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Abstract. Love numbers of second order of Venus are calculated with resolving fundamental dif-
ferential equations of elastic body according to the parameters of the density and the elasticity of
material by means of the PVM94-01 Venus model. Meanwhile, the elastic energy of deformation of
second order due to the tidal perturbation of the Sun and that due to rotational centrifugal potential are
also calculated. The values of Love number provide a basis for model of internal structure of Venus.
The numerical calculation of the elastic energy of deformation gives a magnitude evaluation of the
perturbation terms to the Hamiltonian expressions in the study of dynamics of the elastic Venus.
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1. Introduction

Venus has been the object of space exploration for more than 30 years. A wealth
of data enriches man’s knowledge on Venus geodesy. At present, important geo-
detic parameters of Venus are provided with high accuracy (e.g., Bills and Synnott,
1987). The geodetic parameters for both Venus and the Earth adopted in this study
are shown in Table I.

In Table I a is average radius of a celestial body, ρ the average density, m and
m⊕ the masses of a planet and the Earth, and I/ma2 the dimensionless moment
of inertia (I is the mean moment of inertia). By the comparison of the geodetic
parameters between Venus and the Earth, Venus is reminiscent of a twin planet of
Earth. Therefore, it is quite natural to construct an internal model of Venus on the
basis of an Earth model. A comprehensive review on the construction of Venus’
model may be found from a survey by Zharkov (1983). A sequence of models for

TABLE I

Geodetic parameters of Venus and the Earth

a (km) ρ (g cm−3) m/m⊕ I/ma2 � (rad s−1)

Venus 6051.53 5.2446 0.8150 0.329–0.341 2.99236 × 10−7

Earth 6378.136 5.51483 1.0 0.3307 7.292115 × 10−5
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the interior of Venus is constructed under the assumption of hydrostatic equilibrium
by Zhang and Zhang (1995). The basic conclusion of these works is that the interior
structure of Venus is similar to that of Earth. Apparently, we can study Venus, one
of the terrestrial planets, with the method by which the Earth is studied.

The deformation of the Earth by the tidal attractions of the Sun and Moon
has been dealt with by various authors (Jeffreys and Vicente, 1957; Munk and
MacDonald, 1960; Moritz, 1982). They regarded the Earth as an elastic body in
theoretical studies of the rotational motion of a deformable Earth. On the analogy
of the Earth, in the first approximation Venus may also be thought as an elastic
body. When Venus is considered as an elastic body, Venus is deformed by external
forces (such as the tide-generating force of the Sun, rotational centrifugal force,
etc.). Perturbing potentials of the external forces and various deformational effects
can be expanded with spherical harmonic functions, and functional relations can
be definitively set up between their corresponding terms of same order through a
dimensionless number or a partial derivative, these relations are Love numbers. The
Love numbers of Venus are the quantities that are related to the internal structure
and the distributions of the elasticity and the density of material of Venus. Szeto
(1983) estimated the Love numbers by means of a certain simplified model of
Venus. Bodri (1987) computed second degree Love numbers for radially hetero-
geneous compressible models of Venus. Zhang (1992) computed the static Love
numbers using the latest geodetic parameters for the parametric models of Venus.
When we consider the tidal response feature of Venus, it is necessary to estimate
its Love numbers.

In this paper, the displacement vectors of deformation are obtained by resolving
fundamental differential equations of elastic body, which is based on a Hamiltonian
theory for the rotation motion of an elastic body (Getino and Ferrandiz, 1990,
1991). By means of the PVM94-01 Venus model given by Zhang and Zhang
(1995), the Love numbers of second order of Venus are acquired. Meanwhile, the
elastic energy of deformation of second order of Venus due to the tidal perturbation
of the Sun and that due to rotational centrifugal potential are also calculated.

2. Fundamental Equations of Elastic Body

It is assumed that the basic state of an elastically deformable body is in hydrostatic
equilibrium; the stress on a perturbed body is the sum of an basic stress and an
additional stress, and the additional stress depends upon the strain and can be cal-
culated with Hooke’s law; the density and rheological parameters are considered
as function of the distance from the center of mass of an elastic body; and the
additional stress and strain both are so small, that their effects can be regarded as
perturbations.

The fundamental differential equation of an elastic body is

ρ∂2u/∂t2 = ρ∇V + ∇ · σ, (1)
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where ρ, V , σ are the density, potential of the forces and tensor of stress of a
deformed elastic body, respectively; u = (u, v, w) is the displacement vector of
deformation of a body element.

Because of the deformation of mantle layer is small in comparison with the
basic state, merely the term of first order may be remained. The density ρ can be
obtained from the law of mass conservation as follows

ρ = ρ0 − U dρ0/dr − ρ0�, (2)

where ρ0 is the density in the basic state. U = (xu + yv + zw)/r is the radical
displacement, � = ∂u/∂x + ∂v/∂y + ∂w/∂z is the volume divergence, r is the
distance from the center of mass of an elastic body.

Potential V is the sum of the basic potential V0 and the perturbing potential H ,
namely

V = V0 +H,

H = W ′ +W,
(3)

where W ′ is the additional deformational potential, W is tide-generating potential.
H admits Poisson’s formula

∇2H = 4πG(U dρ0/dr + ρ0�), (4)

where G is the gravitational constant.
The stress tensor consists of the basic stress and the additional stress caused by

strain

σxx = −(P0 − U dP0/dr)+ λ�+ 2µ∂u/∂x,

σxy = µ(∂v/∂x + ∂u/∂y), (5)

σxz = µ(∂w/∂x + ∂u/∂z), etc.

where λ,µ are Lame’s elastic parameters, P0 is the hydrostatic pressure in the basic
state.

If the perturbing potential, H , is expressed in an expansion of the form

Hn = Kn(r)Wn, (6)

where Wn is the spherical harmonic function of the perturbing potential, Kn(r) is
solely a function of r, the expressions of the displacement vector can be written as
(Getino, 1993)

un = Fn(r)∂Wn/∂x +Gn(r)xWn,
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vn = Fn(r)∂Wn/∂y +Gn(r)yWn, (7)

wn = Fn(r)Wn/∂z+Gn(r)zWn,

where Fn(r), Gn(r) are only functions of r.
From Equations (3) and (6), we obtained

W ′
n = (Kn(r)− 1)Wn. (8)

Inserting Equations (2), (3), (5), (6) and (7) into Equations (1) and (4),
respectively, and letting

s = r/a, Fn(s) = Fn(r)/a
2, Gn(s) = Gn(r), Kn(s) = Kn(r)/4πGa2, (9)

where a is the mean radius of an elastic body, as for the case where n = 2, the
differential equations needed to find the functions F2(s), G2(s) and K2(s) are
obtained as follows

µF ′′
2 + [dµ/ds + (2λ+ 6µ)/s]F ′

2 + (λ+ µ)sG′
2 + [(2/s) d(P0 + µ)/ds]F2

+[s d(P0 + µ)/ds + 5λ+ 7µ]G2 + 4πGa2ρ0K2 = 0,

(λ+ 2µ)s2G′′
2 + 2(λ+ µ)F ′′

2 + 2[d(λ+ µ)ds − (λ+ µ)/s]F ′
2

+[s2d(λ+ 2µ)/ds + (6λ+ 14µ)/s]G′
2 + 4πGa2ρ0sK

′
2 (10)

+2[(−1/s) dP0/ds + ρ0 d2V0/ds2]F2 + [s2ρ0 d2V0/ds2

+s d(5λ+ 4µ− 4P0)/ds]G2 = 0,

K ′′
2 − (2ρ0/s)F

′
2 − ρ0sG

′
2 + (6/s)K ′

2 − (2/s)(dρ0/ds)F2

− (s dρ0/ds + 5ρ0)G2 = 0,

where F ′′
2 = d2F2(s)/ds2, F ′

2 = dF2(s)/ds, . . . . To find the displacement vectors
will, therefore, be turned to do the numerical integration of the functions F2(s),
G2(s) and K2(s) in Equation (10).

Being integrated Equations (10) must satisfy corresponding boundary condi-
tions. By making u, V , σ , ∇(V0 + K) continuous at the discontinuous surface in
the mantle of an elastic body, the boundary conditions are obtained as

(F2)above = (F2)below, (G2)above = (G2)below, (K2)above = (K2)below,

[µ(F ′
2 + 2F2/s + sG2)]above = [µ(F ′

2 + 2F2/s + sG2)]below,

[λ(2F ′
2/s + sG′

2 + 5G2)+ µ(2F ′
2/s + 2sG′

2 + 4G2)]above (11)

= [λ(2F ′
2/s + sG′

2 + 5G2)+ µ(2F ′
2/s + 2sG′

2 + 4G2)]below,
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(K ′
2)above = (K ′

2)below + (1/s)(2F2 + s2G2)[(ρ0)above − (ρ0)below],
where the suffixes ‘above’ and ‘below’ refer to the values above and below the
surface of boundary surface, respectively.

3. Elastic Energy of Deformation

When an elastic body is deformed by the attraction of outside body, an elastic
energy of deformation is produced.

If Equation (7) are expressed in spherical coordinates instead of Cartesian
coordinates, they can be written as

urn = (nFn/r + rGn)Wn,

uθn = (Fn/r)(∂Wn/∂θ), (12)

uφn = (Fn/r sin θ)(∂Wn/∂φ).

Then the elastic energy of deformation per volume unit can be expressed as
(Getino and Ferrandiz, 1991)

Ed = (λ/2)(err + eθθ + eφφ)
2 + µ[e2

rr + E2
θθ + e2

φφ + 2(e2
rθ + e2

rφ + e2
θφ)], (13)

where eij are the components of the deformation, they relate to the components of
the displacement vector (ur , uθ , uφ) with following expressions

err = ∂urn/∂r,

eθθ = (1/r)(∂uθn/∂θ)+ urn/r,

eφφ = (1/r sin θ)(∂uφn/∂φ)+ (1/r)(urn + cot θuφn),

erθ = [(1/r)(∂urn/∂θ)− uθn/r + ∂uθn/∂r]/2,

erφ = [(1/r sin θ)(∂urn/∂φ)− uφn/r + ∂uφn/∂r]/2,

eθφ = [(1/r)(∂uφ/∂θ))− (1/r) cot θuφn + (1/r sin θ)(∂uθn/∂φ)/2.

(14)

Inserting Equations (12) and (14) into Equation (13), and taking into account
the property of the spherical harmonics, for n = 2, Equation (13) becomes

Ed = (λ/2)f 2
2 W

2
2 + µ{(Q2

1 + 2Q2
2 − 12Q2Q3)W

2
2

+(Q2
4/2)[(∂W2/∂θ)

2 + (1/ sin2 θ)(∂W2/∂φ)
2]

+Q2
3[(6W2 + ∂2W2/∂θ

2)2 + (2/ sin2 θ)(∂2W2/∂θ∂φ

− cot θ∂W2/∂φ)
2 + (∂2W2/∂θ

2)2], (15)
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where

f2 = (2/r)F ′
2 + rG′

2 + 5G2,

Q1 = (2/r)F ′
2 + rG′

2 + (2/r)F2 + 3G2,

Q2 = (2/r)F2 +G2, (16)

Q3 = (1/r)F2,

Q4 = (1/r)F ′
2 + (2/r)F2 +G2.

The tidal perturbing potential of the second order, W2, can be showed as

W2 = (GM/R3)r2P2(cos z), (17)

where M is the mass of the perturbing body, R the distance from the elastic body
to the perturbing body, z the zenith distance of the perturbing body, and P2(cos z)
the Legendre polynomial of second order.

The total elastic energy of deformation, E, is obtained by integrating Ed in the
entire mantle as follows

E =
∫
Ed dV =

∫ a

r

∫ π

0

∫ 2π

0
Edr

2 sin θ dr dθ dφ. (18)

With the following results of integration taken into account

∫ π

0

∫ 2π

0
W 2

2 r
2 sin θ dθ dφ = (GM/R3)2(12π/15)r6,

∫ π

0

∫ 2π

0
[(∂W2/∂θ)

2 + (1/sin2 θ)(∂W2/∂φ)
2]r2 sin θ dθ dφ

= (GM/R3)2(24π/15)r6,

(19)

∫ π

0

∫ 2π

0
[(6W2 + ∂2W2/∂θ

2)2 + (2/ sin2 θ)(∂2W2/∂θ ∂φ − cot θ ∂W2/∂φ)
2

+(∂2W2/∂θ
2)2]r2 sin θ dθ dφ = (GM/R3)224πr6.

Finally, the expression of the total elastic energy of deformation, E, is obtained
as

E = (GM/R3)2(2π/5)(Iλ + 2Iµ), (20)
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where

Iλ = (a3/16π2G2)

∫
s

λ(2s2F ′
2 + s4G′

2 + 5s3G2)
2 ds,

Iµ = (a3/16π2G2)

∫
s

µ[7s4F ′2
2 + 30s2F 2

2 + 14s6G2
2 + S8G′2

2 + 20s3F2

× (F ′
2 + sG2)+ 4s5G′

2(sF
′
2 + F2)+ 18s5F ′

2G2 + 6s7G′
2G2] ds. (21)

4. Numerical Results

The PVM94-01 Venus model given by Zhang and Zhang (1995) is adopted, the
parameters of this model are listed in the Table II, in which r is the distance from
the mass center of Venus, ρ0 the density, Vp the velocity of longitudinal wave, Vs
velocity of transverse wave, s = r/a, a = 6051.53 × 105 cm (cf. Table I) the mean
radius of Venus.

The analytical expressions of the rheological constants and their derivatives may
be calculated with the following equations

µ = ρ0V
2
s , λ = ρ0V

2
p − 2µ,

dµ/ds = V 2
s dρ0/ds + 2Vsρ0 dVs/ds,

dλ/ds = V 2
p dρ0/ds + 2Vpρ0 dVp/ds − 2dµ/ds, (22)

g(s) = (4πGa/s2)

∫
ρ0(s)s

2 ds, dg/ds = −(2g/s)+ 4πGaρ0,

dP0/ds = −aρ0g = ρ0 dV0/ds, dV0/ds = −ag,
d2V0/ds2 = −a dg/ds,

where g is gravitational acceleration.
By means of the analytical expressions computed from Equation (22), the coef-

ficients of functions, F ′′
2 , F ′

2, F ,G′′
2,G′

2 . . . , in Equation (10) from Venusian crust to
the lower mantle may be obtained with s as their independent variable, for example,
for s = 0.55045, we have

F ′′
2 = −14.15326F ′

2 − 1.28011G′
2 + 9.25788F2 − 12.22529G2 − 0.54590K2,

G′′
2 = 80.93151F ′

2 − 32.10854G′
2 − 0.29822K ′

2 − 47.84808F2

+ 63.11774G2 + 2.51983K2, (23)
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TABLE II

PVM94-1 Venus model

Zone r (km) ρ0 (g cm−3) Vp (km s−1) Vs (km s−1)

Core 0.00–3331.06 11.0031 − 0.1088s 10.0856 − 0.0891s 0.0

−5.2654s2 − 2.0290s3 −5.9955s2 − 1.6658s3

Lower mantle 3331.06–5585.61 5.9274 − 0.6953s 17.7173 − 3.3930s 9.1671 − 1.8605s

−1.4302s2 −3.8698s2 −2.1221s2

Upper mantle 5585.61–5971.53 7.4900 − 3.7420s 20.6294 − 11.0292s 11.4033 − 6.0966s

Crust 5971.53–6051.53 2.85 6.00 3.50

K ′′
2 = 18.57171F ′

2 + 2.81357G′
2 − 10.90017K ′

2 − 8.24707F2 + 24.30759G2.

Integrating numerically Equations (10), we must consider the boundary condi-
tions between the discontinuous surface, including the crust and the upper mantle
(s = 0.98676), the upper mantle and the lower mantle (s = 0.92301), the lower
mantle and the core (s = 0.55045), and those at the surface of Venus (s = 1.0). The
results thus obtained are

F2 = −0.07939 + 5.03454s − 15.27656s2 + 16.70031s3 − 6.33066s4,

G2 = −1.80606 + 8.20289s − 8.96405s2 + 0.94574s3 + 1.82763s4, (24)

K2 = 8.13738 − 17.50264s + 8.49681s2 + 9.53843s3 − 7.40817s4.

These results are rounded off to five decimal places and it would be necessary
to multiply them by the factor 1/(4πGa2). The distributions of F2, G2 and K2 are
shown in Figures 1 and 2.

5. Results and Discussion

5.1. LOVE NUMBERS

As dimensionless numbers that manifest the elastic nature of an elastic body, Love
numbers are ratios between the deformational effects and the corresponding per-
turbing potential or those between the former and the partial derivatives over a
coordinate to the later. The Love numbers of Venus, therefore, can be calculated
from the displacement vectors of deformation obtained in the preceding section.

Love number k2 is ratio between the additional deformational potential and the
tide-generating potential on the surface, namely

W ′
2 = k2W2. (25)
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Figure 1. The distribution of F2 and G2 for s from 0.55045 to 1.

Love numbers, h2 and l2, are ratio between the heights of the body tide and the
equilibrium tide, and that between the horizontal displacements of the body tide
and the equilibrium tide on the surface, namely

ur = (h2/g)W2, uθ = (l2/g)(∂W2/∂θ), uφ = (l2/g sin θ)(∂W2/∂φ). (26)

When s = 1.0, from Equation (24) we have

K2 = 1.26182/(4πGa2), F2 = 0.04823/(4πGa2),

G2 = 0.20613/(4πGa2). (27)
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Figure 2. The distribution of K2 for s from 0.55045 to 1.

From Equations (8) and (25), we obtain

k2 = K2 − 1 = 0.26182.

As for n = 2, Equation (12) turn into

ur = (2F2/r + rG2)W2,

uθ = (F2/r)(W2/∂θ), (28)

uφ = (F2/r sin θ)(∂W2/∂φ).
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Then, from Equations (26) and (28) h2 and l2 are obtained

h2 = (ga/s)[2F2(s)+ s2G2(s)],
l2 = (ga/s)F2(s). (29)

Inserting F2 and G2 of Equation (27) into above formulae, as s = 1.0, and taking
account of the gravitation on the surface of Venus, g = (4/3)πGaρ, where ρ =
5.2446 g cm−3 (cf. Table I) being the mean density of Venus, we obtain

h2 = 0.52900, l2 = 0.08432.

The numerical limits of the Love numbers of Venus have been given by Zhang
(1991) as k2 = 0.18 ∼ 0.26, h2 = 0.36 ∼ 0.52, l2 ≈ 0.08. The results ob-
tained in this paper are in accordance with his upper limits, because in PVM94-01
Venus model the rigidity coefficient µ of the core layer has been taken as 0. This
consequence also shows that the algorithm carried out in this paper is practicable.
The Love numbers relate the deformational effects of Venus to the corresponding
perturbing potential. The values of Love numbers are quite sensitive to the internal
structure of Venus. It is possible to improve the internal model of Venus when the
future observation on the Love number of Venus becomes available.

5.2. ELASTIC ENERGY OF DEFORMATION

Using Equation (20) we can compute the total elastic energy of deformation,
with the heliocentric gravitational constant GM and the distance R taken as,
respectively,

GM = 1.327124 × 1026 cm3 s−1, R = 1.081592610 × 1013 cm,

and with the respective integral limits in Equations (21) taken from s = 0.55045 to
s =1.0, thus, we obtain

Iλ + 2Iµ = 2.70582 × 1050 g cm2 s−2.

Finally, we obtain the elastic energy of deformation of second order of the Venus,
E, due to the tidal perturbation of the solar gravitation as

E = 3.78205 × 1024 g cm2 s−2.

The elastic energy of deformation due to the rotational centrifugal potential may
be obtained by means of similar procedure, as � = 2.99236×10−7 rad/s (cf. Table
I) being put to use, it is obtained that

Er = (�2/3)2(2π/5)(Iλ + 2Iµ) = 3.03003 × 1023 g cm2 s−2.
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Taking the principle momentum of inertia of Venus as C = 0.6062 × 1045 g
cm2 (Habibullin,1995), we obtain the principal term of the Hamiltonian, the kinetic
energy of zero-order of Venus, T0 = 2.7147 × 1031 g cm2 s−2, hence

E/T0 = 1.3932 × 10−7, Er/T0 = 1.1162 × 10−8.

The elastic energy of deformation of the Earth is caused by the tidal perturbation
of the lunar and solar gravitation. According to the Earth’s PREM model, it is
obtained that E = 1.5378 × 1024 g cm2 s−2, Er = 5.3454 × 1032 g cm2 s−2,
T0 = 2.1376 × 1036 g cm2 s−2 (Xia and Xiao, 2002). Evidently, the Venusian
elastic energy of deformation caused by the tidal perturbation potential is greater
than that of the earth. The cause is that the sun finds itself more distant to the
earth than to Venus, and although the distance between the moon and the earth is
greatly smaller than that between the sun and Venus, the mass of the moon is mostly
less than that of the sun. The Earth’s elastic energy of deformation caused by the
rotational centrifugal potential and the kinetic energy of zero-order both are mostly
greater than those of Venus because the Earth rotates more rapidly than Venus. We
study the elastic energy of deformation which is produced in the Venus’ elastic
mantle on being deformed by the solar tidal force and the rotational centrifugal
force. The results provide a magnitude evaluation of the perturbation terms to the
Hamiltonian expressions. The study of elastic energy of deformation is favorable
to the research of the rotational movement of Venus with Hamiltonian.

The calculations of Venus’ Love numbers and its elastic energy of deformation
with Venus’ model may inspire the directions of future Venus’ exploration or make
to suggest proposals of actual effect. These directions or proposals would be aimed
to examine and to improve the existing Venus’ models.
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