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Abstract

Carbon monoxide (CO), a gaseous second messenger, arises in biological systems during the oxidative catabolism of heme by
the heme oxygenase (HO) enzymes. HO exists as constitutive (HO-2, HO-3) and inducible isoforms (HO-1), the latter which
responds to regulation by multiple stress-stimuli. HO-1 confers protection in vitro and in vivo against oxidative cellular stress.
Although the redox active compounds that are generated from HO activity (i.e. iron, biliverdin-IXα, and bilirubin-IXα) poten-
tially modulate oxidative stress resistance, increasing evidence points to cytoprotective roles for CO. Though not reactive, CO
regulates vascular processes such as vessel tone, smooth muscle proliferation, and platelet aggregation, and possibly func-
tions as a neurotransmitter. The latter effects of CO depend on the activation of guanylate cyclase activity by direct binding to
the heme moiety of the enzyme, stimulating the production of cyclic 3′:5′-guanosine monophosphate. CO potentially interacts
with other intracellular hemoprotein targets, though little is known about the functional significance of such interactions. Re-
cent progress indicates that CO exerts novel anti-inflammatory and anti-apoptotic effects dependent on the modulation of the
p38 mitogen activated protein kinase (MAPK)-signaling pathway. By virtue of these effects, CO confers protection in oxidative
lung injury models, and likely plays a role in HO-1 mediated tissue protection. (Mol Cell Biochem 234/235: 249–263, 2002)
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Introduction

Carbon monoxide (CO) arises in biological systems principally
during heme degradation as the oxidation product of the α-
methene bridge of heme, a process catalyzed by the heme
oxygenase (HO) enzymes [EC 1:14.99.3, heme, hydrogen do-
nor: oxygen oxidoreductase, (α-methene hydroxylating,
decyclizing)] [1, 2]. The inducible form of HO, heme oxy-
genase-1 (HO-1), confers protection against oxidative stress
conditions in vitro and in vivo, through anti-oxidative, anti-
apoptotic and anti-inflammatory actions [3–10]. Although
the underlying mechanisms in HO-dependent cytoprotection
remain incompletely understood, recent evidence has strongly
implicated contributory role(s) for endogenous CO gener-
ated from HO activity [6, 11]. Previously regarded as meta-
bolic waste, CO affects vascular function by influencing the

regulation of vessel tone, platelet aggregation, and smooth
muscle proliferation [12–16]. Studies of HO-1 localization
in the brain have implicated HO-derived CO as a neurotrans-
mitter [17]. These potential effects of CO involve its com-
plexation to the heme moiety of soluble guanylate cyclase
(sGC), stimulating the production of guanosine 3′,5′-cyclic
monophosphate (cGMP), a second messenger molecule [14–
18]. As a consequence of heme binding, intracellular CO
potentially influences the activity of other cellular hemo-
proteins such as cytochrome p-450, nitric oxide synthase
(NOS), NADPH oxidase, and cytochrome-c oxidase, which are
involved in vital processes including drug detoxification, in-
flammation, respiration, and possibly oxygen sensing [19–22].

Recent studies have discovered a potent anti-inflamma-
tory effect of CO: the inhibition of pro-inflammatory cyto-
kine production following inducing stimuli, dependent on
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the modulation of mitogen activated protein kinase (MAPK)-
signaling cascades [6, 11]. The effects of CO on MAPK ap-
parently occur independently of sGC activation and cGMP
production; however the direct physical target of the CO, in
this case, remains unknown.

In addition to CO, redox-active heme metabolites may also
participate in cellular defense mechanisms (Fig. 1) [23–24]. HO
exerts anti-oxidative functions by converting heme, whose
intercellular accumulation may elevate intracellular pro-oxi-
dant status [25], into the bile pigments, biliverdin-IXα, and
bilirubin-IXα, which have potent antioxidant properties [26].
The reactive iron released from heme by HO activity may fol-
low detoxification pathways involving either sequestration
or extracellular efflux [27–29]. By inactivating iron regulatory
protein (IRP) activity, iron stimulates the synthesis of the iron
sequestration protein ferritin [30–31], promoting a secondary
cellular desensitization to oxidative stress [10, 32].

This review will (I) describe the regulation of HO-1 as an
inducible source of endogenous CO, (II) describe evidence
that HO-1 acts as a mediator of cellular and tissue protection
against oxidative stress, and (III) emphasize recent studies
that introduce novel anti-apoptotic and anti-inflammatory
properties of HO-derived CO in oxidative lung injury models.

Heme oxygenase isozymes: Properties
and significance

Heme oxygenase activity generates equimolar CO, ferrous iron
(Fe2+), and biliverdin-IXα per mole of heme-b oxidized, in a
reaction requiring NADPH: cytochrome p-450 reductase [EC
1.6.2.4] as electron donor [1–2, 33–34]. The reduction of biliver-
din-IXα to bilirubin-IXα by NAD(P)H: biliverdin reductase
[EC 1:3:1:24] completes heme degradation [1–2, 35]. In addi-
tion to HO-1, the inducible form, the HO system consists of
two constitutively expressed isozymes (HO-2, and HO-3) which
represent the products of distinct genes [36–39]. While the
ho-1 gene responds to induction by a broad spectrum of chemi-
cal and physical agents, the ho-2 and ho-3 genes do not
respond to xenobiotic induction [37]. Thus, HO-1 protein
occurs at undetectable levels in most tissues and cell types
until a stress condition arises, whereas HO-2 may exist at
detectable levels in most tissues in the absence of stress. HO-
2 occurs abundantly in the central nervous system and vas-
culature [37, 40], and responds to regulation by adrenal
glucocorticoids in the brain [41–42]. HO-1 and HO-2 differ
in primary structure and molecular weight (32 and 36 kD re-
spectively, for the rat isozymes), and in their K

m
 values (0.24,

0.67 µM, respectively) and reaction rates toward heme [37–
38]. HO-2 contains two high affinity heme-binding sites
termed heme regulatory domains (HRD) that are distinct from
the catalytic heme-binding site. Accessory heme molecules

bound to HO-2 HRD possibly act as a reservoir for small gas
molecules, including NO and CO [43–44]. The significance
of HO-3, a homolog of HO-2, remains unclear as it demon-
strates poor heme catalytic activity [39]. HO enzymes perform
a vital physiological function in the turnover of hemoglobin-
heme during the metabolism of senescent erythrocytes in re-
ticuloendothelial tissues, especially the spleen, liver and
kidney [45]. HO regulates the intracellular concentration of
heme, from the turnover of intracellular hemoproteins and
cytochromes, and thus governs the redistribution of heme
iron in tissues [45–46].

Regulation of ho-1 by chemical and
physical stress

In 1989 Keyse and Tyrrell, using hybrid-selection cloning
techniques, identified the major 32-kDa mammalian stress-
protein inducible by hydrogen peroxide, ultraviolet-A (UVA,
320–380 nm) radiation, and sodium m-arsenite (NaAsO

2
), as

identical to the rate limiting enzyme in heme degradation, HO-
1 [25, 47]. In addition to oxidants, the induction of the ho-1
gene also follows cellular exposure to agents such as heme
[48], pro-inflammatory cytokines [49–53], bacterial endotoxins
[49, 51, 54–58], growth factors [59–60], nitric oxide [61–66] and
tumor promoters [67–70]. These agents share the ability to
directly or indirectly generate intracellular reactive oxygen
species (ROS) and/or modulate intracellular redox equilibrium.
HO-1 elevation appears as a general indicator of oxidative
stress in cells and tissues [25, 71].

Regulation of HO-1 by oxidative stress exemplified by
UVA radiation and H

2
O

2
: The role of intracellular

glutathione and iron status

UVA radiation imposes an oxidative stress in cultured cells
by exciting intracellular chromophores to produce ROS [72].
Exposure to either UVA radiation or the oxidant H

2
O

2 
increased

the transcriptional rate of the ho-1 gene, and the steady-state
levels of HO-1 mRNA or protein in human skin fibroblasts [25,
47, 73]. The response to UVA-treatment involved singlet mo-
lecular oxygen (1O

2
), since it could be enhanced in deuterium

oxide (D
2
O), which prolongs 1O

2
 lifetime relative to aqueous

media, or inhibited by semi-specific 1O
2
 reactive agents [74].

The expression of HO-1 mRNA and protein also increase fol-
lowing cellular exposure to photosensitizers that produce 1O

2

and other ROS upon light-activation [74–76].
The induction of HO-1 mRNA by ROS generating systems

may be enhanced by the depletion of intracellular reduced
glutathione GSH, using the drug D,L-buthionine-(S,R)-sulf-
oximine (BSO) which inhibits γ-glutamyl-cysteinyl-synthetase
(γ-GCS), the rate limiting step in GSH biosynthesis [77–78].
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Fig. 1. Functional consequences of HO activity. Heme oxygenase degrades heme to biliverdin-IXα, carbon monoxide, and iron. Biliverdin-IXα

is converted to bilirubin-IXα by NAD(P)H biliverdin reductase. Both bile pigments have potent in vitro antioxidant activity. Redox-active iron
released from HO activity may promote oxidative damage. However, by inactivating iron regulatory protein (IRP) activity, iron stimulates the
synthesis of ferritin, an iron-sequestration protein and possible cytoprotectant. CO derived from the HO reaction has possible significance in the
regulation of vascular and neural functions. The stimulation of cGMP-dependent signal transduction pathways may account for the vasodilatory
and anti-proliferative effects. CO has potent anti-inflammatory effects, which depend on downregulation of pro-inflammatory cytokine produc-
tion mediated by modulation of p38 MAPK. The abbreviations used in this figure include: cGMP = guanosine 3′,5′-cyclic monophosphate; CO =
carbon monoxide; Fe(II) = ferrous iron; Fe (III) = ferric iron; GTP = guanosine triphosphate; IRP = iron regulatory protein; NOS = nitric oxide
synthase; p38 MAPK = p38 mitogen activated protein kinase.
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BSO treatment sensitizes human fibroblasts to the cytotoxic
effects of UVA and ultraviolet B (UVB, 290–320 nm) radiation,
and H

2
O

2
 treatment [79–80]. BSO treatment alone had moder-

ate to little effect on HO-1 mRNA or protein accumulation in
human skin fibroblasts or rodent cell lines, respectively [77,
81–82]. However, BSO treatment in combination with H

2
O

2
 or

UVA, amplified the induction response and lowered the UVA
fluence necessary to induce HO-1 mRNA levels in human skin
fibroblasts [77]. Supplementation with the GSH precursor N-
acetyl-L-cysteine (NAC) inhibited HO-1 induction in many
systems [53, 57–59, 61–62, 83–87]. The induction of HO-1 by
oxidants could be inhibited by iron chelators such as desferri-
oxamine (DFO) or o-phenanthroline, suggesting either a pro-
oxidative or regulatory role for intracellular chelatable iron [88].
Iron chelators also attenuate HO-1 induction under hyperoxia
[89], or hypoxia [86, 90]. Iron may aggravate ROS production
and sensitize cells under oxidative stress conditions by act-
ing as a catalyst in membrane lipid peroxidation and Fenton-
type reactions [91–92]. Iron may also have more direct roles
in the transcriptional and post-transcriptional regulation of
gene expression. For example, iron chelation upregulates the
DNA binding activity of the hypoxia-inducible factor (HIF1)
[93], whereas iron complexation controls the activity of the
iron regulatory protein-1, a translational regulator of proteins
involved in iron metabolism [31, 94].

Induction of HO-1 by thiol reactive substances: Role of
GSH complexation

HO-1 activation responds to numerous thiol (–SH)-reactive
compounds that form complexes with intracellular reduced
glutathione (GSH), including sodium m-arsenite (NaAsO

2
),

diethylmaleate (DEM), and heavy metal salts [25, 81, 95].
NaAsO

2
 reacts with free –SH groups of GSH, and protein,

exerting lethal effects by inactivating –SH dependent enzyme
functions. In vivo, NaAsO

2 
by injection

 
increases rat hepatic

and renal HO activity [96]. NaAsO
2
 and related arsenicals in-

crease HO-1 (32-34-kDa) protein synthesis and mRNA steady
state levels as a general response in many cell types [69, 71,
82, 87, 97–101].

Other thiol reactive substances that induce HO-1 include
chemicals which conjugate GSH in glutathione S-transferase
(GST) catalyzed reactions (i.e. diethylmaleate, DEM) to form
mixed disulfides (GSSR), many which undergo prior biotrans-
formation to electrophilic intermediates by cytochrome p450/
p448 enzymes (i.e. halogenated hydrocarbons) [37]. The com-
plexation and subsequent depletion of GSH by DEM to a
degree exceeding 80% induced HO-1 in various cell types
[81–82, 102–103]. Sulphydril oxidants such as diamide,
which promote the formation of GSSG are typically inef-
fective at inducing HO-1 in cell culture [81–82]. While GSSG
may be regenerated to GSH by NADPH:glutathione reduct-

ase, GSSR species may not undergo enzymatic reduction, but
are detoxified as N-acetyl-cysteine (mercapturic acid) deriva-
tives. The –SH reactive substance N-ethylmaleimide has lit-
tle effect on HO-1 induction, due to its preferential reactivity
for protein –SH groups rather than GSH [103].

Metal salts (i.e. CdCl
2
, CoCl

2
, NiCl

2
, SiCl

2
, HgCl

2
 etc.) po-

tently activate HO-1 in vivo [37, 95, 104], as well as in many
cell types [25, 48, 68, 81–82, 97, 99–101, 105]. Heavy metals
form complexes with thiol groups including cysteine and GSH.
When injected into rats, heavy metals depress hepatic GSH
levels, which in turn rebound to elevated levels in a compen-
satory response. Metal-dependent induction of hepatic HO
activity may be inhibited by the prior complexation of the
metals with thiol compounds, and potentiated by GSH deple-
tion [95]. Transgenic mice lacking the metallothionein –l
and –ll genes, which code for low molecular weight thiol-
rich proteins involved in metal detoxification, display more
pronounced hepatic and renal HO-1 mRNA and protein ex-
pression following CdCl

2
 injection, than wild-type mice

[107]. The induction of HO-1 expression by metals is regu-
lated at the transcriptional level, demonstrated in vitro and
in vivo using nuclear run-on analysis [48, 106, 108–109].
Certain metals (i.e. Fe2+, Co2+, Cu2+) undergo ferrochelatase-
dependent incorporation into protoporphyrin IX (PPIX) to
form metalloporphyrins [104, 109]. Non-heme synthetic
metalloporphyrins (i.e. SnPPIX, ZnPPIX) paradoxically in-
hibit HO enzyme activity but stimulate HO-1 transcription
[104, 106, 110–111].

Regulation of HO-1 expression by nitric oxide

The free radical gas nitric oxide (NO) mediates a number of
physiological functions, including vasoregulation, neurotrans-
mission, and inflammation. NO serves as a cytotoxic effector
species of the macrophage respiratory burst. At high concen-
trations, NO may exert a ‘nitrosative’ cellular stress, reacting
with thiols (including GSH) to form S-nitrosothiols, and with
O

2
–, to form the pro-oxidant peroxynitrite (ONOO–) [112]. Ex-

ogenous NO gas administered to human embryonic lung fi-
broblasts potently induced HO-1 protein and mRNA levels in
a concentration and time-dependent manner [66]. NO donor
compounds such as sodium nitroprusside (SNP), S-nitroso-N-
acetylpenicillamine (SNAP), 3-morpholinosydnonimine (SIN-
1), and spermine NONOate (SNN) dose and time dependently
increased HO expression in various cell culture systems [61–
65, 113–114]. The activation of HO-1 by NO donors or NO
gas is independent of cGMP production, since cGMP ana-
logues had no effect and involves transcriptional regulation
of the ho-1 gene [62–63, 65–66]. In human fibroblasts, how-
ever, NO donors or NO gas stabilized HO-1 mRNA in a NO
concentration-dependent fashion [66, 115]. Furthermore, NO
donation by SNAP increased detectible non-heme iron levels
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in PAEC and stimulated the synthesis of ferritin in a HO-ac-
tivity dependent manner [64]. The NO metabolite peroxyni-
trite (ONOO–) induced HO-1 in endothelial cells, which could
be inhibited by the antioxidants NAC or uric acid [116].

Regulation of HO-1 by pro-inflammatory states

HO-1 elevation may occur as a consequence of inflammation,
infection, sepsis and other pathophysiological conditions
associated with increased ROS production and may play a
protective role in these contexts [51, 58, 117–118]. HO-1 el-
evation appears as a component of the hepatic acute phase
response in humans, and rodents. The lipopolysaccharide
(LPS) component of bacterial endotoxin induces HO activity
in rat peritoneal macrophages, and in hepatic parenchyma and
sinusoidal cells following intraperitoneal injection [56]. In
mice, injection of LPS, or the pro-inflammatory cytokines inter-
leukin-1 (IL-1), tumor necrosis factor-α, (TNFα), and interleukin-
6 (IL-6) induced hepatic HO-1 mRNA, with the response to
IL-1 verified as a transcriptional regulation [51]. The induc-
tion of hepatic HO-1 mRNA levels by LPS could be enhanced
by GSH depletion and diminished by NAC, suggesting an
influence of cellular redox status in the induction mechanism
[58]. Likewise, HO-1 expression responded in vitro to cellular
stimulation with LPS [54], or pro-inflammatory cytokines (IL-
1, IL-6, TNFα) [51–53, 119]. In HUVEC, the TNFα mediated
induction of HO-1 required protein kinase-C and phospholi-
pase A2, and responded to inhibition by NAC, and intracel-
lular calcium chelation [53]. Interestingly, HO-1 induction (in
HUVEC) also responded to treatment with the thrombopoietic
cytokine interleukin-11 [119]. Growth factors that mimic cy-
tokine responses with respect to HO-1 induction include
transforming growth factor-β (TGF-β), which induced HO-
1 protein in human retinal pigment epithelial cells [60], and
platelet derived growth factor (PDGF), which stimulated
HO-1 mRNA in VSMC [59]. Like the cytokine-mediated re-
sponses, the growth factor responses occurred in association
with increased intracellular ROS production, and responded
to inhibition by NAC treatment.

Regulation of HO-1 by oxygen tension

HO-1 expression responds to fluctuations in the ‘normal’ or
acclimated oxygen (O

2
) tension of the system [120–122, 86].

Hypoxia, or lowered pO
2
, may occur in the cardiovascular sys-

tem as a consequence of restricted oxygen intake, ischemia, or
disease states such as atherosclerosis. Acute hypoxia dilates
the systemic vasculature, whereas chronic hypoxia may con-
strict the pulmonary vasculature, leading to pulmonary hy-
pertension [123–124].

The exposure of mammalian cells to hypoxia in vitro trig-

gers cell type-specific alterations in protein expression pat-
terns [125–128]. Following the original observation by Murphy
et al. that described HO-1 as the major hypoxia-inducible pro-
tein in CHO cells [122], the response has also been demon-
strated in vascular systems. For example, acute hypoxia induced
HO-1 mRNA accumulation in rat organs, including lung, liver,
heart, and aorta [121]. Chronic hypoxia induced HO-1 mRNA
in both ventricles of the rat heart [129].

In bovine aortic endothelial cells (BAEC), hypoxia treat-
ment induces HO-1 protein levels and HO enzymatic activity,
which persisted during subsequent reoxygenation [86]. This
response could be abolished by inclusion of iron chelators
or NAC in the hypoxic phase, and conversely increased by
prior iron loading [86]. Inhibitors of iNOS or NO scavengers,
inhibited the induction of HO activity by hypoxia, while treat-
ment with S-nitrosoglutathione augmented the response [130].
These reports, taken together, suggest a critical role for iron
and intracellular redox equilibrium in the hypoxic activation
of HO-1 gene expression.

Hypoxia induced ho-1 transcription and HO-1 mRNA ac-
cumulation in rat aortic vascular smooth muscle cells (VSMC)
[14, 121], and pulmonary artery endothelial cells (PAEC) [131].
In PAEC the response occurred in association with increased
AP-1 DNA binding activity, whereas in VSMC, involved acti-
vation of HIF-1 DNA binding activity [121,131]. In contrast
to wild-type cells, mutant Hepa cell lines deficient in HIF-1β

did not exhibit HO-1 mRNA accumulation in response to hy-
poxia [121]. Interestingly, hypoxic activation of the ho-1 gene
in CHO cells occurred independently of HIF-1 as demonstrated
in mutant CHO cells deficient in HIF-1α [132]. Taken together,
these results suggest that while HIF-1 mediates the hypoxic
induction of HO-1 in some cell types (i.e. VSMC), it may not
be the sole factor involved.

Hyperoxia, or high O
2
 tension, used clinically for critical

care applications, also activates a stress response in vitro and
in vivo. Hyperoxia causes oxidative injury to the lung, asso-
ciated with increased production of mitochondrial ROS [133].
Hyperoxia (>95% O

2
) increased HO-1 mRNA, protein, and

enzymatic activity in the adult rat lung [120], and increased
HO activity in neonatal rat lung [134]. Hyperoxia activated ho-
1 transcription in vitro in cultured cells of lung origin (epi-
thelial cells, fibroblasts, macrophages, and smooth muscle
cells) [120]. In human cell lines the activation of HO-1 by
hyperoxia could be augmented by iron loading and diminished
in the presence of iron-chelators [89, 135]. Thus, iron appears
to represent a general requirement for the activation of ho-1
gene expression under either high or low O

2
 tension.

Regulation of HO-1 expression by heat shock

The rat HO-1 protein classifies as a heat shock protein (HSP-
32) since it responds to transcriptional regulation by heat
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(42°C); and the 5′ regulatory region of its gene contains heat
shock elements (HSEs) resembling those described in the
promoter regions of heat shock genes (i.e. HSP70) [136–138]
HO-1 mRNA and protein accumulate to a high degree after
whole-body hyperthermia (42°C) in rat organs, including the
liver, heart, and kidney, and brain [138–139, 140–141]. Heat
shock (42°C) increases the transcriptional rate of HO-1 mRNA
in cultured rat glioma cells [136].

The rat ho-1 gene contains two HSEs, HSE1 (–290/–276)
and HSE2 (–222/–212) which contain inverted repeats of the
core element 5′NGAAN3′ [142]. The rat, mouse, and human
ho-1 genes differ in the number, position, and configuration
of HSEs in their 5′ regulatory regions [142–144]. Both the hu-
man and rat HSEs formed complexes with heat inducible nu-
clear proteins, and conferred heat responsiveness to reporter
gene constructs in respective transient transfection assays
[136, 145]. Human cell lines, however, generally failed to in-
duce HO-1 in response to heat [101, 145–146].

Signal transduction and transcriptional regulation of ho-1

The signal transduction pathways that operate ho-1 gene
activation under the multiplicity of inducing conditions re-
main only partially understood. Existing studies often report
contradictory data, or cell type-specific and inducer-depend-
ent variations, which are based on known specificities of
chemical inhibitors. Mitogen activated protein kinase (MAPK)
pathways, including extracellular regulated kinases (ERK)
[113, 147] and/or p38 MAPK [113, 147–148], participate in the
activation of ho-1 by inducing xenobiotics. For example, the
CdCl

2 
induction of ho-1 transcription in murine MCF-7 cells,

could be abolished by the p38 MAPK inhibitor (SB203580)
and by dominant negative mutants of p38α, but not by an
ERK kinase (MEK1) inhibitor (PD98059) [148]. Similar MAPK
inhibitor studies have demonstrated the requirement for both
ERK and p38 MAPK pathways in the NaAsO

2
-dependent

 
tran-

scriptional
 
activation of the chicken ho-1 promoter [147]. In

this system, the overexpression of dominant negative forms
of Ras, MEK1, and p38 MAPK inhibited transcriptional acti-
vation of ho-1 in response to NaAsO

2 
treatment

 
[147]. Both

p38 MAPK and ERK pathways participated in ho-1 activa-
tion in HeLA cells following exposure to NO donors [113]. In
contrast, ho-1 activation by NaAsO

2
, heme, or CdCl

2 
in HeLA

cells required tyrosine kinase activity but not ERK or p38
MAPK pathways [149].

The regulation of ho-1 under hypoxia required p38 MAPK,
but not ERK or tyrosine kinase dependent pathways in car-
diomyocytes [150]. To the contrary, the p38 MAPK inhibitor
SB203580 activated HO-1 mRNA expression under hypoxia
in rat PAEC, whereas a MEK1/2 inhibitor (UO126) strongly
activated HO-1 under normoxic conditions in the absense
of stimuli; indicating that MAPK inhibitors alone may acti-

vate ho-1 transcription under certain conditions [151]. The
over-expression of MAPK kinase kinases (MEKK1, TAK1,
and ASK1) induced ho-1 in HEPG2 cells [152].

The murine ho-1 gene 5′ flanking sequence contains two
transcriptional enhancer sequences located at –4kb (E1; for-
merly SX2) and –10 kb (E2; formerly AB1) of the transcrip-
tional start site [144, 153–155]. These elements maintain
basal promoter activity and mediate the induction of ho-1
by many xenobiotics, including CdCl

2
, 12-O-tetradecanoyl-

phorbol-13-acetate, endotoxin, heme, and H
2
O

2
 [144, 153–

156]. Both E1 and E2 consist of repeated essential cis-acting
DNA motifs designated as stress responsive elements (StRE)
with the consensus sequence (T/CGCTGAGTCA). Intrinsic to
the StRE appears several overlapping consensus sequences
for transcription factor binding sites: AP-1, v-maf onco-
protein, and the Cap’n’collar/basic-leucine zipper family of
proteins (CNC-bZIP). The latter sequence resembles the anti-
oxidant responsive element (GCNNNGTCA) [157].

The StRE elements of E1 are critical for the ho-1 transcrip-
tional response to CdCl

2 
[158]. Transfection studies in L929

cells with candidate transcription factors demonstrated that
only members of the CNC/bZIP family of proteins effectively
activate an E1 reporter construct, with nuclear regulatory fac-
tor-2 (Nrf2) displaying the strongest activity. The over-expres-
sion of the dominant negative mutant form of Nrf2 inhibited
E1 enhancer activity (and endogenous ho-1 induction) in re-
sponse to CdCl

2
 and other inducing agents in L929 and MCF-

7 cells [148, 157]. Transcription factor ATF4 has recently been
identified as the possible binding partner of Nrf2 in regulat-
ing ho-1 transcription, by yeast two-hybrid analysis [159].

The hyperoxia-mediated induction of ho-1 in RAW 264.7
cells requires E1 and the participation of E2 enhancer regions.
The response is mediated by the intrinsic AP-1 elements act-
ing in cooperation with STAT (signal transducer and acti-
vator of transcription) elements located within the proximal
promoter region [160]. In contrast, the hypoxic activation of
ho-1 in VSMC requires a sequence at –9 kb (hypoxia respon-
sive element) distinct from E1, that contains two functional
binding sites for HIF-1 [121].

Heme oxygenase confers protection
against oxidative stress in vitro and
in vivo

An increasing body of evidence supports the general hypoth-
esis that HO-1 acts as an inducible mediator of cellular and
systemic defenses against oxidative stress, in models of in-
flammation, ischemia-reperfusion, hypoxia, and hyperoxia-
mediated injury. For example, induction of endogenous HO-1
protein with hemoglobin infusion increased survival in a rat
model of LPS-induced inflammatory lung injury [161]. Pre-
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induction of HO-1 with either LPS or hemoglobin infusion
conferred protection in a rat model of renal injury (glycerol-
induced rhabdomyolysis) [162–164].

Homozygous ho-1 null mice (ho-1–/–) displayed increased
mortality in a model of lung ischemia-reperfusion (I/R). Inha-
lation CO (0.2%) compensated entirely for the ho-1 deficiency
in ho-1–/– mice, and restored survival following I/R to that of
the wild-type mice [165]. The proposed mechanism involved
the CO/ cGMP-dependent inhibition of plasminogen activa-
tor inhibitor-1 (PAI-1) leading to enhanced fibrinolysis [165].
Adenoviral mediated overexpression of HO-1 (AdHO-1) in
pigs inhibited vascular cell proliferation and lesion formation
in a model of arterial injury. Conversely, HO-1–/– mice subjected
to arterial injury displayed increased vascular cell prolifera-
tion, and developed hyperplastic lesions in comparison to
HO-1+/+ controls [166].

Chronic hypoxia treatment (10% O
2
) increased right ventricu-

lar dilation and caused right myocardial infarction in ho-1–/–

mice relative to wild-type mice that withstood the treatment
[167]. In this model wild-type or ho-1–/– mice did not differ in
their development of pulmonary hypertension following chronic
hypoxia [167]. The induction of HO-1 protein by chemical
inducers (i.e. NiCl

2
 or hemin) however, prevented the devel-

opment of pulmonary hypertension in the rat lung as a con-
sequence of chronic hypoxia treatment [168]. Transgenic mice
with a lung-specific HO-1 overexpression phenotype, resisted
the inflammatory and hypertensive effects of hypoxia [169].

Both HO-1 and HO-2 potentially contribute to pulmonary
defenses against high O

2
 levels. The adenoviral mediated gene

transfer of HO-1 into rat lungs protected against the devel-
opment of lung apoptosis and inflammation during hyperoxia
[5]. Heme oxygenase-2 null mice (ho-2–/–), displayed increased
sensitivity to the lethal effects of hyperoxia relative to wild-
type mice, despite compensatory increases in HO-1, and accu-
mulated iron in their lungs [170]. On the other hand ho-1–/– mice
had low serum iron anemia, yet accumulated non-heme iron in
the kidney and liver, suggesting that iron recycling by HO-1 is
critical in maintaining blood iron levels [46]. The mechanism
by which HO-1 deficiency resulted in accumulation of tissue
iron is unclear. These studies have indicated that animals
deficient in either HO-1 and HO-2 display enhanced sensitiv-
ity to oxidative stress conditions, and aberrations in the dis-
tribution of intra- and extracellular iron [8, 46, 170].

HO-1 also confers protection in animal models of arterio-
sclerosis, where it may be found in atherosclerotic lesions
[171]. The adenoviral-mediated transduction of HO-1 into
ApoE deficient mice inhibited the formation of arteriosclerotic
plaques relative to control virus transduced mice [172]. In-
duction of endogenous HO-1 by chemical treatment (hemin)
reduced the formation of atherosclerotic lesions in LDL-re-
ceptor knockout mice fed high fat diets, relative to untreated
or SNPPIX treated controls [173].

Evidence from in vitro studies also supports protective

roles of HO-1. For example, the overexpression of HO-1 in
endothelial cells conferred protection against heme and
hemoglobin-mediated toxicity [3]. Cultured cerebral granu-
lar neurons overexpressing HO-1 displayed resistance to glu-
tamate toxicity relative to wild-type cells [174]. Embryo
fibroblasts with the ho-1–/– genotype displayed hypersensi-
tivity to heme and H

2
O

2 
treatment

 
and generated increased

intracellular ROS production in response to these agents [8].
Overexpression of HO-1 in lung epithelial cells or rat fetal
lung cells conferred resistance against the cytotoxic effects
of hyperoxia, associated with growth arrest [4, 9]. The con-
ditional overexpression of HO-1 in cultured L929 fibroblasts
inhibited TNFα−induced apoptosis, a phenomenon that could
be blocked by inhibitors of HO activity (SnPPIX), and mim-
icked by exogenous CO (250 ppm) [7]. Finally, the adminis-
tration of HO-1 antisense oligonucleotides inhibited the
cytoprotective effect of UVA-preconditioning against subse-
quent lethal UVA exposures in human skin fibroblasts [10].

On the other hand, not all model systems support a pro-
tective role for HO-1. Pro-oxidant effects of HO activity have
been reported in over-expression systems, related to transient
iron overload [24, 175–176]. For example, the susceptibility of
HeLa cells to UVA radiation was increased in HO-2 over-
expressing strains, when the UVA was applied in combina-
tion with a substrate load (heme), in a fashion dependent on
heme iron release [175].

Functional significance of carbon mon-
oxide released from the HO reaction

Carbon monoxide
Carbon monoxide is a low molecular weight diatomic gas that
occurs ubiquitously in nature as an air pollutant. Environmen-
tal CO arises from the oxidation or combustion of organic
matter (i.e. wood, coal, gasoline, natural gas, tobacco). Ambi-
ent CO concentrations in the lower atmosphere occur in the
range of 0.4–1.0 µl/L or <1 ppm; which may reach 1–20 ppm in
urban areas, and still higher in heavily polluted areas [177–
178]. CO is a major component of cigarette smoke, reaching
yields of up to 20 mg per cigarette [179]. In man, endogenous
CO arises principally from heme degradation (>86%). The re-
mainder arises from other sources that may include lipid per-
oxidation, and xenobiotic metabolism [177].

Physiological roles for CO involving cGMP-dependent
signaling

The field of small gas signal transduction was born with the
realization that an endothelial derived relaxing factor respon-
sible for the paracrine regulation of vascular smooth muscle
tone, was identical to the diatomic free radical gas NO. The
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nitric oxide synthase (NOS) enzymes generate NO during the
conversion of L-arginine to L-citrulline. The effects of NO
on vasodilation involve the activation of soluble guanylate
cyclase (sGC), increasing the production of guanosine 3′,5′-
cyclic monophosphate (cGMP) [180]. This paradigm led to
the proposal that CO, a small gas of similar structure, released
directly from heme during HO activity, may function as a solu-
ble messenger molecule in a similar fashion [12, 14–18, 40, 181].
Unlike NO however, CO is not a radical, and therefore is rela-
tively inert by comparison. Both CO and NO stimulate sGC
activity in vitro by binding to the ferrous heme moiety of the
enzyme [12, 182–183]. While NO forms a pentacoordinate
complex with the heme of sGC, CO may initially form a hexa-
coordinate complex [12, 182]. CO has a relatively lower affin-
ity for the heme-iron of sGC than NO, and is one-thousandfold
less potent than NO with respect to vasodilation and the in
vitro activation of sGC [12, 183]. CO signaling may become
relevant under oxidative stress or pathophysiological condi-
tions where HO-1 is dramatically induced, and/or where the
bioavailability of NO is reduced. Little is known about how
CO is mobilized for signaling, apart from two intuitive mecha-
nisms (I) the availability of substrate heme for enzymatic deg-
radation, and (II) the availability of active HO enzymes, a
process which in turn may be regulated by the transcriptional
activation of the ho-1 gene by stress, and the possible modu-
lation of ho-2 by glucocorticoids [18]. Transient fluxes in the
free heme pool have been reported following oxidative stress
conditions such as UVA (320–380 nm) radiation treatment
[184]. Paradoxically, CO may inhibit HO activity in reconsti-
tuted microsomal systems, implying that the production of
CO may be limited by negative feedback regulation [185].

Physiological roles for CO, which directly involve modula-
tion of cGMP levels, include neurotransmission, vasodilation,
the inhibition of platelet aggregation, and anti-proliferative
effects on smooth muscle [12, 14–18, 40, 181]. In brain slices, in
situ hybridization studies demonstrated that the distribution
of HO-2 matches that of NADPH cytochrome P-450 reductase
and guanylate cyclase [17]. The induction of guanylate cy-
clase in cultured olfactory neurons by olfactory stimulants
can be inhibited by metalloporphyrin inhibitors of HO such
as ZnPPIX, but not inhibitors of NOS [17].

Recent studies point to the involvement of CO in cardio-
vascular signaling. In the rat, both whole body hyperthermia
(42°C), or renal I/R triggered the elevation of cGMP levels in
the heart in parallel with the transcriptional induction of HO-1
[141, 186]. In VSMC, an elevation of cGMP occurred following
exogenous CO treatment [14]. cGMP increased also following
hypoxia in association with HO-1 elevation, an effect that
could be inhibited by SnPPIX, and the CO scavenger hemo-
globin, but not inhibitors of NOS [14]. VSMC derived CO had
paracrine effects on endothelial cells in co-culture, stimulat-
ing the production of endothelial cGMP, and suppressing the
expression of endothelial-derived mitogens (PDGF, endothelin

1) [15]. Both exogenously applied CO, or hypoxia induced CO
had antiproliferative effects on VSMC, associated with eleva-
tion of cGMP, and inhibition of transcription factor E2F, a regu-
lator of cell cycle control [16]. AdHO-1 infection in VSMC
stimulated cGMP production, and inhibited cell proliferation
in vitro by G

1
/G

o
 arrest, which required the G1 cyclin depend-

ent protein kinase inhibitor p21cip1 [166].
The involvement of endothelial derived CO in NO-independ-

ent vasodilation has been suggested in inhibitor studies. In the
presence of the NOS inhibitor Nω-nitro-L-arginine-methyl-
ester, (L-NAME), the HO inhibitor SnPPIX further inhibits
vasorelaxation elicited by acetylcholine in porcine aortic rings
[40]. Conversely, the endothelium-dependent contractile re-
sponse to phenylephrine in thoracic aortic rings was more
pronounced in the presence of both ZnPPIX and Nω-nitro-L-
arginine (NNA); than in the presence of NNA alone [187]. In
this system, exogenously applied CO relaxed the aortic rings
in a cGMP-dependent fashion. Overexpression of HO-1 by
AdHO-1 infection in pigs inhibited phenylephrine-dependent
vasoconstriction in isolated aortic rings. Furthermore, AdHO-
1 infection induced cGMP production in VSMC. The effects
of HO-1 expression on vasoconstriction and cGMP produc-
tion were subject to inhibition by ZnPPIX; but occurred in
the presence of NOS inhibitors (i.e. L-NNA, L-NAME) [166].
Thus, these effects are dependent on heme degradation and
independent of NOS activity or NO generation.

Exogenous CO or heme treatment dilated pig cerebral artioles,
the latter effect which could be blocked by chromium meso-
porphyrin [188]. ZnPPIX, but not NOS inhibitors, inhibited
smooth muscle relaxation in the opposum internal anal sphinc-
ter produced by nonadrenergic noncholinergic (NANC) nerve
stimulation [189]. In isolated perfused rat liver, ZnPPIX dimin-
ished CO levels detectable in the effluent, and increased the
perfusion pressure under the constant flow conditions. These
effects were reversed by the addition of CO or cGMP ana-
logues in the perfusate [190].

These studies support the existence of CO/cGMP signal
transduction cascades and their possible regulation by heme
oxygenases, as potential pathways governing physiological
processes. It remains possible, however, that a fraction of
endogenous CO originating from non-heme sources may con-
tribute to a corresponding fraction of cGMP production. More
discussion on the significance of CO in the cardiovascular
system under normal and pathophysiological states appears
in other recent reviews [13, 191].

Carbon monoxide (CO): An anti-
inflammatory mediator

HO-1 exerts a novel anti-inflammatory effect mediated by car-
bon monoxide (CO) generated in the HO reaction [6]. The
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effectiveness of bacterial lipopolysacharide (LPS) (heretofore
1 µg/ml), to stimulate the production of the pro-inflammatory
cytokine TNFα, was inhibited in transfected RAW 264.7 mac-
rophage cells overexpressing HO-1, compared to that in con-
trol transfectants. Exogenously administered CO (heretofore
250 ppm) inhibited the production of TNFα in wild-type RAW
264.7 cells after LPS treatment, indicating that CO can substi-
tute for HO activity in mediating these effects. The treatment
of RAW 264.7 cells with exogenous CO prior to LPS treatment
inhibited the expression of additional pro-inflammatory cyto-
kines (i.e. IL-1β, and the macrophage inflammatory protein-β,
MIP-1β), whereas increased the production of the anti-in-
flammatory cytokine interleukin-10 (IL-10). The LPS mediated
stimulation of pro-inflammatory cytokines in macrophages
involves the activation of MAPK signaling pathways [192–
195]. LPS treatment activated the p38, ERK1/ERK2 and c-JUN
N-terminal kinase, (JNK) pathways in RAW 264.7 macropha-
ges. In the presence of LPS, CO increased p38 MAPK activa-
tion, but did not modulate ERK1/ERK2 and JNK. Of the MAP
kinase kinases (MKK): (MKK3, MKK4, and MKK6) that ac-
tivate p38 MAPK [196–197], CO enhanced the LPS-mediated
stimulation of MKK3 and MKK6 in RAW 264.7 cells. CO treat-
ment did not significantly modulate cGMP production in RAW
264.7 macrophages, but dramatically increased cGMP levels
in control smooth muscle cells. Pretreatment of the RAW 264.7
macrophages with a non-hydrolysable cGMP analog or L-
NAME did not compromise the ability of CO to inhibit LPS-
inducible TNFα production.

These anti-inflammatory effects of CO were substantiated
in vivo, in experiments where mice received injections of LPS
(heretofore 1 mg/kg) with or without CO pretreatment (here-
tofore 250 ppm). CO dose-dependently inhibited LPS-induc-
ible serum TNFα levels and increased LPS-inducible IL-10
production. The responsiveness of TNFα to LPS treatment
appeared downregulated in MKK3–/– mice compared to wild-
type mice. CO failed to further downregulate TNFα levels
or upregulate IL-10 levels in LPS treated MKK –/– mice. In
IL-10–/– mice, CO inhibited TNFα levels within the first hour
of LPS treatment to a similar extent than in wild-type mice,
excluding a role for IL-10 in the early anti-inflammatory ef-
fects of CO [6].

These results, taken together, demonstrate that CO exerts
anti-inflammatory effects by inhibiting the synthesis of the
pro-inflammatory cytokines under inducing conditions, by
a mechanism that involves stimulation of the MKK3/p38
MAPK pathway, but excludes sGC/cGMP, iNOS, or NO-de-
pendent signaling. The direct physical target of CO in initi-
ating this pathway remains obscure. Various intracellular
hemoproteins (i.e. cytochrome p-450, cytochrome c oxidase,
NAD(P)H: oxidase, peroxidases, and others) may serve as
targets for CO binding [19–22, 198–199]. Future research may
focus on elucidating the functional significance (with respect
to cell signaling) of CO-hemoprotein interactions in vivo.

Cytoprotective and anti-inflammatory effects of carbon
monoxide in oxidative lung injury: Involvement of the
MKK3/p38 MAPK pathway

CO, through anti-inflammatory action, protects the lung in a
model of hyperoxia-induced lung injury [11], which evokes
symptoms in mice similar to human acute respiratory distress
syndrome (ARDS) [200]. Mice subjected to continuous hy-
peroxia treatment (heretofore >95% O

2
), displayed signs of

lung injury by 64–72 h, and all died within 90–100 h of expo-
sure. The presence of CO (heretofore, 250 ppm) initiated prior
to the hyperoxia, prolonged the survival of mice in the hyper-
oxic environment, increasing the LD

50
 to 128 h exposure. CO

inhibited the appearance of markers of lung injury associated
with hyperoxia (i.e. hemorrhage, fibrin deposition, edema, and
protein accumulation in the airway), as well as markers of
oxidative damage (i.e. lung lipid peroxidation) [11]. CO also
inhibited the influx of neutrophils into the airways associated
with hyperoxia treatment, as measured in bronchoalveolar
lavage fluid.

Hyperoxia induced the expression of proinflammatory cy-
tokines including TNFα, IL-1β, and IL-6, by 84 h of exposure
and activated stress kinases in lung tissue including ERK1/2,
JNK, P38/MAPK and MKK3/MKK6. The protection afforded
by CO treatment against the lethal effects of hyperoxia corre-
lated with the inhibited expression of the pro-inflammatory
cytokines, TNFα, IL-1β and IL-6.

MKK3–/– mice, or wild-type mice injected with the selective
inhibitor of p38 α/β MAPK (SB203580), displayed the accel-
erated manifestation of tissue damage markers (with the ex-
ception of neutrophil influx) and increased sensitivity to the
lethal effects of hyperoxia, relative to untreated wild-type mice.
Cytokine mRNA (TNFα, IL-1β and IL-6) expression in response
to hyperoxia appeared earlier in the MKK3–/– mice relative the
wild-type mice exposed to continuous hyperoxia. CO failed
to inhibit the expression of the pro-inflammatory cytokines
in the MKK3 –/– mice, and furthermore failed to confer pro-
tection or extend survival against hyperoxia in MKK3–/– mice
or in wild-type mice injected with SB203580. On the other
hand, JNK–/– mice behaved as wild-type mice with respect to
the anti-inflammatory effects of CO [11]

The CO treatment of A549 lung epithelial cells in vitro in-
creased MKK3 activation, and specifically the β-isoform of
p38. The presence of CO increased the survival of A549 cells
grown in continuous hyperoxia, relative to cells exposed to
hyperoxia alone. Treatment with the inhibitor of p38 α/β MAPK
or transient transfection with dominant negative mutants of
p38β or MKK3 abolished the cytoprotective effect of CO
against hyperoxia. Currently no studies support the selective
activation of antioxidant enzymes or stress proteins as an
underlying mechanism for the anti-inflammatory properties of
CO in vivo. However, the treatment of endothelial cells in vitro
with exogenous CO (100 ppm) stimulated the expression of
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manganese superoxide dismutase (MnSOD) and HO activity
[201]. In summary, these experiments demonstrate that CO
protects against the lethal and inflammatory effects of hyper-
oxia in vivo and in vitro, by downregulating the expression
of pro-inflammatory cytokines, through a mechanism depend-
ent on activation of the p38β/ MKK3 pathway [11].

Summary

The functional significance of heme oxygenase-1, which pro-
vides the rate-limiting step in heme degradation, and whose
induction represents a general response to cellular stress, has
remained a subject of debate for decades [23–24, 37, 202]. The
overwhelming evidence described above supports the conclu-
sion that HO-1 expression confers protection in animal models
of oxidative stress. These studies taken together, suggest that
HO-1 expression may have therapeutic value in gene therapy
approaches.

Attempts to explain the cytoprotective action of HO-1 have
implicated possible roles for all the products of HO-activity
including redox active iron and bile pigments [23–24]. CO,
formerly regarded as a toxic elimination product of the HO
reaction has taken on a new significance as a possible auto-
crine and paracrine signaling molecule. CO regulates vascu-
lar and neural processes by modulation of cGMP production
[18]. Recent work has identified anti-inflammatory and anti-
apoptotic properties of HO-derived CO [6, 11]. In animal mod-
els of lung oxidative stress, including hyperoxia and ischemia/
reperfusion, exogenously applied CO may apparently substi-
tute for HO-1 expression with regard to protection [6, 165].
Such studies point to a possible therapeutic use of inhala-
tion CO in inflammatory disease states.
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