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Abstract. Breiman (Machine Learning, 26(2), 123-140) showed that bagging could effectively reduce the
variance of regression predictors, while leaving the bias relatively unchanged. A new form of bagging we call
iterated bagging is effective in reducing both bias and variance. The procedure works in stages—the first stage is
bagging. Based on the outcomes of the first stage, the output values are altered; and a second stage of bagging is
carried out using the altered output values. This is repeated until a simple rule stops the process. The method is
tested using both trees and nearest neighbor regression methods. Accuracy on the Boston Housing data benchmark
is comparable to the best of the results gotten using highly tuned and compute- intensive Support Vector Regression
Machines. Some heuristic theory is given to clarify what is going on. Application to two-class classification data
gives interesting results.
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1. Introduction

In regression, the average mean-squared generalization error is the sum of the noise vari-
ance, the predictor bias, and predictor variance. Breiman (1996) introduced bagging as
a way of reducing predictor variance. Applied to a number of real and synthetic data
sets, it significantly reduced test set error. Bagging reduced variance but had little effect
on the bias, and the bias and noise remained to limit the prediction accuracy. But there
is a variant of bagging we call iterated bagging that can reduce the bias as well as the
variance.

Section 2 gives an intuitive overview of my procedure. It basically consists of running
iterated baggings, but such that after each iteration the output values are modified. Section 3
introduces our implementation of the procedure which we will refer to as iterated bagging
or debiasing.

Section 4 recalls the bias-variance definitions and computes bias and variance for bagging
and iterated bagging on synthetic data sets using unpruned trees as the base predictor.
Computing bias and variances before and after for the synthetic data sets gives insight into
when iterated bagging does or does not give error reduction. Section 5 gives empirical error
results on both on real and synthetic data sets. On some of the data sets iterated bagging
gives significant decreases in error rates. Section 5.1 gives a comparison to Support Vector
Regression Machines on the Boston Housing Data benchmark.

Section 6 gives some heuristic theory for iterated applications of a classifier. In Section 7
we switch over to nearest neighbor regression to see what the effects of iterated bagging
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are using this predictor. While the first stage of bagging results in large decreases in error,
iterated bagging produces no further error reduction on most of the data sets.

In bagging one uses the unpruned trees because bagging affects only variance. Therefore,
the individual predictors should be as unbiased as possible; and generally the smaller the tree
used, the larger the bias. But since iterated bagging can reduce both bias and variance, this
opens the possibility of using smaller trees and saving on computation. Section 8 explores
this empirically and shows that, indeed, using iterated bagging, much smaller trees can give
error rates only slightly larger than using unpruned trees.

One interesting avenue opened by debiasing leads to classification. A two-class problem
can be translated into a regression problem with a zero-one output. Can iterated bagging
be applied to get effective classification? The answer is generally yes, but with a twist.
Unpruned trees, in classification as in regression, have small bias. But to get optimal re-
sults in classification, we need to use trees with a small number of terminal nodes. Then
misclassification rates comparable to Adaboost are produced. These results are contained
in Section 9.

Most of the recent work in regression has focused on reducing variance. The exceptions
consist of efforts made to adapt Adaboost to a regression context (Drucker, 1997, 1999) and
use of Support Vector Regression Machines (see Vapnik, 1998; Drucker et al., 1997; Stitson
etal., 1999; Scholkopf et al., 1999). The work using boosting contains experimental results
that show decreases in mean squared error as compared to bagging. Freund and Schapire
(1996) have shown that Adaboost reduces both bias and variance in classification, so it is
possible that some of the bias reduction carries over into regression. The work using Support
Vector Regession Machines has given promising results on one data set (see Section 5.1)
but needs testing on a variety of data.

Friedman (1999a, b) introduced regression methods he referred to as “gradient boosting”
Iterated bagging has no connection to boosting; but there are some connections to Friedman’s
work. As requested by a referee, this is discussed in Section 10. The last section consists of
final remarks and conclusions.

2. The basic idea

Assume regression type training set 7= {(y,, x,), n = 1, ..., N} and analgorithm that uses
T to construct a regression predictor fr(x, T') for future y values. A seemingly attractive
iterative method for increasing accuracy is:

Run the algorithm on T producing the regression predictor fr(x, T').

Compute the residuals y, = y, — fr(x,, T).

Run the algorithm on the training set 7’ = {(y,,, x,)}, getting the new predictor fr(x, T”).
Compute residuals y, from the combined predictor fz(x, T) + fr(x, T’), form the
predictor fr(x, T"), etc.

bl s

If repeated many times, this iteration builds anew predictor fz(x) = fr(x, T) + fr(x, T') +
fr(x, T”)+ - - - which, hopefully, is more accurate than the first fz(x, 7). Applied to linear
regression this idea fails. The predictor fr(x, T’) is identically zero. Linear regression on
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the residuals produces zero coefficients. However, this idea, properly implemented, can
work and leads to iterated bagging.

To analyze the idea more closely, let y = f(x) 4+ & where ¢ is the inherent zero-mean
noise; and f is the structural part that we hope to estimate. The residuals have the form:

y;; =én+ f(xn) - fR(xn’ T)

Now y; should be an estimate of the bias. But if fz(x, T) is noisy due to high variance, then
the residuals will reflect both the inherent noise and the variance noise. The information
about the bias in the residuals will be contaminated. Therefore the first requirement to make
the method work is:

Use a low variance regression algorithm

Here bagging is used. Even so, a problem still remains. Running bagging iteratively on
successive residuals does not work. For almost any regression method, the training set
residuals have a significant tendency to be too small since the basic idea of most regression
methods is to make the residuals as small as possible. This implies that they are poor
estimates of the “true” residuals. To define what I mean by the “true” residuals, suppose the
single instance (y,, X,) is left out of the training set, and the algorithm run on this reduced
training set. Then

/

Yo = Yn — TrRGn, T — (Yn, x,))
=én+ f(xn) - fR(xna T — (ynaxn))

is an unbiased estimate of the “true” residual at x,,.

Suppose this were done N times, each time leaving out a different instance. These
residuals give unbiased estimate of the bias term. The second requirement needed to make
the method work is

Use unbiased estimates of the residuals

If the only way to get unbiased residuals is to run the leave-one-out method N times, then
the computing requirements are large (although ten-fold cross validation could be used).
However, bagging can automatically compute unbiased residual estimates using out-of-bag
estimation (defined in Section 3). Thus iterated bagging has the form:

a) Run bagging many times, say 50-100, getting fr(x, T).

b) Using for y’ the out-of-bag residuals estimates run bagging on the revised training set
{(y), x,)} and form the new predictor fr(x, T) + fr(x, T").

c) Repeat steps a) and b).

At some point, the intrinsic errors become comparable in size to the residual bias f(x) —
frx,T) — fr(x, T") — - - -. The iterative process automatically senses this and stops.
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3. Iterated bagging-more details

Iterated bagging is done as follows:

(I) The procedure proceeds in stages with each stage consisting of bagging a fixed number
K of predictors using the same input values but with altered output values. Let the
values of the output variable used in the jth stage of bagging be denoted by {y,ij )},
with {y,gl)} being the initial output values.

(I1) During jth stage, denote by Y, the predicted values given by the kth predictor grown.
At the end of the jth bagging stage, set

o . .
w =y = avid

where the average over 3, i is taken only over those k such that the nth instance is not
in the kth training set.

(II) Ifx is an input value not in the initial training set, then the predictor Y+ (x) for x
after j stages is obtained as follows: let f; i (x) be the value predicted for x by the kth
predictor in the jth stage. Then

FUT @) = FO%) + av fi ()

Here is how this makes sense: assume we have repeated the bagging 100 times. In each
bootstrap training set, about 37% of the instances will be left out. Therefore, the 3, x are
getting averaged over roughly 37 training sets and this average subtracted from y,(/ ) to form
the new outputs. The averaged J, ; are approximations to test set values of f/)(x) evaluated
at training set instances.

This procedure is repeated in successive iterations. The signal to stop repeating is this: if
the mean sum-of-squares of the new y’s is greater than 1.1 times the minimum of the mean
sum-of-squares of the y’s in any of the previous stages, then stop and use the predictor
given by the end of the stage having minimum mean sum-of-squares. The reason for this
stopping rule is that the mean-sum-of-squares of the y’s is a measure of the residual bias.
When they begin increasing, the debiasing is beginning to reflect noise. Then we stop and
go back to the minimum value.

Within limits the procedure is not sensitive to the choice of the threshold multiplier. I
tried using 1.2 on a few data sets and the results were similar, but with slightly less accuracy
than 1.1. Lowering it to 1.05 resulted in noticeably worse performance. All runs reported
on here used 1.1.

4. Bias-variance results on synthetic data
4.1. Recalling the bias-variance decomposition

Suppose a training set T = {(y,, X,), n = 1, ..., N} consists of N instances independently
drawn from the same underlying distribution. Let Y, X be random variables having the same



USING ITERATED BAGGING TO DEBIAS REGRESSIONS 265

distribution. We can always write Y as:

Y=fX)+¢ (1)
where

E(]1X)=0

Equation (1) decomposes Y into its structural part f(X) which can be predicted in terms of
X, and the unpredictable noise component. Suppose there is a prediction algorithm which
uses the training set to form predictions fr(x, T') of y given the input vector x. The mean-
squared generalization error of f is defined as

PE(T) = Eyx(Y — fr(X, T))? 2)

where the subscripts indicate expectation with respect to Y, X holding T fixed.

Take the expectation of (2) over all training sets of the same size drawn from the same
distribution and denote this average generalization error by PE*. Also, let f(x) be the
average over the training sets of the predicted value at x. That is,

f) = Er frx, T)

Then the bias-variance decomposition (see Breiman, 1996; Geman, Bienenstock, & Doursat,
1992) is

PE* = Ee* + Ex(f(X) — fX)* + Erx(frX, T) — f(X))* 3)

where the first term is the noise variance, the second is the bias and the third is the variance.
Thus, the bias and variance are the two target sources of error.

In the theoretical setting for bagging (Breiman, 1996) we noted that if we had an endless
supply of independent training sets of the same size, each drawn from the same distribution,
then we could compute the predictor f(x) which has zero variance but the same bias as
the fr(X, T). Then bagging was introduced as a way of imitating the endless supply of
replicate training sets to produce a reduced variance predictor.

4.2. Bias and variance for synthetic data

With synthetic data, we can compute bias and variance for any given prediction method.
We work with four synthetic data sets. The last three originated in Friedman (1991) and
are also described in Breiman (1998). The Peak20 data (Breiman, 1994) are obtained as
follows: let r = 3u where u is uniform on [0,1]. Take x to be uniformly distributed on the
20-dimensional sphere of radius r. Let y = 25exp(—.5r). Training sets of size 400 are
generated from the Peak20 data, and of size 200 for the Friedman data.
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Table 1. Bias and variance—unpruned CART.

Data set Bias Variance Noise
Peak20 10.5 33.5 0.0
Friedman #1 34 10.7 1.0
Friedman #2+3 1.0 26.7 16.0
Friedman #3—3 8.0 33.8 11.1

The + and — following a data set name indicate the
power of 10 to multiply the result by. For instance, the
error of Friedman #3 is 8.0 x 10-3. The same multipliers
will be used in all further tables.

Using these four synthetic data sets, bias and variances were computed using unpruned
CART as the predictor. The results are given in Table 1 together with the theoretical noise
variance. Then we computed bias and variances for the same data using bagging (50 un-
pruned trees) and iterated bagging (50 unpruned trees per stage). These are shown in Table 2.
The --- symbol means that iterated bagging produced no change from bagging; i.e., one
stage was optimal. In the first two data sets, iterated bagging raises the variance slightly,
but drastically cuts the bias. In Friedman #2, the bias is so small already that debiasing
has no effect. Friedman #3 has bias and variance nearly equal after bagging. The debiasing
occasionally goes on for two stages, which may explain the decrease in bias. But this is
offset by the increase in variance.

The noise variance of Friedman #3 is 11.1, and this may make the debiasing noisy. To
explore this last possibility Friedman #3 was run without noise to give bias and variance
values. After bagging, the bias and variance were 7.9 and 3.6. After iterated bagging they
were 2.4 and 4.9. So it is clear that the presence of noise of the same order as the bias and
variance in this example prevented effective debiasing.

The greatest effect is seen in the Peak20 data. Starting with a test set mean-squared error
of 44.0, bagging reduces it to 12.9 and iterated bagging to 3.8.

Table 2. Bias-variance for bagging and iterated bagging.

Bagging Iterated
Data set Bias Variance Bias Variance
Peak20 10.7 2.2 1.1 2.7
Friedman #1 3.8 14 1.2 1.9
Friedman #2+-3 0.7 4.6 -—- -—-

Freidman #3—3 7.6 5.9 6.2 7.4
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5. Empirical results

Nine data sets are used in our experiments, including the four synthetic data sets used above.
A summary is given in Table 3. Of these data sets, the Boston Housing, Abalone and Servo
are available at the UCI repository. The Robot Arm data was provided by Michael Jordan.

Bagging and iterated bagging using unpruned CART with 50 trees per stage, were applied
to the data sets listed in Table 3. The first three data sets listed are moderate in size; and
test set error was estimated by leaving out a random 10% of the instances, running both
bagging and iterated bagging on the remaining 90% and using the left out 10% as a test set.
This was repeated 100 times and the test set errors averaged. The abalone data set is larger
with 4177 instances and 8 input variables. It originally came with 25% of the instances set
aside as a test set. We ran this data set leaving out a randomly selected 25% of the instances
to use as a test set, repeated this ten times, and averaged.

The third column of Table 4 gives the percent reduction in test set mean-squared error
from that of bagging. The last column gives the average number of stages used in the iterated
bagging. Table 4 shows that significant reductions in error can be made by using iterated
bagging. When it does not produce reductions compared to bagging, it stops after one stage
so that accuracy does not deteriorate. The slight deterioration in the servo data set is caused
by the fact that the data set is small (167 instances) and the mean sum-of-squares of the
residuals is noisy. The result is that in a small number of the 100 runs it goes to two stages
resulting in less accuracy than if it stopped at one stage.

5.1.  Comparison to support vector regression machines (SVRMs)

The Boston Housing data has been used as a benchmark in recent studies using Support
Vector Regression Machines (see Drucker et al., 1997; Stitson et al., 1999; Scholkop et al.,
1999). The usual procedure, introduced in Drucker et al. (1997), is to split off a test set of
size 25 and average the test set mean-squared error over 100 iterations.

In using SVRMs (Vapnik, 1998) at least two parameters (size of the e-tube and the
regularization constant) have to be optimized using validation techniques. The best result

Table 3. Data set summary.

Data set Nr. Inputs #Training #Test
Boston Housing 12 506 10%
Ozone 8 330 10%
Servo —2 4 167 10%
Abalone 8 4,177 25%
Robot Arm —2 12 15,000 5,000
Peak20 20 400 4,000
Friedman #1 10 200 2,000
Friedman #2+3 4 200 2,000

Friedman #3—3 4 200 2,000
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Table 4. Percent reduction of error and stages used.

Data set Bagging Iterated %Reduction #Stages
Boston Housing 11.4 9.7 15 2
Ozone 17.8 17.8 0 1
Servo —2 24.5 25.1 -3 1
Abalone 4.9 4.9 0 1
Robot Arm —2 4.7 2.8 41 3
Peak20 12.8 3.7 71 3
Friedman #1 6.3 4.1 35 2
Friedman #2+-3 21.5 21.5 0 1
Friedman #3—3 24.8 24.8 1

to date is in Stitson et al. (1999), which also optimizes on the degree of the ANOVA kernel
used. Some heavy computing leads to an error of 7.6 & .6, where the + value is twice the
standard deviation of the errors over the 100 iterations divided by 10 (the square root of
the number of iterations). Scholkopf et al. (1999) optimize over a kernel parameter and the
regularization constant, but not over the size of the e-tube. They present results for different
values of €. The smallest error listed is 8.7 & 1.4.

We ran iterated bagging 100 times with test sets of size 25 and 100 trees grown in each
stage. The error was 8.6 £ 1.2. In iterated bagging, no parameters need to be optimized. It
is a completely turnkey procedure with modest computing requirements. Yet on the Boston
Housing benchmark it gives errors comparable to highly tuned, compute-intensive SVRMs.

6. Some heuristic theory

While bagging can significantly reduce variance and, in consequence, the generalization
error, it has little effect on the bias. To see how the method of iterated bagging works
and how unbiased residuals and low variance prediction fit into the picture, we give some
heuristic theory.

Assume that the training set outputs are of the form f(x,) + ¢ where the noise ¢ is mean
zero and independent of the inputs. The training set depends on the {f(x,)}, the {€}, and
the {x,}. Since the {x,} will be held fixed, denote the training set by { f, ¢} and functions g
of the {x,} by g(-). Henceforth all functions considered will be defined only on the {x,}.

Given this training set, a prediction algorithm produces a function f(x, f, €). Take the
expectation of this function with respect to ¢ getting the function S(x, f). Considering S
only at the values of the {x,,} it is a mapping from a function f defined on the {x,} to another
function defined on the {x,}.

Ordinarily, the residuals are of the form

y,/1 =é&p+ f(xn) - fR(xnv fv 8)

The overfitting difficulty stems from the correlations between the noise in the output and
the same noise being used to construct the predictor. What we called unbiased residuals are
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of the form

y;; = 8:; + f(xn) - fR(xn’ fv 8)

where the {¢),} are independent of the {e,}, but with the same distribution. Running the
algorithm on these outputs and adding to the initial predictor gives the predictor

fR('v fs ‘9) + fR('v f - fR(fs 8)78/)

Take expectation of this with respect to & and ¢. The first term becomes Sf. The second
term, taking expectation with respect to &’ first, becomes

S('9 ,f - fR(f’ 8))
The key to this step is the independence of ¢ and &’. To take expectation with respect to &,

we argue as follows: for a low variance algorithm fx(-, f, €) does not vary much with ¢.
So make the approximation

E[S(’ f - fR('ﬂ fv 5))] ~ S(’ f_EfR(7 f’ 8)) = S(I _S)f (4)

where E denotes expectation with respect to €. To make this approximation more under-
standable, do a Taylor expansion:

G £ e) =hPC )+ (e, D) + -

where both A's are functions on the {x,} and (, ) indicates inner product of two N-vectors.
Suppose the higher order terms can be neglected. Then

ELf&C, freNl=hV(, ) =SC, f)
Now do the Taylor expansion
S('9 fR(" fv ‘9)) =S(S(7 f) +(83 b()) + -

Assuming higher order terms can be ignored and taking the expectation gives the approxi-
mation (4). Going to the next stage, the new unbiased residuals are

8//+f(') - fR('v f,&,‘) _fR('s f - fR(f»g)vg/)

where the ¢” are independent of the ¢’, €. Repeating the argument above gives the expected
value of the augmented predictor as

Sf+SUT—S)f+SUI—S)UI—-S8)f
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Continuing this way for K steps, gives the expectation of the predictor as

S(i(l—&k f)

k=0

If there is convergence—that is, if:

K
D U =8 f— [
k=0

then the limit function must satisfy the equation

I =f=f—f

L. BREIMAN

®)

implying (> = f. Thus, the limiting expectation of the iterated predictor is exactly the

structural function f.

The open question remaining is the convergence in (5). For any collection of N real

numbers ay, az, ..., ay, define

{ 1/2
_ 2
lall = <N Z%)

Weak learning condition

There is an € > 0 such that for every function g(-) defined on the {x,}

I =8l = 1 —=e)lgll

If the weak learning condition is satisfied, then

(T =S fIl < (1= fI

and this is enough to guarantee convergence in (5).

(6)

The requirement (6) says that for a class of functions, the root mean-squared difference
between the function and its estimate by the algorithm is uniformly slightly less than the
root mean-squared value of the function. That is, the algorithm gives, uniformly, a slight
edge in accuracy. This forms an interesting analogy to the concept of a weak learner in

classification.

Clearly, what has been done is not rigorous, and it would take a lot of work to make
it so. But it does indicate the importance of using unbiased residuals and low variance
predictors. Plus it gives an indication that to work, the predictors may have to satisfy some

weak learning condition.



USING ITERATED BAGGING TO DEBIAS REGRESSIONS 271

Table 5. Bias and variance—nearest neighbor.

Data set Bias Variance Noise
Peak20 51.7 15.7 0.0
Friedman #1 5.2 13.2 1.0
Friedman #2+3 2.7 34.9 16.0
Friedman #3—3 15.5 39.7 11.1

7. Nearest neighbor bagging and debiasing

The decreases in prediction error using iterative stages of bagged predictors depend on the
prediction algorithm. In this section, nearest neighbor prediction is used. Given a training
set T and a point x, the prediction for x is the value corresponding to that in the training
set closest to x. Euclidean distance was used with coordinates normalized by their standard
deviations. This prediction method has bias and variance given in Table 5. Although nearest
neighbor regression is not a good prediction method in high dimensions (Friedman, 1997),
the results of bagging and iterated bagging are interesting. We began by running both
bagging and iterated bagging on the synthetic data sets and computing the bias and variance
given by each method. The results are summarized in Table 6. Although bagging lowers the
variance considerably in all four data sets, iterated bagging does not help in the last three.
In Peak20, where the bias dominates, there is a major reduction in bias more than offsetting
the increase in variance. The inability of iterated bagging to reduce bias, say in Friedman
#3, may be due to violation of the “weak learner” condition.

In the next experiment, the real data sets listed in Table 3 were used. Table 7 below
gives the test set error estimated the same way as in Section 5. The Peak20 data consists of
400 instances in 20 dimensions, and the bias overwhelms the variance. So it is not entirely
surprising that bias reduction has an important effect.

For all the other data sets, bias reduction is virtually non-existent, but variance reduction,
via bagging, decreases error significantly. The easiest explanation is that nearest neighbor
regression is not a “weak learner” for the data sets used. But whether this is the full expla-
nation is uncertain. On all data sets the debiased CART errors were lower than the nearest
neighbor debiased error.

Table 6. Bias and variance for the nearest neighbor prediction method.

Single Bagged Iterated bagging
Data set Bias Variance Bias Variance Bias Variance
Peak20 51.7 15.7 62.0 6.4 9.7 17.7
Friedman #1 5.2 13.2 5.2 5.8 --- -
Friedman #2+-3 2.7 34.9 3.1 14.3 - -—-

Friedman #3—3 15.5 39.7 15.8 17.4 - -
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Table 7. Mean-squared error for nearest neighbor prediction.

Data set Single Bagged Iterated
Boston Housing 18.6 10.5 -—-
Ozone 322 22.4 ---
Servo 83.5 439 44.4
Abalone 6.4 6.4 -
Robot Arm —2 223 13.2 -
Peak20 67.4 68.3 27.4
Friedman #1 19.4 12.0 -
Friedman #2+-3 53.6 334 ---
Friedman #3—3 66.3 443 -

8. Using small trees as predictors

An interesting possibility occurs with the use of debiasing. Simple predictors that would
never be used because of their high bias may become fairly accurate when debiased. The
trade off is between the bias and variance of the predictors used. Unpruned CART is the
lowest bias and highest variance version of CART. Unpruned CART is the right thing to
use with bagging, since bagging reduces variance only.

Suppose we used smaller trees. This would reduce variance and increase bias. But since
the debiasing algorithms are a combination of bagging and bias removal, there might be
an interesting trade-off between smaller tree size and increased debiasing. We study this
question in this section. In particular, we show that with debiasing quite small trees lead to
predictors only slightly less accurate than using the unpruned tree.

The advantage of using smaller trees is not that there is a significant reduction in gener-
alization error, but that computations can be speeded up. For instance, computing the one
split leading to a stump (two-terminal tree) takes about 1/log ;N as much computing time
as growing the full tree, where N is the number of instances in the data set (assuming my
tree version, which sorts only once at the top; and that a floating point operation time is
at least 3—4 times as large as a sorting operation time). This point was also made in the
classification context by Friedman et al. (1998).

What our empirical investigation showed is that for each data set there is a smallest tree
such that its error is only a bit larger than that of the unpruned tree. For trees smaller than
this tree, the error escalates. This critical tree is usually small. Sometimes it is the stump,
sometimes it is a three-or four-terminal-node tree, and sometimes larger. I believe that the
critical factor is how well the structural function can be approximated by combinations of
predictors in the class.

The critical tree was found by looking at the error as computed for Table 4 and increasing
the tree size from the stump on up until the error was close enough to that of the full tree.

Table 8 shows, for each data set, the test set error of the debiased unpruned tree. This is
compared to the test set error of the debiased critical tree, the average number of terminal
nodes in it, and the average number of stages in the debiasing process. The error resulting
from bagging the critical tree without debiasing is given in the last column. Generally, the
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Table 8. Mean squared error for the unpruned and critical trees.

Big tree Debiased critical tree Bagged critical tree
Data set error error # nodes # stages error
Boston Housing 9.7 11.5 10 2 14.0
Ozone 17.8 19.0 2 21.5
Servo —2 25.1 30.0 3 57.5
Abalone 4.9 52 3 7 6.8
Robot Arm —2 2.8 3.0 100 7 6.1
Peak20 3.7 4.1 5 6 26.3
Friedman #1 4.1 4.6 2 8 16.9
Friedman #2+3 215 22.7 7 2 28.7
Friedman #3—3 24.8 26.7 7 2 40.6

number of terminal nodes in the unpruned tree is about the same magnitude as the number of
instances. So the number of terminal nodes in the critical tree is only a fraction of the number
of terminal nodes in the unpruned tree For instance, in the robot arm data, the unpruned
tree has about a hundred times as many terminal nodes as the critical tree. The last column
shows that bagging small trees without debiasing is not as effective in lowering the error
rate as it is in bagging the unpruned tree.

Since there is no computational advantage in growing the largest size tree and pruning
back, the smaller trees used here were constructed by fixing the number of nodes to be
split. That is, my tree algorithm splits 1 into 2 and 3, 2 into 4 and 5, 3 into 6 and 7, etc.
To work with trees having 4 terminal nodes, just stop after node 3 is split. This results in
four terminal node trees that may be far from optimal among all four node trees. But they
serve to illustrate the point. For a better method of growing small trees, see Friedman et al.
(1998).

While the error rates of the small trees come close to those of the unpruned trees, they
are never less. Some accuracy is lost by going to the smaller trees. This contrasts to the case
in classification detailed in the next section.

9. Debiasing applied to classification

Two-class classification problems can be cast into the regression context by letting the
response for class #1 be 0, and 1 for class #2. Then new data is classified as class #2 if the
predicted outcome is >.5, otherwise as class #1. In our exploration of these classification
problems, it became apparent that optimal accuracy was obtained by using small trees along
with debiasing. This contrasts with the situation in straight regression where the optimum
accuracy is always achieved by debiasing the unpruned tree. To illustrate, we did runs on
the two-class data sets listed in Table 9. These data are available in the UCI repository.
The procedure used was this: the number of terminal nodes was varied from 2 up to 10.
Keeping the number of terminal nodes fixed, 100 runs were done. In each of these runs,
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Table 9. Data set characteristics.

# Data set Instances Inputs
1 Diabetes 768

2 Breast 699 9

3 Tonosphere 351 34

4 Sonar 208 60

5 Heart (Clevld) 303 13

6 German credit 1,000 24
7 Votes 435 16

8 Liver 345 6

a random 10% of the instances were left out, the debiasing carried out, and the deleted
10% used as a test set. The test set misclassification errors were then averaged over the
100 runs. Table 10 gives the error for the two-node stump, the minimum error over the 2—10
range of terminal nodes, and, in parentheses, the number of terminal nodes at which the
minimum occurred. The next column is the error for the debiased unpruned tree computed
the same leave-out-10% way. The last column gives the Adaboost error rate as a standard
of comparison. Unlike the situation in regression on the average, debiased trees with ten
or fewer terminal nodes can have misclassification error less than the debiased unpruned
tree. Averaging over the eight data sets, the debiased unpruned trees have error rates 13%
larger than the minimum over debiased trees with 2—10 terminal nodes. Note also that the
minimum small tree error rates are comparable to the Adaboost error rates. It is possible that
a more optimal choice of the small trees such as that employed by Friedman et al. (1998)
could obtain even lower error rates.

The min-error rates may be biased down because of the minimum selection. But I believe
that use of cross-validation to determine the best tree size would have given comparable
test set errors. This was not done because this study of classification was not intended to
present iterated bagging as a good classification algorithm, but only to look at its ability to
reduce bias.

Table 10. Misclassification errors (%).

Data set Two-err Min-err UP-err Ada-err
Diabetes 24.1 234 (3) 24.6 26.6
Breast 5.6 39(5) 4.2 32
Tonosphere 7.0 6.6 (8) 7.7 6.4
Sonar 23.0 14.1 (8) 14.9 15.6
Heart (Clevld) 15.6 15.6 (2) 18.8 10.7
German credit 253 23.6 (7) 24.8 235
Votes 4.5 3.7 (10) 4.6 54

Liver 29.6 25.9 (6) 304 28.7
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Table 11. Average number of stages used.

Number of terminal nodes

Data set 2 4 6 8 10 10)3
Diabetes 4.1 3.0 2.6 2.2 2.0 1.8
Breast 7.1 3.0 2.4 2.1 2.0 1.7
Ionosphere 4.5 3.0 2.9 2.7 2.1 2.0
Sonar 3.8 32 32 3.0 3.0 2.9
Heart (Cleveland) 3.8 3.0 2.4 2.0 2.0 1.2
German credit 4.2 3.1 3.0 3.0 2.8 2.0
Votes 35 2.0 2.0 2.0 2.0 1.0
Liver 33 3.0 2.8 2.3 2.1 1.3

I also kept track of the average number of stages used for each node size. These values
are given in Table 11. Table 11 shows that the smaller and more biased the tree, the more
stages are used in an effort to remove the bias. The debiasing is fairly successful even in the
presence of high bias; since, for instance, Table 10 shows that the error rate in the two-node
stump is usually comparable to the minimum error rate. That debiasing works this well is
surprising since iterated bagging was constructed in a regression context and the application
to classification came as an afterthought.

10. Connection with Friedman’s work

In some recent research, Friedman (1999a) constructed another method for regression which
has some similarities to iterated bagging. The idea of “boosting” the gradient comes from
my paper, Breiman (1997a), which showed that Adaboost and other arcing algorithms are
equivalent to doing a down-the-gradient descent on given target functions (but where the
word boosting came from is a mystery to me).

In the mean-squared regression context Friedman’s procedure does an iterative fitting of
the residuals with the best fit chosen out of the class of trees of fixed size. But, as mentioned
in the Section 2, this procedure does not work very well.

Overfit starts soon and the generalization error increases. To prevent this, a clever device
is used. If f(x) is the function in the tree-class that gives the best fit to the residuals at the
k-stage, then instead of adding f(x) to the current predictor, add vf (x) where v is between
zero and one. There is still the problem of overfitting when too many functions are added
to the predictor. So the number of functions M in the predictor also has to be controlled.
The best values of v and M are determined by cross-validation.

A later paper (Friedman, 1999b) added a stochastic element to the above procedure. Each
training set was chosen to be about half the size of the original training set by sampling
without replacement. The stochastic element improved performance and also added another
similarity to iterated bagging.

The empirical results are good, but I cannot compare them to iterated bagging because the
data sets used in Friedman’s work are not available. In spite of some superficial similarities,
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there is a fundamental difference between the two methods. For instance, Friedmans’s
approach gets its best results using small trees—not more than ten terminal nodes. Iterated
bagging, at least in regression, gets its best results using the largest possible trees.

11. Discussion

For decades, the prevalent philosophy of constructing good predictors was to grow a se-
quence of predictors through regularization and try to find the predictor in the sequence that
had the lowest sum of bias and variance. But for a class of predictors, the given was that
there was no way of reducing bias without increasing variance and vice versa. Now this
thinking needs to change because both bias and variance can be simultaneously reduced.

Bagging reduces variance by altering the distribution of instances in the training set, but
leaving the input and output variables in each instance unchanged. Iterated bagging forms
bootstrapped training sets but also changes the output variables in each training instance at
each stage.

The key to the bias reduction is that the estimates based on the times that instances were
out of bag can imitate independent test set estimates. This is a powerful feature of bagging.
An analogous device in classification is used in Breiman (1998a) to estimate which instances
in the training set will be misclassified by the aggregated classifier. The result is a classifier
which is competitive with Adaboost.

Both in classification and regression, the core problem is the same. Bagging can reduce
variance but is helpless against bias. Freund and Schapire (1996) have shown that Adaboost
is effective in reducing bias as well as variance, but the mechanism by which it does this
is still obscure. Iterated bagging, both in regression and classification, has an intuitive
foundation—use the out-of-bag instances to emulate an independent test set.

The emulation is imperfect because the out-of-bag estimates govern the future course of
the iterated bagging. Thus there is some dependence between the estimates and the predictors
selected. This dependence makes the out-of-bag estimates of error biased, in contrast to
straight bagging where they can provide unbiased estimates of the generalization error
(Wolpert & Macready, 1999; Tibshirani, 1996; Breiman, 1997). However, our empirical
results show that for the purpose of bias reduction, they work well.
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