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Ahstract. BEXA is a new covering algorithm for inducing propositional concept descriptions. Existing covering
algorithms such as AQ15 and CN2 place rigid constraints on the search process to reduce the learmng time. These
restrictions may allow useless specializations while at the same time ignoring potentiatly useful specializations.
In contrast BEXA employs three dynamic search constraints that enable it 10 find simple and accurate concept
descriptions efficiently. This paper describes the BEXA algorithm and its relationship to the covering algorithms
AQLS, CN2, GREEDY3, PRISM, and an algorithm proposed by Gray. The specialization madels of these
algorithins are described in the uniform framework of specialization by exclusion of values. BEXA is compared
empirically to state-of-the-art concept learners CN2 and C4.5. 1t produces rules of comparable accuracy, but with
greater simplicity.
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1. Introduction

The goal of a concept learning algorithm is to induce a concept description when provided
with a set of positive and negative instances of the concept. Covering algorithms are aclass of
learning algorithms that constructconcept descriptions by repeatedly generating conjunctive
expressions until all the positive instances of a concept are covered (1.e. maiched). This
paper describes REXA (for Basic FXclusion Algorithm), a new covering algorithm for
learning concept descriptions. BEXA represents its concept descriptions as expressions
in VL;, Michalski’s multiple-valued extension to propositional logic. Table 1 contains a
sample learning problem and examples of V1., concept descriptions. Empirical evidence
is given for ten test databases that BEXA generates concept descriptions of comparable
or better accuracy, but with greater simplicity, than well-known state-of-the-art concept
learners. BEXA's richer description language, specialization method and search restrictions
prefer more gencral descriptions, while its stop-growth test prevents overfitting. Its bias
towards generality can be adjusted by suitable settings of its parameters.

The main problem faced by a covering algorithm is to construet aceorate and simple
conjunctions. BEXA is one of a family of propositional covering algorithms that construct
conjunctions using a general-to-specific search. In this approach, the algorithms start with
a general concept description and specialize it in steps until some stop-growth criterion
is met. The key problem is to determine which specializations must be constructed at
each specialization step. On the one hand, too many specializations should not be con-
sidered since this may require too much computation time. On the other hand. too few
specializations should not be considered since this will reduce the chance of finding a good
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conjunction. Covering algorithms such as AQ15 and CN2 approach this problem by plac-
ing rigid constraints on the number of spectalizations that are constructed. For example,
AQI5 constructs at most a (the number of attributes) specializations per step, while CN2
constructs only pure conjunctions (as opposed to internally dispunctive ones). The main
goal of these restrictions is 1o reduce the learning time by forcefully reducing the number of
specializations that can be constructed. The main problem with these types of restrictions
15 that they can ignore potentially good specializations of a conjunction, while at the same
time allowing potentially useless specializations. In contrast, BEXA allows a more general
description language and employs dynamic restricions that cxploit general propertics of
the search problem to avoid useless specializations without excluding potentially useful
specializations. These restrictions make it possible for BEXA to find accurate and simple
concept descriptions efficiently.

The main ideas presented for covering algorithms are thus: (1) A uniform framework
for comparing the specialization models of various covering algorithms, (2) efficiency
improvements and search restrictions during the specialization process, and, (3) criteria for
terminating specialization. This paper proposes that the specialization of a conjunction can
be viewed as a process of excluding values rather than appending atoms, i.e. instcad of
appending an atom to a conjunction (initially the constant true) to make it more specific, a
value is removed from the most gencral conjunction (the conjunction that initially covers all
training instances). This view has two advantages. Firstly, it leads to a simple and uniform
framework for compartson of the similarities and differences between BEXA and five related
covering algorithms, namely AQ15 (Michalski et al., 1986), CN2 (Clark & Boswell, 1991),
PRISM (Cendrowska, 1987), GREEDY3 (Pagalle & Haussler, 1990) and an algorithm
proposed by Gray {1990). The latter algorithm wilt be called GALG. We will show that the
appending atoms approach followed by algorithms like AQ15 and CN2 can also be viewed
as one of implicitly excluding values. The algorithms then differ mainly with respect to the
number of values that they exclude when constructing a specialization, and the number of
different specializations that are constructed. Sccondly, it leads to a precise characterization
of the set Cas of most general and consistent conjunctions, All the covering algorithms
discussed in this paper construct conjunctions by following a general-to-specific search,
thus intentionally being biascd towards gencrality. BEXA allows the option of making
this bias cxplicit by restricting the search for a conjunction so that an clement in Cas is
generated. The exclusion view of specialization makes it possible to show that conjunctions
in Uy correspond to irredundant set covers of the set IV of negative instances of a concept.
This characaterization of C'yr led o an tmportant secarch restriction (uncover-new-negatives)
which both improves the accuracy of conjunctions and the efficiency of the search process.

Section 2 defines the VL language and other basic concepts used in this paper. Section 3
describes the role that "4y plays in the scarch for good concept descriptions and introduces
the exclusion view of specialization. BEXA is described and illustrated with an example
in Section 4. Section 5 describes the similarities and differences between BEXA and the
five covering algorithins mentioned above. This discussion focuses on the differences
regarding the algorithms® control structures, evaluation functions and pruning schemes.
Section 5.2.1 presents a complexity analysis of the specialization models of the above-
mentioned algorithms in terms of the number of specialization steps requited to icach a
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consistent conjunction and the diffcrent specializations considered. It exploits the exclusion
view of specialization to describe how these algorithms specialize a conjunction and how
(hey restiict the number of specializations.  Section 6 presents empirical evidence that
BEXA’s search restrictions actually reduce its learning time without degrading description
accuracy or complexity. This section also presents adetailed empirical comparison between
BEXA and CN2, a closely related covering algorithm. BEXA is also empirically compared
to C4.5 to evaluate its performance. C4.5 serves as a good performance yard-stick, even
though C4.5°s specialization process (a decision tree gencrator) differs substantially from
the sel covering approach. We closc with a summary.

2. Basic concepts and definitions

The propositional concept learning problem is defined as follows. Let Aq,...,4, denote
attributes with domains I,,...,,,. Nominal attributes take a finite sct of unordered values,
e.g. outlook can take the values {sunny, overcast, rain}. A boolean attribute has the
domain {true, false}. Linear (integer or real) attributes have lingarly ordered domains.
For example, the integer attribute age can take any value between 0 and 120.

The instance space I defined by Ay, ..., A, 1s the cross-product Dy x ..o x Dy An
instance is denoted by <x,¢> where x € I and ¢ € Concepis. The training set T presented
to a concept learner is a subset of TxConcepte Instances in the set I7 7T that belong
to a specific concept are called its positive instances (examples) and instances in the set
N = T — P are called its negative instances. Table 1 contains a sample learning preblem.
75 will be used Lo denote the training set in thic table throughout the paper.

VL, (Michalski, 1975) is a multiple-valued extension to propositional logic. We follow
Haussler (1988) and describe the relevant subset of VL, using standard logic terminology.
Attributes are related to values via atoms (selectors in Michalski’s terminologyl. Elemen-

Tuble I, A sample learning problem and examples of VLq concept descriptions

The training set T3

Concept to kearn # outlook autumn temp  class
[t will stop raining tomorrow 1 sunny yes 17 -
z overcast uu 13
3 rain yes 16
4 sunny yes 22 -
Attributes 5 sunny ne 29 -
Name Type Domain ] overcast vES 0 -
outlook  neminal  {sunnyovercastrain} 7 avercast no 35 -
autumn  neminal {yes,no} 8 rain yes 23
temp lincar {15.35} 9 rain no 27 -
10 sunny yes 28 +
11 OvVercast no 23 +
12 sunny no 27 +
13 rain no 23 +
Examples of VL concept doseriptions
1. [owtlock € {overcast,sanny ][22 < temp < 28] V |autumn = ne][temp = 23] =

e8]

foutlook = sunay|[22 <2 temp < 28} V [autumn = nojftemp = 23] = +
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tary atoms take the form [A; = q;] for nominal attributes, €.g., [sex = male]. For
linear attributes elementary atoms take the form [A;#a] with # £ {—, <, <7, >, >} or
lai# A #b;] with # € {<, <}, e.g., [age < 10] and [20 < weight < 1001. Com-
pound nominal atoms take the form [A; = a; v ... v a;]. Such atoms will be denoted as
[Ai < Sg'], where S,' = {a.;, a;}, e.g. [ourlank & {sunny, rain}]. This conven-
tion is introduced because it will help to explain BEXA’s specialization model. Compound
lincar atoms consist of any disjunction of elementary linear atoms, e.g. [(temp = 10}
V {20 < temp < 30} V (temp > 50}1.

VL, expressions are defined as follows. (1) An atom is an expression. (2) A conjunctive
expression is the conjunction of one or more atoms. (Michalski calls a conjunction a
complex). Adjacent alms have an implicit A (and) between them. (3) A disjunctive
expression is the disjunction of one or more conjunctions. An expression containing only
elementary atoms is said to be pure (Haussler, 1988), otherwise it is internally disjunctive.
(4) An cxpression that ituplics a concept is called a rule or a concept description. For
example, Rule 1 in Table 1 is internally disjunctive and Rule 2 is pure. A set of disjunctive
rules can always be written as an equivalent set of production rules and vice versa. For
example, Rule 1 in Table 1 is cquivalent (o the two production rules

[outlook € {overcast,sunny}][22 < temp < 28] = +

[antumn = no] [temp = 231 = .

Instances and expressions are related as follows. T.et h denote an expression and let B C [
denote a set of instances. Then the extension of h in B, denoted by Xg(h), is defined as
all those instances in B that match h. We say that h covers a subset of instances in B. For
example,

Xrg(loutlock & {cvercast,sunny}] (22 < temp < 281)={10,11,12}

where 10, 11 and 12 denote the numbers of the instances in Table 1. The extension of a
single attribute value a; € D, inaset B C [ is defined as the extension of the expression
[A; = a;] in B and is denoted by X 5(a;). For example,

Xrpg(sunny) = Xrg(loutlook = sunny]) = {],4,5,10,]2}.

"The extension of a value or expression in the set P and the set N is called its positive extension
and its negative extension respectively. A set cover of aset B is a set O = {Ch,...,Cr}
of subsets of B such that their union equals B. C is an irredundant set cover of B if the
deletion of any set C; from C will cause the union of the remaining sets in C' to be a proper
subset of 5. For example, the first conjunction of rule | in Table 1 has as its positive
extension the set {10,11,12} while its second conjunction covers {11,13}. Rule 1 thus
corresponds to the set cover {{10,11,12},{11,13}} of P = {10,11,12, 13} in 7s. This is
also an irredundant set cover of P. An expression E is said to be consistent if it covers none
of a concept’s negative instances, and it is complete if it covers all the concept’s positive
instances. For example, both conjunctions in rule (1) are consistent because they cover no
negative instances in TS, and the rule itself is complete because it covers all the positive
instances in TS,
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3. Searching for good concept descriptions

This section presents a uniform framework for the analysis of the various algorithms’
specialization models in Scction 5.2.1. This analysis provides the basis for BEXA’s most
important search restriction and leads to the specialization method of cxcluding values
rather than appending atoms.

Assume the goal of a concept learning algorithm is to find accurate and simple concept
descriptions, with accuracy being the primary concern, followed by simplicity. All the
covering algorithms considered in this paper can generate disjunctive concept descriptions
or an equivalent set of production rules. The quality of these descriptions is determined by
the quality of their conjunctions. The main problem is therefore to find accurate and simple
conjunctions. All the covering algorithms employ an evaluation function that estimates
the accuracy of a conjunction. All of these evaluation functions (see Table 4 in Section 5)
prefer conjunctions that cover many positive instances and few negative instances, thus
being biased to find general rather than more specific conjunctions. These evaluation
functions thus have high values for consistent conjunctions, i.e. conjunctions that cover no
negative instances, and higher values for most general consistent conjunctions. Assume for
the moment, therefore, that an appropriate hias (Schaffer, 1993) is to find most general and
consistent conjunctions. (We will show later that BEXA’s parameters allow the selection
of a bias more appropriate 10 a domain of application. }

Tuble 2. A small antificial learning problem

Training set
Attributes # A B Class # A B Class
A€ {abc) 1 a x + 4 by +
B € {x.y} 2 a oy - 5 ¢ ox -
3 b X + & o y +

Let  denote the set of all VL) conjunctions that exist for a given learning problem, and
let ¢ and d denote two of these conjunctions. Then ¢ is defined to be ‘more specific than
or equal to” d, denoted by ¢ < d, if and only if X;(c) € Xr{d) (Mitchell, 1982). Recall
that I denotes the instance space of all possible instances for a given learning problem,
The conjunctions ¢ and d are considered equal, denoted by ¢ = d, when X(c) = X{d}.
Conjunction ¢ is strictly more specific than d, denoted by ¢ < d, if ¢ < dand ¢ # d.
‘The set C' is partialty ordered under the < relation. For the problems that we consider,
C is bounded from above by the most general conjunction and trom below by the NULL
conjunction defined as that conjunction for which X;{NULL) = {. The most general
conjunction that exists for a given learning problem will henceforth be denoted by mge.
The expressions in C' thus form a lattice under the partial ordering <. Table 2 contains a
small artificial learning problem, and Figure 1 contains the lattice of the conjunctions that
can be constructed for this learning problem.
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Elements of (¢ > arc underlined, while elements of €5 also have a line above them,
Attribute names (A and R) have heen dropped to save space.

lab.cilx.¥]
Xp:{1,3, 4,6}, Xn:{2,5}
e i““‘n“_
la.bllx.y] {acllxy] [bellxy] [ab,e](x] [a.b.c]ly]
XNp:{1,3.4} Xpo{l, 6} Xy {3,4,8) Xp:{1,3} Xpi{4.6}
: Ny {5} X {d} X {2}
e N i /
“‘f‘l-__,_‘
—/ T
(Al [b][x, ¥] le]lx.y] [a. b][x] [ae]lx] [b.cl(x} [a.b][y] lac]ly] [b, |]y]

Np{1} Ap:{3,4} Xp: {8} Nep{1,3})  Xp:{1} Xp:{3} Ny {4} Np:{6}  Xp:{4,6}
X {2} Xt Xax:{5} Xy:0 N {5} X {56} N {2} XNy {2} Xyt
- T A

[allx] G| elixi [yl o [ily)
Npo{1} Xp:{3} Xp:i X0 Xy {4} Xy {6}
Na:h Na:0 Xw {5} X {2} XNp: Xu:lh
\‘\-, \ e /’ R e
null
X Xa -2

Figure 1. The sets Co and C'ay in the lattice of conjunctions for the problem in Table 2

Let C'¢r denote the subset of consistent conjunctions in €. Conjunctions in Cer are
underlined in Figure 1. Let (s denote the set of most general consistent conjunctions.
Formally

Cpy = {m € C¢ | there is no element ¢ € C¢r such that m < ¢},

The elements of Chy in Figure 1 also have a line above them. Under the assumption
that consisient conjunctions arc sought, the goal 18 to find conjunctions in {¢r that cover
many positive instances and contain few atoms. Elements of Cy; thus have the highest
values for these evaluation functiens, since a conjunction in C can only be improved by
generalizing it until it becomes an element ol Cyy, while any turther generalization will
cause the conjunction to hecome inconsistent.

The secondary goal is to find the simplest conjunctions among those with a high value
for the evaluation function. The most common measure for description complexity is the
lotal number of atoms in a concept description (Michalski et ai., 1986; Clark & Niblett,
1989; Clark & Boswell, 1991; Lavrac et al., 1986; Pagallo & Haussler, 1990). To make
the partial ordering among conjunctions clear, all the conjunctions in Figure 1 were written
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such that they contain all the attributes. However, the usual convention is to discard all those
attributes that take all their possible values. The number of atoms in a conjunction can thus
be reduced by generalizing it to such an extent that one or more of its attributes take all
their values and hence can be discarded. No conjunction in C'ar can thus be simplified any
further without causing it to become inconsistent. Thercfore conjunctions in C'ys contain a
least number of atoms.

We now present a characterization of conjunctions in C'as based on the exclusion view
of specialization. Construct conjunctions as follows. Specialize the mge by excluding
vne alliibute value at a time. Cach cxcluded value uncovers a subset of positive and a
subsct of negative instances. The conjunction becomes consistent when enough values
have been excluded to uncover all the negative instances, i.e. the negative extensions of
the eacluded valucs form a sct cover of &. However, the problem is that merely excluding
values until all the negative instances are uncovered docs not guarantee that the conjunction
is an element of Cas. The following key properly distinguishes hetween conjunctions in
Car and those in O — Cy. Lot ¢ denote a conjunction and let 12 = {r1....;7 } denote
the subset of autribute values excluded from the mge to obtain ¢. Then

c € Oy ifand only if the set { X n(r1), ..., Xy (r,)} is an irredundant set cover of N.

For example, the mge for the problem in Table 2 is
g:(a & {a.b,chl[B € {x,v}1.

The conjunction [A C [b, c} 1[E = 3] can be obtained by excluding the values
value Xn(value) Xp(value)
A=al {2} i
(D = =] {5} 11,3}
from ¢. The specialization process proceeds as follows:
conjunction X y{conjunction) X p(conjunction)
(& € {a.b,c}](B & {x,y}] {2.5} {13.4.6} the mge
ta € {o,c}lis € {x v}l {5} {346} exclude [a == a]
mola € {bellB = ¥) i} {4.6} exclude [ = x|

Now m: € Cas because the negative extensions of the excluded values (A — al and [B
= x! form the irredundant sct cover {{2},{5}} of the set V = {2,5}.

Specialization by excluding vatues thus steps through the lattice level by level. Enforcing
irredundancy impties that each excluded value uncovers at least one new negative example.
In addition fewer specialization steps may be required when at least one new negative
examplc is uncovered at each step, while terminating when an ¢lement of Cjy is found. This
characterization of Car forms the basis for two of BEXA’s scarch restrictions. In contrast,
Section 5.2.1 will show that AQ15, CN2, PRISM, GREEDY3 and GALG all specialize a
conjunction by appending atoms to it. Appending an atom may cause the specialization
process to move erratically through the levels of the lattice rendering the characterization of
Oy no longer valid. Subscts of negative instances uncovered by appended atoms may torm
an irredundant set cover of N even though the corresponding conjunction is not in C'py. For
example, CN2 may construct the conjunction [A = ¢l [B = y] by appending the atoms
(A = c])and [B = y] totrue. These two atoms respectively uncover the subsets {2} and
{5} of negative instances. These two sets form an irredundant set cover of N even though
& = ][R = vl isnotin Cay.
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Atthe beginning of this section we assumed that the goal is to find consistent conjunctions.
However, this condition can be relaxed and a different bias implemented by pre-pruning
tests, such as BEXA's stop-growth test, which may terminate the specialization process
before a conjunction becomes consistent. Pruning is discussed in Sections 4.2, 5.2.6 and
5.3.

4. BEXA

4.1. BEXA’s top-level loops

Table 3 contains the BEXA algorithm. Procedure COVER-P generates conjunctions until
all the positive instances of a concept are covered, or until a NULL conjunction is returned
due to pruning. Procedure Find-Best-Conjunction finds the subsequent best conjunction
to add to the concept description. It is described in general terms because it will also
scrve as a framework for describing some of the differences among the covering algorithms
in Section 5. A beam search (Steps (2) and (7) in Table 3) is employed to find the best
conjunction. Starting with the mge (Step (1) in Table 3), the current set of conjunctions
is specialized in steps (Step (3) in Table 3). "Lhe Laplace accuracy estimate (defined in
Table 4) 1s used to select the best specialization after each step (Step (3) in Table 3). This
estimate was berrowed from CN2 (Clark & Boswell, 1991).

BEXA can employ CN2’s significance test (Step (4) in Tzble 3). This test compares the
distribution of instances covered by a conjunction to that of a conjunction covering instances
in the same proportions as they oceur in the complete training sct. Only conjunctions that are
significant according to the log-likelihood ratio test (described in Clark & Niblett (1989)) are
compared (o the current best conjunction. The significance test thus weeds out conjunctions
that do not capture significant patterns in the complete training set.

BEXA employs two stop-growth tests (Step (6) in Table 3). The first is the usual test
that discards specializations that cover no negative instances. The reason is that any further
specialization can only decrease the number of positive instances covered by these conjunc-
tions. The second stop-growth test 1s related to the stop-growth tests of TDIDT! methods,
¢.g. the chi-square test employed in early versions of ID3 (Quinlan, 1986). It compares the
distribution of instances covered by a specialization to that of its direct predecessor using
the log-likelihood ratio test. If this difference is insignificant, the specialization is discarded
from turther consideration. The stop-growth test thus insists that each specialization step
changes a conjunction significantly, while the significance test ensures that a complete
conjunction captures a significant pattern in the training set. Another difference is that
the significance test simply ignores insignificant conjunctions, while the stop-growth test
discards insignificant specializations from the process. We thank a reviewer who pointed
out that Meta-DENDRAL's RULEGEN (Lindsay et al., 1980) had two criteria similar in
spirit to the significance and stop-growth tests, i.e. RULEGEN had more task-specific re-
quirements that a specialization ought to be “significant” and that a specialization should
be an “improvement” over its parent.
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Tuble 3. BEXA

PROCENURE COVER-P(T . beam_widih)
rule_set -= empry,
FOR each concept C; in T DO
P :=instances in T belonging to concept C'y; N =T — P
REPEAT
best.conj := Find-Best-Conjunctoen( £, iV beam-widih};
IF best_con] NOT NULL THEN
Add the rule 'IF best_conj THEN concept = 7, to rule.set;
P = P — Xp(bestconj)
LINTIT (P = M OR (hest conj = NULL):
RETURN rule_set

PROCEDURE Find-Best-Conjunction (P, N bearn_width)
best_cong ;= NULL;

specializations := {ihe mge [or BEXA of the constant true with Xp=Fad Xy = N} (1}
WHILE specializations # @ DO 2
specializations := Generate-Specializations( P, N specializations, beam_width); 3

FOR each conjunction ¢ € specializations DO
IF r~icsignifieant according to the significance test AND h
¢ is better than best_conj according to the evaluation function (5)

THEN best_conj = ¢

Remove from specializations all the conjunctions that cover no negalive instances or {6)

that satisfy the additional stop-growth test;
Ketain in specializations only the beam-widih best conjunciions according 1w the
evaluation function (W)
ENDWHILE;
IF the evaluation function value for besi_conj is the same as or worse than that of the
complete training set THEN {8}
RETURN NULL
ELSE
RETURN best_conj

FROCEDURE Generate-Specializmions(F, NV instancesel, vonjuuctions . setoof conjunctions;
k : beam_width)
specializations = 0;
FOR each conjunction ¢ € conjunctions DO
{ First remove from c.usable all the values that will lead to unnecessary specializations. }
FOR each value or interval a; € e.usable DO

IF Xr(c) C Xp(a:) OR {Prevents conjunctions for which Xp = B} (9
X~ (e) N Xy(a:) = B OR {Ensures one mere negative instance will be uncovered} (10}
{Xwib) | b; € cexcludedvalues U {a;}} is a redundant partial cover of N 11y

THEN c.usable = c.usable — {uq}
{Next generate all useful specializations of the conjunction}
FOR each value @; € cusable DO
¢’ = c specialized by removing a; from it
Xple'Viz Xeley — Xola )
Xale=Xnle)— Xnla)
¢’ .usable := cusable - {a:}:
¢’ excludedvalues == c.excludedvaiues U {a; }:
specializations = specializations U {c'}
ENDFOR;
IF & > 1 THEN Remove from specializations all duplicate conjunctions;
RETURN specializations

The last step (Step (8)) in procedure Find-Best-Conjunction, borrowed from CN2 (Clark
& Boswell, 1991), ensures that the newly generated conjunction conveys more information
than the default rule that matehes all the training instances. A NULL conjunction is returned
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if the best conjunction’s Laplace estimate is lower than that of the complete training set.
This terminates the generation of further conjunctions.

4.2, BEXA's specialization model

Procedure Generate-Specializations cmploys BEXA's specialization model. Given a set of
conjunctions, it returns the subset of their specializations that must be evaluated. Conjunc-
tions arc specialized by cxcluding single valucs from them as described in the previous
section. One difference is that for tinear atributes, intervals of the form [4; > «;] and
[4; < a,] are excluded from a conjunction instead of the single value [A; = a;]. The
reason is that excluding single values may lead to conjunctions that contain linear atoms of
the form

[outlook = sunny] [(15<temp<17} V (17<temp<22) V (22<temp<28}) V
(29<temp<35)].

This conjunction is obtained by excluding the values 17, 22, and 29 for attribute temp from
the mge. These conjunctions tend to have a very low accuracy on unseen instances. For
example, if temp has a real-valued domain, then only those instances that take the values 17,
22, and 29 will not match the above conjunction. Excluding intervals of the form [4; > a4
and [4; < g,], instead of single values, leads to linear atoms of the form la; < A; < by
These atoms can exclude many negative instances, and are also simpler to understand than
the one given above.

Some cfficiency improvements implemeated in BEXA are mentioned below. (1) Ex-
tensions of values for each concept arc computed once only and stored in memory for
subsequent usc during specialization. (2) Generating intervals for linear values instead of
excluding only the single value doubles the number of values to consider for each lincar
attribute. In some domains only a subset of these intervals are considercd. Firstly, all the
observed values of a linear attribute are sorted from small to large. Then the extension in 1°
of each value is determined. If the instances in the extensions of two or more consecutive
values all belong to the same concept, then intervals need only be created for the largest
such vatue and the predecessor of the smallest value. The reason is that intervals in between
do not provide any additional information for distinguishing among different concepts. For
example, for Ts no intervals involving vatues of temp less than 22 or greater than 28 need
be considered, reducing the number of intervals from twenty to eight. A similar result was
proved by Fayyad and Irani (1992) for TDIDT methods employing the entropy function.
(3) Intervals are deleted from the usable set (discussed in the next section) at the earliest
possible moment, Le. when an interval is selected, other intervals not included by it are
deleted to prevent subsequent useless specialization effort.

4.3. BEXA’s search restrictions

BEXA imposces three restrictions on the search process, i.c. on the number of specializa-
tions that arc constructed at each speciatization step. The search restrictions arc employed
by maintaining a usable and excludedvalues set for each specialization. Initially, the
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usable set contains all the nominal atribute values and all the intervals that are created
for linear atiribute values, while the excludedvalues set is empty. A conjunction is only
spevialized by excluding values and intervals in its uaable sel. Each value or interval that is
excluded from a conjunction is removed from its usable set and then added to its exclud-
edvalues set. Values and intervals that satisfy any of the search restrictions are deleted
from the usable set to provent the unnceessary construction of useless specializations at
subscquent speclalization steps.

4.3.1.  The prevent-empty-conjunctions restriction

The prevent-empty-conjunctions restriction (Step (9) in Tahle 3) prevents the gencration
of empty conjunctions, that is conjunctions that cover no positive instances. Such conjunc-
tions are useless since the goal is to find conjunctions that cover all the positive instances.
The prevent empty-conjunctions restriction thus avoids the nnnecessary gencration of spe-
cializations that are known to be uscless. This restriction requires almost no additional
overhead to employ since the number of positive instances covered by a conjunction must
in any case be determined to caleulate ite Taplace estimate. The same holds for the cval-
uation functions employed by the other covering algorithms described in this paper (scc
Table 4). Scction 6.1 gives empirical evidence that this restriction reduces BEXA's learning
time without decreasing the accuracy of s descriptions.

4.3.2.  The irredundancy restriction

The purposc of the irredundancy restriction (Step (11) in Table 3) 1s to guide BEXA
to construct conjunctions in Cas. The reason, as explained in Section 3, is that these
conjunctions are likely to contain only a few atoms and to have a high value for the evaluation
function. This restriction thus reduces the number of possible specializations that must be
constructed while at the same time increasing ithe chance of finding conjunctions with only a
few atoms that cover many positive instances. The irredundancy restriction may also reduce
the number of specializations steps that are required to find a consistent conjunction. The
reason is that BEXA starts with the mge and then specializes a conjunction by excluding
values and intervals. Fewer values thus need to be excluded to find a conjunction ¢ € Cay
than to tind a conjunction ¢’ < ¢.¢’ € (Ce — C'yy) because ¢ is “lower down™ in the lattice
than .

Irredundancy is ensured using the scheme described in Wells (1971) for generating the
irredundant covers of a set. The basic idea is to maintain for cach conjunction an additional
Anpl i cates sel that contains all those negative instances that are matched by more than one
value or interval in a conjunction’s excludedvalues set. A value or interval is discarded
from a conjunction’s usable set if its exclusion will cause the negative extension of any
value ar interval in the new excludedvalues sct to be contained 1n the duplicates set.
Performing the irredundancy test then requircs a set intersection and a set union operation
to determine the new duplicates set, and one subsct test for cach valucin a conjunction’s
new excludedvalues sof. The number of subset tests that must be performed increases
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by one with each additional value that is excluded from a conjunction. If many values
must be excluded before a consistent conjunction is found, or before the stop-growth test
terminates further specialization, then it may be suspected that the additional overhead
required by this restriction may outweigh the savings obtained by reducing the number of
specializations that must be evaluated. However, Section 6.1 presents empirical evidence
that the irredundancy restriction improves the quality of BEXA’s concept descriptions and
even reduces the learning time.

4.3.3.  The uncover-new-negatives restriction

The uncover-new-negatives restriction (Step (10) in Table 3) is a necessary requirement for
the irredundancy restriction as explained in Section 3. It ensures that cach newly excluded
value or interval uncovers at least one new negative instance. It is employed as a separate
restriction because itis more efficient to implement than the irredundancy test. As is the case
for the prevent-empty-conjunctions test, no additional overhead is required to employ this
test since the number of negative instances covered by a conjunction must be determined for
all the evaluation functions described in Table 4. For this reason the uncover-new-negatives
restriction should always be enforced before the irredundancy restriction to reduce the
number of more expensive irredundancy tests. Section 6.1 presents empirical evidence that
the uncover-new-ncgatives restriction improves the quality of BEXA’s concept descriptions
substantially and reduces its learning time.

4.4. A practical example

For the illustration of BEXA assume a beam width of one, and that only consistent con-
Junctions are discarded from the set of specializations (i.e. the log-likelihood ratio test is
not employed as an additional stop-growth test). A description for the concept in TS is
constructed as follows.

Constructing the first conjunction:

The relevant data for selecting the first value to exclude from the conjunction is:

corjunclon

X (conjunction)
X {conjunction)
excludedvalues
usable

[outlook & {sunny,overeastrain}]{autumn € {yes,nc}[15 < temp < 35]
{10,11,12,13}

{123456,78.9}

@

[ [ (|

{the valucs listed below }

In the following new _conj denotes the new conjunction obtained by excluding the listed
value from the current conjunction. Laplace denotes the Laplace accuracy cstimate of this
new conjuncliorn.
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Yalue
{outlook = overcast]
[outlock = sunny]
[outlock = rain]
[antumn = yes]
fautumn = no]
[temp < 22}
[termp < 23]
[temp > 23]
[temp < 27]
[ternp > 27]
[temp > 28]

X p{value) X (value) X p{newcenj} Xwy{new.conj) Laplace
iy 1267} {10,12,13} (134539} 0364
{1012} {145} {1113} {2,36789} 0.300
{13} {3.8,9} {10,11,12} {124,567} 0.364
{10} {13468} {11,12,13} {2,579} 0.444
{11,12.13} {2579} {10} {13468} 0.250
B {1,23,4} {10,11,12,13} {5,6,7,8,9} 0.455
{11.33} {1.2.34.8} {1012} {5.6,7.9} 0.429
{1012} {5,6,7,9} {11,13} {1.23,4.8} 0.375
{11.12,13} {1,2,34.89} {10} {5.6,7} 0.333
{10} {567} {11,12,13} {123,489} 0.364

) {567} {10,11,12,13} {123,489} 0.417

17

Intervals like [temp < 21] and [temp > 29] are not considered as explained in Section 4.2.
Intervals [temp > 22] and [temp < 28] are discarded with the prevent-empty-conjunctions

test. Excluding [temp < 22] leads to the conjunction with the highest Laplace value.

The relevant data for selecting the second value to exclude from the conjunction is:
[outlook € {sunny,overcast,rain }][avtumn € {yes,no}][22 < temp < 35]

conjunction

X p{eonjunction)
X w {conjunction}
excludedvalues
usable

Valne
foutlook = overcast]
[outlock = sunny]
[outlook = rain]
[autumn = yes]
[aurumn = ne]
[temp = 23]

[temp > 27]
[temp > 28]

{10,11,12,13}
15,6.7.89}

{{temp < 221}

{the values listed below }

(I L O T

X i (value) X n(value) X+ {new_coni) X~ {new.conj) Laplace
{11} {6,7} {10,12,13} {5.8,9} {.500
{1012} (3} {1113} {6789} 0.375
{13} {89} {10,11,12} {567} 0.500
{10} {68} {112,133 {579} 0.500
(111213} 1579} {10} 16,5} 0400
{1012} {5679} {11,131 {8} 0.600
(19} {567} (111213} 8.9} 0.571

) 15,6,71 {10,11,12,13} {89} 0.625

The values [temp < 23] and [temp < 27] are discarded with the irredundancy test. The
value [temp > 28] is selected because it lcads to the new conjunction with the highest
Laplace value. This conjunction is better than its predecessor and becomes the new best

conjunction.

The relevant data for selecting the third value to exclude from the conjunction is:
= [outlook £ {sunny,overcast,rain}]fautumn € {yes.no}][22 < 1emp < 28]

conjunction

X p(conjunction)
X w (conjunction)
excludedvalues
usable

Value
[outlook = rain}
[autumn = yes]
[autumn = nc)

{10,11,12,13}
{8.9}

{the values listed below}

{(temp < 22], [temp > 28]}

Xp(value) Xwy(value) Xp{newconj) Xy{newconj) Laplace
{131 {8.97 T10,11,12} 7 0.800
{10} {8} {11,12,13} {9} 0.667

{11,12.13} {9} {10} {8} 0.500

Values like [outlook = sunny] that would lead to a redundant cover of N have been
discarded. The value [outlook = rain] is selected, and the new conjunction
[outlook € {overcast,sunny H[autumn € {yes,no}][22 < temp <X 28]
is again better than the current best conjunction. At this stage, the conjunction has become
consistent because it covers no negative instances. It is simplified by deleting all the atoms
where attributes take all their possible values to yield
[outlook € {overcast,sunny }1{22 < temp < 28]
This conjunction is then returned as the best conjunction that could be found. This
conjunction covers the positive instances 10, 11, and 12. The same process is now repeated
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1o obtain the next consistent conjunction covering the remaining positive instance 13. This
yields the two rules

[outlock € {overcast,sunny }]{22 < temp < 28] = +

[autumn = no|[22 < temp < 23] = +
If temp has an integer domain, then the atom [22 < temp < 23], obtained by excluding the
values [temp < 22] and [temp > 23], can be replaced with [temp = 23],

5. Differences among the covering algorithms

This section describes the differences among the set covering algorithms BEXA, AQIS5,
CNZ, PRISM, GRELDY?3, and GALG, showing tat they all (it inte the same general sct
covering framework. Table 4 summarizes the differences, while the following sections
discuss the differences in more detail where necessary.

5.1.  The top-level loop

All the covering algorithms discussed in this paper employ the top-level loop given in
procedure COVER-P for BEXA (Table 3). This is not surprising since this loop embodics
the covering nature of these algorithms: Conjunctions are canstrireted until all the positive
instances of a concept are covered.

The first verston of CN2 (Clark & Niblett, 1989) generated an ordered list (or decision fist).
Clark & Boswell (1991) maodified CN2 to generate either aorderad or imordered (prodeaction)
rules merely by changing its top-level loop and evaluation function, Theron (1994) showed
that the same holds for the other algorithms.

5.2, Controlling the generation of conjunctions

Allthe covering algorithms construct conjunctions by following a general-to-specific search.
BEXA starts with the mge (Step (1) in Table 3) and specializes it by excluding values. The
remaining algorithms start with the constant true and specialize a conjunction by appending
atoms. The next four subsections discuss the most important issues regarding the generation
of conjunctions. Procedure Find-Best-Conjunction in Table 3 serves as a gencral control
structure for this discussion.

52,10 Specialization models

A covering algorithm’s specialization model determines which specializations are con-
structed for a conjunction at each specialization step. Tt can be viewed as a separate proce-
durc that, given a conjunclion or set of conjunctions, returns all the specializations of these
conjunctions that must be evaluated (Step (3) in Table 3). In the actual implementations of
the difterent algorithms, aspects of the model and the control structure may be interwoven
lor the sake of efficiency. The algorithms restrict the search effort for 4 good congunction by
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Tuble 4. Similarities and differences ameng BEXA, CN2, AQ15, PRISM, GREEDY 3 and GALG

Language restrictions

BEXA  AQIS  CN2  PRISM GREEDY3 GALG

nominal attributes v V& v Vv N v
lincar witributes v N g - -
internal disjunction v N4 - - - v

1. AQLS also allows tres-ctrcmred artribites (Hoff o1 2f  10R3)

2. GREEDY 3 allows only binary atiributes.

Optivnal features in the coentrol structure (¢ denotes a conjunction)

BEXA AQI3 CN2 PRISM GREEDY3 GALG
Beam widths = 1 v v v - - -
Significance test log-likelihood - log-likelihood - - -
Stop-growth test? log-likelihood - cannot improve - - | Xl |<T
best conjunction
Post-pruning v v - - W W

3. Only step-growth thresholds that are applied in addition to the standard | X w {e) |= 0 test are given. T denotes a threshold.

Evaluation functions (¢ denotes a conjunciion)

Algorithm Evaluation function

K pleltl
X o 12) £ IX 3y (). + Zconcepts
of concepts in the training sct.

N2t maximize where #concepts is the toral number

AQ]:}Q < (minimiae Y Xy () |0 201), (masimias | X (o) | ) =

BEXA same as CN2's

PRISM < (maximine L FEEE 0y, friasdmiso | X (o) [, 0) >
RO BRI -

. X (e
GREEDY3  iaximize ————tatm
) X p (el Xy (el
GALG Gray (1988) states that attributes are scored according to the number of positive
instances that they might be expected to predict after allowance for pure chance
oceurrences. The chance occurrences are computed using the chi-square test.

1. The firgt version of £'N? that generated nnly ordared miles employed the entrapy finetion

2. This is a typical Lexicographic Fvaluation Function (LLEF) that can be applied at both Steps (3) and (7) in Table 3 since
| X ale) | 0at Step (5). ALEFis an ordered list << (f1, 110, ... (fu, £2.) > where each f; is an evaluation function with
an associated olerance ¢, .

restricting the representation language (summarized in Table 4) and by constructing only a
subsct of all possible specializations at each step.

For nominal attributes BEXA constructs all the uscful specializations of a conjunction at
the next lower level in the lattice. For hnear attributes, REXA constructs specializations
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Table 5. AQ15’s specialization medel

PROCEDURE Generate-Specializations (P, instance_set; conjunctions : set-of.conjunctions;
k . beam_width)
IF cenjunctions contains only true THEN select a seed instance s from P,
TLe (= uny insiance in ¥ covered by any one of the conjuncions in conjunctions;
atoms = @
FOR each atribute A ; that takes a different value in 5 and 7, DO
atoms :=atoms U {{A; € (D — {a;}]} where £2; is the domain of A; and a; is its value in n,.
specializaions .= {x A v | € conjunctions. ¥ € atoms);
Remove from specializations all conjunctions subsumed by others in specializations;
RETURN specializations

by excluding single intervals. This amounts to constructing all useful specializations that
can be formed by increasing the lower bound of an interval, or by decreasing the upper
bound of an interval, while at the same time removing the resulting useless specializations
to improve efficiency.

All the AQ) algorithms use the same basic specialization model (Michalski er al., 1986),
given in Table 5 according to Clark & Niblett (1989) and Hoff et al. (1983). This table
contains only the specialization model which is called repeatedly by procedure Find-Best-
Conjunction given in ‘lable 3 until all the conjunctions in the current set of specializations
(the star) become consistent. AQI15 specializes a conjunction by appending the most
general atoms that cover the seed but not a negative instance. Such atoms contain all the
possible values for an attribute except those that occur in the negative instance. AQ15
restricts the number of specializattons at each step by constructing at most ¢ specializations
of a conjunction, given that there are @ altributes, since a seed and ncgative instance can
take a different value [or at most ¢ attributes. In contrast, BEXA may construct up to »
specializations for a conjunction at the first specialization step, where v is the number of
nominal attribute values plus twice the number of linear attribute values. Remember that
BEXA creates two infervals for each linear attribute value. For example, » = 2a for a
learning problem with only binary nominal autributes, otherwise (v > 2a). The number of
specializations that BEXA constructs decreases with cach specialization step as its optional
search restrictions weed out useless specializations.

CN2 was designed to extend the number of specializations considered by AQ15 and 1o
rid AQ15 of its dependence on a seed and negative instances (Clark & Niblett, 1989y, Tt
therefore generates all possible specializations of a conjunction, but restricts its description
language to pure concept descriptions. Table 6 contains CN2’s specialization model®. For
each nominal attribute, clementary atoms of the form [4; —= a;] are created for each one
of its values. One new specialization is then created for each such atom by appending the
atom to the current conjunction, provided that the attribute does not already appear in it.
This prevents the construction of NULL conjunctions such as [big = ves]ibig = no].
CN2 thus excludes all but a single value from a nominal attribute. Each specialization step
of CN2 is thus equivalent to a number of specialization steps in AQ15 and BEXA. For a
linear attribute, all the values for that auribute that occur in the instances covered by the
current conjunction are determined. The values arc sorted from small to large. For each
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Tuble 6. CN2’s specialization model

PROCEDURE Generate-Speciaizations (PN instance_sel; conjunctions : set_of.cobjunctions;
k : beam_width)
specializations .= empty;
FOR cach conjunction ¢ in conjunctions DO
TOR cach nominal attribute LA ; that does not appear in ¢ DO
FOR each value a; of A; DO
Add the conjunction ¢ A [A; = =;] to speeializations;
FOR cach linear attribute A; that does not have both bounds set in ¢ DO
Sert the values of A; that occur in X+ {c) from small to large;
FOR each value, from small to large, DO
Specialize ¢ by appending the atom [A; < a;]:
Add to specializations if the cut-point is a local maximum;
Do the same for intervals of the form [A; > a;);
Remove duplicate conjunctions frem speeinlizations;

RETURN specializations

such value, the intervals [A; < a;] and [A; > a;] are created, where ¢; is midway in between
the valuc and its successor. All the specializations that can be formed by appending the
atoms of the form [A; < a;] to the current conjunction are then evaluated, and those that are
local maxima (according to the evaluation function) arc added to the sct of specializations.
The same is done for the atoms of the form [A; > a;]. CN2 determincs at most one lower
and one upper bound for a linear interval. As soon as both bounds have been determined,
no further specializations are considered that involve that particular linear attribute. CN2
and BEXA thus handle linear attributes in almost the same way. The algorithms differ
in that CN2 may discard some of the specializations as they are constructed (those that
are not local maxima), while BEXA adds all the possibilities to the set of specializations.
Lastly, CN2 adds a check to prevent duplicate conjunctions from being added to the set of
specializations.

CN2 requires at most a specialization steps to construct a consistent conjunction when
all the attributes are nominal because all but one value is cxcluded for an attribute when
specializing a conjunction. In contrast to CN2, AQ15 and BEXA may require up to v — a
steps for a conjunction that covers exactly one instance (at least one value per atribute is
required at the lowest level of the lattice).

PRISM generales pure descriptions allowing only nominal attributes. Starting with true,
it appends single nominal values to the current conjunction until it covers only positive
instances. GALG's specialization model is almost identical to that of PRISM. The only
difference is that it also appends the complements of attribute values to conjunctions,
thus implicitly allowing internally disjunctive expressions. Thus GALG can exclude single
values as do BEXA and AQ15. Forexample, aconjunction may be specialized by appending
either the value sunny or the value —sunny (not sunny). GREEDY?3 only allows binary
attributes. It specializes a conjunction by appending literals to it (i.e. an attribute or its
complement).

Below examples are given of the search paths of BEXA, AQ15 and CN2 through the
lattice of conjunctions in Figure 1 {see Table 2), and the relationship between excluding
values versus appending atoms is illustrated,
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The conjunctions constructed by BEXA are underlined.

«[ab, L]lx ¥]
‘\ —_—
//’\ \-‘1\ 7\‘3‘\
(a. hl[x ¥] lac](x.y] o[bcllx, yl fab.e]lx) la.b,c][¥]

e T
[dles]  ebllxy)  [eilxy] [ab][x] facllx] ablly] fa<ly elbclly]
/

[a}{x] bl(x] [(3]53] Lll[yl [bI¥] lellyl
R —
— -____\ // e
nuil

Figure 2. BEXA's path through the lattice of conjunctions

BEXA does not construct the specialization obtained by excluding {A = b] because it
does not uncover new negative instances. [t 1s removed from the usable sct. Arbitrar-
ily select [A € {b.c}1[B € {x,v}] from the specializations with the highest Laplace
estimates obtaincd by excluding [A = al or [A = c), and delete [A = a] from its
usable sct. Next the three specializations formed by excluding (A = <1, B = x]
or [B = y) are considered. The value [A = bl is not considercd because it had been
removed from the usable set, while [B = y] is deleted because excluding it does not
uncover new negative instances. The best conjunction 1s any one of the rematning two spe-
cia]izations, (A =Dbl[B E {x.y})or (& € {b,c}][B = y], obtained by excluding
either [2 = c] or [B = x].

In mee 3 assume that AQI5 selected instance 3 as seed and instance 2 as the first
negative instance. The most general atom for A that covers 3and not 2 is [A € {b,¢}].
Similarly, the most general atom for B that covers 3 and not 2 is (B = x]. Appending
(2 € {b,c}]totrueis equivalent to excluding the value a2 = a), taken by the negative
instance, from the mgeto yield [A € {b,c}1[B € {x,y}i. Similarly, appending
[B = x] Lo true is equivalent to implicitly excluding the value [8 = v] from the
mge toobtain  [A € {a,b,c}][B = x]. The former specialization is the best and
must be [urther specialized to uncover the negative instance 5. Instances 3 and 5 differ
for attribute A, leading ¢ the atom (& € {a,b}]. Appending this alom to the current
conjunction {equivalent to excluding the value fa = 1) yields the consistent conjunction
(& =bl[B € {x,v}] wrtten as (2 = b].

Figure 4 illustrates CN2’s search for the second conjunction, because CIN2's first special-
ization step selects (A = b] trivially from the created conjunctions [A = a], [A = b],
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Conjunctions constructed by AQ1L5 are underlined. The one selected at each level is marked by .

ola,bcj[x,y]

e E S e

[2.0]0x,y] a,c]lx.y] slbellxy] [mbuc]lx] fa,b,]ly]

L — ~ —

falley] o[l [ellx.y] [a,b]lx] fa,c]lx] [byelix] {,0]ly] [2.<]ly] [belly]

(=]ix] [blx] [<lix] {ally] [blv] felly]

null

Figure 3. AQ!S’s path through the lattice of conjunclions

& = ¢], [B = =1, and [B = v]. The two positive instances that it covers are dis-
carded. For the second conjunction, the first specializations considered arc again [ = al,
(& = bl,{a = ¢],[B = y],and [B = x] (undertined on the second and third row). Any
onc except [A = bl can be selected as the best since they cover one positive and one neg-
ative instance. Select [B = v arbitrarily. The next step considers the non-null specializa-
tons [& = allB = v], [2 = B][B = yl,and [ = c][B = ¥]. [A = c][B = ¥]
is sclected because it covers a positive instance.

CN2 may skip levels in the lattice because it implicitly cxcludes a nominal attribute’s
complement. For cxample, [ = a] (shorthand for [A = al[B € {x,v}]) implicitly
excludes (A € {b,c}] from the mge. In contrast, BEXA can consider all specializations
at a level and AQ15 at most one per attribute.

Rymon (1903) also deseribes a general learning framework, but with emphasis on a
particular data structure, i.c. an ST-tree which “shares many features of decision tree
based algorithms” (p.268) and “gencralizes decision trees” (p.274). We describe a general
framework for set covering, as opposed to the recursive partitioning framework (divide-
and-conquer used by the Top Down Induction of Decision Trees approach to learning}, and
show how five other algorithms fit into such a framework, (It can be argued that using set
covering, which does not repeatedly split the training set, has “mare evidence” available
at each specialization step because only the covered positive exampies are removed. ) Spe-
cialization in an SE-tree occurs by appending, not by excluding vatues. SE-tree rules are
interpreted conjunctively, while the mge has a conjunctive interpretation but with infernal
disjunction; however, it seems that disjunction cannot be represented directly, but has to
be resolved during the classificalion phase (see the OR example with a resolution criterion

based on voting, p.274). The remarks on “hypothesis expressibility” (p.273) scem to sug-
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Conjunctions considered by CN2 are underlined. The one selected at each level is marked by .

s[a,b,c][x,y]

[allx.y] [bllx,y]

[a]lx] (blix}

L L

null

Figure 4. CN2’s path through the lattice of conjunciions (when constructing the second conjunction)

gestthal some hypotheses cannot be expressed as succinctly as with internal disjunction (the
same problem that CN2 has with its restriction to pure descriptions). Impotent expansion 1
(p-270) corresponds to BEXA's prevent-cmpty-conjunctions. Rymon (1993) does not give
an cmpitical cvaluation of this restriction; we present empirical results in Section 6. Impo-
tent expansion 2 (p.270) for rules with the same extension corresponds to BEXA's cquality
test for duplicate conjunctions. BEXA does not require an expensive subsumption test due
to its spucialization method, white “procedure expand™ (p.271) needs to test for subsump-
tion. We share the bias of finding maximal general solutions, which BEXA can also adjust
to the learning problem as elaborated on again later ((Rymon, 1993) (p.269): “Intuitivcly,
while learning, we adopt most general principles™). BEXA can (optionally) guarantee that
a conjunction in Cpy (a “kernel” clement) will be found. Selection of conjunctions are
prioritized in the SE-tree representation, while BEXA does so in the lattice, selecting sets
in Cpy. BEXA alrcady has a stop-growth criterion (see Future research directions) and
makes provision for intervals.

5.2.2.  Complexity of specialization

In this section the worst case complexity of specialization is summarized, assuming that
consistent and complete conjunctions are required, using a bcam width of one. Assume
there are p positive and n negative examples and the a attributes take v possible values in
total: Then all the covering algorithms gencrate conjunctions until all the positive examples
are covered, i.e. al least one and at most p conjunctions will be generated. Now consider
the generation of a single conjunction. AQ requires at most n specialization steps for a
consistent conjunction if only one negative example is excluded per step. CN2 peifuns at
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most & steps since only one attribute value is retaincd at each step, while BEXA requires at
most v — a steps because only a single value is excluded from the conjunction per step. Now
consider the total number of specializations constructed o obtain a cousistent conjunction:
AQ thus generates at most an specializations to obtain a consistent conjunction; BEXA
generates v specializations at the first step, then v — 1 for the next, and so on until all
attributes take only a single value; and CN2 generates v specializations at the fiist step, then
the sum of the number of values in the remaining attributes, and so on until all attributes
take only a single value.

To compare CN2 and BEXA in more dctail, assume a learning problem with only nominal
attributes, each taking k values, then v = ka. CN2 gencrates at mostkatk{a—1)+...+k =
ka? /2 specializations, while BEXA generates at most ka+ka—1+.. =~ k2a2/2; thus
BEXA constructs a tactor k more specializations.

If BEXA applies Test 2, then the number of steps to obtain a consistent conjunction is at
most the minimum of v ~ a and n (since, like AQ, at least one negative cxample must be
excluded at each specialization step).

The complexity analysis above, however, cannot quantify the number of specializations
not considered due to BEXA’s optional search restrictions because it is highly dependent
on the training data. We provide empirical evidence in Section 6 that BEXA's search
restrictions is very effective in weeding out unnecessary specialization effort, even though
BEXA allows internal disjunction.

5.2.3. Employing a beam search

When generating conjunctions the beam width number of best alternative specializations
are retained for the next step (Step (7) in Table 3). Further specialization ceases when the
sel uf alleruative best conjunctions becomes cmpty (Step (2)) due to the stop-growth tests
{discussed in Section 5.2.5). Only BEXA, AQ15 and CN2 allow a user-specified beam
width (Table 4).

The motivation for using beam widths greater than onc is that it increases the chance
of finding a simple conjunction covering many positive instances. However, large beam
widths can increase the computational requirements substantially. Theron & Clocete (1993)
and Theron (1994) presented empirical evidence for ten test databases that beam widths of
ten or twenty usually do not produce significantly better rules than a beam width of onc
for BEXA. Since AQ15 limits the number of specializations considered (see Section 5.2.1)
a large beam width is more likely to improve the descriptions found because it increases
the total number of different specializations that are considered. Similarly, the experiments
reported in Section 6.2.1 suggest that CN2’s restriction to pure conjunctions also henefits
from using beam widths larger than one.

5.24. Sclecting the best specializations

Covering algorithms employ evaluation funcrions to select the best conjunction (Step (5) in
Table 3) and to retain the beam width number of best specializations (Step (7) in Table 3) after
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each specialization step. AQLS employs a combination of different evaluation functions
called a Lexicographic Evaluation Function (LEF) (Michalski, 1983}, A LEF is an ordered
list < {f1,t1), ... (Fn. £) > where each f; is an evaluation function with an associated
tolerance 7;. The functions are applied in the order in which they are specified. When two
conjunctions do not differ more than the specified tolerance for f;, they are evaluated with
respect 10 fip1. AQIS typically employs two different LEF’s at Steps (5) and (7). For
example, let ¢ denote a conjunction. Then the LEF < (minimizc | X x{e) [, t1), (maximize
| Xp{c}|,t2)> can be applied at Step (7) and the LEF <{maximize | X p(<} |, t1), {minimize
the number of atoms in ¢,t2)> at Step (5). All the other covering algorithms, including
BEXA, employ the same evaluation function or LEF at both Steps (5) and (7). The different
evaluation functions are listed in Table 4.

5.2.5. Stopping further specialization

Animportantquestion to address is when to terminate further specialization of a conjunction.
This decision is employed in the form of a stop-growth test (Step (6) in Table 3). When all
conjunctions in the current set of specializations satisfy this test, the set becownes eiply. This
terminates the scarch for the best conjunction (Step (2) in Table 3). Further specialization of
aconjunction can be stopped the moment it becomes clear that additional specialization will
not improve the conjunction’s value for the evaluation function. The staudard criterion is 10
terminate further specialization when a conjunction becomes consistent, i.c. | Xy (c}|= 0.
Sce Table 4 for a summary.

AQI15 employs a slightly weaker version of this standard stop-growth test: Tt stops further
specialization when all the conjunctions in the current sct become consistent. The best
conjunction in this set is returned. Some conjunctions mav become consistent before others
do. These conjunctions will be specialized further by AQ1S until all the conjunctions in the
currentsetare consistent. This unnecessary specialization effort can be avoided by removing
aconjunction from the set of specializations the moment that it becomes consistent (Step (6)
in Table 3). The best overall conjunction will still be returned because the best conjunction
is retained after each specialization step.

CN2 cunploys both a weaker and a stronger version of the standard stop-growth (est.
The weaker version terminates further specialization only when a conjunction covers no
negative and no positive instances. The stronger version terminates further specialization of
aconjunction when it cannot itaprove on the current best conjunction. This 1s determined by
calculating a conjunction’s Laplace cstimate under the assumption that it covers no negative
instances. If this cstimate is lower than the current best estimate, further specialization is
tertninatcd because none of the conjunction’s specializations can tmprove on the current best
conjunction. This second testalso implicitly stops further specialization when a conjunction
becomes consistent, since its specializations can only cover fewer positive instances and
therefore have a Tower Laplace estimate than the current conjunction,
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52.6. Pre-pruning

It is well known that pruning concept descriptions in the presence of noise leads to consid-
erably simpler descriptions that usually have higher accuracy on unscen instances than the
unpruned descriptions (Quinlan, 1987a; Michalski er al., 1986). Two types of pruning arc
distinguished (Breiman et al., 1984). Pre-pruning tests are applicd during the specialization
process, while post-pruning is applicd to a complete set of rules, i.e. as a post-processor.
This section discusses pre-pruning and the next post-pruning.

Only BEXA, CN2 and GALG employ pre-pruning schemes. GALG can stop further
specialization when the number of negative instances covered by a conjunction is below a
user-specified level. CN2 uses a significance test (Step (4) in Table 3 to ignore conjunctions
that do not capture significant patterns in the training data. BEXA performs pre-pruning
with an additional stop-growth test (Step (6) in Table 3) that discards all the insignificant
specializations of a conjunetion. The differences hetween the latter two approaches were
discussed in Section 4.1

(N2 performs another cheek that can also be viewed as a form of pre-pruning. It checks
whether the Laplace cstimate of the best conjunction is greater than that ol the default
rule (Clark & Boswell, 1991), If this is not the case, then the new conjunction docs not
contribute any new information and the NULL conjunction is returned (Step {8) in Table 3),
crminating the generation of conjunctions for the current concept. BEXA borrowed this
test from CN2.

5.3. Post-pruning

BEXA employs the post-pruning scheme described by Quinlan (1987a,1987h). This scheme
prunes rules in two phases. The first phase simplifies individual rules by deleting atoms
that are insignificant according to Fisher’s exact test. The second phase simplifics the set of
rules by deleting those rules that will not reduce the accuracy of the collection as a whole
on the training instances. A detailed description of this pruning scheme can be found in
Quinlan (1987a,1987b).

CN2 and PRISM do not cmploy any post-pruning scheme, GALG only post-prunes
individual rules by deleting those atoms that will not reduce the accuracy of the rule en
the training <ot (Ciray, 1988} This ensures that no conjunction contains any redundant
tests. GREEDY3 follows an approach opposite to that of GALG. It simplifies a rule by first
discarding all its atoms. A process analogous to the specialization process is then [ollowed
by returning atoms fo the conjunction while this will increasc its accuracy on a separate lest
sct (Pagallo & Haussler, 1990).

AQ15 post-prunes a set of rules in one of two ways (Michalski er al., 1986). The first
approach is to discard all the conjunctions describing a particular concept that cover fewer
than two positive instances uniguely. The alternative approach is to discard all the conjunc-
tions for a particular concept except the one covering the most positive instances. AQIS
thus docs not stmplify individual rules®.
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Database Ref. Description #Inst., Attr., Class References

lymphography  lym  identify disease 143,18, 4 {Michalski et al., 1986)

breast cancer ber predict recurrence 286,49, 2 {Michalski er a!., 1086)

primary turn, pt predict tumour type 339.17,21 (Michalski er al., 1986)

iris irs identity iris type 180, 4, 3 (Mingers, 1989}

voling Vot predict democrat or 435, 16, 2 (Clark & Bosweil, 1991)
republican senator

digit dgt identify led digit 500,7, 10 (Mingers, 1989}

soybean soy identify disease 307,35, 19 (Michalski & Chil., 1980)

[HEERTE 1L predict win or loose 958, 9,2 (Wirth & Catletr, 1988)

internal disj. id predict class or not 500, 5,2

¢leveland cle predict presence of 303, 13,2 (Clark & Boswell, 1991)

heart discase

6. Empirical evaluation of BEXA

This section presents an empirical evaluation of BEXA's three search restrictions. Experi-
ments are reported where search restrictions arc added onc by one to show that they 1educe
the learning time and usually improve description quality. BEXA is also compared to the
state-of-the-art concept learners CN2 and C4.5. A detailed comparison with CN2 is pre-
sented because both BEXA and CN2 employ the covering approach to concept learning.
C4.5 ts compared to BEXA since it serves as a yard-stick for rule quality.

It has become common practice to compare learning algorithms on a number of differcnt
test databases (Clark & Boswell, 1991; Quinlan, 1987h; Buntine & Niblell, 1992} because
comparisons on a small number of databases do not yield conclusive results, We report
results for ten test databases (sce Table 7) that were selected because they are representative
of many different types of learning problems. They differ regarding the number of lraining
instances that are available, the degree of noise in these instances, the number of concepts
to learn and the proportion of instances belonging to each concept, the number of nominal,
integer and real valued attributes used to describe the instances, and the application domain
from which the data was obtained. For each database an abbreviation is given (o denote it in
tables and graphs. All the databases, cxceptinternal disjunction (id), have been used by other
authors. References are given where the interested reader can find more detail about these
databases. We constructed the internal disjunction database to illustrate the advantage of
generating internally disjunctive instead of pure descriptions for some databascs. Instances
in this database are described with five attributes, A to £, wliere cach atribute takes five
possible values, c.g. a; to as. There is only one concept with the disjunctive description

[A e {a;,ag,ug}”B & {53,114}] \ [B [ {52,54,05}} [C c {03,64,(35}}

Five hundred random instances were generated and classified as positive or negative, de-
pending on whether they matched this description or not. Noise was then introduced in
each instance by replacing each on of its five attribute values with a probability of 10%
with another, and by flipping the instance’s classification with a probability of 10%. This
database thus contains noisy instances and two irrelevant attributes, ) and E.
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Ten random training and test sets were generated for each of the ten databases. In each
case, the training set contained 70% of the available instances while the remaining 3(%
constituted the test set. Rules were induced from the training set and the accuracy of the
rule set was then determined on the corresponding test set. Each experiment was repeated
ten times, once for cach training and test set, and the average rule complexity, learning time,
and classification accuracy are reported. The same ten training and test sets were used for
all the experiments on a particular database.

6.1. An evaluation of BEXA’s search resirictions

Four experiments were performed for each database 10 evaluate the individual search restric-
tions: (1) No restrictions to serve as a yard-stick for measuring improvements, (2} Employ
only the prevent-empty-conjunctions restriction (Test 1), (3) Apply Test 1 and then the
uncover-new-negatives restriction (Test 2}, (4) Use all threc resuictions in the order ad-
vocated in Section 4.3.3 and below. No results are reported for the cleveland database
because it required an impractical amount of time to perform the ten experiments when no
restriction was employed. The order in which the first two restrictions are applicd is lagely
immaterial; both require very little overhead because the positive and negative extensions
of a conjunction arc computed in any case. We prefer Test 1 first though, becausc 1t is more
ethcient (o test for non-zero than for new negatives uncovered, and because it is of 1o usc to
waste effort first on the more time consuming Tests 2 and 3 for a conjunction that will then
be eliminated by Test 1. Section 4.3.3 explained that the uncover-new-negatives restriction
should always be cmployed before the irredundancy restriction su that the latter, more time
consuming restriction, is executed as few times as possible.

All the experiments were performed using a beam width of ten and no pre-pruning was
performed, i.c. consistent conjunctions were generated with the significance and stop-
growth thresholds set to 0. Section 5.2.1 showed that the specialization models of BEXA,
AQ15 and CN2 are closely related, and if BEXA benefits from the search restrictions, it
can be suspected that this may also be the case for AQ15 and CN2. The best results for
CN?2 were obtained with beam widths larger than one in atl but two cases. Consequently,
BEXA was exccuted with a beam width of ten to provide stronger evidence that AQ15 and
(N2 may also benefit from its search restricrions.

When comparing complexity and accuracy of rules, post-pruned rules usually yield better
quality rules than pre-pruned rules. For these experiments BEXA therefore did not post-
prune its rules to isolate the effects of the search restrictions, reporied in Figures 7 and
8.

Figure 5 gives the number of specializations considered with each combination of re-
strictions, expressed as a percentage of the number of specializations considered when no
restriction was applied. The actual number of specializations that were evaluated is given
above each bar. Each additional restriction reduced the number of specializations to eval-
uate tor all nine databases. In some cases, the reduction was quite dramatic. For cxample,
for the breast cancer database, the total number of specializations that were constructed
dropped from 238815 to 12875 when all three the restrictions were employed. The small
additional reduction caused by the irredundancy restriction is not surprising. The reason is
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Figure 5. The total number of specializations constructed with cach additional restriction
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Figure 6. The leamning times required with cach additional restriction

that the uncover-new-negatives restriction alsu discards values tial will lead 1o redundant
conjunctions. Recall that this restriction is a necessary requirement for irredundancy. The
irredundancy restriction therefore discards only the few remaining values and intervals that
may lead o redundunt conjunctions.

Figurc & plots the learning time in seconds of each combination of restrictions as a
pereentage of the time required to learn the concept descriptions with no resirictions. The
runtimes in seconds are given above each bar. For all the databases except tic-tac-tee and
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internal disjunction, cach additional restriction reduced the learning time. For the tic-1ac-toe
and tnternal disjunction databases the learning time increased by 3% and 2% respectively
with the introduction of the irredundancy restriction, despite a reduction in the number of
specializations to evaluate. The reason is that these databases are fairly large and only a
relatively small percentage of values can be discarded during the specialization process.
Consequently, the irredundancy restriction had to be applied frequently. The overhead due
(0 80 many subset tests on large bitsets slightly exceeded the savings obtained by evaluating
fewer specializations.

The prevent-empty-conjunctions restriction (Test 1) usually led to a large reduction in
the number of specializations that were evaluated, but this reduction was not always ac-
companied by a similar reduction in the learning time. For example, for the lvmphography
database the number of specializations dropped by 229 from 11614 to 9030, while the
learning time decreased by only 1% from 242 seconds to 239 seconds. The reason is that a
conjunction covers the fewest positive instances towards the end of the specialization pro-
cess. Consequently, the prevent-cmpty-conjunctions restriction discards most values and
intervals from the usable set towards the cnd of the specialization process. It thus avoids
only a small number of unnecessary cvaluation steps. When the uncover new-negatives
restriction (Test 2) was applied, a reduction in the number of specializations was accom-
panied by a similar reduction in learning time. The reason is that values and intervals that
exclude many negative instances are likely to be excluded from a conjunction right from the
start of the specialization process. Consequently, a large number of negative instances are
excluded after only a few specialization steps. The uncover-new-negatives restriction will
therefore discard many valucs from the usable sot after only a few specialization steps.
None of these values will be excluded subscquently, resulting in the large drop in learning
ttme when this restriction is activated.
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Figure 7. The description complexity achieved with each additional resfriction
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Figure & The description accuracy obtained with each additional restriction

Figure 7 expresses the complexity of the concept descriptions generated with each combi-
nation of restrictions as a percentage of the complexity of the descriptions generated when
no restrictions were applicd. The actual number of atoms obtained with each cxperiment
1s given above each har. Fignre R plots the accuracies obtained with each combination of
restrictions for each of the databases. The prevent-empty-conjunctions restriction (Test 1)
did not change the accuracy or complexity of any of the concept descriptions. The reason
is that BEXA’s Laplace estimate, and the evaluation functions of the other covering algo
rithms, has a higher value for a conjunction that covers at least one positive instance than
one covering no positive instances. The prevent-cmpty-conjunctions restriction therefore
simply prevents the evaluation of conjunatinns that will in any case not be selected as the
new best one.

The uncover-new-negatives restriction (Test 2) caused a large reduction in description
complexity without reducing description aceuracy. It cven improved description accuracy
insome cases. We explain this with an example, assuming two classes, a beam width of one,
and that Test 2 is not applicd. A conjunction’s usable sct consists of two disjoint subsets:
Let W0 denote those elements that when excluded from the conjunction do not uncover any
new negative instances, and let W1 denote those whose exclusion uncover new negatives
(ie. WO will be deleted from usable by Test 2). Consider a conjunction w covering 30
positive and 2 negative instances (Laplace accuracy estimate 0.912). Assume (hat the best
specialization of w by excluding a single value chosen from W0 leads to a conjuncrion
excluding 2 positive instances (Laplace 0.906), whilc the best specialization from W1
excludes 12 positive and 1 ncgative instances (Laplace 0.905). Then the specialization
due to W0 is preferred and thus retained for the next specialization step. Note that w's
Laplace estimate cannot be improved unless a value from W1 is chosen and that w has
a better cstimate than any of its one-step specializations. Further specialization steps are
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thus required, These steps are uscless when values are chosen from W0 because either
they exclude positive instances only (which cannot improve on w’s Laplace cstimate), or
they keep the exiension of ihe specialized conjunction unchanged. This continuing process
makes the conjunction more specific and may increase its complexity, until eventually a
value from W1 is chosen, leading to a conjunction covering, say, 10 positive instances
(Laplace 0.917). If, instead, Test 2 forced the choice of a value from W1 from the outsct,
a much more general conjunction might be found. The uncover-new-negatives restriction
therefore leads to more general conjunctions, obtained by excluding fewer valucs and
intervals from the most general conjunction. Such general conjunctions tend to cover more
positive instances. This increases their accuracy estimate and reduces their complexity.

The irredundancy restriction (Test 3) yielded a slight additional reduction in description
complexity and usually slightly improved accuracy or kept it unchanged. In two cases a
reduction in accuracy not exceeding 1.2% was observed. The drop in accuracy was duc to
slightly more general conjunctions containing fewer atoms than those found without this
restriction.

Finally, all the algorithms except BEXA restrict the number of specializations that are
considered, and then leave it to the evaluation function to select the best specialization. The
experiments in this section showed that the evaluation function alone cannot be trusted to
find the best descriptions because the quality of the descriptions improved when the uncover-
new-negatives and irredundancy restrictions were applied. The reason is that the evaluation
function may select specializations that increase the complexity of a conjunction as was
explained above. BEXA's scarch restrictions therefore “override” the short-sightedness of
the evaluation function.

6.2. BEXA versus CN2 and C4.5

BEXA, CN2 and C4.5 cach has a number of parameters whose values determine the quality
of their induced concept descriptions. The parameter values that give the best results also
differ from one datahase to another. Tn an attempt 10 find the best possible results for each
algorithm, a number of different parameter combinations were evaluated for cach database.

BEXA requires four differemt parameters, The first, the beam width, was kept at one
as motivated in Section 5 2.3 The second parameter 1s a significance threshold. Recall
that BEXA can employ the log-likelihood ratio criterion as a significance test, just like
CN2Z. Ths criterion has a chi-square distribution, and thus requires the specification of a
confidence fevel For exampie, a confidence level of 90% may lead to fairly mild pruning,
while a confidence level of 99.9% may lead o severe pruning. For all the experiments
reported here for BEXA, the confidence level for the significance test was set to 0%, Le.
the gignificance teat was effectively ignored. The reason is that Theron (1994) found that
the stop-growth test usually produced similar or better results than CN2's significance test
for most of the test databases. The third parameter is the confidence level for BEXAs stop-
growth test. Recall from Section 4.1 that BEXA can also employ the log-likelihood ratio
criterion as a stop-growth test. Usually, there is no way of knowing which threshoid will
produce the best results for a particular database. Consequently four stop-growth thresholds
were evaluated for cach databagse, namely 0% (no pruning), 90%, 00 and 99.9%. The
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last parameter specifies whether the unpruned rules (generated with stop-growth of 0%)
must be post-pruned or not. Theron (1994) found that the stop-growth test produced better
guality rules than Quinfan's (1987a) post-pruning technique for three of the test databases;
post-pruning produced better rules for three other databases, while rules of similar quality
were obtained by cither technique for the remaining four databases. Both pruning and no
pruning must thus be evaluated to find the best set of rules. A total of five experiments
were thus performed for BEXA for each database, namely (1) generating unpruned rules,
{2-4} generating rules with stop-growth thresholds of 90%, 99%, 99.9%, and (5) post-
pruning the unpruned rules. All these experiments were performed with a beam width of
one, and with a significance threshold of 0%. BEXA can easily be extended to perform
these five experiments automaticaliy and then return the best of the five sets of results.
Thus employed, no parameters need to be specified for BEXA. These five experiments
were not excessively time-consuming since it required a maximum of ninety seconds o
perform (using a 33MHz 804865X PC) and amounts to selecting an appropriate bias (from
this limited set of possibilities) for a particular learning problem. Thus in spite of BEXA’s
greater computational complexity, its search restrictions limit the search effort so that its
average case behavior is comparable to that of the other algorithms.

Since a number of experiments were performed for each database with each learning
algorithm, the problem becomes to select the best results for that algorithm for comparison
with the other algorithms. The best rules found with a particular algorithm for a given
database was selected to be the simplest set of those sets whose accuracy did not difter
significantly from the most accurate set found. The significance of differences in accuracy
and complexity was determined using the two-tailed paired t-test to compare the results for
the ten random training and test sets that were selected for each database. The best results
obtained with each algorithm werce then compared as follows. If the significance of the
difference in description accuracy was 95% or higher, the most accurate rule set was the
best. Otherwise the accuracies were deemed equivalent and description complexity was
compared similarly. The most common measure for description complexity is the total
number of atoms in a concept deseription (Michalski et af., 1986; Clark & Niblett, 1989;
Clark & Boswell, 1991; Lavrac er al., 1986; Pagallo & Haussler, 1990}, but the number of
values or intervals mentioned in a rule is given as well for databases with nominal attributes
taking more than three vaiues, (Since BEXA writes out the complement of an atom if the
atom contains more than half of its domain, counting values instead of atoms only influences
the count for these attributes.)

6.2.1. BEXA versus CN2

There are a number of parameters that determine the guality of the rules generated by CN2.
Firstly, CN2 can generate either ordered or unordered rules. Unordered rules were generated
for ail the databases because Clark & Bosweil (1991} found that unordered rules have higher
accuracy than ordered rules and because BEXA generates only unordered rules. Secondly,
CN2 can use either the Laplacian or the naive (plain percentage correct) accuracy estimaie.
The Laplace accuracy estimate was selected because Clark & Baswell (1991) used it in their
experiments. The Laplace estimate is also berter than the naive estimare because it will
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Table 8. BEXA versus CN2

Yollorrect

Iym ber pt irs vot dgt soy tt id cle
BEXA 80.2 76.9 423 939 95.3 732 79.5 97.1 820 78.2
CNZ 756 74.3 358 92.6 94.1 723 826 9R.9 755 715
T-test 19% 9% 89% 63% 97% 82% 15% 98% 100% 39%

#At0ms (FValues)

Iym ber pt irs Vot dpt 50y tt id cle
BEXA 7(8) 2(2) 1 3 3 L) 59(60) 48 6113 12(12)
CN2 27 3 117 5 22 208 34 68 262 31
T-test 100% 90% 100% 100% 100% 100% 100% 160%  100% 100%

Tarameics thial gave (e best wesults

Ty ber pt irs vat dst 3oy e id cle
BEXA:
Postpr. /o Y v v
S10p-gr. 99% 9Y.9% 9% 999%  99.9% 0% 0% 90%
CN2:
Beam W 10 1 20 10 10 10 20 20 1 20
Signif, 50% 999%  599% 99% 99% 0% 0% 0% 0% 99%

prefer a conjunction covering twenty positive and no negative instances to ohe covering two
positive and no negative instances, while the naive estimate has the same value (100%) for
both. The remaining two important parameters were the heam width and the significance
threshoid. CN2 does not employ post-pruning or a stop-growth test, For the experiments
reported in Clark & Boswell (1991}, CN2’s beam width was set to twenty. BEXA's results
suggest that CN2 may also give good results with small beam widths. Consequently, three
beam widihs were evaluated, namely one, ten and twenty. Clark & Boswell (1991) also
evaluated only two significance thresholds for CN2, namely 0% (no pruning) and 99.5%.
We evaluated four thresholds, namely 0%, 90%, 99% and 99.9% for cach of the three heam
widths, giving a roual of twelve experiments for each database. The best of these twelve
rule sets were selected as described in the previous section.

Table 8 contains the best results obtained with CN2’s twelve experiments and with BEXA’s
tive experiments. Results in bold indicate significant differences. For two databases, voting
and internal disjunction, BEXA’s rules were significantly more accurate than those of CN2,
For six other databases where accuracy differences were not significant BEXA produced
significantly simpler rules than CN2. CN2 produced the best results for the tic-tac-toe
database where its rules were significantly more accurate. To determine the reasons for dif-
ferences in performance, the differences between BEXA and CN2 are briefly noted. BEXA
allows (1} a richer description language (internal disjunction and the complement (*not)
of an atom} implemented by excluding values instead of appending atoms, (2) optional
search restrictions (Tests 1-3), (3) a stop-growth test, and (4) post-pruning of rules. Other
minor differences affect the efficiency of BEXA and not its performance, as explained in
Section 4.2. When the voting databasc is considered, the only causes for performance
differences arc Tests 1-3 and the stop-growth test, since voting contains only binary at-
tributes and the best results were obtained without post-pruning, We therefore performed
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four additional experiments (for the same stop-growth threshold of 99.9%) in which Tests
1-3 were first omitted and then included one by one, and in all cases the same rule sct was
found. When relaxing the stop-growth threshold to 99%, description complexity increased
to nine and accuracy dropped by 0.6%, illustrating that the stop-growth test terminated
spocialization early enough.

The 1d database contains only nominal attributes, each taking five values. In this case
the possible causes for performance differences are BEXA’s specialization method and
accompanying richer description language, Tests 1-3 and the stop growth test. For the best
results given in Table 8 BEXA found the exact concept description. When repeating the
expefiment with a 95% stop-growth threshold, pre-pruning was too strict; accuracy dropped
{078 16 with only three atoms in the description. Atthe 30% stop growth threshold, several
experiments were performed with combinations of Tests 1-3. Test 1 had no effect on the
generated descriptions; Tests 2 and 3 did not affect the accuracy, but performing only
Test ? caused, for the first time, a deseription containing the irrelevant attribute E (ic. a
more complex description than necessary). For the id database CN2’s restriction to pure
descriptions does not allow such a succinct description of the farget concept as is possible
with descriptions containing internal disjunction, but there is in principle no reason why CN2
cannot generate the equivalent 135 pure rules describing the targel concept. However, CN2
gencrated very specific conjunctions ﬁsually containing three atoms and covering one to
three examples. REX A’ specialization method of excluding one value at a time biases it to
find descriptions suchas [x € {1,2,3}] more easily than CN2, since CN2 must construct
three rules, onc for each value of X. In the presence of noise where attributes other than
X are contenders for selection, CN2 has no bias to select attribute X again to construct a
subsequent rule (i.c. to lead to three pure conjunctions equivalent to [x € {1.2,3}1)%
instead other attributes may be taken. In this way CN2’s language restriction may break up a
natural cancept deseription into an aceurate and highly specific, but difficult to understand,
description (this is also one of Gray's (1990) criticisms of decision trees). For the id database,
therefore, BEXA's specialization method biased it to prefer most general descriptions, Tests
2 and 3 prevented specialization of irrelevant attributes {causing them to be eliminated),
and its stop-growih test terminated specialization before the description fits the noise.

CN2’s better results for tic-tac-toe are not surprising since this database has inherently
pute concept descriptions {e g [top-left-square = X [[top-middle-square = X ]{top right
square = ‘X’] or ...). BEXA thus over-generalized for this database where its aceuracy was
1.8% less. The internal disjunction database on the other hand illustrates the advantages of
being able to generate internally digjunctive expressions where BEXA’s rules were markedly
more accurate,

6.2.2. BEXA versus C4.5

BEXA was compared to C4.5 to present a yard-stick for rule quality, not with the intention
of comparing their specialization methods. C4.5 has a facility to generate a set of pruned
production rules from a decision tree. Quintan (1987a,1987b} found that thesc rules are
much simpler and also more accurate than pruned decision trees. We thus compared BEXA's
results to the best rules generated by C4.5. The tree pruning defaults were used because



BEXA: A COVERING ALGORITHM 37

Tuble 9. BEXA versus C4.3

GCormect
Iym ber pt irs vot dgt s0y i3 id cle
BEXA 80.2 76.9 42.3 939 933 732 79.5 971 82.0 182
C4.5 771 74.9 39.3 94.0 951 75 85.0 983 833 759
Sigmi. (T-test) AL BOH D745 156 37% 53 87% 765 £O50 215
#Atoms
lym ber pt irs vor det 50y ttt id cle
BLEXA 7 2 Il 3 3 41 59 48 1] 12
C4.5 13 7 23 5 7 79 44 35 8 12

Sigmif. (T-test) 100% 100% 100% 100% 99% 100% 100% 100% 1007 0%

Parameters that gave the best results

lym ber pt irs Vol dgt S0y 1t id cle
BEXA:
Post-pr. Tules v v v e v v v
Stap-gr Thresh G9 9o 00% 90%
C4.5:
Subsets {-s) X Vv Vv x X X N4 X V4 v
Confidence (-¢) 150 25% 254 40% 1% 1% 1% 25% 1% 1%
Redundancy (-r) 2 0.5 0.5 0.1 05 2 0.5 03 0.1 0.5

C4.5 always generates rules from unpruned trees. Pruning the trees therefore would have
no influence on the quality of the generated rules. No windowing was required since all
the datascts were small enough to fit into memory. Furthermore, Wirth & Catlett (1988)
found that windowing rarely improves the quality of decision trees. The initial trees were
gencrated using the default gain ratio ¢riterion as the cvaluation function because Quinlan
(1986) found it to be superior to the older gain criterion. Secondly, C4.5 can combine
branches in a tree so that some branches are labelled with subsets of values instead of single
values, providing the option of internally disjunctive rules. Trees were generating using
both settings of this parameter. Three parameters control C4.5’s rule pruning process. The
confidence level is used to determine which atoms to drop from a rule during the pruning
process (defanlt 25%). A lower confidence level leads to more severe pruning and a higher
confidence level prunes less severely, We evaluated confidence levels of 40%, 25%, 5%
and 19:. The second parameter specifies the confidence level that must he used if the older
Fisher’s cxact test must aiso be used to prune rules. Theron (1994) found that this test
makes no difference, i.e. the primary pruning test for which the confidence level must be
specified succeeds in weeding out all insignificant atoms. The last rule pruning parameter
1s a redundancy factor that determines which rules must be retained when the collection of
rules is simplified by deleting complete rules. The default redundancy factor is 1.0. Lower
values lead to more severe pruning, and higher values lead to less severe pruning. We
cvaluated redundancy factors of 2.0, 1.0, (0.5 and {11, A total of 32 experiments were thus
performed for each database to evaluate all possible combinations of the four confidence
thresholds and redundancy factors, both with and without the subset construction feature
during tree generation.

Table 9 contains the best results obtained with BEXA and C4.5 for each database in the
samc format as that of Table 8, BEXA produced significantly more accurate rules (3%)
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than C4.5 for the pt database. C4.5 produced the simplest rules for only two databases
(soybean and tic-tac-toe); both algorithms produced equivalent rules for cle, while BEXA
had signiticantly simpler rules for the remaining six databases. C4.5 generated simpler rules
than BEXA for tic-tac-toe for the same reason as CN2: both generated pure descriptions
(C4.5 gave the best results when the subset construction parameter was not set).

For soy both algorithms generated mternally disjunctive rules; BEXA's rules were not
post-pruned, instead pre-pruning with the application of Tests 1-3 produced the best results.
This database contains 17 binary and 1% other nominal attributes with three or more values
per domain. When comparing the soy results, we note that BEXA's rules were more general
than C4.5's; BEXA used the “not” operator which caused many atoms to cover a larger
subset of the domain than C4.5’s atoms. BEXAs rules had 60 values, compared to the
55 of (C4.5; thus having reasonably similar complexity. For id, containing only non-binary
nominal attributes, similar results were obtained with identical parameter settings for BEXA
(the only difference for C4.5 compared to the soy experiment was the redundancy factor).
Here BEXA had slightly less complex rules than C4.5. As illustrated by the additional
experiments for BEXA (when compared to CN2 on the voting database in Section 6.2.1),
Tests 2 and 3 weeded out irrelevant attribute values, while the stop-growth test prevented
overliting.

When comparing the soy and id experiments to pt, we note that pt contains 14 binary
and three other nominal attributes (the linear attribute is converted to nominal with three
intervals; thus each attribute takes three values). With the “not” operator, the number of
values and atoms for BEXA's rules is therefore the same. When the “not” operator is
not taken into account, BEXA generated internally disjunctive rules for four of the ten
experiments which produced the best results, while C4,5°s rules were pure {(even though the
subset option was used). BEXA's stop-growth test was not used. When Tests 2 and 3 were
not used the rules before post-pruning contained 15 more atoms. These tests, therefore,
caused BEXA to generate maximaily general rules, making it possible for the post-pruning
process to spot the really informative atoms because it evaluates the rule-set as a wholc.

The main reason for BEXA's success is its ability to generate very simple rules. BEXA’s
richer description language, specialization method and search reswictions prefer more gen-
eral descriptions, while its stop-growth test prevents overfitting. This bias towards generality
can be adjusted by suitable settings of its parameters.

7. Summary

This paper presented a uniform framework of excluding of values, instead of appending
atoms, for specialization models employed by AQ15, CN2, GREEDY3, PRISM, and GALG.
This view of the specialization process led to BEXA, which has two novel features. Fuetly,
it specializes a conjunction by explicitly excluding single values or intervals instead of
appending atoms to it as is done by the other covering algorithms. Secondly, BEXA does
not restrict the number and type of specializations that are constructed for a conjunction
at each specialization step. However, it keeps the search effort manageable by employing
three dynamic search restrictions that avoid the construction of useless specializations.
The key scarch restriction is the irrcdundancy test and its special case, the uncover new
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negatives test, which biases BEXA towards general conjunctions. These conjunctions
contain few atoms and have high values for the evaluation function because they cover many
positive instances. We also provided a theoretical foundation for BEXA's search constraints
and compared it empirically to CN2 and C4.5. BEXA generates concept descriptions of
comparable accuracy, but with greater simplicity. than these well-known state-of-the-art
concept learners.
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Notes

1. Top Down Induction of Decision Trees
2. This discussion is based on the code of CN2, version 5.1, that was obtained from the Turing Institute.

3. AQ15 was recently modified to employ post-pruning thart simplifies individual rules. The new system is called
POSEIDON (Bergadano et al., 1992).
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