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Abstract. Several well-developed approaches to inductive learning now exist, but each has specific limitations
that are hard to overcome. Multi-strategy learning attempts to tackle this problem by combining multiple methods
in one algorithm. This article describes a unification of two widely-used empirical approaches: rule induction and
instance-based learning. In the new algorithm, instances are treated as maximally specific rules, and classification is
performed using a best-match strategy. Rules are learned by gradually generalizing instances until no improvement
in apparent accuracy is obtained. Theoretical analysis shows this approach to be efficient. It is implemented in
the RISE 3.1 system. In an extensive empirical study, RISE consistently achieves higher accuracies than state-of-
the-art representatives of both its parent approaches (PEBLS and CN2), as well as a decision tree learner (C4.5).
Lesion studies show that each of RISE’s components is essential to this performance. Most significantly, in 14
of the 30 domains studied, RISE is more accurate than the best of PEBLS and CN2, showing that a significant
synergy can be obtained by combining multiple empirical methods.
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1. The empirical multi-strategy learning problem

Inductive learning is the explicit or implicit creation of general concept or class descriptions
from examples. Many induction problems can be described as follows. Atraining setof
preclassifiedexamplesis given, where each example (also calledobservationor case) is
described by a vector offeaturesor attribute values, and the goal is to form a description
that can be used to classify previously unseen examples with high accuracy. (Examples
can also be described in other languages, like first-order logic (Quinlan, 1990), and other
goals are often also important, like comprehensibility of the description.) The last decade
has witnessed renewed interest in this area, largely due to its relevance to the “knowledge
acquisition bottleneck” problem: the costliest component in the creation and deployment of
an expert system is the construction of the knowledge base, and if this construction can be
partly automated by the use of induction techniques, the bottleneck will be greatly reduced.
As a result, research in this field has blossomed, and several mature approaches to inductive
learning are now available to the practitioner. These include induction of decision trees
(Quinlan, 1986), rule induction (Michalski, 1983), instance-based learning (Aha, Kibler
& Albert, 1991), Bayesian classification (Buntine, 1989), back-propagation (Rumelhart,
Hinton & Williams, 1986), and genetic algorithms (Booker, Goldberg & Holland, 1989).

Empirical comparison of these different approaches in a variety of application domains
has shown that each performs best in some, but not all, domains. This has been termed the
“selective superiority” problem (Brodley, 1995), and presents a dilemma to the knowledge
engineer approaching a new task: which induction paradigm should be used? One solution
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is to try each one in turn, and use cross-validation to choose the one that appears to perform
best (Schaffer, 1994a). This is a long and tedious process, especially considering the large
number of algorithms and systems now available, and the fact that each typically has options
and parameters that themselves need to be fine-tuned by cross-validation or a similar method
before the system can be said to be doing its “best.”

Another approach, known as multi-strategy learning (Michalski & Tecuci, 1994), attempts
to combine two or more different paradigms in a single algorithm. Most research in this
area has been concerned with combining empirical (i.e., purely inductive) approaches with
analytical ones (e.g., Ourston & Mooney, 1994; Towell & Shavlik, 1994; Pazzani & Kibler,
1992; see also Michalski & Tecuci, 1993). The expression “empirical multi-strategy learn-
ing” will therefore be used to distinguish the case where all the components are empirical.
Ideally, an empirical multi-strategy learning algorithm would always perform as well as
the best of its “parents,” obviating the need to try each one and simplifying the knowledge
acquisition task. Even more ambitiously, there is hope that this combination of paradigms
might produce synergistic effects (e.g., by allowing different types of frontiers in different
areas of the example space), leading to levels of accuracy that neither atomic approach by
itself would be able to achieve. Indeed, in many application domains the accuracy of even
the best methods is far below 100%, and the question of whether it can be improved, and if
so how, is an open and important one.

Unfortunately, this approach has often been only moderately successful. The resulting
algorithms are prone to be cumbersome, and often achieve accuracies that lie between
those of their parents, instead of matching the highest. Here a theoretical question arises.
It is well known that no induction algorithm can be the best in all possible domains; each
algorithm contains an explicit or implicit bias (Mitchell, 1980) that leads it to prefer certain
generalizations over others, and it will be successful only insofar as this bias matches the
characteristics of the application domain. Further, recent results (Schaffer, 1994b) show
that performance over the set of all possible domains is subject to a “conservation law”:
if one algorithm is better than another in some domains, then there are necessarily other
domains in which this relationship is reversed. The average accuracy of an algorithm over
all domains is a constant, independent of the algorithm. Should we conclude, then, that
empirical multi-strategy learning is doomed to failure?

Not necessarily. A distinction should be made between all the mathematically possible
domains, which are simply a product of the representation languages used, and the domains
that occur in the real world, and are therefore the ones of primary interest (Rao, Gordon &
Spears, 1995). Without doubt there are many domains in the former set that are not in the
latter, and average accuracy in the real-world domains can be increased at the expense of
accuracy in the domains that never occur in practice. Indeed, achieving this is, in a nutshell,
the goal of inductive learning research. It is still true that some algorithms will match
certain classes of naturally-occurring domains better than other algorithms, and so achieve
higher accuracy than them, and that this may be reversed in other real-world domains; but
this does not preclude an improved algorithm from being as accurate as the best in each of
the domain classes.

Two induction paradigms that appear to have largely complementary strengths and weak-
nesses are rule induction and instance-based learning (IBL). IBL algorithms are able to
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induce complex frontiers from relatively few examples, and are naturally suited to numeric
domains, but can be very sensitive to irrelevant attributes. Conversely, rule induction al-
gorithms perform well at finding simple axis-parallel frontiers, are best suited to symbolic
domains, and can often dispose easily of irrelevant attributes; but they can have difficulty
with non-axis-parallel frontiers, and suffer from thefragmentationproblem (i.e., the avail-
able data dwindles as induction progresses) and thesmall disjunctsproblem (i.e., rules
covering few training examples have a high error rate (Holte, Acker & Porter, 1989)).
(The two paradigms also share a number of characteristics, of course, most notably the
assumption that the example space contains large continuous regions of constant class
membership—the similarity hypothesis (Rendell, 1986).)

Instances and rules also form the basis of two competing approaches to reasoning: case-
based reasoning (Kolodner, 1993) and the rule-based reasoning more often found in expert
systems. In recent years, case-based reasoning has gained popularity as an alternative to
rule systems, but its proponents recognize that there is a wide spectrum from specific cases
to the very general rules typically used (Riesbeck & Schank, 1989), and it deserves to be
further explored.

This article describes and evaluates the RISE algorithm, an approach to inductive learning
that produces knowledge bases spanning this entire spectrum. It achieves this by intelli-
gently searching for the best mixture of selected cases and increasingly abstract rules,
based on the notion that instances are maximally specific rules, and that applying rules with
a best-match strategy is essentially a more general form of nearest-neighbor classification.

The article is structured as follows. The next two sections briefly review the characteristics
of IBL and rule induction most relevant to this work. The RISE algorithm will then be
presented. Theoretical bounds for its time complexity will be derived, and an extensive
empirical study comparing RISE with several current induction algorithms and investigating
the sources of its power will be described. Finally, RISE will be placed in the context of
related work and directions for future research will be pointed out.

2. Instance-based learning

Instance-based learning1 (Cover & Hart, 1967; Duda & Hart, 1973; Ahaet al., 1991; Cost &
Salzberg, 1993; Aha, in press) is founded on a direct application of the similarity assumption.
In the simplest case, learning is performed by storing all the observed examples. A new
example (or “test case”) is classified by finding the nearest stored example according to
some similarity function, and assigning the latter’s class to the former. The stored examples
used to classify new cases are referred to asinstancesor exemplars. The performance of
IBL depends critically on the similarity (or, conversely, distance) metric used. In numeric
domains (i.e., domains where all the features are real-valued), city-block and Euclidean
distance are natural candidates. The component distanceδ(xi, xj) between two valuesxi
andxj of an attribute is then simply the absolute value of their difference; however, this can
lead to attributes with a large spread of values having undue weight in the result, compared
to attributes with smaller spreads. A commonly used approach (see, e.g., Salzberg, 1991)
is to normalize the difference by its largest observed value:
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δ(xi, xj) =
∣∣∣∣ xi − xj
xmax − xmin

∣∣∣∣ (1)

If there area attributes, the distance between two instancesE1 = (e11, e12, . . . , e1a, C1)
andE2 = (e21, e22, . . . , e2a, C2) can then be defined as:

∆(E1, E2) =
a∑
i=1

δs(e1i, e2i) (2)

with s = 1 yielding city-block distance ands = 2 the square of Euclidean distance.
Symbolic attributes pose a more difficult problem. Most IBL systems (e.g., Ahaet al.,

1991) use a simple overlap metric:

δ(xi, xj) =
{

0 if i = j
1 otherwise

(3)

This measure is obviously less informative than its numeric counterpart, and, although it
is appropriate in some cases, its use can lead to poor performance (Cost & Salzberg, 1993).
A more sophisticated alternative consists of considering two symbolic values to be similar
if they make similar predictions (i.e., if they correlate similarly with the class feature).
This was first proposed by Stanfill and Waltz (1986) as part of their value difference metric
(VDM) for a memory-based reasoner. Here we will consider a simplified version of the
VDM, which defines the distance between two symbolic values as:

δ(xi, xj) = SV DM(xi, xj) =
c∑

h=1

|P (Ch|xi)− P (Ch|xj)|q (4)

wherec is the number of classes,Ch is thehth class, andq is a natural-valued parameter
(q = 1, 2, 3, . . .). The latter can be determinedad hocor empirically. Notice that, in par-
ticular,δ(xi, xj) is always 0 ifi = j. The total distance∆(E1, E2) is computed as before.
Different variants of this metric have been successfully used in pronunciation, molecular
biology and other tasks (Stanfill & Waltz, 1986; Cost & Salzberg, 1993; Biberman, 1994).

IBL methods need to address the problem of sensitivity to irrelevant attributes. The contri-
butions of these attributes to the global distance constitute noise as far as the classification
task is concerned, and they can swamp out the relevant components. Many approaches
have been proposed to deal with this problem (Aha, 1990; Salzberg, 1991; Kelly & Davis,
1991; Wettschereck, 1994; Townsend-Weber & Kibler, 1994; Aha & Bankert, 1994). We
have also found that use of the SVDM substantially attenuates this problem for symbolic
attributes, as long as a large number of examples is available. This is due to the fact that
by definitionP (Ch|xi) will be roughly the same for all valuesxi of an irrelevant attribute,
leading to zero distance (i.e., equivalence) between them.

Another issue in IBL methods is their sensitivity to noise. Incorrect instances are liable to
create a region around them where new examples will also be misclassified. Several methods
have been successfully introduced to deal with this problem. IB3 (Ahaet al., 1991) retains
only reliable instances, reliability being judged by the instance’s classification performance
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over a “probation period.” Cameron-Jones (1992) uses instead a criterion based on the
minimum description length principle to decide which instances to retain. PEBLS (Cost &
Salzberg, 1993) assign weights to instances, making their apparent distance to new examples
increase with their misclassification rate.

Given two instances of different classes, the frontier between classes induced by them is
a hyperplane perpendicular to the line connecting the two instances, and bisecting it. With
multiple instances of each class, the frontier will be composed of a number of hyperplanar
sections, and can thus become quite complex even when few instances are present (Aha
et al., 1991). The introduction of weights further increases this complexity, turning the
hyperplanes into hyperquadrics (Cost & Salzberg, 1993).

Another extension to the basic IBL paradigm consists in using thek nearest neighbors
for classification, instead of just the nearest one (Duda & Hart, 1973). The class assigned
is then that of the majority of thosek neighbors, or the class receiving the most votes, with
a neighbor’s vote decreasing with its distance from the test example.

It is important to note that, even though the stored instances used in classification are
syntactically identical to examples, their semantic content (i.e., their extension) is quite
different. An example is a single point in the example space, whereas a stored instance
represents the entire region that it wins over in the competition with other instances.

3. Rule induction

Rule induction algorithms (Michalski, 1983; Michalski, Mozetic, Hong & Lavrac, 1986;
Clark & Niblett, 1989; Rivest, 1987) typically employ a set covering or “separate and
conquer” approach to induction. This strategy derives its name from the fact that it forms
a class definition by constructing a rule that covers many positive examples, and few or
no negative ones, then “separating out” the newly covered examples and starting again on
the remainder. It is summarized in pseudo-code in Table 1. Some definitions are in order.
A rule is composed of aconsequentand anantecedent partor body. The consequent is
the predicted class. The body is a conjunction ofantecedents, each antecedent being a
condition involving a single attribute. For symbolic attributes, this condition is a simple
equality test; in some systems, negation and disjunction of values are possible. For numeric
attributes, the condition is typically inclusion in a one-sided interval. A rule is said tocover
an example, and conversely the example is said tosatisfyit, if all the conditions in the rule
are true for the example. Given a class, its members in the training set are calledpositive
examples, and the remainder arenegativeexamples.

The “best” rule in each covering cycle (see Table 1) may also be found by beam search
(e.g., Clark & Niblett, 1989). In this case a list of theb best rule bodies found so far is
maintained, instead of a single body. At each step, specialization of each of those bodies
with each possible antecedent is attempted, and the bestb bodies are selected to continue
the search. At the end the best rule body overall is selected.

The choice of evaluation heuristicH is of some importance to the algorithm’s perfor-
mance. Given a rule,H should increase withn⊕, the number of positive examples that
satisfy the rule, and decrease withnª, the number of negative examples that satisfy it. The
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Table 1.General structure of rule induction algorithms.

Input: ES is the training set.

Procedure RuleInduction (ES)
LetRS = ∅.
For each classC

Let⊕ = {E ∈ ES | Class(E) = C}.
Letª = {E ∈ ES | Class(E) 6= C}.
Repeat

LetR = Find BestRule (C,⊕,ª).
Let⊕ =⊕ – {E ∈ ⊕ | R coversE}.
LetRS = RS ∪ {R}.

Until ⊕ = ∅ orR = Nil.
ReturnRS.

Function FindBestRule (C,⊕,ª)
Let Body = True.
LetR be the rule: Body⇒ C.
Repeat

For each possible antecedentA
LetBA = Body∧ A.
Let n⊕ = #({E ∈ ⊕ | E satisfiesBA}).
Let nª = #({E ∈ ª | E satisfiesBA}).

Let Body =BA that maximizes some heuristicH(n⊕, nª).
Until no antecedent causes a significant improvement inH(n⊕, nª).
ReturnR, or Nil if Body = True.

AQ series of algorithms (Michalskiet al., 1986) uses apparent accuracy (i.e., the accuracy
of the rule on the training set):

H(n⊕, nª) =
n⊕

n⊕ + nª
(5)

The CN2 system (Clark & Niblett, 1989) originally used the entropy of the rule (Quinlan,
1986). However, the problem with both these measures is that they tend to favor overly
specific rules: they attain their maximum value with a rule covering a single example. This
can be overcome by use of the Laplace correction (Niblett, 1987):

H(n⊕, nª) =
n⊕ + 1

n⊕ + nª + c
(6)

wherec is the number of classes. This measure tends to the uncorrected accuracy when
the rule has strong statistical support (i.e., when it covers many examples), but tends to1/c
(i.e., “maximum ignorance”) when it covers few. It is used in recent versions of CN2 (Clark
& Boswell, 1991).
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Classification of a new example is performed by matching each rule against it, and
selecting those it satisfies. If there is only one such rule, its class is assigned to the example.
If there are none, the generally adopted solution is to use the so-called “default rule” (i.e.,
to assign the example to the class that occurs most frequently in the entire training set,
or among those examples not covered by any rule). Finally, if more than one rule covers
the example, then two strategies are possible. One is to order the rules into a “decision
list,” and select only the first rule that fires (Rivest, 1987). The other is to let the different
rules vote, and select the class receiving the most votes. Recent versions of CN2 attach to
each rule the number of examples of each class that it covers, and use these numbers as
votes at classification time (Clark & Boswell, 1991). Other voting schemes are possible
(e.g., Michalskiet al., 1986). The use of unordered rules has been found to generally
produce higher accuracy (Clark & Boswell, 1991), and also has the advantage of greater
comprehensibility, since in a decision list each rule body is implicitly conjoined with the
negations of all those that precede it.

In rule induction algorithms that do not deal with noise, construction of a new rule
stops only when all negative examples are excluded. In noise-tolerant ones, a measure
of statistical significance may be used to halt growth (as in CN2), or a later post-pruning
step may remove superfluous antecedents and/or rules (e.g., GROVE: Pagallo & Haussler,
1990). Irrelevant attributes tend to produce no significant improvement in the evaluation
heuristic, and thus be excluded. However, attributes that are relevant only in combination
with other attributes may also be discarded. Also, the fact that only single-attribute tests
are used in rules means that all decision boundaries are parallel to the coordinate axes (i.e.,
class definitions can only be unions of hyperrectangles), leading to inaccurate definitions
when boundaries are non-axis-parallel and only a limited number of examples is available.

Another shortcoming of the “separate and conquer” strategy is that it causes a dwindling
number of examples to be available as induction progresses, both within each rule and for
successive rules. This fragmentation effect may cause later rules, and later antecedents
within each rule, to be induced with insufficient statistical support, leading to greater noise
sensitivity and missing or incorrect rules/antecedents. This in turn aggravates the “small
disjuncts problem,” first observed by Holteet al. (1989): rules covering few training
examples (five or less, say) tend to be highly error-prone, but removing them often increases
the global error even further.

4. The RISE algorithm

We now describe an approach to induction that attempts to overcome some of the limita-
tions of IBL and rule induction outlined above by unifying the two. This methodology is
implemented in the RISE 3.1 system (Rule Induction from a Set of Exemplars; earlier ver-
sions are described in (Domingos, 1994) and (Domingos, 1995a)). One of its basic features
is that rules and instances are treated uniformly; no distinction is made between the two.
Another characteristic that distinguishes it from previous empirical multi-strategy learning
systems is that it does not consist of a global procedure calling the individual algorithms as
subprocedures, but rather a single, simple algorithm that can be viewed as both IBL and rule
induction, according to its behavior. For these reasons, we speak of a “unification” of the
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two approaches, rather than using the somewhat weaker term “combination.” Obviously,
this should not be taken to imply that the form of unification proposed here is the only
possible one.

4.1. Representation and definitions

A rule in RISE is composed of a consequent that is the predicted class, and an antecedent part
that is a conjunction of conditions, as before. Each condition involves only one attribute;
for symbolic attributes it is an equality test (e.g.,x1 = α), and for numeric attributes it
is membership in an interval closed on both sides (e.g.,3 ≤ x2 ≤ 7). In each rule there
is at most one condition involving each attribute, and there may be none. An instance is
simply a rule in which the consequent is the instance’s class, there is exactly one condition
per attribute, and all the intervals are degenerate (e.g.,4 ≤ x2 ≤ 4, i.e.,x2 = 4). In the
remainder of this article, the word “rule” is used to refer indiscriminately to exemplars and
to rules of the more general type.

RISE classifies a new example by assigning it the class of the nearest rule in the knowl-
edge base. The distance between a rule and an example is defined as follows. Let
E = (e1, e2, . . . , ea, CE) be an example with valueei for theith attribute and classCE . Let
R = (A1, A2, . . . , Aa, CR) be a rule with classCR and conditionAi on theith attribute.
If there is no condition oni, Ai = True, otherwiseAi is ei = ri if i is symbolic andAi is
ri,lower ≤ ei ≤ ri,upper if i is numeric. The distance∆(R,E) betweenR andE is then
defined as:

∆(R,E) =
a∑
i=1

δs(i) (7)

wheres is a natural-valued parameter (s = 1, 2, 3, . . .), and the component distanceδ(i)
for theith attribute is:

δ(i) =

 0 if Ai = True
SV DM(ri, ei) if i is symbolic andAi 6= True
δnum(i) if i is numeric andAi 6= True

(8)

where in turnSV DM(ri, ei) is the simplified value difference metric as defined in Equa-
tion 4, and:

δnum(i) =


0 if ri,lower ≤ ei ≤ ri,upper
ei−ri,upper

ei,max−ei,min if ei > ri,upper

ri,lower−ei
ei,max−ei,min if ei < ri,lower

(9)

ei,max andei,min being respectively the maximum and minimum values for the attribute
found in the training set. This definition ofδnum(i) is also used in EACH (Salzberg, 1991).

The distance from a missing numeric value to any other is defined as 0. If a symbolic
attribute’s value is missing, it is assigned the special value “?”. This is treated as a legitimate
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symbolic value, and its SVDM to all other values of the attribute is computed and used. In
the context of VDM-type metrics, this is a sensible policy: a missing value is taken to be
roughly equivalent to a given possible value if it behaves similarly to it, and distinct from
that value if it does not.

The question arises of how to choose the winning rule when several are equally near. This
is of more importance in RISE than in IBL, because it can frequently occur that several rules
cover the example (i.e., are at distance 0 from it). This corresponds to the multiple-match
case in rule induction systems. RISE selects the rule with the highest Laplace accuracy.
This means that neither very general nor very specific rules are unduly favored; rather,
preference goes to rules with high apparent accuracy as well as strong statistical support.
In the event the accuracies are the same, RISE chooses the most frequent class among those
represented, and if there is still a draw, the winner is chosen at random. Other policies were
also tried, and a comparative evaluation is described in (Domingos, 1995b).

A rule is said tocoveran example if all its conditions are true for the example; a rule
is said towin an example if it is the nearest rule to the example according to the distance
metric and conflict resolution policy just described. A rule can cover an example and not
win it. The extension of a rule is constituted by all the points in the example space that it
wins, whether or not it covers them, and therefore depends not only on the rule itself but on
all the other rules.

The accuracyAcc(RS,ES) of a rule setRS on a set of examplesES is defined as
the fraction of those examples that it correctly classifies. A rule set classifies an example
correctly when the nearest rule to the example has the same class as it. Whenever the example
setES is simply the whole training set this will be left implicit (i.e., the accuracy will be
denoted byAcc(RS)). There is no need to use the Laplace correction when comparing the
accuracy of different rule sets on a training set, because the denominator of the accuracy
(i.e., the number of examples matched) is exactly the same for all rule sets (being the size
of the training set).

4.2. Control structure

Unlike conventional rule induction algorithms, RISE does not construct one rule at a time,
but instead induces all rules in parallel. In addition, heuristic evaluation is not performed
for each rule separately, but for the whole rule set at once. Changes to an individual rule are
evaluated in terms of their effect on the global accuracy of the rule set. This “conquering
without separating” strategy differs markedly from the earlier “separate and conquer” one;
the aim is to attenuate the fragmentation problem as much as possible. Another major
difference is that RISE’s direction of search is specific-to-general. Rules are generalized
by dropping conditions on symbolic attributes, and broadening intervals for numeric ones.
This is not done one attribute at a time, but rather by a clustering-like approach: each rule
repeatedly finds the nearest example of its class that it does not yet cover, and attempts to
minimally generalize itself to cover it (see Table 2). If the effect of this on global accuracy
is positive, the change is retained. This process stops when no further change causes any
improvement. The initial rule set is the training set itself (i.e., each instance is a candidate
rule). In the worst case no generalizations are accepted, and the final rule set is still the
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Table 2.Generalization of a rule to cover an example.

Inputs:R = (A1, A2, . . . , Aa, CR) is a rule,E = (e1, e2, . . . , ea, CE) is an example.
Ai is either True,ei = ri, or ri,lower ≤ ei ≤ ri,upper.

Function MostSpecificGeneralization(R, E)
For each attributei,

If Ai = True then Do nothing.
Else if i is symbolic andei 6= ri thenAi = True.
Else if i is numeric andei > ri,upper thenri,upper = ei.
Else if i is numeric andei < ri,lower thenri,lower = ei.

Table 3.The RISE algorithm.

Input: ES is the training set.

Procedure RISE (ES)
LetRS beES.
ComputeAcc(RS).
Repeat

For each ruleR in RS,
Find the nearest exampleE toR not already covered by it, and ofR’s class.
LetR′ = Most SpecificGeneralization(R,E).
LetRS′ =RS with R replaced byR′.
If Acc(RS′) ≥ Acc(RS)
Then ReplaceRS byRS′,

If R′ is identical to another rule inRS,
Then deleteR′ fromRS.

Until no increase inAcc(RS) is obtained.
ReturnRS.

training set, leading to a pure instance-based algorithm. More generally, the final rule set
may contain some ungeneralized exemplars as well as more abstract rules. In the course
of generalization two rules may become identical, in which case they are merged. Table 3
summarizes this process in pseudo-code. In each cycle the new rule set is adopted even if
its apparent accuracy is the same as the old one’s. This is a direct application of Occam’s
Razor: when two theories appear to perform identically, prefer the simpler one.

Table 2 shows in pseudo-code how a rule is minimally generalized to cover an example
previously outside its scope. In a nutshell, all conditions on symbolic attributes that are not
satisfied by the example are dropped, and all intervals are extended to include the example
attribute’s value at the border, if necessary. This is indeed the most specific generalization
that will work, given the representation language used (e.g., internal disjunction is not
permitted). Missing values are treated in a fashion consistent with the definition of distance
above: a missing numeric value is considered to match any other value, and a missing
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symbolic value in the example or in the rule (but not both) causes the corresponding condition
to be dropped.

Accuracy is measured using a leave-one-out methodology: when attempting to classify an
example, the corresponding rule is left out, unless it already covers other examples as well.
This method would not be efficient if the accuracy of the entire rule set had to be computed
from scratch every time an individual change is considered. This would involve repeatedly
matching all rules (or all but one) against all examples, leading to a clearly unacceptable
time cost. Fortunately, at each step only the change in accuracy∆Acc(RS) needs to be
considered. Each example memorizes the distance to the nearest rule (i.e., the rule that
wins it) and that rule’s identification. The memory cost of this isO(1) per example, and is
therefore negligible. With this information, all that is necessary when a rule is generalized
is to match that single rule against all examples, and check if it wins any that it did not
before. Its effect on these is then ascertained. If a previously misclassified example is now
correctly classified, the numerator ofAcc(RS) is incremented; if the reverse takes place, it
is decremented. Otherwise there is no change. If the sum of increments and decrements is
greater than or equal to 0, the new rule is adopted, and the relevant structures are updated;
otherwise it is rejected.

5. Time complexity of RISE

It is possible to derive an upper bound for the time complexity of the algorithm just de-
scribed, showing that its worst-case efficiency is comparable to that of other rule induction
algorithms. Lete represent the number of examples in the training set,a the number of
attributes used to describe each,vs (vn) the average number of observed values per sym-
bolic (numeric) attribute,r the number of rules, andc the number of classes into which
the examples fall. Assume for now that all attributes are nominal. The initialization phase
of the algorithm consists of three operations. The first is copying the examples to the
rules, and takesO(ea) time. The second is compiling a table of SVDM distances, taking
O(ea+ av2

sc) (ea to run through all the examples, for each one noting the correspondence
between each attribute’s value and the class, andav2

sc to sum the results for all classes, for
each pair of values of each attribute). The third operation is finding each example’s closest
rule and computing the initial accuracy of the rule set, which involves matching all rules
against all examples, and so takesO(e2a) time. The total time necessary for initialization
is thereforeO(e2a+ av2

sc).
The heart of the algorithm consists of four steps: finding a rule’s nearest example, gen-

eralizing the rule to cover it, comparing the altered rule to all examples to see if any are
newly won, and (if the change is adopted) comparing the rule to all other rules to check for
duplications. These operations consume respectivelyO(ea),O(a),O(ea) andO(ra) time,
for a total ofO(ea + ra). Since each “repeat” cycle (see Table 3) consists of doing this
for all r rules, each such cycle takes at worstO[r(ea + ra)] time. In RISE each example
produces at most one rule; thereforer ≤ e, and this time is at worstO(e2a).

How many “repeat” cycles can the algorithm perform in the worst case? Two answers are
possible, depending on how the stopping criterion is interpreted. If it is applied individually
(i.e., generalization of a given rule stops as soon as covering the nearest example produces
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no improvement), then the “repeat” cycle is performed at worstO(a) times, since each
cycle must remove at least one condition, and a rule contains at mosta conditions, this
being true for each rule. On the other hand, if the stopping criterion is applied globally
(i.e., generalization of a given rule stops only when no change toany rule produces an
improvement), the “repeat” cycle can in theory be performed up toO(ea) times, because
in the worst case only one condition of one rule will be dropped in each entire cycle, each
time causing some currently-unprofitable change in another rule to become profitable in
the next round. However, this is extremely unlikely. The two policies were empirically
compared (see Domingos, 1995b), showing no appreciable difference between the two in
accuracy or time. Multiplying the values above by the cost of a single cycle yields a total
time complexity ofO(e2a2) or O(e3a2) respectively. Sincee ≥ vs, and assuming that
a ≥ c, which is generally the case, the smaller of these values dominates the complexity of
the initialization phase, and both therefore constitute upper bounds on the time complexity
of the whole algorithm in their respective situations.

The time complexity of CN2 and AQ-style algorithms isO(be2a2), whereb is the beam
size, an integer-valued internal parameter of the algorithm (Clark & Niblett, 1989).2 The
worst-case complexity of growing a decision tree isO(ea2) when only symbolic attributes
are present (Utgoff, 1989a), but becomes quadratic or worse inewith numeric ones, mainly
due to the need for repeated sorting operations (Catlett, 1991). The final pruning stage used
in C4.5 and several rule induction systems may also in general be worse than quadratic in
e (Cohen, 1995). Thus RISE’s worst-case time complexity is comparable to that of other
rule and decision tree learners. Average-case time is also likely to be substantially smaller
than the worst case, because some of the assumptions above are overly pessimistic (e.g., in
generalr will seldom remain equal toe, but will instead shrink rapidly; attributes will be
dropped several at a time, and not all will be removed; increasinge may not increase the
number of “repeat” cycles, even with a global stopping criterion; etc.).

The introduction of numeric values simply increases the values above by a factor ofvn,
since the single-step removal of a condition may now be replaced by at mostO(vn) steps of
expanding the corresponding interval. Again, in practice only a small number of steps may
actually be required. However, in the case of real-valued attributes for which arbitrarily
fine distinctions are possible, and therefore as many different values as there are training
examples may occur, this can lead to some inefficiency. This problem is only potentially
significant in large datasets, since the number of observed values of an attribute is bounded
from above by the number of training examples. To obviate it, in datasets with more than
3000 examples the generalization of a rule to cover an example (Table 2) is adapted as
follows. When extending an interval to include an example value above it (or below), the
interval’s upper (lower) limit is not set to the example’s value, but to that value plus (minus)
a delta which is set by default to 5% of the maximum range the value was observed to vary
over. In addition to potentially reducing the running time of the algorithm, this policy can
have a positive effect on its accuracy, by avoiding overfitting. This was indeed observed in
the empirical study described below.

RISE has been optimized with respect to running time in two additional ways: pruning
and windowing. Pruning is performed by sometimes cutting short the computation of the
distance between a rule and an example; this is akin to reducing search by means of branch-
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and-bound techniques. This is possible in two situations (see Table 3). When a rule searches
for its nearest example, it can discard a candidate as soon as its distance becomes larger
than the shortest one found so far. Similarly, when a tentatively-generalized rule searches
for the examples it now wins, its distance to each example needs to be computed only until
it becomes larger than the current winning rule’s one. This form of pruning has no effect on
the algorithm’s output, and in general will also not change its worst-case time complexity,
but can significantly reduce its average running time.

In datasets with more than 3000 examples, windowing is used (Catlett, 1991; Quinlan,
1993a). This proceeds as follows. Initially, only 2

√
eexamples randomly extracted from the

training set are used for learning. If the remaining training examples are correctly classified
by the resulting rule set, this set is output. Otherwise, the misclassified examples are added
to the initial example set, and this process repeats until it produces no improvement in
accuracy, or up to a prespecified number of times (5 by default). In the best case, only
O(
√
e) examples are used, and the algorithm becomes linear in the training set size. In

the worst case, the window grows to include the entire training set, and the process is
more costly than learning directly on that set. Thus windowing may or may not decrease
running time. Its effect on accuracy can also be positive or negative. A more detailed
discussion of these issues in the context of decision tree induction can be found in (Catlett,
1991) and (Quinlan, 1993a). In the empirical study described below, windowing improved
RISE’s running time in all the datasets where it was used (those with more than 3000
examples), sometimes by a large factor, while improving accuracy in all but one (where
it had no significant effect). Windowing thus appears to be substantially more useful in
RISE than in decision tree induction. This may be due to several factors, including RISE’s
lower sensitivity to the global proportions of different classes, and its higher resistance to
the fragmentation problem, which enables it to correctly approximate class frontiers using
fewer examples.

6. Empirical study

An extensive empirical study was carried out with the twin goals of comparing RISE’s
performance to that of previous approaches, and determining the role of its main components
in that performance. The remainder of this section describes the characteristics and reports
the results of this study.

6.1. Experimental design

RISE was compared with a representative of each of its parent approaches: PEBLS for
IBL (Cost & Salzberg, 1993), and CN2 for rule induction (Clark & Niblett, 1989). PEBLS
is a state-of-the art system, as opposed to the skeleton nearest-neighbor implementations
typically used in empirical comparisons. PEBLS 2.1’s inability to deal with missing values
was overcome by grafting onto it an approach similar to the one selected for RISE (see
Section 4). A recent version of CN2 (6.1) was used, one incorporating Laplace accuracy
and unordered rules (Clark & Boswell, 1991). To gauge its position in the overall spectrum
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of induction methods, RISE was also compared with a system that learns rule sets by
way of decision trees, C4.5/C4.5RULES (Quinlan, 1993a). The default classifier (always
choosing the most frequent class) was also included in the study to provide a baseline.
Back-propagation (Rumelhartet al., 1986), although a widely-used learning algorithm,
was left out because its need for extensive fine-tuning and very long running times would
make a large-scale study of this type difficult to carry out.

Thirty datasets were used in the study. An attempt was made to include every available
domain that has been widely used in inductive learning studies, and beyond that to provide
a wide sampling of: symbolic, numeric and mixed datasets; small, medium and large
datasets; datasets of varying difficulty, as expressed in the highest accuracy previously
achieved; and datasets from a wide range of application areas. All datasets were drawn
from the UCI repository (Murphy & Aha, 1995), and are obtainable by anonymous ftp
from ics.uci.edu, subdirectory pub/machine-learning-databases. Table 4 lists the datasets
used, and summarizes some of their main characteristics.3 Datasets included in the listing
of empirical results in (Holte, 1993) are referred to by the same codes.

In the first phase of the study, the first 15 datasets in Table 4 (from breast cancer to
wine) were used to fine-tune the algorithms, choosing by 10-fold cross-validation the most
accurate version of each. Since a complete factor analysis would be too expensive, the
relevant parameters were instead varied one at a time, starting with the ones thought to be
most critical, and selecting the best value for each parameter before going on to the next one.
When no clear differences were present, the default was retained. For RISE this process
is described in more detail in (Domingos, 1995b), and resulted in the system described in
the previous sections, withq = 1 (Equation 4),s = 2 (Equation 7), and global stopping
(Section 5). In PEBLS, the number of intervals for each numeric attribute has to be set by the
user, and it is recommended that it be kept small for best results. The policy was adopted of
using the number of observed values up to a maximum ofm, and the optimumm found was
15. All other parameters retained their default values. In CN2, the only non-default choice
produced was that of accuracy instead of Laplace accuracy for the evaluation function.4 In
C4.5, a major question is whether to output trees or rules. C4.5RULES produced slightly
better results, and was the version chosen. It also has the advantage of being the one most
directly comparable to RISE. The non-default choices made were: use windowing (growing
10 trees, the default), require a minimum of 4 examples (instead of 2) in two branches of a
test, and use a confidence level of 37.5% for rule pruning (instead of 25%).

The fine-tuned algorithms were then tested on the remaining 15 datasets in Table 4 (from
audiology to zoology). Note that this procedure is somewhat unfavorable to RISE, since
some of these domains were previously used in the development of the other algorithms, as
reported in the references above. Each dataset was randomly divided 50 times into a training
set containing two-thirds of the examples, and a testing set containing the remainder. All of
the algorithms were trained on each of the 50 training sets and tested on the corresponding
testing set. The results reported are averages of these 50 runs. For the sake of completeness,
the algorithms were also rerun in these conditions on the 15 tuning datasets.
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Table 4. Datasets used in the empirical study. The columns are, in order: name
of the domain; 2-letter code used to refer to it in subsequent tables; number of
examples; number of attributes; number of numeric attributes; number of classes;
percentage of missing values; and whether or not the dataset includes inconsistent
examples (i.e., identical examples with different classes).

Domain Code Exs. Atts. Num. Classes Missing Incons.

Breast cancer BC 286 9 4 2 0.3 Yes
Credit screening CE 690 15 6 2 0.6 No
Chess endgames CH 3196 36 0 2 0.0 No
Pima diabetes DI 768 8 8 2 0.0 No
Hepatitis HE 155 19 6 2 5.7 No
Iris IR 150 4 4 3 0.0 No
Labor negotiations LA 57 16 8 2 35.7 No
Lung cancer LC 32 56 0 3 0.3 No
Liver disease LD 345 6 6 2 0.0 No
Contact lenses LE 24 4 0 3 0.0 No
Lymphography LY 148 18 3 4 0.0 No
Primary tumor PT 339 17 0 21 3.9 Yes
Soybean SO 47 35 0 4 0.0 No
Voting records VO 435 16 0 2 5.6 No
Wine WI 178 13 13 3 0.0 No

Audiology AD 200 69 0 24 2.1 No
Annealing AN 798 38 9 5 64.9 No
Echocardiogram EC 131 7 6 2 4.4 Yes
Glass GL 214 9 9 6 0.0 No
Heart disease HD 303 13 6 2 0.2 No
Horse colic HO 300 22 7 2 24.3 Yes
Thyroid disease HY 3163 25 7 2 6.7 Yes
LED LI 100 7 0 10 0.0 Yes
Mushroom MU 8124 22 0 2 1.4 No
Post-operative PO 90 8 8 3 0.4 Yes
DNA promoters PR 106 57 0 2 0.0 No
Solar flare SF 323 12 3 6 0.0 Yes
Sonar SN 208 60 60 2 0.0 No
Splice junctions SP 3190 60 0 3 0.0 Yes
Zoology ZO 101 16 1 7 0.0 No

6.2. Accuracy comparisons

The average accuracies and sample standard deviations obtained are presented in Table 5.
Superscripts indicate confidence levels for the difference between RISE and the correspond-
ing algorithm, using a one-tailed pairedt test. The first half of the table shows results on
tuning datasets, and the second half shows results on test datasets.

Although many results in individual datasets are interesting in themselves, these tables
are more easily understood if their results are summarized in a few global measures of
comparative performance. Five such measures and their values are presented in Table 6.
They can be described and interpreted as follows.
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Table 5.Empirical results: average accuracies and standard deviations. Superscripts denote
confidence levels: 1 is 99.5%, 2 is 99%, 3 is 97.5%, 4 is 95%, 5 is 90%, and 6 is below 90%.

Domain RISE Default PEBLS CN2 C4.5

BC 67.7±4.5 68.5±6.86 64.9±4.01 65.9±4.71 67.9±5.16

CE 83.3±2.4 56.7±3.71 81.6±2.01 82.3±2.21 84.5±2.51

CH 98.2±0.6 52.3±1.81 96.8±0.71 98.7±0.71 99.2±0.21

DI 70.4±2.5 65.4±2.41 70.9±2.66 73.6±2.41 73.1±2.51

HE 78.3±5.7 79.1±3.66 80.3±5.13 80.9±3.61 81.0±5.32

IR 94.0±2.8 26.3±3.81 93.2±3.54 90.8±4.41 93.5±2.86

LA 87.2±7.8 66.1±10.21 91.1±5.11 82.8±7.61 81.4±6.11

LC 44.7±16.4 24.7±15.51 42.0±15.26 32.7±13.61 44.5±14.16

LD 62.4±4.6 57.8±3.21 61.2±4.25 66.8±4.71 65.1±4.51

LE 77.2±12.8 60.8±13.11 72.5±12.61 67.8±12.41 63.7±18.41

LY 78.7±5.9 55.5±6.91 81.7±5.41 80.2±5.55 76.6±5.73

PT 40.3±4.8 24.3±3.41 31.4±4.11 41.4±5.35 38.9±4.94

SO 100.0±0.0 25.9±16.21 100.0±0.06 97.3±4.91 97.4±3.11

VO 95.2±1.5 60.7±3.01 94.6±1.33 95.5±1.55 95.4±1.56

WI 96.9±2.0 36.9±8.61 96.5±2.15 90.5±5.51 93.0±4.21

AD 77.0±5.3 20.8±3.61 75.8±5.25 63.0±6.61 66.9±6.01

AN 97.4±0.9 76.2±2.21 98.8±0.81 92.9±2.11 93.4±1.71

EC 64.6±7.0 68.1±6.91 63.0±5.45 67.9±6.01 65.0±6.46

GL 70.6±5.8 31.4±5.01 66.7±6.21 55.0±6.91 66.4±7.41

HD 79.7±3.8 55.1±3.81 78.8±3.85 78.5±3.95 77.3±3.51

HO 82.6±3.9 64.1±3.81 76.1±4.01 82.2±3.66 81.0±3.82

HY 97.5±0.4 95.3±0.51 97.3±0.51 98.3±0.51 99.2±0.21

LI 59.9±7.2 7.3±3.21 53.0±7.01 57.5±7.72 57.1±8.12

MU 100.0±0.2 51.8±0.91 100.0±0.06 100.0±0.06 100.0±0.06

PO 64.1±7.0 71.0±6.21 58.3±7.91 59.4±7.71 67.3±9.73

PR 86.8±5.2 42.1±5.31 90.6±5.21 72.0±8.91 80.6±8.51

SF 71.6±3.7 25.4±4.11 68.2±3.51 70.7±3.44 71.5±3.76

SN 77.9±9.3 51.0±7.01 75.0±5.63 63.0±5.51 69.6±8.01

SP 93.1±1.6 52.2±1.71 94.3±0.61 90.9±1.01 93.2±1.16

ZO 93.9±3.7 40.5±6.31 94.9±4.23 92.4±5.53 91.2±5.11
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Table 6.Summary of accuracy results.

Test datasets All datasets

Measure RISE PEBLS CN2 C4.5 RISE PEBLS CN2 C4.5

No. wins - 10-4 12-2 10-4 - 20-8 20-9 18-11
No. signif. wins - 7-4 10-2 9-2 - 14-7 18-6 15-7
Wilcoxon test - 96.0 99.6 98.0 - 98.0 99.6 98.0
Average 81.1 79.4 76.2 78.6 79.7 78.3 76.4 77.8
Score 46.5 34.5 27.5 33.5 86.0 65.0 63.5 72.5

• Number of wins.The first and most obvious test is simply to count the number of
datasets where RISE achieved higher accuracy than the second algorithm, count those
where its accuracy was lower, and compare the two (draws are not counted either way).
The first line of Table 6 shows this: for example, RISE performed better than PEBLS in
10 test datasets, and worse in 4 (there was 1 draw). As can be seen, RISE outperformed
every other algorithm in this respect by a ratio of roughly 2 to 1.

• Number of significant wins.The previous measure is clearly imperfect, for some of
the differences can be very small and of no real significance. A good alternative is
then to count only those datasets where the difference was significant at a confidence
level of 95% or higher (see Table 5). This yields roughly similar ratios, with all values
somewhat reduced as might be expected, confirming the previous observation that RISE
performs substantially better than every other algorithm.

• Wilcoxon test.The goal of machine learning is not in general to produce algorithms
targeted to one specific domain, but rather to produce algorithms that are accurate
across broad classes of domains. In trying to answer the question “Is RISE a more
accurate system?” it is then useful to look at the 15 (or 30) domains used in this
study as a sample of size 15 (or 30) taken from the set of real-world domains, consider
the accuracy difference in each domain as a sample of a random variable, and test the
hypothesis of whether this difference is in general positive. The Wilcoxon signed-ranks
test is a procedure that addresses this issue (DeGroot, 1986). It takes into account the
signs of the observed differences, and their ranking (i.e., the largest difference counts
more than the second largest one and so forth, but it does not matter by how much).
In each case, the results support the hypothesis that RISE is a more accurate algorithm
with a confidence in excess of 95%. It is therefore highly unlikely that RISE performed
better than the other algorithms by chance. If the domains used constitute a good sample
of the set of real-world domains to which these algorithms will be applied, we can then
conclude with high confidence that RISE is the most accurate one.

• Average.The average performance across all domains is a measure of debatable sig-
nificance, but it has often been used (e.g., Quinlan, 1993b; Clark & Boswell, 1991)
and provides additional perspective. Again RISE does visibly better than every other
algorithm. It is also interesting to note that, although IBL (PEBLS) and rule induction
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(CN2) often differ by large margins in specific domains, globally these differences tend
to cancel each other out. This is also true when comparing C4.5 with PEBLS.

• Score.The score is a measure that compares all 5 algorithms simultaneously (default
included), looking not only at which one is the most accurate one, but also taking into
consideration that being the second is better than being the worst, etc. Specifically, for
each domain the most accurate algorithm receives 4 points, the second 3, the third 2,
the fourth 1 and the worst 0. RISE obtains the largest score by a wide margin.

The same general pattern typically emerges if the results are broken down by dataset size
(small, medium and large, i.e.,e < 100, 100 ≤ e < 1000, ande ≥ 1000), dataset type
(symbolic, numeric and mixed), difficulty (easier and harder, as measured by the highest
accuracy being above or below 75%, the global average), and area (medical diagnosis,
engineering, social science, life sciences and miscellaneous). Confidence levels are of
course reduced due to the smaller sample size, and there is sometimes no clear pattern
when the number of datasets is very small, but RISE’s excellent results clearly hold across
the board.

A very significant observation is that in 14 datasets RISE’s accuracy exceeds the highest
of CN2’s and PEBLS’s (i.e., RISE not only matches the results of the best of its parent
approaches, but is able to improve on them). In 9 of those datasets this is true with a
confidence level of 95% or higher, using a one-tailed pairedt test (see Table 5). This
shows that a significant synergy can be obtained by combining multiple empirical learning
approaches.

6.3. Further study

The empirical results just described lead to the conclusion that RISE represents a significant
advance in the state-of-the-art in empirical learning. However, we would also like to know
what factors RISE’s higher accuracy should be attributed to. To answer this, lesion studies
were conducted, and additional aspects of the algorithm’s performance were measured.
The results are reported in Table 7. Superscripts indicate confidence levels for the accuracy
differences between systems, again using a one-tailed pairedt test. The first four columns
compare the full system’s accuracy with that obtained using lesioned versions, and are
summarized in Table 8. The last four columns all refer to the full RISE system, and show,
respectively: the percentage of test cases that were not matched by any rule, but had a
single closest rule, or for which all equally close rules were of the same class (No/One); the
percentage not matched by any rule, and for which there were equally close rules of more
than one class (No/Multi); the percentage matched by only one rule, or rules of only one
class (One); and the percentage matched by rules of more than one class (Multi). These
observations aid in interpreting the lesion study results.

The first specific question addressed was whether there is any gain in the rule induction
process (i.e., whether RISE constitutes an improvement over pure instance-based learning).
The “IBL” column in Table 7 reports the accuracies obtained by the initial, ungeneralized
instance set, and shows that generalization often produces significant gains in accuracy,
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Table 7. Empirical results: lesion studies and performance monitoring. Superscripts
denote confidence levels: 1 is 99.5%, 2 is 99%, 3 is 97.5%, 4 is 95%, 5 is 90%, and 6
is below 90%.

Accuracy of subsystem Match type frequency

Domain RISE IBL Rules No tie-b. No/One No/Multi One Multi

BC 67.7 65.11 69.04 68.71 33.4 1.5 59.1 6.0
CE 83.3 81.31 66.91 83.26 51.9 0.0 46.9 1.1
CH 98.2 91.91 91.91 98.01 27.6 0.1 71.4 0.9
DI 70.4 70.36 66.21 70.51 70.9 0.1 27.4 1.6
HE 78.3 78.46 79.65 78.55 55.3 0.1 43.1 1.5
IR 94.0 94.73 71.01 94.06 45.9 0.0 54.0 0.2
LA 87.2 90.81 73.71 87.16 51.8 0.2 46.6 1.4
LC 44.7 42.06 26.51 44.25 88.2 0.4 9.1 2.4
LD 62.4 60.94 62.16 62.36 72.7 0.2 24.0 3.0
LE 77.2 72.51 64.81 75.83 13.2 1.5 83.0 2.2
LY 78.7 82.01 70.11 78.23 42.9 0.4 53.9 2.8
PT 40.3 34.31 33.51 37.01 34.2 4.1 41.6 20.1
SO 100.0 100.06 85.11 100.06 16.9 0.0 83.1 0.0
VO 95.2 94.63 83.71 94.21 7.4 0.1 90.3 2.1
WI 96.9 95.11 51.51 96.96 78.1 0.0 21.9 0.0

AD 77.0 75.85 55.11 76.21 53.6 1.6 43.0 1.8
AN 97.4 97.74 77.71 97.21 24.1 0.0 75.6 0.2
EC 64.6 59.21 65.76 64.56 70.1 0.1 26.8 3.0
GL 70.6 68.32 47.31 70.42 71.5 0.0 27.2 1.3
HD 79.7 77.81 64.71 79.76 63.1 0.0 34.8 2.1
HO 82.6 76.61 79.01 81.71 39.7 0.2 55.4 4.6
HY 97.5 94.14 84.81 97.56 40.7 0.1 58.3 0.9
LI 59.9 55.91 52.71 49.71 14.7 4.5 47.3 33.5

MU 100.0 97.56 100.06 99.81 7.3 0.0 92.5 0.2
PO 64.1 59.11 70.91 65.91 36.5 12.2 44.7 6.6
PR 86.8 90.61 68.41 85.94 59.7 0.0 35.8 4.5
SF 71.6 71.16 65.51 68.11 16.7 2.9 59.9 20.4
SN 77.9 83.81 52.91 77.96 95.6 0.0 4.3 0.1
SP 93.1 87.81 75.91 92.11 67.4 0.0 29.9 2.7
ZO 93.9 94.54 81.01 93.74 17.5 0.0 81.9 0.5

Table 8.Summary of lesion study results.

Test datasets All datasets

Measure RISE IBL Rules No t.-b. RISE IBL Rules No t.-b.

No. wins - 11-4 12-2 11-1 - 21-8 25-4 20-4
No. signif. wins - 8-4 12-1 10-1 - 16-7 24-2 15-3
Wilcoxon test - 97.0 99.8 99.0 - 99.5 99.9 99.8
Average 81.1 79.3 69.4 80.0 79.7 78.1 67.9 79.0
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while seldom having a negative effect. Not surprisingly, the results are similar to those of
RISE vs. PEBLS.

The converse question is whether the instance-based component is really necessary. Sim-
ply assigning examples not covered by any rule to a default class, as done in most rule
induction systems, might be sufficient. The “Rules” column in Table 7 shows the results
obtained using this policy, and confirms the importance of “nearest-rule” classification in
RISE. The sum of the “No” columns in the right half of Table 7 is the percentage of test cases
assigned to the default class. This is often very high, the more so because RISE tends to
produce rules that are more specific than those output by general-to-specific inducers. The
use of nearest-rule is thus essential. Note that the results reported in the “Rules” column are
for applying the default rule during both learning and classification; applying it exclusively
during classification produced only a slight improvement.

Another important component of RISE whose utility needs to be determined is the conflict
resolution policy, which in RISE consists of letting the tied rule with the highest Laplace
accuracy win. This was compared with simply letting the most frequent class win (“No
tie-b.” column in Table 7). The sum of the “Multi” columns in the right half of Table 7
is the percentage of cases where tie-breaking is necessary. This is typically small, and
the increase in accuracy afforded by RISE’s conflict resolution strategy is correspondingly
small (0.7% on average, for all datasets). However, this increase is consistently produced,
as evinced by the fact that RISE is more accurate than its lesioned version with a 99.8%
confidence by the Wilcoxon test.

Taken together, the lesion studies show that each of RISE’s components is essential to
its performance, and that it is their combination in one system that is responsible for the
excellent results obtained by RISEvis-à-visother approaches.

The question now becomes one of why RISE’s combined approach is superior to the
individual ones, and under what other conditions the combined approach will lead to su-
perior performance. This was studied by conducting experiments in artificial domains.
Space limitations preclude full reporting of these studies here, but the main results can be
summarized as follows (see Domingos, 1995c, and Domingos, in press, for a more detailed
treatment).

Compared to IBL systems, RISE draws strength from its ability to perform context-
sensitive feature selection. Conventional feature selection methods, and VDM-style metrics,
are only able to weed out features that are globally irrelevant. RISE, like rule and decision
tree learners, can retain different sets of features in different parts of the example space.
Experiments correlating accuracy with a measure of context dependency of feature relevance
showed the advantage of RISE’s feature selection strategy increasing with this dependency.
RISE’s bias will be inappropriate when this dependency is absent, and can hurt performance
if the datasets are also small and noisy. An additional hypothesis to explain RISE’s advantage
vs. “pure” IBL is that, because of its ability to simplify frontiers in the example space through
abstraction, it can detect simple frontiers more easily when they exist.

A number of IBL algorithms, including PEBLS, discretize numeric features and then
apply a VDM-style metric to the resulting descriptions. This improves their ability to cope
with irrelevant features, since the VDM for two values of an irrelevant feature will tend
to be zero while Euclidean distance may be arbitrarily large. However, it also loses one
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of IBL’s main advantages: its ability to form non-axis-parallel frontiers in instance space.
Ting (1994) found that this approach improved accuracy in a number of domains, which
can be attributed to the first effect having prevailed. In other domains the opposite was
observed. RISE overcomes this trade-off: it is still able to form non-axis-parallel frontiers
through its use of Euclidean distance, and at the same time it is able to overcome irrelevant
features by generalizing or entirely dropping them.

Compared to “divide and conquer” or “separate and conquer” systems like C4.5 and
CN2, RISE’s higher accuracies can be hypothesized to be due to the following factors.
RISE is able to form complex non-axis-parallel frontiers, and is thus at an advantage when
these are appropriate. Its “conquering without separating” induction strategy makes it less
sensitive to the fragmentation problem, and its specific-to-general search direction allows it
to identify small exception regions that will go undetected (or be more poorly identified) by
general-to-specific learners. A study designed to exhibit conditions where each bias would
be superior by correlating accuracy with concept specificity confirmed RISE’s advantage
when concepts are highly specific, but failed to produce the opposite result for general
concepts, with both noise-free and noisy datasets. The question of what exact conditions
will favor algorithms like C4.5 and CN2 over RISE thus remains a topic for further research.

6.4. Space and time comparisons

Besides accuracy, two variables of interest are output size and running time. These are
listed in Table 9. Output size is measured by counting one unit for each antecedent of a
rule, plus one for the consequent. The size for PEBLS is simply that of the the training set
(i.e., e(a + 1), in the notation of Section 5). Running times were obtained on a Sun 670
machine, with all algorithms implemented in C and similarly compiled. All values shown
are averages of 50 runs.

With respect to output size, RISE occupies an intermediate position between the IBL
and rule induction representatives. It obtains large savings compared to PEBLS, and these
increase with training set size (see, e.g., the MU dataset). We can thus expect RISE to be at a
significant advantage relative to unedited IBL methods in applications where a large number
of examples is available, and the target concept is comparatively simple. On the other hand,
RISE’s output is still generally much larger than CN2’s. The number of rules produced
(not shown) is typically similar, but RISE’s rules tend to be substantially more specific; this
is consistent with the search direction and best-match policy it uses. An important fact is
that, if rules that do not win any training examples are discarded, the resulting decrease
in RISE’s accuracy is minimal (0.05% on average) and has practically no effect on the
comparison with CN2, but the output size is reduced by 50% or more, and the average
number of rules becomes smaller than CN2’s in every domain except VO (where it is about
the same). Thus, when simplicity of the output is a goal, RISE can often come quite close
to CN2 without compromising accuracy. However, the simplest results are always those
obtained by C4.5RULES. (The pruned tree sizes (not shown) are comparable to those of
CN2’s and RISE’s pruned rule sets.)

With respect to running time, RISE is slower than PEBLS on most datasets. This is to
be expected, since RISE essentially does everything that PEBLS does, and more. More
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Table 9.Empirical results: output size and running time (in minutes and seconds).

Output size Running time

Domain RISE PEBLS CN2 C4.5 RISE PEBLS CN2 C4.5

BC 1045.4 1910 410.2 17.5 0:15.11 0:03.16 0:22.86 1:31.41
CE 4110.9 7392 679.4 51.0 4:31.25 0:16.11 2:05.30 2:53.67
CH 3063.8 79217 843.1 96.2 10:39.67 11:59.41 6:41.85 4:00.51
DI 3048.8 4626 802.0 69.3 4:15.37 0:12.30 2:13.93 4:02.76
HE 1231.9 2060 112.8 20.5 0:10.93 0:02.32 0:07.42 0:08.24
IR 382.9 500 63.2 9.9 0:05.42 0:01.74 0:03.01 0:02.09
LA 305.7 646 42.3 10.0 0:01.30 0:01.60 0:02.42 0:01.96
LC 403.3 1197 39.6 7.8 0:00.69 0:01.70 0:04.64 0:02.07
LD 1156.8 1617 436.1 63.6 1:31.02 0:02.82 0:28.21 1:06.12
LE 16.7 80 25.5 6.1 0:00.13 0:01.78 0:00.55 0:01.31
LY 756.4 1881 131.7 25.4 0:04.88 0:02.21 0:07.77 0:06.07
PT 2076.7 4086 653.6 61.1 0:14.38 0:06.07 1:58.39 1:55.04
SO 106.2 1116 18.8 9.9 0:00.50 0:01.64 0:01.46 0:01.74
VO 541.0 4947 113.2 15.9 0:27.71 0:07.07 0:06.47 0:03.41
WI 896.3 1666 87.6 14.3 0:15.31 0:02.77 0:10.30 0:11.18

AD 4165.8 9380 236.4 40.7 0:11.20 0:07.14 1:10.47 0:24.18
AN 13527.3 20826 420.4 62.0 4:26.07 1:46.58 4:34.74 2:46.27
EC 550.2 696 137.7 19.7 0:04.84 0:02.70 0:07.16 0:13.05
GL 696.2 1430 245.8 47.0 0:11.03 0:02.75 0:28.22 1:41.71
HD 1460.5 2842 320.8 42.9 0:26.35 0:03.71 0:24.85 1:53.25
HO 2111.6 4623 268.6 19.4 1:39.64 0:05.77 1:42.63 0:24.29
HY 7465.9 55094 430.7 14.5 14:45.96 8:36.18 11:53.69 1:54.54
LI 217.3 536 125.8 40.3 0:00.60 0:01.68 0:02.42 0:02.89

MU 398.1 125189 176.8 38.6 10:07.22 45:37.28 4:16.37 18:29.79
PO 470.3 540 132.9 4.5 0:01.49 0:01.46 0:05.28 0:02.53
PR 1198.6 4118 82.5 16.0 0:07.85 0:02.94 0:15.03 0:06.28
SF 1316.2 2808 326.3 35.2 0:08.97 0:04.19 0:20.03 0:28.49
SN 3756.4 8479 224.0 33.9 2:35.81 0:09.76 2:39.08 5:15.54
SP 8350.7 130357 1360.5 211.3 51:28.15 19:25.15 32:15.24 24:20.94
ZO 196.2 1139 41.3 20.0 0:01.11 0:01.76 0:02.03 0:02.16

surprising is the fact that RISE is still faster than PEBLS on eight datasets, including
several purely symbolic ones. This suggests that PEBLS’s implementation could be further
optimized. RISE is typically faster than CN2, but this advantage tends to be concentrated
in the smaller datasets, raising the possibility that CN2 will be at a considerable advantage
in larger datasets than those used here, provided the concept description is still sufficiently
simple (if not, CN2’s time will grow to the worst-case bound discussed in Section 5,
equivalent to RISE’s). RISE is also typically faster than C4.5 in this comparison, but this
is due to the fact that the windowing option is being used in C4.5; even though each tree is
typically grown faster with windowing, this gain tends to be swamped by the fact that 10
trees are being grown.

We conclude that, for datasets of very large size, and/or when comprehensibility is
paramount, a system like C4.5 will still be the first choice. If, on the other hand, ac-
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curacy is the dominant goal, the results of previous subsections indicate that RISE may be
a more appropriate algorithm to use.

7. Related work

The RISE approach should be seen in the context of previous work in inductive learning
and related areas.

The AQ15 system employed best-match classification (Michalskiet al, 1986; a more
recent version is AQ17-HCI (Wnek & Michalski, 1994)). It differed from RISE in that it
was a general-to-specific, separate-and-conquer system that learned purely logical rules, and
only introduced the best-match policy in a post-processing step, with the goal of removing
rules from the set without adversely affecting accuracy. It also used a different distance
measure. Its approach is carried further in the FCLS system (Zhang, 1990), which combines
rules with exemplars in an attempt to alleviate the small disjuncts problem. Unlike RISE,
FCLS employs different representations for rules and exemplars, and it uses the separate-
and-conquer strategy of its AQ ancestors.

RISE addresses the fragmentation problem in rule induction by employing a “conquering
without separating” induction strategy. Other approaches to this problem include construct-
ing new attributes (Pagallo & Haussler, 1990) and converting decision trees to decision
graphs (Oliveira & Sangiovanni-Vincentelli, 1995; Kohavi & Li, 1995).

Viewed as an instance-based learner, RISE performs context-sensitive feature selection,
which can be seen as an extreme form of context-sensitive feature weighting. A number
of methods of this type have been proposed in the literature (Aha & Goldstone, 1992;
Atkeson, Moore & Schaal, in press). Non-metric, context-sensitive distance measures for
IBL are discussed in (Biberman, 1994). Another important aspect of RISE is its policy
for combining numeric and symbolic attributes, using SVDM for the former and Euclidean
distance for the latter. Alternative approaches have been explored by Ting (1994) and Mohri
and Tanaka (1994).

MCS (Brodley, 1995) has the most similar aims to RISE’s, but uses an entirely different
approach (applying meta-knowledge to detect when one algorithm should be used instead of
another), and combines instead decision trees with IBL and linear discriminant functions.
Golding and Rosenbloom (1991) designed a system that gainfully combined case-based
and rule-based reasoning, but it did not learn, it matched rules exactly, and it used differ-
ent representations and match procedures for cases and rules, instead of RISE’s unified
approach. Quinlan (1993b) has successfully combined IBL with trees and other methods,
but for the purpose of regression as opposed to classification, performing this combination
only at performance time, and in a way that depends critically on the predicted value being
continuous. Several induction algorithms proposed in the literature can be seen as em-
pirical multi-strategy learners, but combining different paradigms from RISE’s: decision
trees and rules (Quinlan, 1987), decision trees and perceptrons (Utgoff, 1989b), rules and
Bayesian classification (Smyth, Goodman & Higgins, 1990), back-propagation and genetic
algorithms (Belew, McInerney & Schraudolph, 1992), instances and prototypes (Scott &
Sage, 1992), decision trees and kernel density estimation (Smyth, Gray & Fayyad, 1995),
etc.
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In form, the most similar system to RISE in the literature is EACH (Salzberg, 1991),
which generalizes instances to hyperrectangles, and classifies each test example according
to its nearest hyperrectangle. It differs from RISE in many ways: it is applicable only
in purely numerical domains, is an incremental algorithm, never drops attributes, uses
different heuristics and search strategies, always prefers the most specific hyperrectangle,
etc. Recently Wettschereck and Dietterich (1995) carried out a detailed comparison of
EACH and k-nearest-neighbor (kNN), and designed an algorithm that combines the two
(Wettschereck, 1994), but does not achieve greater accuracy than kNN alone. They found
EACH to be less accurate than kNN in most of the domains studied, and the chief cause
of this to be EACH’s use of overlapping rectangles. Since RISE and EACH use similar
representations in the case of numeric attributes, this warrants closer examination.

Two issues are involved in Wettschereck and Dietterich’s study, and they should be clearly
distinguished. One is whether using one nearest neighbor is preferable to using several.
This has been studied for many years in the nearest neighbor literature (e.g., Cover & Hart,
1967). Another issue, of more interest here, is whether or not generalization of instances
to hyperrectangles is beneficial. Unfortunately, the study does not decouple the two issues,
and it is not possible to determine which of the two factors (or both) is responsible for
the observed differences in performance. EACH (and RISE) can be extended to use the
k nearest rules for classification; doing so and comparing the resulting approaches with
kNN is a worthy topic for future research. Here we will discuss our results on the issue of
whether or not to generalize instances to rules, in the context of using the single nearest
rule for classification.

In the cross-validation studies reported above, RISE’s tie-breaking policy based on
Laplace accuracy was compared with one selecting the most specific rule as in EACH,
and found to be clearly superior. This can be understood as follows. In regions of overlap,
EACH arbitrarily assigns all examples to the class of the most specific hyperrectangle. In
contrast, RISE’s learning strategy approximates the optimal decision rule of placing the
boundary between two classes at the point where the density of examples from one over-
takes that of the other (Duda & Hart, 1973). This is because a rule is started from each
example, and its generalization halts when it would include more examples of other classes
than of the example’s one. The use of Laplace accuracy then implies that, given similar-
sized samples, each rule prevails in regions where the density of examples of its class is
greater. RISE’s batch-learning approach also avoids the problems that EACH’s incremen-
tal learning one was observed to suffer from. As reported above, RISE outperformed two
one-nearest-neighbor algorithms (PEBLS and RISE’s own IBL component) in a large-scale
empirical study. All these facts support the conclusion that generalizing instances to rules
can indeed produce substantial improvements in accuracy, if done in an appropriate manner.

8. Conclusions and future research

A major direction for future research is extending the current RISE framework to include
analytical as well as empirical learning. This will allow us to perform theory revision and
interleaved automatic/manual construction of knowledge bases, as well as pure induction.
The first step towards this goal is the introduction of specialization operators, in addition to
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the current generalization procedure. The use of general-to-specific search in a “conquering
without separating” mode will also allow closer comparison of the latter with the currently
prevalent “separate and conquer” strategy. Other directions for research include: studying
in greater detail the behavior of RISE with windowing, and determining its applicability to
large databases; extending it to use thek nearest rules to classify a new example; exper-
imenting with methods for generalizing a symbolic antecedent that stop short of deleting
it (e.g., through the introduction of internal disjunctions); experimenting with alternative
methods for processing missing values; and performing an average-case analysis of the
algorithm. Finally, we plan to make available a user-friendly version of RISE.

In conclusion, the research reported here attempted to bring together the best features
of rule induction and instance-based learning in a single algorithm. Extensive empirical
evaluation has shown this attempt to be remarkably successful. A simplification of the
knowledge engineer’s task is now possible, since she can use a single algorithm (RISE)
instead of an IBL and a rule induction one, with reasonable confidence that accuracy will
not be reduced, and may in fact be improved.
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Notes

1. This phrase will be used in this article to refer to a family of learning approaches that also includes, or is also
known as, exemplar-based, memory-based, case-based, experience-based, kernel-based, nearest-neighbor,
local, and lazy learning.

2. The computations in this reference are only for the basic step of the algorithms, which is embedded in loops
that may runO(ea) in the worst case, leading to the bound shown.

3. BC: Ljubljana dataset; CH: king-rook-vs-king-pawn dataset; EC: class is 2nd feature, features 1 and 10-13
deleted, example with unknown class deleted; HD: Cleveland dataset, last feature deleted to yield a two-class
problem; HO: class is 24th feature, features 3 and 25-28 deleted; LI: 100 examples, seed = 1, 10% noise; PO:
pseudo-discretized values reconverted to numeric; SF: 1st feature used as class; SO: small dataset.

4. Clark & Boswell (1991) observed Laplace accuracy to outperform entropy in the context of CN2, but conducted
no comparison of Laplace accuracy with uncorrected accuracy.
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