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Abstract. The theory of concept (or Galois) lattices provides a simple and formal approach to conceptual
clustering. In this paper we present GALOIS, a system that automates and applies this theory. The algorithm
utilized by GALOIS to build a concept lattice is incremental and efficient, each update being done in time at most
quadratic in the number of objects in the lattice. Also, the algorithm may incorporate background information
into the lattice, and through clustering, extend the scope of the theory. The application we present is concerned
with information retrieval via browsing, for which we argue that concept lattices may represent major support
structures. We describe a prototype user interface for browsing through the concept lattice of a document-term
relation, possibly enriched with a thesaurus of terms. An experimental evaluation of the system performed on a
medium-sized bibliographic database shows good retrieval performance and a significant improvement after the
introduction of background knowledge.
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1. Introduction

Conceptual clustering is concerned with the problem of grouping unlabelled objects into
classes. An important feature of conceptual clustering methods (Michalski & Stepp, 1983)
is that any output class, in addition to being characterized by its extensional description (i.e.,
the set of objects covered by the class), is also characterized by an intensional (conceptual)
description. A second feature that is not definitional of conceptual clustering, but which
is often desirable, is that output classes (often referred to as concepts) are arranged into a
hierarchy based on their generality/specificity. Another often desirable feature is that the
process of class formation is incremental; that is, the processing of thenth object does not
require extensive reprocessing of the(n − 1) objects already seen.

Several incremental hierarchical conceptual clustering systems have been developed re-
cently (Lebowitz, 1986; Fisher, 1987; Hanson & Bauer, 1989; Hadzikadic & Yun, 1989;
McKusick & Langley, 1991; Martin & Billman, 1994). Although they differ in many
respects (e.g., concept representation, hierarchy evaluation criteria, disjointversusnon-
disjoint classes), they usually attack the problem by defining a set of hierarchy-change
operators and carrying out a hill-climbing search through the space of possible concept
hierarchies aimed at finding a “good” hierarchy (Gennari et al., 1989). These systems per-
form well in many experimental settings, but the criteria they use to modify and evaluate
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hierarchies are typically local and/or heuristic. In this paper we present an alternative ap-
proach to hierarchical conceptual clustering. Rather than finding and updating a particular
subset of concepts (i.e., the output hierarchy), we keep and updateall classes that can be
generated in a restricted concept language. This is equivalent to building a virtually unbi-
ased set of clusters, in much the same way as the version space approach (Mitchell, 1982)
generates a set of alternative concept definitions during supervised concept induction.

Our approach relies on the theory of concept (or Galois) lattices (Wille, 1984; Davey &
Priestley, 1990). This theory offers a formal and natural tool for restricting, representing,
and ordering the set of concepts that can be induced over a collection of objects described by
a set of properties. However, there has been relatively little work on the automation of the
theory and its application (Godin et al., 1991; Carpineto & Romano, 1993a). In the paper
we address these issues. We define an algorithm for incremental construction of a concept
lattice, implemented in a system named GALOIS1, and we report results showing that its
time complexity grows at most quadratically with the number of objects in the lattice. The
algorithm can also build a generalised version of a concept lattice, which we introduce to
take into account background information about the properties describing the objects.

Of course, the possibility of automatically determining this kind of clustering structure
raises the question of its application. Most hierarchical conceptual clustering systems have
been seen as learning components of larger performance systems, such as systems for pre-
dicting the value of unknown attributes. GALOIS itself has been successfully used for
predicting the class membership of unseen objects after training with classified objects
(Carpineto & Romano, 1993a). However, there is another important, yet little explored,
application of hierarchical conceptual clustering systems: knowledge browsing for infor-
mation retrieval (Salton & McGill, 1983). Browsing through some kind of data space is one
of the two principal techniques that have been developed to retrieve documents of interest
from a bibliographic (or multimedia) database (Thompson & Croft, 1989; Marchionini &
Shneiderman, 1988). Browsing can be used alone or in combination with querying, the
other major paradigm of information retrieval; in fact, browsing allows a large spectrum
of interactions with the database, ranging from casual inspection to query refinement. The
typical data representation that supports browsing is a network in which nodes represent
documents and edges represent relationships. This kind of structure is similar to that pro-
duced by most hierarchical conceptual clustering systems, with the important difference
that, typically, it must be manually built.

In fact, conceptual clustering appears to be an attractive alternative for determining,
indexing, and linking groups of documents automatically. In the paper we explore this
issue. One basic research question we address is: what are the desirable features of a
conceptual clustering system that supports browsing retrieval? We argue that the kind
of cluster lattice produced by GALOIS satisfies most desiderata, thus making it a good
candidate for supporting navigation through the content of a bibliographic database. To
support this claim we experimentally evaluate the retrieval effectiveness of this approach.
We have constructed a prototype user interface, GALOIS-Browser, which permits browsing
as well as a limited query formulation through a document lattice. The retrieval interface
is used to perform subject searching on a medium-sized bibliographic data base, including
a thesaurus to build a generalised concept lattice. As there is a recent demostration that
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browsing an ungeneralised concept lattice may result in good absolute retrieval performance
(Godin et al., 1993), we are particularly interested in evaluating the relative performance of
GALOIS with or without background knowledge. The results are encouraging; in particular,
they show a significant improvement in recall.

The rest of the paper is organized in the following manner. In Section 2 we introduce the
basics of the theory of concept lattices. Section 3 is devoted to construction and analysis
of concept lattices: in particular, we describe the algorithm for incrementally determining
the lattice and we analyse its time and space complexity. In Section 4 we introduce a
generalised version of concept lattices that can incorporate graph-structured information
over the attributes describing the objects. In Section 5 we characterize conceptual clustering
in general, and concept lattices in particular, as a support for browsing retrieval, then
describe the browsing interface, and evaluate its retrieval effectiveness. Section 6 contains
a discussion of related work, while Section 7 concludes the paper with a summary and some
directions for future work.

2. Basics of the theory of concept lattices

We first give an informal characterization of a concept lattice and then describe it more
formally. As an illustration we will refer to a very simple bibliographic database consisting
of six documents described by eight index terms (see Table 1). The concept lattice relative
to the first five documents of the table is illustrated in figure 1. Each node of the lattice is a
pair, composed of a subset of the documents and a subset of the index terms; in each pair,
the subset of terms contains just the terms shared by the subset of documents, and, similarly,
the subset of documents contains just the documents sharing the subset of terms. The set of
pairs is ordered by the standard set inclusion relation applied to the set of documents and
terms that describe each pair. The partially ordered set is usually represented by a Hasse
diagram, in which there is an edge between two nodes if and only if they are comparable
and there is no other intermediate concept in the lattice (i.e., each node is linked to its max-
imally specific more general nodes and to its maximally general more specific nodes). The
ascending paths represent the subclass/superclass relation; the bottom concept is defined
by the set of all terms and contains no documents, the top concept contains all documents
and is defined by their common terms (possibly none).

Table 1. A simple bibliographic database represented as a document by term matrix.

Artificial Expert Information Information Information Knowledge-based
intelligence systems retrieval Cataloguing Indexing science retrieval systems systems

1 x x x

2 x x x

3 x x x

4 x x x

5 x x x x

6 x x x
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Figure 1. The concept lattice relative to the first five objects of the context in Table 1.

A more formal treatment of concept lattices begins by considering a binary relation
between a set of objects(O) and a set of descriptors(D), calledcontext. Therefore a
context is a triple(O, D, I ) whereI ⊆ O× D. We writeoId, meaning the objecto has the
descriptord. We may think of the set of descriptors associated with an object as a bit vector.
Each bit corresponds to a possible descriptor and is on or off depending upon whether an
object has that descriptor2.

Formally, a concept of the context(O, D, I ) is defined to be a pair(X, Y) whereX ⊆ O,
Y ⊆ D, and X = {o ∈ O | (∀d ∈ Y)oId}, Y = {d ∈ D | (∀o ∈ X)oId}; that
is, X is the set of all objects possessing all the descriptors inY and Y is the set of all
descriptors common to all objects inX. X andY are called theextentand theintentof the
concept, respectively. Therefore only some pairs(X, Y)—i.e., the pairs that are complete
with respect toI according to the given definition3—represent admissible concepts. For
instance, in the lattice relative to the context in Table 1 there cannot be any pair having an
intent equal toEXPERT-SYSTEMS, because all documents havingEXPERT-SYSTEMSalso have
ARTIFICIAL -INTELLIGENCE.

The set of all concepts of the context(O, D, I ) is denoted byC(O, D, I ). An ordering
relation(≤) is easily defined on this set of concepts by

(X1, Y1) ≤ (X2, Y2) ↔ X1 ⊆ X2 (1)

or, equivalently, by

(X1, Y1) ≤ (X2, Y2) ↔ Y1 ⊇ Y2. (2)
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C(O, D, I ) along with≤ form a partially ordered set, that can be characterized by the
Fundamental Theorem on Concept Lattices. The most important result stated by the funda-
mental theorem is that(C(O, D, I ); ≤) is a complete lattice4 in which the intent of the least
upper bound of a set of concepts is given by the intersection of the intents of the concepts,
and, dually, the extent of the greatest lower bound of a set of concepts is given by the
intersection of the extents of the concepts (see Davey & Priestley (1990) for the complete
theorem and its proof ).

3. Incremental determination of a concept lattice

Determining a concept lattice along with its Hasse diagram is a computationally difficult
problem (Guénoche, 1990). Furthermore, the algorithms that have been proposed are—
with one notable exception (Godin et al., 1991)—non-incremental, whereas an important
requirement of many tasks is incrementality. In the first part of this section we describe
the incremental algorithm used by GALOIS to build the concept lattice; then we study the
space complexity of the problem and analyse the time complexity of our algorithm.

3.1. GALOIS: Description of the algorithm

We start by giving an informal characterization of the process of adding a new object to
a given lattice. First we note that existing concepts are never removed from the lattice.
An existing concept may contain the new object (i.e., its intent is more general than or
equal to the new object’s description), and therefore the concept’s extent is augmented by
the new object. If an existing concept does not contain the new object (i.e., its intent is
incomparable to or more specific than the new object’s description), then the concept is
not affected at all by the object’s introduction. In addition to modifying the extent of the
current concepts in which an object is contained, the new object may cause new concepts
to be added to the lattice. This happens whenever the intersection of the new object with
any set ofobjectswith which it shares some descriptor is not already present in the lattice.
Any new concept introduced in the lattice must be consistently linked to the other concepts,
including other new concepts created by an object’s introduction. This will, in general,
cause the elimination of some edges (i.e., the edges between all pairs of conceptsC1 and
C2 such thatC1 > Cnew > C2 ). The incremental determination of the concept lattice poses
three computational problems: (a) generating all new nodes in the lattice, (b) avoiding
generation of nodes that are already present in the lattice, and (c) updating the edges.

To generate all new nodes it is sufficient to consider the intersections of the new object
with each concept in the current lattice. The main loop of our update algorithm adds such
intersections to the lattice and places edges appropriately; while doing so the algorithm
works only with intents (that is, logical conjunctions of descriptors) and exploits the basic
result (see the fundamental theorem) that the intent of the least upper bound of two concepts
is the intersection of the intents of the two concepts. However, the concepts in the current
lattice are not examined independently of each other. Roughly, GALOIS compares the
parents of each node to the intersection (of intents) of the node and the new object. If
there is a parent with an intent that equals (=) the intersection, then the new concept is not
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created because it is already present in the lattice. If there is a parent with an intent that is
a proper superset (⊃) of the intersection, then the new concept is not created since it will
be generated when we intersect the new object with that parent of the node. Otherwise
(i.e., if all parents have intents that are proper subsets (⊂) of the intersection or if all
parents are incomparable to the intersection), then a new concept is actually added to the
lattice.

For the problem of setting the appropriate edges there is no simple solution because any
new node has to be consistently linked to other new nodes, and the new nodes to be added
to the lattice cannot be generated in an ordered fashion. The LINK procedure that GALOIS
uses operates on the lattice that exists at the time a new node is created (i.e., this lattice
contains all nodes that existed prior to the introduction of a new object, and new nodes that
have been created and linked in since the new object was first introduced). It determines,
for each new node two boundary sets: the lower boundary set,S, contains the most general
concepts that are more specific than the new node, and the upper boundary set,G, contains
the most specific concepts that are more general than the new node. Then it links the new
node to each element inSandG, and removes the edges betweenSandG (if any)5.

Table 2 gives the complete description of the updating algorithm, which can be used in an
incremental fashion to build the lattice from a set of objects. The invocation of the algorithm
is preceded by an initialization step that adds the concept corresponding to the object to the

Table 2. The algorithm for updating a concept lattice.

UPDATE-LATTICE (lattice new-object)

updated-lattice← lattice

For each concept in lattice

do

intersection← concept∩ new-object

unless (or (intersection= empty) ;a

(intersection= concept) ;b

(there is parent(concept)= intersection) ;c

(there is parent(concept)⊃ intersection)) ;d

new-node← (create-node :intent intersection)

updated-lattice← (LINK new-node updated-lattice)

finally return the updated-lattice

LINK (node lattice)

Find lower boundary set of node in lattice

Find upper boundary set of node in lattice

Eliminate edges between lower and upper boundary sets

Add edges between node and each element in the lower boundary set

Add edges between node and each element in the upper boundary set

Return the updated-lattice
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Figure 2. The concept lattice after the introduction of the sixth document.

lattice and sets the links; if the concept corresponding to the object is already contained
in the lattice, then update does not take place. In Appendix A we give the formal proof
of the correctness of the algorithm. It should be noted that this version of the algorithm is
consistent with, but significantly more efficient than, the algorithm given by Carpineto &
Romano (1993a) due to elimination of many unnecessary calls of function LINK.

To see the algorithm at work, consider the concept lattice shown in figure 1. Suppose
we introduce the sixth document shown in Table 1. GALOIS returns the updated lattice
shown in figure 2, where the new nodes are circled. Initialization causes a new node with
intentAI-IR-KBS (i.e., Artificial-Intelligence∩ Information-Retrieval∩ Knowledge-Based-
Systems) to be created and linked to the bottom. Then the algorithm iterates on the concepts
in the old lattice. Examination of conceptsAI-CAT-IRS-ES, AI-CAT-ES, AI-ES-IND, andAI-
ES-IS leaves the lattice unchanged (cased). ConceptAI-ESreturns the node with intent AI,
the setsS= [AI-ES, AI-IR-KBS] andG = [empty], and the edges (AI-ES, AI), (AI-IR-KBS, AI).
ConceptAI-ES-IR returns the nodeAI-IR, the setsS= [AI-ES-IR, AI-IR-KBS] andG = [AI], the
edges (AI-ES-IR, AI-IR), (AI-IR-KBS, AI-IR), (AI-IR, AI), and eliminates the edge (AI-IR-KBS, AI).
Note that examining the concepts in a different order would produce different temporary
edges, but the same final lattice.

In the next two sections we study the space complexity of concept lattices and evaluate
the time complexity of the updating algorithm.

3.2. Space complexity

There is a theoretical upper bound on the number of concepts present in the lattice that
depends on the size of the object-description space. In the following discussion we refer to
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Figure 3. Experimental space complexity of concept lattices. Both scales are logarithmic.

a context in which objects are described by multi-valued attributes, rather than by single-
valued attributes, as in the information-retrieval context. Assuming that there aremattributes
withv values each, the conjunctive language used to describe the elements in a concept lattice
contains(v + 1)m possible concepts. Whenall possiblevm distinct objects described by all
descriptors are seen, the corresponding lattice will contain indeed(v+1)m concepts (namely,
( m

0 )vm m-attribute concepts,( m
1 )vm−1(m− 1)-attribute concepts, etc). For practical values

of v, m, and the number of objects, this theoretical bound is very high, so it is useful to
see how the number of concepts empirically varies with the number of objects in some real
domains.

We did an experimental study using the two natural data sets Voting Records and Breast
Cancer, and the bibliographical database INSPEC-AI. For the first two data sets, found in
the UCI data repository, a detailed description is given by Anderson & Matessa (1992);
suffice it to say that they contain 435 and 286 instances, respectively, described by 16 and
9 nominal attributes. The database INSPEC-AI will be better illustrated in Section 5.3;
it contains 1555 documents, where the number of descriptors per document varies, but is
usually small. For the experiment, we ran GALOIS on each data set, computing the size
of the corresponding concept lattice. The results are shown in figure 3. A lattice could not
be fully constructed for the Voting Records data set because GALOIS reached the space
limit of the hardware platform on which we performed the experiment (i.e., a SPARCstation
LX equipped with 32 Mbytes of RAM). In particular, we observed that as the lattice grew
to about 150,000 nodes, the time necessary to incorporate another object into the lattice
started increasing dramatically due to memory fragmentation and garbage collection. Thus,
to construct the curve in figure 3 for the Voting Records data set, we divided the data set
into five randomly-selected, equally-sized subsets such that the size of each subset (360
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instances) was less than that which would violate the hardware space constraint of 150,000
nodes. We then ran GALOIS on each subset to get an averaged growth curve. Curves for
the other two data sets were obtained by running Galois once on the entire data set in each
case. As shown in figure 3, the growth in the number of concepts ranges from linear to
quadratic with respect to the number of objects6. The lower bound was obtained with the
data set, INSPEC-AI, in which, as in most document collections, there are few descriptive
terms per object, and thus the likelihood of intersections is low. The upper bound was
obtained with the Voting Records data set, in which there are relatively many attributes
and few values per attribute, and thus the likelihood and diversity of intersections is quite
high.

These results provide some insight into the storage requirements of concept lattices. In
particular, while they confirm earlier results obtained by Godin et al., (1991) for biblio-
graphic databases, they also imply that for other domains, the size of the lattice may grow
as a quadratic, rather than as a linear, function of the number of objects. These results,
however, tell us little about the effect that two primary parameters governing the size of the
descriptor space, namely number of attributes and number of values per attribute, have on
the size of the lattice. Let us study this problem for the simple case in which the instances
are uniformly distributed over the object description space.

We would like some formula for the expected number of nodes in the lattice (N) as
a function of all three input variables—number of objects(p), number of attributes(m),
number of values per attribute(v)—under the assumption of uniform distribution of the
attribute values. Ideally, the formula can be obtained by summing up the probabilities of
occurrence of each possible node. To make this computation feasible, it is convenient to
think of each node as a pair formed by a subset of objects and a subset of attribute values,
and to consider the subsets of nodes formed by fixed numbers of objects and of attribute
values. There are( p

i
)( m

j
)v j possible nodes formed byi objects andj attribute values, where

each node has the same probability of occurrence. Recalling the definition of concept in a
concept lattice, this probability can be obtained as the product of three factors, namely the
probability that thei objects share thej attribute values (i.e.,( 1

v
)

j i
), the probability that the

i objects do not share other attribute values (i.e., [1− ( 1
v
)i −1]m− j ), and the probability that

there exists no other object having thej attribute values (i.e., [1− ( 1
v
)

j
] p−i ). This explains

the first term in the following expression for the mean number of nodes in the lattice. To
derive the complete formula we have to add the probability of the two spurious nodes that
have been left out, namely the probability of the lattice top (second term) and the probability
of the lattice bottom (third term):

N =
p∑

i =1

m∑
j =1

(
p

i

)(
m

j

)
v j

(
1

v

) j i [
1 −

(
1

v

)i −1]m− j [
1 −

(
1

v

) j ]p−i

+
(

1 − 1

v p−1

)m

+
(

1 − 1

vm(p−1)

)
. (3)

Figure 4 shows results plotted from formula (3) for four pairs of values for(m, v):
(5, 5), (10, 10), (50, 10), (50, 50). Asp grows to infinity, N/p tends to zero because,
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Figure 4. Theoretical space complexity of concept lattices as a function of data complexity. Both scales are
logarithmic.

as said earlier, for fixed values ofm and v, N has an upper bound of(v + 1)m. This
phenomenon is apparent for the lower curve in figure 4. In this case the upper bound is
given by 65 = 7776 nodes; thus, after a certain point the lattice is saturated andN/p
drops below one. Aside from this limit situation, the three other theoretical curves are
consistent with the experimental curves reported in figure 3. In particular, while they
confirm that the growth of the number of nodes varies from linear to quadratic with respect
to the number of objects, they also show the two situations in which the space complexity
moves towards the upper bound. This is when the ratio betweenm andv increases, or, less
markedly, when bothm andv grow by a same factor and the number of objects is not too
small.

Before turning to time complexity, we should emphasize that we checked the correctness
of the results derived from formula (3) experimentally. For all combinations ofp, m, andv,
for which the lattice could be easily built by GALOIS, we created corresponding artificial
data sets with random assignment of values, then ran GALOIS on them. Comparisons
between experimental and theoretical results showed remarkable similarity across parameter
combinations.

3.3. Time complexity

For each object, GALOIS iterates on the concepts in the lattice. Assuming that there
are m attributes withv values each, there are at most(v + 1)m concepts in the lattice.
Each iteration may have to apply the LINK function, which may require all concepts
above the new object or the current iteration node (2vm concepts) be examined. There-
fore the worst-case time complexity to build a lattice fromN objects is proportional to
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Figure 5. Experimental time complexity of GALOIS. Both scales are logarithmic.

(v + 1)m2vmN < O((v + 1)2mN). If the number of descriptors has an upper bound, as
usually happens, the asymptotic behavior is linear in the number of objects. In practice,
however, the constant factor relative to each update may be very large. To evaluate GA-
LOIS’ experimental behavior, we plotted the number of nodes examined in each update
by the key operation of GALOIS (i.e., determining the lower boundary setS within the
function LINK) versus the number of objects. Figure 5 shows that the growth varied, with
some oscillations, from linear to quadratic with respect to the number of objects processed;
thus the time complexity was nearly linearin the number of conceptsin the lattice. This
result might seem surprising, in that, as noted at the beginning of this section, the time
complexity should range from linear to quadratic with respect to the number of concepts.
The fact that the experimental complexity was nearly linear can be explained by observing
that (a) in each update the number of calls of function LINK never exceeds a small frac-
tion of the number of concepts in the lattice, and (b) each application of function LINK
requires examining only a small subset of the possible 2vm concepts in the lattice that are
above the new object or the current iteration node. In practice, the run time necessary to
determine thewhole lattice corresponding to INSPEC-AI and Breast Cancer (which has
few attributes and a relatively large number of values per attribute) was less than 20 min-
utes, and the insertion time of one object never exceeded 15 seconds. For the data set
Voting Records, as we noted earlier, GALOIS ran into computational barriers; thus the
curve for this data set shown in figure 5 was obtained following the method explained in
Section 3.2.

Admittedly, for large non-bibliographic databases the construction of the whole concept
lattice may present computational problems, both of space and time. However, this problem
may be alleviated in several ways. An alternative method to circumvent the kind of system
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crash we experienced, for instance, would be to keep the lattice on disk rather than in main
memory, and to make each update on disk, as in Godin et al. (1991). Lattice construction
would be much slower, of course, but we could try to improve its efficiency by appropriate
caching; for instance, given that at any invocation of the function LINK all the nodes that
are above the new object have to be examined, we could cache this subset of nodes in main
memory. In addition, we can resort to general methods of concept lattice manipulation that
may trade off time and memory in the determination of such structures. We might apply
the methods that have been developed to compose or decompose concept lattices (Ganter,
1988), although they work only in certain cases.

4. Adding background knowledge to concept lattices

In this section we introduce a generalised definition of concept lattice that allows incorpo-
ration of background knowledge into the clustering structure. In particular, we will exploit
a common source of background knowledge, namely possession of structured information
over object descriptors (Thompson et al., 1991), to influence clustering. Our discussion
will be restricted to those domains in which objects are described by single-valued at-
tributes, such as in information retrieval; for the extension to domains in which objects
are described by multi-valued attributes, such as databases, (see Carpineto & Romano
(1993b)).

4.1. Concept lattices with graph-structured descriptors

We will assume that a partial-ordering relation(≤D∗) is defined over a set of descriptors
D∗, whereD∗ is a superset of the descriptors(D) actually used to describe the objects, and
that the partial-ordering relation can be represented by any directed acyclic graph (not just
a tree). This kind of information is naturally available in many domains; in particular, it is
often provided in most information retrieval tasks, where it is usually encoded in a thesaurus
of the terms describing the documents. Figure 6 shows an example of such background
information relevant to the data of Table 1. The intended meaning of the ordering relation
is that any term implies any of its more general terms; for instance,CATALOGUING implies
INFORMATION-ANALYSIS andCOMPUTER-APPLICATIONS. Keywords that do not appear in the

Figure 6. Graph-structured background information over the terms describing the database of Table 1.
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graph, such asARTIFICIAL -INTELLIGENCE, are incomparable according to the given ordering
relation; they can be thought of as children of the most general termANY. The graph also
contains new terms, such asINFORMATION-ANALYSIS andCOMPUTER-APPLICATIONS, which
did not appear in the document descriptions.

The theory of concept lattices has been developed for unstructured descriptors, but it
can be extended to cope with richer object description languages, including this kind of
background information. One simple method for using structured descriptors in a concept
lattice would be to expand the matrix describing the data, adding to the description of
each document all the keywords that are implied by the original keywords. At this point
one could treat the new context as if it contained unstructured descriptors, thus avoiding
any special processing; however, the space necessary to store the lattice would increase
considerably and the user would find it difficult to read and compare the relative concepts
representations. In GALOIS we have taken an alternative approach. The idea is to work
only with a minimal concept representation and to adapt the basic definitions of concept
lattices to take into account the implicit keywords. GALOIS begins by removing from each
object description all implied keywords, if any. Then it employs a modified definition of
the ordering relation; definition (1) in Section 2 is left unchanged while definition (2) is
replaced by

(X1, Y1) ≤ (X2, Y2) ↔ ∀d2 ∈ Y2, ∃ d1 ∈ Y1, d1 ≤D∗ d2 (4)

The last step consists of changing the definition of intent intersection, for which the standard
set intersection operator can no longer be used. The generalised operator can be best
described operationally: the intersection of the intents of two concepts(X1, Y1) and(X2, Y2)

is obtained by finding for each pair(d1, d2) d1 ∈ Y1, d2 ∈ Y2, the most specific keywords in
D∗ that are more general thand1 andd2, and then retaining only the most specific elements
of the set of terms generated in this way7. With these new definitions GALOIS builds a
generalised concept lattice which, besides preserving the basic properties of ungeneralised
concept lattices, has the additional feature that more general terms index more general
classes, whereas in an ungeneralised concept lattice the ordering relation over the classes
is independent of the possible ordering relation over the terms.

A lattice with structured descriptors is a fair generalisation of a lattice with unstructured
descriptors, in that unstructured descriptors can always be converted into structured descrip-
tors using a dummy rootANY. However, we keep both the standard and the generalised
version of the involved functions for reasons of efficiency. Thus, in practice GALOIS has
two working modes, with and without background knowledge.

4.2. The effect of background knowledge in the bibliographic context

Consider again the bibliographical context of Table 1, but this time assume that GALOIS
works with the background information displayed in figure 6. The new concept lattice(L∗)
output by GALOIS is shown in figure 7. Due to definition (4), in this kind of lattice a node
may be more specific than another node while having fewer keywords. For instance, the
node whose extent is (1 2 3 4 5) ismore specific than the node whose extent is (1 2 3 4 5 6),
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Figure 7. The concept lattice of the six documents with background knowledge.

but the former has fewer keywords; in fact (see the keyword graph in figure 6), the term
EXPERT-SYSTEMSis more specific than bothCOMPUTER-APPLICATIONS andKNOWLEDGE-
BASED-SYSTEMS.

The size of the lattice, when passing from an unstructured to a structured and possibly
larger set of keywords, may decrease or it may increase. To explain this, consider that term
structuring alone reduces the number of concepts: this will happen whenever two formerly
distinct concepts come to have the same description after term expansion, thus collapsing
them into a single concept. Term structuring may also cause two incomparable concepts to
become comparable; in this case the set of concepts remains the same while the ordering
relation changes. For instance, nodes (1), (4), (5) are incomparable inL whereas the intent
of (4) is more general than that of both others inL∗. On the other hand, addition of new
terms is likely to produce new concepts by revealing similarities between sets of objects that
were formerly ungrouped (e.g., node (1 4 5 6) inL∗). The overall behavior depends on the
specific data, on the new set of terms, and on the ordering structure over the terms, although
we observed that the inclusion of background knowledge usually results in a noticeable
increase in the lattice size.
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4.3. Complexity of GALOIS with background knowledge

We should briefly consider how the time complexity varies when GALOIS works with
structured descriptors. The theoretical bounds found when GALOIS runs with unstructured
descriptors remain the same. However, those bounds refer to the number of comparisons
between concepts and objects and comparisons between concepts, without considering the
cost of the comparison itself. In the case of unstructured descriptors, each such comparison
requires matching the corresponding bits of each descriptor, making the time necessary
proportional to the number of descriptors. In the case of structured descriptors, for each
descriptor in one concept, GALOIS must check its descendants in the descriptor-structuring
graph to see if it can find some descriptor of the other concept. In fact, to solve this problem
GALOIS employs an efficient procedure based on marker propagation, which requires that
for each descriptor the algorithm visit all the elements below the descriptor only once
(Carpineto & Romano, 1993b). Therefore, the time complexity in the structured case is
greater than the unstructured case by a factor that is, at most, equal to the number of
descriptors, but usually much less.

With this section we have completed the analysis of the system. Now we can turn to its
application to browsing retrieval.

5. Conceptual clustering for supporting browsing retrieval

In this section we discuss the role conceptual clustering may play to support browsing.
Browsing through a data space is a useful and familiar information retrieval technique
(Marchionini & Shneiderman, 1988; Thompson & Croft, 1989; Cutting et al., 1992), as
well as a major paradigm of recent hypertext and hypermedia technology (Nielsen, 1990).
Browsing can meet a variety of the information needs of a user interacting with a database; it
is suitable for making the non-expert user aware of the content of the database, for exploring
new domains, and for helping the user refine early stages of direct query specification.
The main problem in browsing is creating atomic pieces of information and linking them.
Automatic methods of knowledge summarization and structuring may be very useful to
achieve this goal without resorting to subjective and time-consuming decisions. In fact,
browsing appears to be an important, yet little explored, challenge for conceptual clustering
techniques.

5.1. Concept lattices as retrieval support structures

In the following we will refer to a typical browsing retrieval task in which there is a
collection of documents described by a set of keywords and the user wants to find documents
of interest by navigating through the content of the collection. Hierarchical conceptual
clustering presents three basic features for supporting this task automatically: classes are
generated from the usual document-term relation, classes are indexed through a conceptual
description, and classes are linked using a generality/specificity relation. However, the task
in question suggests other desirable properties for supporting cluster structure. First, graph
navigation is more flexible than tree navigation. While in a strict hierarchical clustering
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each class has exactly one parent, in a lattice clustering there are many paths to a particular
class. This facilitates recovery from bad decision making while traversing the hierarchy in
search of documents (Godin et al., 1993). Second, the same document is often relevant to
two or more queries that happen to have incomparable descriptions. Therefore, the ability
to deal with non-disjoint classes is an important feature of browsing retrieval systems;
lattice conceptual clustering naturally supports this functionality, as opposed to hierarchical
conceptual clustering. Third, in information retrieval domains there is usually an available
body of background knowledge expressed as a thesaurus of terms. The ability to incorporate
such knowledge into the conceptual clustering of documents may considerably improve
retrieval performance.

Most clustering systems can handle some of these issues but not all of them. In particular,
the statistical clustering methods that have been predominately used in information retrieval
(see Willet (1988) for a thorough review) do not produce conceptual descriptions of the
generated classes, which usually makes the resulting cluster structure difficult to navigate
(e.g., van Rijsbergen & Croft, 1975) or inefficient to query by direct search methods, (e.g.,
Maarek et al., 1991; Crouch et al., 1989). By contrast, the kind of concept lattice produced
by GALOIS meets all the desiderata mentioned above. Furthermore, it presents two useful
additional properties. The first is that, in addition to supporting browsing, a concept lattice of
documents also allows an easy form of direct query specification. Each node in the lattice
can be seen as a query formed by a conjunction of terms (the intent) with the retrieved
documents (the extent). Therefore the lattice supports both direct retrieval of conjunctive
queries and navigation from specific to general (or general to specific) queries. A second
characteristic is that the lattice allows gradual enlargement or refinement of a query. More
precisely, following edges departing upward (downward) from a query produces all minimal
conjunctive refinements (enlargements) of the query with respect to that particular database
(Godin et al., 1989).

We now describe our design and implementation of a browsing retrieval interface oper-
ating on a generalised document lattice.

5.2. An interface for browsing and querying in a generalised concept lattice

To enable the interaction between the user and the document lattice we have implemented
a visual interface on top of GALOIS, named GALOIS-Browser8, which shows the retrieval
space to the user and lets him or her choose the next query to select. On the conceptual
level, the user interacts with the system by jumping from one query to another in the
lattice; the transition to other queries is driven either by the Hasse diagram or by direct term
specification by the user. The main problem in the interface design is the visualisation of
the retrieval space. As the structure is too large for limited display resolution, GALOIS-
Browser shows only a small portion of the structure. The display window is centered on
the current node and contains all nodes adjacent to it; for each such node, the terms and
number of the documents are displayed9.

GALOIS-Browser allows two basic interaction modes. In pure browsing mode a user
selects a neighboring node by direct graphical manipulation (Shneiderman, 1987). The other
way to make a jump to a node is through query formulation by menu selection. The new
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query can be formulated in two ways: either the user specifies the new terms from scratch,
or modifies the current query. In the latter case, the user can remove a term, add a new term,
or specialise/generalise a term using the information contained in the thesaurus. Query
specification by term specialisation/generalisation lets the user make large jumps through
the lattice driven by the semantics of terms. When a new query is input to GALOIS-Browser,
it first checks that the query contains only minimal terms according to the term graph, and
then jumps to the node of the lattice equal to the query; if there is no such node it jumps
to the most general node(s) containing all the terms of the query, provided that the lattice
contains some more specific node than the query. One of the most interesting features of
GALOIS-Browser is that, since the underlying retrieval space is unique, all these interaction
modes can be naturally combined in a hybrid search strategy. For instance, the user can
start with a keyword search followed by term specialisation to locate a subspace of interest,
and then browse through the subspace. The interface, which consists of about 70 Kilobytes
of Lisp code, takes advantage of the many standard interface tools offered in the Symbolics
Lisp Machine environment, such as dynamic windows, pointing and clicking devices, and
graphical display routines.

In Appendix B, we illustrate the interface by showing a simple browsing session on the
generalized concept lattice of figure 7. It is worth noting that the interface can also work on
an ungeneralised lattice; in this case the set of available commands is restricted accordingly.

5.3. Experimental evaluation of GALOIS as a browsing retrieval system

In this section we evaluate GALOIS as a browsing system on a typical retrieval task: subject
searching. Recent results (Godin et al., 1993) show that an information retrieval method
similar to our approach, but without background knowledge, performs favourably on this
task. In particular, Godin et al. show that its performance is comparable to that of more
conventional information retrieval methods such as hierarchical browsing and Boolean
querying, at least for small databases. In our experiment we evaluate how the retrieval
effectiveness of this method changes when it is enhanced with a thesaurus component.

We conducted an experiment on a collection of 1555 documents, of which the documents
in Table 1 represent a tiny sample extracted from INSPEC, a commonly used large computer-
engineering collection. We queried INSPEC by questioning “artificial intelligence”, and
selected the 1555 most recent (as of January 1994) elements out of some 10,000 documents
retrieved. We chose this size because it is large enough for the test to be considered
significant, and small enough for the relative lattice to be computed, stored, and accessed
easily. The documents were described by a title, an abstract, and a set of terms. In
order to deal with a controlled and compact vocabulary, we used only the terms labelled as
preferred. With this choice, there were 926 distinct keywords, with an average of 5.10 terms
per document. The corresponding concept lattice consisted of 3763 nodes with an average
of 2.88 parents per node and path lengths ranging from 3 to 11 edges from the lattice’s top
to bottom node. This was the lattice used to test browsing retrieval without knowledge.
By contrast, building the lattice to test browsing retrieval with knowledge required some
more pre-processing. It was first necessary to encode the background knowledge. From
the broader/narrower relation among preferred terms given in the 1991 INSPEC thesaurus,
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we extracted the sub-graph containing all terms equal to or broader than the 926 terms used
to describe the documents. The resulting graph, of which figure 5 represents a small portion,
contained 1136 terms. With this enlarged set of keywords each document was described
by 10.15 terms on average. The generalised lattice contained 8769 nodes, with an average
of 3.11 parents per node and a depth ranging from 2 to 15 edges.

The experimental protocol was as follows. Retrieval using the generalized and ungeneral-
ized lattice was evaluated on 20 queries by three users. As there is no standard methodology
to determine a representative set of queries, we tried to mix different types of queries, such
as queries containing general and specific subjects, known and unknown words, conjunc-
tive and disjunctive concepts. The queries are shown in Appendix C. For each query we
manually produced its relevance judgements, i.e., the associated set of relevant documents.
The average number of relevant documents for the 20 queries was 30.5. The three users
were researchers at our institute; they had a computer science background, but had little
knowledge of the document domain and did not know the system. We provided them with
a tutorial session on a small training database. For assigning queries to the two retrieval
methods (i.e., generalized and ungeneralized lattice) we used a repeated-measures design,
in which each user searched each query using each method. To minimize sequence effects
(Tague-Sutcliffe, 1992), we varied the order of the two methods over the query set, and,
in addition, we introduced a time delay between the test of one method and the test of the
other method. In practice, the set of queries was randomly split into two subsets of 10
queries, and each user searched one subset using generalized lattice and the other subset
using ungeneralized lattice. After a week, each user searched each subset using the alter-
native method. During each search the user, who was not asked to finish within a certain
time period, could see the abstracts of the documents associated with the visited nodes. The
documents judged to be relevant by the user, as well as those scanned during the search,
were noted as retrieved10. For each search we considered four measures: recall, precision11,
number of nodes visited, and search time (i.e., the time taken by the user to perform his
task). The results are displayed in Table 3.

The table shows that searching with knowledge (i.e., a generalized lattice) obtained better
evaluation scores for each measure, except for precision. To see if these differences can
be considered statistically significant (Hull, 1993) we performed a pairedt-test for each
measure. The test revealed no effect of the method on precision(p = 0.590), and it did
not reveal a significant difference in number of nodes visited(p = 0.241). However, it did
reveal the superiority of the method with knowledge with respect to recall(p = 0.020) and,
to a smaller extent, with respect to search time(p = 0.055). Thus, these results provide

Table 3. Average values of retrieval performance measures.

Number of nodes Search time
Method Recall Precision visited (sec)

Browsing without
knowlege 0.494(σ = 0.163) 0.489 (σ = 0.115) 22.4 (σ = 12.2) 2415(σ = 846)

Browsing with
knowledge 0.647(σ = 0.212) 0.453(σ = 0.159) 19.8 (σ = 13.4) 1968(σ = 396)
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further evidence (e.g. (Furnas, 1985; Yu et al., 1989)) that the integration of the information
contained in a thesaurus can, especially for cluster-based or interactive retrieval methods,
improve recall without sacrificing precision. In addition, the results seem to suggest that
the use of background knowledge may reduce user search time without reducing retrieval
effectiveness. In our experiment this phenomenon can be explained in the following way.
In an ungeneralised lattice the proximity of two nodes is independent of the meaning of the
terms describing the nodes, so that two semantically similar queries are often very distant
within the lattice. In fact, we observed that in the method without knowledge, the browsing
was interrupted more often, compared to the method with knowledge. This meant a more
frequent use of the query interaction mode, entailing a time consuming scanning of the
vocabulary window. In contrast, the method with knowledge made it easier for the user to
find the nodes containing semantically related queries, in that the region to search is usually
a small subgraph of the whole lattice; furthermore, the system can be queried fast and more
effectively by specialising/generalizing some of the terms in the current node, which is not
allowed in the method without knowledge.

6. Related work on clustering and browsing

This research is closely related to work done in three areas: incremental hierarchical con-
ceptual clustering, automatic determination of concept lattices, and browsing retrieval. In
this section we examine the relation to each of them in turn.

Most incremental hierarchical conceptual clustering systems (Lebowitz, 1986; Fisher,
1987; Hanson & Bauer, 1987; Hadzikadic & Yun 1989; McKusick & Langley, 1991; Martin
& Billman, 1994) rely on hierarchy modification operators that perform local changes to
the current hierarchy in order to accommodate new objects, where the operator application
is usually driven by some heuristic evaluation criterion. Therefore, the result is crucially
biased by the choice of operators and evaluation criteria. In fact, the main problem with
this approach seems to be the lack of a clear semantics by which to characterize thewhole
hierarchy in terms of the object description. It is easy to see (Carpineto & Romano, 1993a)
that even for a very simple set of objects, a system like COBWEB (Fisher, 1987) may
produce certain classes while failing to produce other equally good classes; furthermore,
the classes produced may change when the objects are processed in a different order.

By contrast, a concept lattice represents a virtually unbiased set of clusters, as it contains
all completeclasses of objects having a conjunctive description. The fact that a concept
lattice enjoys this kind of completeness property, and that it is not sensitive to object or-
dering, helps expand the range of its applications beyond pure predictive tasks (Carpineto
& Romano, 1993a). Browsing retrieval is one case in point; another is discovery of impli-
cation rules between database attribute values (Ganascia, 1987; Oosthuizen & McGregor,
1988; Godin et al., 1991), which is relevant to work on database discovery (for instance,
see Piatetsky-Shapiro & Frawley (1992)). Another feature of concept lattices is that they
can generate overlapping classes. Although this is not a new idea (e.g. (Levinson, 1984;
Lebowitz, 1986)) the importance of this issue has been somewhat overlooked. On one hand,
very little work has been done on acquiring formally characterizable classes of partially
ordered sets of clusters; on the other hand, although learning overlapping classes may be an
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important practical requirement even for pure predictive tasks (Martin & Billman, 1994),
data sets with non-disjoint classes have been surprisingly rare in the machine learning litera-
ture. Finally, GALOIS can easily accomodate background knowledge, while few other clus-
tering systems (e.g., Thompson et al., 1991; Stepp & Michalski, 1986) have this capability.

These are clear advantages of GALOIS over other incremental hierarchical conceptual
clustering systems, but there are other aspects in which the system compares less favourably.
One of the disadvantages is its relative cost, especially when, as for the Voting Records
data set, the number of concepts grows quadratically with the number of objects. Another
difference concerns the concept description language. GALOIS’ concepts are conjunctive
descriptions defined on structured descriptors, while other systems employ different for-
malisms, such as probabilistic concepts (Fisher, 1987; McKusick & Langley, 1991; Martin
& Billman, 1994), contingency tables (Hanson & Bauer, 1989), and prototype schemata
(Hadzikadic & Yun, 1989). In this respect, the latter formalisms are more flexible in that
their hypothesis space is larger than GALOIS’, but we should note that the kind of queries
GALOIS can handle can be easily extended (Carpineto & Romano, 1994) to incorporate
more powerful operators, including the Boolean operator NOT.

Among the few learning approaches that advocate the use of a lattice structure similar
to that of GALOIS, Ganascia’s CHARADE (Ganascia, 1987) does not construct the lattice
physically, and Oosthuizen and McGregors’ approach (Oosthuizen & McGregor, 1988)
focuses on the utilization of the lattice for rule-base normalisation, rather than on its con-
struction. To our knowledge, the only algorithm for incremental determination of concept
lattices other than GALOIS is reported by Godin et al. (1991). Like GALOIS, their system
iterates on every node in the lattice; however, its updating strategy is substantially different,
in that it is based on partitioning the concepts according to the cardinality of their intents and
processing the obtained partitions in ascending cardinality order. Although the asymptotic
behavior of their method’s time complexity is the same as GALOIS (i.e., constant for each
update), we expect that for practical applications Godin et al.’s system will be less efficient.
To compare the two systems12, it is convenient to consider their time complexity with re-
spect to the number of concepts in the lattice to be updated (which is of course the same
for both algorithms). For each iteration, assuming the database is described bym v-valued
attributes, Godin et al.’s system must explore one of them partitionsPi , which may be as
large as max‖Pi ‖ = maxi (

m
i
)vm−i > vm, to check concept duplication; furthemore, at the

end of this inner iteration it may have to explore a large part of the lattice to properly set
the edges. Therefore, we expect that the time complexity of each update may grow nearly
quadratically in the number of concepts in the lattice. By contrast, GALOIS will apply the
function LINK, which requires exploring a small subset of 2vm concepts, only for a small
fraction of iterations (see Section 3.3). In fact, we have seen that the time complexity of
GALOIS is in practice linear in the number of concepts in the lattice.

Aside from complexity issues, the algorithm presented in Godin et al. (1991) is more
limited in scope than GALOIS, in that it deals with unstructured attributes and cannot be
easily extended to accomodate structured attributes; in fact, its reliance on intent cardinality
would seem to prevent it from incorporating this kind of knowledge (see Section 4.1).

In most information retrieval systems, browsing is seen either as an aid for conventional
query-based retrieval or as an alternative search method. The first approach is described in
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Frei & Jauslin (1983) and Pedersen (1993), where a search through aterm space is used
to improve query formulation in a distinctdocumentspace. An example of the second
approach is Crouch et al. (1989), which describes an interactive browser supported by a
cluster hierarchy, or Maarek et al. (1991), where a similar hierarchical browsing system
supplements a Boolean query system. In these systems, the network that supports browsing,
whether manually built, as in Frei & Jauslin (1983), and Pedersen (1993), or automatically
built, as in Crouch et al. (1989), and Maarek et al. (1991), is usually developed and main-
tained as a distinct component. The main drawback of these retrieval architectures is that
the user must map different concept representations and data spaces; in addition, the sys-
tem has to maintain different support structures. GALOIS, on the other hand, integrates
browsing and querying into a single term/document space. This has the advantage that
the user may combine term-based query refinement with direct inspection of the document
database. Among the hybrid approaches to browsing retrieval that have been proposed, the
most similar to ours is Godin et al. (1989) and (1993), which is also based on a Galois docu-
ment lattice. The major difference from GALOIS is the inability of Godin et al.’s system to
use thesaurus knowledge, which results in a weaker expressive power and in more limited
browsing facilities. In particular, as pointed out in Section 5.3, because an ungeneralised
lattice is an inherently syntactic structure, it does not let the user track the semantic links
between terms.

7. Conclusion and future work

This paper was roughly split into two parts. In the first, we presented GALOIS as a concep-
tual clustering system based on the theory of concept lattices. We have seen that a concept
lattice represents a radical departure from most hierarchical conceptual clustering structures
that can help overcome some of their well-known limitations. GALOIS implements a new
incremental algorithm for determining the concept lattice corresponding to a set of objects.
An experimental evaluation conducted on different types of data sets suggests that the time
complexity of each update of the algorithm ranges from linear to quadratic in the number of
objects to be clustered. The experiments also provide supporting evidence for a theoretical
analysis that shows that the number of concepts in the lattice usually does not exceed the
square of the number of objects to be clustered. These results in part confirm and in part
extend earlier results found by Godin et al. (1991). In addition, the algorithm can use
background knowledge to expand and order the set of properties describing the objects,
thereby extending the scope of the theory.

In the second part of the paper, we took the view that conceptual facilitates browsing
retrieval. In particular, we discussed the merits of the kind of lattice structure produced by
GALOIS for supporting this task. To summarize, the lattice is built automatically from the
usual document-term relation, it may use the information contained in a thesaurus of terms,
it has its own indexing and linking structures, it provides multiple access to each class of
documents, it supports both browsing retrieval and query retrieval, it allows minimal query
refinement or enlargement, and it has limited storage requirements (proportional to the num-
ber of documents). In order for this structure to be used for actual information retrieval,
it is necessary to have a user interface for browsing and querying a lattice of documents
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enriched with thesaurus knowledge. We described the design and implementation of a
prototype interface of this kind, and we evaluated its retrieval effectiveness on three sub-
jects searching a bibliographic database of reasonable size (1555 document abstracts, and
7929 index terms), including a thesaurus of terms. In particular, we evaluated the relative
performance of the system with knowledge over the system without knowledge. Similar to
the results obtained by Godin et al. (1993) on a much smaller database, our results show
a good absolute retrieval performance; they also suggest that the integration of a thesaurus
component into the system improves recall as well as search time.

This research can be extended in several directions. A basic improvement, for which
a substantial amount of work has already been done (Carpineto & Romano, 1994), is the
realization of a pruning mechanism whereby the user may dynamically bound the lattice
from which he or she is retrieving information based on the feedback he or she gets from the
structure. Another limitation of this approach concerns the visualisation of the lattice. As
seen in Section 6, there are many ways in which the current display technique of GALOIS
can be improved to provide better orientation for the user. The third planned research
direction is investigation of the potential of language factorization for this approach. The
idea is to work with a concept lattice in which the set of index terms may be restricted or
enlarged by the user at browsing time, based on the user goal and other possible search
constraints. We believe that this could be used to control the complexity of the lattice
construction, as well as the complexity of the interaction between the user and the system.

Appendix A. Correctness of the algorithm

We will give the proof of the correctness of the algorithm for updating a concept lattice and
its Hasse diagram with a new object. In our notationO stands for the (intent of the) new
object,C for the (intent of the) current old concept examinated by the algorithm,N for the
(intent of the) new concept given by the intersection ofC andO (i.e., N = C ∩ O).

Observation 1. The lattice contains all possible intersections of the objects.

A corollary of Observation 1 is thatN is always a node of the updated lattice.

Lemma 1. The algorithm generates all concepts of the updated lattice.

Proof: The set of concepts of the updated lattice can be obtained by the union of the
concepts in the initial lattice (old concepts) and the intersections between the new object
and every old concept (new concepts). This is the way the algorithm works, except when
(see testd in Table 2) there is a parent(F) of C such thatF < N, in which case the
algorithm does not addN to the lattice. However, we show that there exists some other
old concept which returns the same intersection (i.e.,C ∩ O). By F < N = C ∩ O we
derive F ∩ O ≤ (C ∩ O) ∩ O = C ∩ O; by F > C we deriveF ∩ O ≥ C ∩ O. Thus,
F ∩ O = C ∩ O. F may be either an old concept or a new concept. IfF is old it is the
desired concept. IfF is new then there is some old conceptC such thatF = C ∩ O; thus
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N = F ∩ O = (C ∩ O) ∩ O = C ∩ O. Therefore, in the latter case the desired concept
is C. 2

Lemma 2. The updated lattice generated by the algorithm only contains distinct concepts.

Proof: Since the initial lattice contains only distinct concepts, we must only show that
the update does not introduce duplicates. Assuming there is some conceptC in the lattice
such thatC = N = C ∩ O ≥ C. If C = N = C then the generation of a duplicate is ruled
out by testb in Table 2. IfC = N > C then there is a parentF of C (i.e.,C or one of its
descendants) such thatF ≤ N; thus concept duplication is avoided by testsc andd. 2

Lemma 3. The updated lattice generated by the algorithm is a Hasse diagram.

Proof: We prove the lemma by induction over the iteration steps of the algorithm. The
initial lattice is a Hasse diagram by hypothesis; assume the lattice at stepi is correct and
consider stepi +1. If no new concept is added to the lattice then the lattice remains correct,
otherwise a new concept(N) is added to the lattice, which causes some edges to be created
and some edges to be removed. The former edges are only concerned with the new concept;
by definition, they are set correctly by procedure LINK, which links the new concept to all
of and only its maximally specific more general concepts and its maximally general more
specific concepts. For the latter edges, since LINK removes all edges between the lower
and the upper boundary sets, we must prove that if an edge between two conceptsC1 and
C2 has to be removed (i.e.,C1 < N < C2) thenC1(C2) does belong to the lower (upper)
set. Indeed, ifC1 did not belong to the lower set then there would exist a conceptC such
thatC1 < C < N < C2; but this would imply that the lattice at stepi was incorrect. 2

Theorem 1. The algorithm for updating a concept lattice and its Hasse diagram is correct.

Proof: From Observation 1 and Lemma 1 it follows that the set of nodes generated by
the algorithm contains all of and only the elements of the concept lattice. By Lemma 2, the
algorithm generates no duplicates. By Lemma 3, the graph is a Hasse diagram. 2

Appendix B. A simple browsing session

The session is relative to the lattice in figure 7. According to the visualization technique
employed by GALOIS-Browser, each figure represents a screen displaying the current node
(i.e., the black node) along with its parents and children. Simultaneously, the figure shows
the action taken by the user to modify the current node, which results in the screen shown
in the next figure.

Appendix C. Experimentation query set

1. Rule induction in artificial intelligence systems.
2. Applications of speech recognition to telecommunications environments.
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Figure 8. Initial screen displaying the most general query (ARTIFICIAL -INTELLIGENCE, COMPUTER-APPLICATIONS,
KNOWLEDGE-BASED-SYSTEMS) as current query. The user selects the more specific queryARTIFICIAL -
INTELLIGENCE, INFORMATION-SCIENCE, KNOWLEDGE-BASED-SYSTEMSby pointing and clicking with the mouse
on the right child of the current node.

Figure 9. The user modifies the current query specialising the termINFORMATION-SCIENCE by the term
INFORMATION-RETRIEVAL-SYSTEMS.
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Figure 10. Since the query ARTIFICIAL -INTELLIGENCE, KNOWLEDGE-BASED-SYSTEMS, INFORMATION-
RETRIEVAL-SYSTEMS is not in the lattice, the system returns its most general specialization (ARTIFICIAL -
INTELLIGENCE, CATALOGUING, EXPERT-SYSTEMS, INFORMATION-RETRIEVAL-SYSTEMS). The figure shows also
the document associated with it (i.e., the fifth document of the example context).

3. Effect of the advances in computer technology and artificial intelligence on information
services.

4. Heuristic search: methods and applications.
5. Role played by artificial intelligence in advancing the field of robotics.
6. Criteria for the objective evaluation of knowledge-based systems.
7. Picture processing systems not based on neural network techniques
8. Effectiveness of inclusion of natural language processing techniques in information

retrieval interfaces.
9. Methods for mapping 3D objects on 2D representations.

10. State of the art of automatic medical diagnosis.
11. Parsers for languages other than English.
12. Expert systems for designing or monitoring nuclear plants.
13. Automated construction of expert systems through machine learning techniques.
14. Artificial intelligence programming languages other than Lisp or Prolog.
15. Applications of machine learning technology to real world problems.
16. Image segmentation in picture analysis.
17. Integrated methods for combining symbolic and neural processing.
18. The cost and value of expert systems.
19. Unsupervised learning: methods and research issues.
20. Use of parallelism to improve efficiency of artificial intelligence languages or algorithms
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Notes

1. GALOIS has been implemented in Common Lisp.
2. Although this representation is very natural for unstructured domains, such as documents described by

keywords in information retrieval, it can also be easily adapted to more structured domains, such as records
described by a fixed number of attribute-value pairs in databases. In the latter case, each attribute is assigned
a set of bits (one for each value of the attribute), no more than one of which will be on.

3. Y is a kind of maximally specific description of the objects inX (Michalski, 1983).
4. Recall that, given a non-empty ordered setP, if for all S ⊂ P there exists a least upper bound and a greatest

lower bound, thenP is called acomplete lattice.
5. In practice, it is sufficient to determine either of the two sets, and then derive the other from it (the LINK

procedure determines the lower boundary set first). Furthermore, the two boundary sets are determined by
considering only a subset of the whole current concept lattice; in fact, it can be easily seen that, as the new
node is the intersection of the new object with an old concept, the concepts to which it may be linked must
be more general than the new object or more general than the old concept.

6. This inference follows from the observation that, in figure 3, the growth of the ratio between the number of
concepts and the number of objects varies from constant to linear with respect to the number of objects.

7. In practice GALOIS employs the generalised intersection operator(∩∗) to assess the more-general-than
relation (4):(X1, Y1) < (X2, Y2) ↔ (X1, Y1) ∩∗ (X2, Y2) = (X2, Y2), (X1, Y1) 6= (X2, Y2).

8. GALOIS-Browser has been implemented in CLIM on a Symbolics Lisp Machine.
9. Although this is a simple and widespread solution to graph visualisation, it has the disadvantage that the

user may get disoriented because of the lack of global information; a more sophisticated approach would
use techniques to produce concise visual representations of large graphs, such as a generalised fisheye view
(Furnas, 1986) or a graphical compression of Hasse diagrams (Wille, 1984).

10. In evaluating the effectiveness of browsing retrieval systems, the definition of the retrieved set of documents is
usually not obvious. One typical choice (Tague-Sutcliffe, 1992) is to rate a document as a retrieved document
when its full description (the abstract, in our case) is recovered.

11. Recallis defined as the ratio of number of items retrieved and relevant to the number of items relevant;precision
is the ratio of number of items retrieved and relevant to the number of items retrieved. Recall measures the abil-
ity to retrieveall relevant documents, while precision measures the ability to retrieve only relevant documents.

12. A direct experimental comparison between GALOIS and Godin et al.’s system is difficult because Godin et
al. used different data sets in their experiments, and, as also mentioned in Section 3.3, they employed an
alternative implementation strategy.
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