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Although significant headway has been made in vaccine development, there are several delivery-related
issues that must be overcome to advance tomorrow’s candidate vaccines. Some of these are in the areas
of: single-shot subunit vaccines, therapeutic vaccines for cancer, the use of cytokines as vaccine adjuvants,
DNA-based vaccines, and the development of vaccines that provide sterilizing immunity, as might be
required for an affective HIV-1 prophylactic vaccine. The hurdles for vaccine advancement in these areas

are briefly described.
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INTRODUCTION

Vaccination against smallpox, polio, diphtheria, pertussis,
tetanus, measles and other pathogens has reduced mortality
more than any other disease intervention (1-4). Despite these
successes, vaccine development has significant hurdles, both
social and scientific, largely because of the nature of prophylac-
tic vaccines. At the time of vaccine administration, the subject
is often an infant or child, with no personal perception of
immediate benefit (5). Indeed, the parents of young vaccinees
often not only perceive little immediate benefit, but also have
little awareness of the risk/benefit consequences of vaccinating
(or not vaccinating), including the societal implications of vacci-
nation (herd immunity) (6,7). Because of such social issues,
vaccines must be perceived as ‘completely’ safe, easy to admin-
ister resulting in high compliance, cause little pain upon deliv-
ery, and be effective against the pathogens of the region. Our
current regime of vaccines can hardly be described as such.
Few parents perceive vaccines as ‘completely’ safe, and often
show undue concern about whether or not to vaccinate their
infants based on the few, highly publicized incidences of break-
through associated with the vaccine (8,9). Today’s current
regime of childhood vaccines is also complex, as children
require multiple office visits for both primary and booster
immunizations which typically take several years for comple-
tion. The complexity of a complete childhood vaccination
schedule leaves ample room for delayed or missed booster
immunizations, possibly resulting in an unwanted, and
unknown, lack of vaccine efficacy.

Novel vaccine development has a number of special deliv-
ery issues compared to other drugs. Because vaccines are typi-
cally injected either subcutaneously or intramuscularly to
maximize the immune response, the macroscopic delivery of
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vaccines is straightforward—most are simply injected. Alterna-
tively, the microscopic delivery and targeting of the vaccine
antigen and adjuvant to the desired cell types, as well as the
regulation of how the antigen is processed and presented to the
host immune system, has several delivery issues, including:

single-shot subunit vaccines

therapeutic vaccines for cancer

cytokines as vaccine adjuvants

DNA vaccines

sterilizing immunity vaccines (e.g., for HIV-1).

MRS

SINGLE-SHOT SUBUNIT VACCINES

Current Status and Unmet Needs

Subunit vaccines, made from one or more proteins of
the parent pathogen, often require multiple boosting before
maturation of the immune and memory response occurs (10).
This need for multiple boosting often results in poor compliance
resulting in reduced efficacy. The ultimate goal of an ideal
single-shot vaccine is to provide an ‘autoboost’ of antigen at
a defined time(s) with only a single injection. Most single-shot
vaccines in development today are designed to mimic boosting
using controlled-release delivery systems administered s.c. or
i.m., wherein a pulsatile release of antigen from a delivery
device or vehicle is released at later prescribed interval(s). Even
these few restrictions/guidelines dictate what an optimal single-
shot vaccine might look like. Such a vaccine should deliver a
bolus of antigen and adjuvant shortly after injection for primary
immunization, followed by one or more autoboosts of antigen
after a prescribed duration, preferably after several months. The
timing of the autoboost(s) should be well defined and optimized
for the antigen selected. The non-toxic delivery vehicle should
not be subject to catastrophic degradation and accidental release
of antigen at early times, and should be fully biodegraded
shortly after the final autoboost is completed. Finally, the anti-
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gen that is released should be, in many cases, fully intact and
not denatured so as to elicit a maximal neutralizing immune
response.

Hurdles and Opportunities

Based on these criteria and today’s sustained-release tech-
nology, prototype single-shot vaccines have been designed
using polymeric microspheres containing antigen, such as the
poly-lactide-co-glycolide (PLGA) microspheres (11-18), or
those made of other polymer types (19). There are several
delivery issues surrounding the use of polymer-based micro-
spheres for use in single-shot vaccines. First, the synthesis of
microspheres is complex, where dozens of parameters often
require optimization before the desired microspheres are made
(20). Each of these parameters, such as polymer choice and
molecular weight, polymer end capping, antigen loading, added
stabilizers and bulking agents, as well as processing parameters
such as primary stir speed, choice of emulsifier(s), reaction
temperature, quenching bath type, drying process and the like
greatly affect the type of microsphere made, and the antigen
release profile. This release profile, in turn, is crucial for the
‘correct’ delivery of antigen. Although the definition of optimal
microspheres using today’s technology for microsphere synthe-
sis is technically difficult and requires significant engineering
(20,21), there are no technical hurdles that cannot be overcome
to make this a reality, at least as a general process for making
microspheres that autoboost antigen at prescribed times.

The stability of intact antigen within the polymer micro-
spheres may be an issue, in that certain antigens are fairly
robust and may survive the encapsulation process, whereas
others are fragile (22) and may denature during the production
of the microspheres (20). The prediction of antigen stability
towards the encapsulation process is not well understood, and
will likely continue to be a subject of interest for years. For
example, it has been shown that the subunit protein gp120
can be microencapsulated using a process involving organic
solvents and rapid stirring rates without significant denaturation
(11-16). On the other hand, numerous research groups have
attempted to microencapsulate tetanus toxoid and only recently
has progress been made showing that this unstable antigen may
eventually be incorporated into a polymeric single-shot vaccine
(19,23). Even if the antigen is successfully incorporated into
the microspheres without denaturation, the antigen should not
degrade within the microspheres after injection in-vivo, nor
before release during the autoboost phase. In that most polymer
microspheres undergo hydration where they take up water and
swell (24,25), the local environment of the microencapsulated
antigen after injection is believed to be an aqueous milieu of
pH approximately 7.4, and 37°C. Indeed, microsphere hydration
is necessary for bulk erosion to occur so that the antigen can
be released from the polymer matrix. Further, the degradation
of certain polymers such as PLGA results in an increase in the
number density of the terminal carboxylic acid groups, and so
the local pH within the microsphere often drops, sometimes as
low as approximately pH 4 (25). In that proteins show maximum
stability at different pHs depending on their primary sequence,
structure, and degradation pathway(s) (22), this uncertainty of
local pH within the microsphere before bulk erosion occurs
introduces another degree of uncertainty regarding antigen sta-
bility. The requirement that the antigen remain substantially
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intact in an aqueous environment at 37°C for several months
is a difficult one to overcome with today’s polymeric technol-
ogy, and there is no polymer technology on the horizon that
addresses this directly. In-vivo antigen stability within the poly-
mer matrix is likely to remain one of the unsolved problems
in single-shot vaccine design for the next generation. Based on
these considerations, it is likely that single-shot subunit vaccines
will become a reality for some subunit antigens and not others,
depending largely on the nature and stability of the antigen.

THERAPEUTIC VACCINES FOR CANCER

Current Status and Unmet Needs

Therapeutic vaccines are categorically different than pro-
phylactic vaccines because they are designed to fight an estab-
lished pathogen, cancer, or an autoimmune disease state, all of
which have already gained a foothold in the host at the time
of vaccination. The demand placed on a typical therapeutic
vaccine is significantly higher than for a prophylactic vaccine,
and suffers from a number of shortcomings including: the lack
of knowledge about the optimal choice of antigen (if indeed
there is a disease-specific antigen available), the lack of prece-
dence for therapeutic vaccine efficacy, and the need for cellular,
rather than humoral, immunity to be induced. This is a tall
order for any vaccine, in that the target antigen is often an
autologous protein (such as in the targeting of the autologous
HER-2 protein that is upregulated in certain breast and ovarian
cancers (26)) and by their very nature, autologous proteins
make poor immunogens, often requiring the breaking of toler-
ance before mounting an immune response (27,28). Even if the
cancer target antigens are modified autologous antigens, they
often are structurally close to autologous antigens such that
immune recognition is not trivial (29). This is made even more
difficult by a key delivery problem—if the vaccine antigen is
not delivered ‘correctly’ to the appropriate compartment within
the antigen presenting cell (APC), then an ‘incorrect’ immune
response will be made, and efficacy may not be achieved. These
delivery issues relate to the microscopic delivery of the vaccine
antigen, including how antigen is processed and presented, the
nature of the antigen itself, and the adjuvant formulation used.
In order to understand how these factors affect microscopic
delivery of antigen, it is appropriate to define the two major
pathways for antigen presentation and the delivery factors which
affect each.

When the immune system encounters a foreign protein, it
is usually taken up by either of two pathways, either the Class
I Major Histocompatibility Complex (MHC) ‘endogenous’
pathway where a cellular response is induced, or by the Class
II MHC pathway resulting in primarily an antibody type of
response. The pathway selected by the immune system is dic-
tated primarily by the delivery route of the antigen. Delivery
of foreign protein to the cytosol of cells results in predominantly
a CD8+ T-lymphocyte, or cellular response. By this route,
proteins are proteolytically degraded into peptides (30-32) and
then transported to the endoplasmic reticulum (33-36) where
the peptides bind selectively to the Class I MHC heavy chain.
After a stable complex with B2-microglobulin is formed, this
complex is transported to the cell surface by intracellular chap-
erons (37,38). Peptides presented by Class I MHC molecules
to other immune competent cells are generally 8§-10 amino
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acids in length (39-42), and result in an upregulation of a
cellular immune response, believed to be important in tumor
reduction and therapeutic vaccine efficacy. Alternatively, when
antigen is delivered to the endosomal compartment of APCs,
such as macrophages, dendritic cells or B-lymphocytes, the
Class II mediated pathway predominates resulting in primarily
CD4+ T-lymphocyte-mediated responses and antibody
responses. In this pathway, foreign proteins are transported into
acidic endosomes of APCs, where they are degraded proteolyti-
cally to give small peptides (43—46). The endosomal processing
and Class I MHC molecule biosynthetic pathways intersect
(47,48) and the peptides bind to the Class Il molecule, displacing
the invariant chain (49,50) before transport of this peptide-
loaded Class II MHC molecular complex to the cell surface.
Peptides expressed in association with Class II MHC are typi-
cally 12-25 amino acids in length (51-53), and result in an
upregulation of a humoral, or antibody, immune response. The
delivery of antigen to each pathway results in a different
immune response, and represents one of the hurdles in vaccine
design. Typically if soluble proteins are simply injected paren-
terally they are processed primarily by the Class II pathway,
resulting in an antibody and CD4+ T-lymphocyte responses.
Unfortunately, a humoral response is often believed to be insuf-
ficient for tumor reduction or clearance. Getting antigen exclu-
sively into the Class I MHC presentation pathway is
significantly more difficult because this requires intracellular
delivery of antigen to the cytosol.

Hurdles and Opportunities

Significant headway in this area has been achieved in the
last few years, where adjuvants have been developed specifi-
cally to induce a CD8+ T-lymphocyte response (54-56).
Although it has been shown that humoral immune responses
against cancer-associated antigens have been detected in cancer
patients (57-59); including a correlation with clinical outcome
(60), it is generally believed that therapeutic vaccines should
be more effective if they induce tumor antigen-specific cytoxic
T-lymphocytes (CTLs), driven by targeting antigen to the Class
I MHC pathway. The generation of a cellular response, however,
does not guarantee vaccine effectiveness in tumor size reduction
or elimination, in that the neoplasm may be resistant to cellular
killing, or may be poorly vascularized resulting in ineffectual
killing due to inability of CTLs to reach the tumor. In fact, it
has been shown that, even though several murine tumors may be
successfully treated by therapeutic vaccination, when analogous
studies were carried out in primates there was a dramatic reduc-
tion in efficacy. Predicting the future efficacy of therapeutic
vaccines is made more difficult by the lack of precedence of
successful therapeutic vaccines with which to base a prediction
(61). There are a number of therapeutic vaccines that have
shown efficacy to date, such as metastatic melanomas (62-64),
colorectal cancer (65), and a number of viral-associated cancers
(66). A striking commonality between most studies of this type
is that survival (or life-expectancy) is extended slightly, but
few therapeutic vaccines totally clear the neoplasm, resulting
in non-declining mortality curves. Although some encouraging
findings have been reported, a survey of the present day data
suggest that therapeutic cancer vaccines still require significant
optimization of the immune response, and that appropriate
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delivery and processing of antigen may be one of the hurdles
in this area (67-70).

CYTOKINES AS VACCINE ADJUVANTS

Current Status and Unmet Needs

There are only a few factors that affect the immune
response to subunit vaccines. These are the nature and the dose
of antigen (71-73), the route of administration (intradermal,
subcutaneous, intramuscular, oral, nasal, pulmonary, and vagi-
nal) (10), the nature of the vaccine (species, haplotype, age,
and immune status) (74-76), the immunization schedule and
timing of boosters (subunit vaccines usually benefit from spac-
ing out the booster immunizations, presumably due to matura-
tion of the high affinity precursor B-cells) (77), and the adjuvant
used (10,78,79). One particular class of adjuvants, the cytokines,
have significant delivery hurdles because the cytokine should
be delivered to the specific set of lymphocytes requiring upregu-
lation in the antigen processing and presentation pathway, with-
out causing toxicity to other cell types nearby.

Because our immune system is made up of different cell
types, each with its own role to play in host defense, and are
often regionally distinct from each other, mechanisms have
evolved to allow these cells to interact with each other. Some
of these interactions occur by cell-to-cell contact, and some are
regulated through the use of soluble factors or cytokines, often
referred to as interleukins (IL) (80). Cytokines are produced
by different T-lymphocytes. Infection with intracellular patho-
gens or tumors typically induces a cellular response effected
by CD8+ T-lymphocytes (81,82). The induction of a humoral
response in these types of infections may actually exacerbate
disease, probably by down-regulating the Type 1 response
(83,84). In that different cytokines upregulate and downregulate
these responses, it has long been recognized that cytokines
themselves may make powerful and selective adjuvants (85—
87). This notion is further supported by the observation that
different types of vaccine immunogens and adjuvants induce
the production of different cytokines (88).

Hurdles and Opportunities

What are the delivery hurdles for using cytokines as adju-
vants? Firstly, cytokines are highly potent molecules. Cytokines
are expressed and secreted by T-lymphocytes (and other cells)
for sending ‘messages’ to nearby cells (such as APCs). Even
though the local concentration, say between two proximal cells,
may be significant, the systemic cytokine level is extremely
low and usually below detection levels. When cytokines are
administered systemically, usually by parenteral injection, the
amount of cytokine required to act as adjuvant often produces
systemic toxicity (89). In that little is known about the delivery
of large proteins (including cytokines) to lymphocyte subsets
after parenteral injection, it is unlikely that this hurdle will be
overcome in the near future, thus relegating cytokine delivery
to the empirical science that it is. Secondly, the nature of the
immune system is such that it is not affected by one cytokine
at a time, but by several at once. In fact, it is likely that cytokines
not only synergize with each other, but also act as antagonists,
for example, in the IL-4 and IL-10 down-regulation of immune
responses by suppressing macrophage antigen presentation and
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the production of Thl cytokines such as y-IFN (90). In that a
systematic study of cytokine interactions (as they pertain to
adjuvant activity) has not been carried out, it is unlikely that the
synergistic/antagonistic effects of cytokines will be unraveled in
the near future. Thirdly, cytokines are often species-specific.
For example, human v-IFN will increase neopterin levels in
primates (91), but does not do so in rodents (89,92), suggesting
that mice and rats do not appropriately recognize human vy-
IFN. This represents an enormous hurdle for the pharmaceutical
use of cytokines as adjuvants, particularly because of the failure
of animal models to accurately predict safety of human mole-
cules (89,92). This is further complicated by the deleterious
anti-cytokine immune response induced when testing cytokines
derived from one species in another species (e.g., testing human
+-IFN in mice or baboons). Because of this species-specificity,
xenogenous cytokines will not target correctly, likely resulting
in a lack of adjuvant activity. Fortunately, headway is being
made to clone cytokines from different species and then test
in autologous systems as an integral part of vaccine adjuvant
programs (86,93). Fourth, the development of cytokines as
adjuvants is hampered by a significant ‘non-delivery’ issue that
deserves mention here—the lack of knowledge regarding the
type and magnitude of immune response required for efficacy.
In that subunit vaccines are significantly different from the
infectious pathogens they are supposed to protect against, aug-
mentation of vaccine immunogenicity with a particular, but
‘incorrect’ cytokine may result in vaccine failure. Indeed, the
failure to produce certain cytokines has been associated with
vaccine nonresponsiveness as in the hepatitis B vaccine (94).
These delivery hurdles to the development of cytokines as
vaccine adjuvants make this one of the more challenging areas
of vaccine research, with few short term successes on the imme-
diate horizon, but because of their specificity, enormous poten-
tial in the long term.

DNA VACCINES
Current Status and Unmet Needs

Genetic immunization is carried out by injecting antigen-
encoding DNA plasmids directly into muscle or skin, resulting
in low level expression of the gene product (the antigen itself),
with resultant host immunity against this antigen (95-98). The
gene products are often correctly glycosylated, folded and
expressed by the host cell. Because DNA translation and tran-
scription occur intracellularly, delivery of the DNA plasmids
to the cytosol represents one of the greatest hurdles for novel
DNA vaccines. In order to deliver these plasmids to the nucleus
of the target cells, several clever approaches have been used
(99), including coating gold microparticles with the plasmid and
delivering these directly into the skin by a particle bombardment
device, such as a “gene gun” (96,100,101) or by viral vector
delivery (102), as well as other organisms including attenuated
Shigella (103). Genetic vaccination has been applied to several
systems since its recent inception in 1992, including immune
responses against cancer antigens (104), mycoplasma (105),
tuberculosis (106), malaria (107), parasites (108), and many
virus infections (109), including influenza (110) and HIV (111).

Hurdles and Opportunities

These successes represent some of the more exciting
advances in novel vaccine design, although DNA vaccination
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has a few hurdles to overcome before this technology can be
standardized (112). For example, the delivery of DNA to the
target muscle cells (113) shows low delivery yields if simply
injected (100), such that sophisticated delivery techniques are
mandatory, including the use of ‘adjuvants’ (114), liposomes
(115), gene gun delivery (96), or live vectors (103). Even with
specialized delivery, the animal-to-animal variation has been
great, and many of these studies have been carried out with
small numbers of animals per group. This delivery issue is
compounded by the relatively large amount of DNA required
for gene product expression, where often hundreds of micro-
grams of DNA are required. Although there is no immediate
solution to the macroscopic delivery problem of efficiently
delivering DNA intracellularly, these issues are being presently
addressed by a number of researchers.

A second delivery issue for genetic vaccination is signaled
by the conspicuous dearth of reports in primates, presumably
because of the difficulty of inducing a primate immune response
(116,117). Most studies to date have focused on rodents, where
successful genetic vaccination is well documented. Comparison
of luciferase activity in rodents and rhesus monkeys showed
that the luciferase expression levels were significantly reduced
in monkeys compared to rodents, presumably because of the
increased perimysium connective tissue in monkeys compared
to rodents (116). Recently, DNA inoculation of cynomologous
monkeys using bupivicaine as ‘adjuvant’ has shown to be effec-
tive in the induction of both humoral and cellular responses
against HIV, although the number of animals tested was limited
and the titers low (118). Interestingly however, the sera from
these cyno monkey was effective at HIV-1 neutralization, hint-
ing at the enormous potential of genetic immunization. In gen-
eral, it is believed that this failure to see good immunogenicity
in non-human primates is also due the difficulty in delivering
DNA to the muscle cells of higher species, and this delivery
problem is currently not well understood.

The third delivery issue for DNA based vaccines relates
to the difficulty in boosting the immune response. Most studies
thus far have shown only a modest immune response, although
protection in several models has been demonstrated (110,119).
Typically, when an immune response wanes, a repeat booster
injection is given to increase the magnitude and the affinity of
the immune response, particularly for non-replicating vaccines
such as whole-killed, or subunit vaccines. For most conven-
tional vaccines, this booster response is often magnitudes higher
than the primary response: Herein lies one of the delivery
challenges for DNA vaccines—can they be administered so
that a decent booster response is observed after boosting? Thus
far, significant boosters with DNA vaccines have not been
dramatic (111), and have caused some concern that boosting
is inherently difficult by DNA injection, possibly due to its low
and variable delivery.

Mentioned only for completeness-sake, there are also a
few non-delivery related hurdles in the development of DNA
vaccines including safety concerns such as anti-DNA antibody
formation, local reactogenicity and systemic toxicity, genetic
and reproductive toxicity (120), DNA stability and purity (such
as the removal of lipopolysaccharides) (121), and the device
or adjuvant used to increase the delivery of DNA (95). Although
these issues are real and time-consuming, they are not the major
hurdles for the development of DNA vaccines; the greatest
challenge is the targeted delivery of functional DNA to the host.
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Fig. 1. Duration of the humoral immune response in humans for several antigens (see text). Because the
titer values for the different antigens spanned several log values, all were normalized to a ‘peak titer’ of 100
shortly after final boosting, and the decay of the peak titers displayed in comparison to this reference point

of 100 (or log 2.0).

STERILIZING IMMUNITY VACCINES
Current Status and Unmet Needs

Perhaps the greatest demand placed a non-live vaccine is
‘sterilizing immunity’, or the complete prevention of infection.
It may be desirable to have ‘sterilizing immunity’, that is, the
complete absence or prevention of infection, for diseases such
as HIV-1, where the pathogenesis is not well understood. The
pundits of HIV-1 vaccine design have cited several reasons
why a subunit AIDS vaccine cannot be efficacious, including:
the difficulty in inducing long-lasting sterilizing immunity,
rapid genetic variation of the HIV-1 envelope, the lack of knowl-
edge ‘about the infection process and whether to focus on a
parenteral or a mucosal delivery (each which has it’s own
specific set of delivery problems), and the lack of effectiveness
of vaccine sera to neutralize field isolates of primary HIV-1
(122). The proponents of making a subunit HIV-1 vaccine rebut
that vaccine effectiveness rarely correlates with laboratory neu-
tralization assays (5), (indeed, for many pathogens these assays
simply do not exist), and that the infection rate per contact is
low (123), suggesting that any modulation of the immune sys-
tem prior to infection will alter the infection rate, thus resulting
in a partially effective vaccine. Although there is no single
preclinical experiment that proves HIV-1 vaccine efficacy in
humans, vaccine protection of chimpanzees against HIV-1 chal-
lenge suggests that sterilizing immunity is possible (124,125)
providing the antibody titers are maintained at high levels.

Hurdles and Opportunities

Maintaining an elevated and durable immune response is
one of the hurdles in the development of sterilizing vaccines.
The duration of the immune response following vaccination is
affected largely by two factors, the nature of the immune
response itself, and by the sustained release of antigen from
the vaccine. The first of these is intrinsic to the species being
tested; after subunit vaccination the humoral response generally
shows fairly rapid decay of the immune response, followed by
low-level, prolonged titers that often last several years (Figure
1) (14,126-131). This plateau phase may be important for an
effective HIV-1 vaccine if high antibody levels are required

for protection, as were observed in the chimpanzee protection
experiments (124,125). Thus, a human HIV-1 vaccine that dem-
onstrates long-lasting, antibody titers comparable to titer levels
achieved in protected chimpanzees at the time of HIV-1
challenge may afford sterilizing immunity in humans (132).

Maintaining high antibody titers by the sustained release of
antigen from a delivery device (such as polymeric microspheres
(11,16,17)) is the key delivery issue crucial to making a steriliz-
ing vaccine. In that most adjuvants are not effective in altering
the antibody decay half-lives or persistence, presumably
because there is little sustained release of antigen after a few
days or weeks (14), researchers have attempted to use sustained
release formulations to make a vaccine giving high, long-lasting
titers. The use of a polymeric-based vaccine that releases antigen
at significantly later times after the primary immunization
results in sustained titers, presumably due the continuous stimu-
lation of the immune system by low level amounts of antigen
released as the polymer undergoes hydrolysis and bulk erosion.
Thus, the combination of soluble antigen and adjuvant for the
primary response, and a polymer-encapsulated antigen for the
release of antigen at later times is predicted to give a delayed-
release formulation capable of maintaining high and long-last-
ing titers.

There are also other modifications of the vaccine that
might alter the immune response decay kinetics, such as using
a particulate antigen. It has been shown that particulate Hepatitis
B surface antigen shows a slower decay of the baboon immune
response than does soluble gpl120 (77), and the particulate
antigen Fluogen® gives slower decay of the immune response
than does soluble ovalbumin in mice (117). Further, the addition
of soluble adjuvant to sustained release formulations has also
been demonstrated to maintain higher titers for longer periods
(12). Although it has been demonstrated that high, long-lasting
titers can be made by encapsulating antigen in polymeric micro-
spheres, and these titers are functionally active in that they
neutralize virus, there are several hurdles that need to be over-
come, including optimizing the polymer type, particle size,
antigen loading, release profile, combinations of microspheres,
sterilization procedures, adjuvant encapsulation methodology
to mention a few.
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