that a class of splits{s} is defined on the data in a nodet. A
“goodness-of-split” functionθ(s, t) is defined and the best split taken as the maximizer of
θ(s, t). Let there beJ classes numbered1, . . . , J , and denote the proportions of the classes
in t byp = p1, . . . , pJ . If s sends a proportionPL of thet population left andPR = 1−PL
right, then assume

θ(s, t) = f(PL, PR,pL,pR)

wherepL = (p1,L, . . . , pJ,L) is the proportion of theJ classes in the left nodetL and
similarly for pR.

Equivalently, for every splits, there are numbersαj , 0 ≤ αj ≤ 1, andβj = 1− αj such
thatPL =

∑
j αjpj , PR =

∑
βjpj , pj,L = αjpj/PL, pj,R = βjpj/PR andθ(s, t) =

f(α,p). In practice, the set of splits is restricted, e.g. univariate, but what we explore
here is the question of what happens if all possible splits are allowed. That is, over the
set ofall α ∈ [0, 1]J , whichα maximizesθ(s, t)? We answer this question for goodness-
of-split criteria generated by impurity functions (Breiman, et al., 1984). We call the split
corresponding to the maximizingα the optimum split even thoughit may not be realizable
in terms of splits on the input variables.

If p = (p1, . . . , pJ) are the node proportions, thenφ(p) is an impurity function if it is
convex inp, has a maximum when allpj are equal and is a minimum when one of the
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pj = 1. Forφ(p) an impurity function the associated goodness-of-split is defined as

θ(s, t) = φ(p)− PLφ(pL)− PRφ(pR).

The most commonly encountered impurity functions are the gini:

φ(p) =
∑
j

pj(1− pj)

and the entropy
φ(p) = −

∑
j

pj log pj .

Another criterion discussed in Breiman et al. (1984) (pp. 104-106) is twoing. The idea is
to find that grouping of allJ classes into two superclasses so that considered as a two-class
problem, the greatest decrease in node impurity is realized. If the gini impurity measure is
used in the two class problem, then it is shown that the best twoing split at a node maximizes

θ(s, t) =
PLPR

4
[
∑
j

|pj,L − pj,R|]2

and that when the split maximizingθ is used, the two superclasses are

C1 = {j; pj,L ≥ pj,R}

C2 = {j; pj,L < pj,R}.
For splitting criteria generated by impurity functions, our approach reveals interesting

differences. For example, the optimum split for the gini criterion sends all data in the class
with the largestpj to tL and all other classes totR. Thus the best gini splits try to produce
pure nodes. But the optimal split under the entropy criterion breaks the classes up into
two disjoint subsetsC1, Cc1 ⊂ {1, . . . , J} such thatC1 minimizes|

∑
j∈C pj − .5| among

all subsetsC ⊂ {1, . . . , J}. Thus, optimizing the entropy criterion tends to equalize the
sample sizes intL, tR. The twoing criterion also tries to equalize.

The outline is as follows: in Section 2 we show that the split optimizingθ(s, t) has the
property that allαj are zero or one. That is, no classes have parts both intL andtR. In
Section 3 we find the optimal splits under the gini, entropy, and twoing measures. Section 4
gives conclusions. In particular, the results for the entropy measure suggest use of a partial
look-ahead strategy.

2. Optimal Splits Do Not Split Classes

Let φ(x) be defined and twice differentiable forx ∈ [0, 1]J . Assume thatφ(x) is convex,
i.e. the matrix(∂2φ/∂xi∂xj) is non-positive definite for allx ∈ [0, 1]J . Let the impurity
of t beφ(p) and the goodness-of-split be the decrease in impurity, i.e.

θ(s, t) = φ(p)− PLφ(pL)− PRφ(pR).
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Theorem 1 LetPL=
∑
αjpj , pj,L=αjpj/PL, PR= 1 − PL, pj,R= (1 − αj) pj/PR.

Then the maximum impurity decrease overα ∈ [0, 1]J is achieved at a vertex of[0, 1]J .

Proof: SupposePLφ(pL) + PRφ(pR) is convex inα. Then its minimum over[0, 1]J is
at an extreme point of[0, 1]J , i.e. a vertex. It is sufficient to show thatPLφ(pL) is convex
in α, sincePRφ(pR) is the same function ofβ = e− α (e = (1, . . . , 1)) asPLφ(pL) is
of α and the sum of convex functions is convex.

The rest of the proof comes from using the result that

∂2

∂αi∂αj
(PLφ(pL)) =

1
PL

pipj
∑
`,h

φ`h(δi` −
α`p`
PL

)(δjh −
αhph
PL

) (2.1)

where

φ`h =
∂2φ(x)
∂x`∂xh

|x=pL .

Equation (2.1) is derived in the Appendix. To showPLφ(pL) convex inα, it is sufficient
to show that for anyJ-vectoru,∑

ij

uiuj
∂2

∂αi∂αj
(PLθ(pL)) ≤ 0.

For anyJ-vectoru, define theJ-vectorv by

v` =
∑
i

uipi(δi` −
α`p`
PL

) = u`p` −
α`p`
PL

(
∑
i

uipi).

Then ∑
uiuj

∂2

∂αi∂αj
(PLφ(pL)) =

1
PL

∑
`,n

v`vhφ`h.

Sinceφ is convex, this last term is non-positive, and thus,PLφ(pL) is convex inα.
Both the gini and entropy criteria are of the form

φ(x) =
∑
j

f(xj)

with f(x) convex implyingφ convex. The ginif is x(1− x) and entropyf is−x log x.
The twoing criterion is

θ(s, t) =
PLPR

4
[
∑
j

|pj,L − pj,R|]2. (2.2)

This is not given by a difference in impurities, so the theorem above does not directly apply.
Recall that the twoing criterion is derived from dividing the classes into two superclasses,
finding the best gini split in this two class problem, and then optimizing the decrease in
impurity over all divisions into two superclasses. If all splits are allowed, then the above
theorem implies that each optimum two class split sends all of one class totL and all of the
other totR. Thus, the best twoing split is also at a vertex of[0, 1]J .
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3. Specific Optima

This section answers the question of which vertex of[0, 1]J is optimum for the entropy,
gini, and twoing criteria. For the entropy measure, we want to maximize

PL
∑
j

pj,L log pj,L + PR
∑
j

pj,R log pj,R.

For a given vertex, letC0 = {j;αj = 0}, C1 = {j;αj = 1}. The above expression
becomes

PL
∑
j∈C1

(pj/PL) log(pj/PL) + PR
∑
j∈C0

(pj/PR) log(pj/PR)

=
∑
j

pj log pj − PL logPL − PR logPR.

The optimum vertex maximizes

−PL logPL − PR logPR (3.3)

So at the best vertex|PL − .5| is minimized.
With the gini measure, the best vertex minimizes

PL
∑

pj,L(1− pj,L) + PR
∑

pj,R(1− pj,R) =

PL
∑
j∈C1

(pj/PL)(1− pj/PL) + PR
∑
j∈C0

(pj/PR)(1− (pj/PR).

Equivalently, choose that vertex which maximizes

1
PL

∑
j∈C1

p2
j +

1
PR

∑
j∈C0

p2
j . (3.4)

Proposition Letpi = maxj(pj). Then the best gini vertex sends all of classi to tL and
the remainder totR.

The proof of this proposition involves some algebraic manipulation and is deferred to the
appendix. Finally, note that on any vertex, the twoing measure (2) equalsPLPR/4. Thus,
the best vertex minimizes|PL − .5|.

4. Discussion and Conclusions

The above shows the difference between the best splits selected using the gini criterion
versus the entropy and twoing criteria. The gini prefers splits that put the largest class into
one pure node, and all others into the other. Entropy and twoing put their emphasis on
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balancing the sizes at the two children nodes. These theoretical conclusions get support in
the simulations in Breiman et. al (1984) (see pp. 111).

In problems with a small number of classes, all criteria should produce similar results.
The differences appear in data whereJ is larger. Here, high up in the tree, gini may produce
splits that are too unbalanced. On the other hand, the above results show a disturbing facet
of the entropy and twoing criterion, i.e. a lack of uniqueness. IfJ is moderate to large, there
are usually many vertices such thatPL ' .5. For instance, in a little simulation, we took
J = 10 and selected the{pj} to be uniform random numbers, suitably normalized. On the
average, for each set of{pj} about 40 vertices gavePL values between .49 and .51 with 4
vertices such that.499 ≤ PL ≤ .501. These vertices often differed in the distribution of
both the larger and smallerpj values.

Since many vertices have similar goodness-of-split values, selecting the best split is a bit
arbitrary. Which split is best depends on the future evolution of the tree. This suggests that
use of the entropy or twoing criteria be combined with a limited two step look-ahead. For
instance, one could set an integerN , and for each of theN best splits of a nodet compute
the total decrease in impurity following the splits oftL into tLL, tLR andtR into tRL, tRR.
Then use the best of theN . One must take care to ensure that if some of theN splits are
on the same variable, they are sufficiently different.

Appendix

Derivation of (2.1)

Let xj = αjpj/PL. Then for anyg(x)

∂g(x)
∂αj

=
∑
`

∂g

∂x`

(
−α`p`pj

P 2
L

+ δ`j
pj
PL

)

=
pj
PL

(
∂g

∂xj
−
∑
`

∂g

∂x`
x`

) (A.1)

Using the notationφi = ∂φ/∂xi, φij = ∂2φ/∂xi∂xj and applying (A.1) gives

∂

∂αj
(PLφ(x)) = pj [φ+ φj −

∑
`

φ`x`].

TakeH(x) to be the term in brackets in the above equation and note that

∂H(x)
∂xi

= φij −
∑
`

φi`x`.

Using (A.1) again

∂

∂αi
(pjH) =

pipj
PL

(
∂H

∂xi
−
∑
h

∂H

∂xh
xh

)
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=
pipj
PL

[φij −
∑
`

φi`x` −
∑
h

φhjxh +
∑
`,h

φh`xhx`]

=
pipj
PL

∑
`,h

φ`h(δi` − x`)(δjh − xh)

Proof of the proposition: For any set of indicesC ⊂ {1, . . . , J}, letQ(C) =
∑
j∈C p

2
j ,

P (C) =
∑
j∈C pj , andλ(C) = Q(C)/P (C). We want to maximizeG(C) = λ(C) + λ(Cc).

If C maximizesG, so doesCc. Take asC whichever one satisfiesλ(C) ≥ λ(Cc). Let
pi = max(pj , j ∈ C), and takeC1 = C − {i}. We will show that

G({i}) ≥ G(C) (A.2)

so that a maximizer ofG sends all cases in one class to one child node, and all other classes
to the other child.

The inequality A.2 follows from the identity

G({i})−G(C) =
P (C1)

pi(1− pi)
[(1− pi)λ(C)− piλ(Cc)− (1− 2pi)λ(C1)] (A.3)

This identity can be derived from the simpler identity

G({i}) =
1
pi

[λ(C)p(C)−Q(C1)] +
1

1− pi
[λ(Cc)P (Cc) +Q(C1)] (A.4)

SubtractingG(C) from A.4 and simplifying gives A.3. Suppose first thatpi ≥ 1/2. Then
to prove A.2 its sufficient to show that

(1− pi)λ(C) ≥ piλ(Cc). (A.5)

For any subsetD of indices

Q(D) ≤ (P (D))2

⇒ λ(D) ≤ P (D).

Now

(1− pi)λ(C) = (1− pi)
Q(C)
P (C) ≥

(1− pi)p2
i

P (C)
andλ(Cc) ≤ P (Cc) = 1− P (C). Hence A.5 will follow from

(1− pi)pi ≥ P (C)(1− P (C)) (A.6)

The expressionx(1− x) is decreasing forx ≥ 1/2. SinceP (C) > pi, A.6 is true.
Now assumepi ≤ 1/2. Then A.2 again follows from showing that the term in brackets

in A.3 is non-negative. Rewrite this term as

(1− 2pi)λ(C) + pi(λ(C)− λ(Cc))− (1− 2pi)λ(C1).
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By assumption, this is greater than or equal to

(1− 2pi)(λ(C)− λ(C1)).

Since

λ(C)− λ(C1) = pi
(piP (C)−Q(C))
P (C)(P (C)− pi)

andQ(C) ≤ piP (C), the proof of A.2 is complete, andG({i}) is a maximizer ofG(C).
Now we show that ifpi ≤ pj , thenG({i}) ≤ G({j}). This follows from the identity

G({j})−G({i}) = (pj − pi)[(1− pi − pj)2 +
∑
h 6=i,j

p2
h]/(1− pi)(1− pj)

resulting from straightforward algebra.
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