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Abstract. The article presents a general view of a class of decomposition algorithms for training Support Vector
Machines (SVM) which are motivated by the method of feasible directions. The first such algorithm for the
pattern recognition SVM has been proposed in Joachims, T. (1999, Schölkopf et al. (Eds.) Advances in kernel
methods-Support vector learning (pp. 185–208). MIT Press). Its extension to the regression SVM—the maximal
inconsistency algorithm—has been recently presented by the author (Laskov, 2000, Solla, Leen, & Müller (Eds.)
Advances in neural information processing systems 12 (pp. 484–490). MIT Press). A detailed account of both
algorithms is carried out, complemented by theoretical investigation of the relationship between the two algorithms.
It is proved that the two algorithms are equivalent for the pattern recognition SVM, and the feasible direction
interpretation of the maximal inconsistency algorithm is given for the regression SVM. The experimental results
demonstrate an order of magnitude decrease of training time in comparison with training without decomposition,
and, most importantly, provide experimental evidence of the linear convergence rate of the feasible direction
decomposition algorithms.
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1. Introduction

Computational complexity of SVM training algorithms is attracting increasing interest, as
applications of SVM extend to problems of larger and larger size. It is not uncommon to see
requests for algorithms capable of handling problems containing 105–106 examples (Smola
& Schölkopf, 1998). The basic training algorithm (Vapnik, 1995) involves a solution to a
quadratic programming problem, the size of which depends on the size of the training data.
For the training data set of size l, the quadratic program for the pattern recognition SVM has
l variables with non-negativity constraints, l inequality constraints and one equality con-
straint. The quadratic program for the regression SVM has 2l variables with non-negativity
constraints, 2l inequality constraints and one equality constraint. In addition, the basic for-
mulation of the SVM training algorithm requires storage of the kernel matrix of size l × l
or 2l × 2l respectively. Thus, the running time and storage of the kernel matrix are the two
main optimization-related bottlenecks of SVM training algorithms.1

Original SVM implementations employed general-purpose optimization packages, such
as MINOS, LOQO and others, that were not designed for problems of such size. It was soon
discovered that these packages were not suitable for solutions to problems involving more
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than a few hundred examples. The early special-purpose methods, proposed to speed-up
training, have not brought much relief. Chunking (Vapnik, 1982) prescribes iteration through
the training data, with accumulation of support vectors and addition of a “chunk” of new
data until no more changes to the solution occur. The main problem with this method is that
when the percentage of support vectors is high it essentially solves the problem of almost the
full size more than once. Another method proposed in Kaufmann (1999) modifies traditional
optimization algorithms (a combination of Newton’s and conjugate gradient methods) to
yield the overall complexity of O(s3) per iteration, where s is the (a priori unknown) number
of support vectors. This can be a significant improvement over O(l3), however the number
of support vectors is not guaranteed to be small.

Decomposition was the first practical method for solving large-scale SVM training prob-
lems. It was initially proposed for the pattern recognition SVM (Osuna, Freund, & Girosi,
1997) and subsequently extended to the regression SVM in Osuna (1998). The key idea
of decomposition is to freeze all but a small number of optimization variables, and to
solve a sequence of constant-size problems. The set of variables optimized at a current
iteration is denoted as the working set. Because the working set is re-optimized, the value
of the objective function is improved at each iteration, provided the working set is not
optimal before re-optimization. Iteration is stopped when termination criteria, derived from
Karush-Kuhn-Tucker (KKT) conditions, are satisfied to a required precision.

Selection of the working set is the most important issue in decomposition algorithms.
First, the provision that the working set must be sub-optimal before re-optimization, is
crucial to prevent the algorithm from cycling. Therefore, it is important to have criteria
to test sub-optimality of any given working set. Second, working set selection affects the
speed of the algorithm: if sub-optimal working sets are selected more or less at random the
algorithm converges very slowly. Finally, working set selection is important in theoretical
analysis of decomposition algorithms; in particular, in the recent convergence proof by
Chang, Hsu, and Lin (1999).

The original decomposition algorithm essentially addressed only the first issue: the design
of its termination criteria in all but pathological cases prevents composition of already opti-
mal working sets. Its implementation featured some unpublished heuristics which provided
reasonable convergence speed. Obviously, a formal framework for working set selection
was highly desirable. Such framework can be provided by the classical method of feasible
directions, proposed in the optimization theory in Zoutendijk (1960). The connection be-
tween this method and the working set selection problem was discovered by Joachims in
a paper that has drawn wide attention (Joachims, 1999). However, Joachims’ algorithm is
limited to the pattern recognition case because it uses the fact that the labels are ±1.

The main goal of the current article is to provide a unified treatment of the working set
selection problem within the framework of the method of feasible directions. Specifically,
we address, in a common way for the pattern recognition and the regression SVM, the
following two issues:

– a criterion for identification of sub-optimal working sets,
– a heuristic for (approximately) optimal working set selection.

Resolution of these issues results in a new algorithm, termed the “maximal inconsistency
algorithm”, which is applicable for both the pattern recognition and regression SVM.
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Theoretical analysis of the new algorithm is aimed to justify the maximal inconsistency
heuristic it uses. It is shown that for the pattern recognition SVM the new algorithm is
equivalent to Joachims’ algorithm, and for the regression SVM a similar algorithm exists
based on the feasible direction principle. Similarly to the pattern recognition case, the
maximal inconsistency algorithm satisfies theoretical requirements crucial for the proof
of convergence. These relationships allow us to suggest the general notion of “feasible
direction decomposition” algorithms.

Some experimental results are presented, intended to highlight certain properties of the
maximal inconsistency algorithm:

– its scaling factors are consistent with the scaling factors of Joachims’ algorithm, which
corroborates the proved equivalence between the two.

– the algorithm has a linear convergence rate. This result is very important because it
suggests the direction for theoretical convergence rate analysis, and also because it is
consistent with the known linear convergence rate of gradient descent algorithms, to
which the method of feasible directions belongs.

– profiled scaling factors demonstrate that complexity of the main steps in the algorithm is
consistent with theoretical expectations. This pertains mostly to per-iteration complexity
of certain computational steps.

It is beyond the scope of the article to present comprehensive numerical evaluation
and comparison of feasible direction decomposition algorithms with other SVM train-
ing algorithms. The main competing algorithms are presented in the discussion, however
numerical evaluation would require careful selection of benchmarks which are currently
not established in the SVM community. Such evaluation, however, would be desirable in
future.

The article is organized as follows. Section 2 provides basic formulations of decompo-
sition algorithms for the pattern recognition and regression SVM. Section 3 presents the
method of feasible directions. Sections 4 and 5 cover the issues related to feasible direction
decomposition algorithms for the pattern recognition and regression SVM respectively.
Exposition in these sections is carried out in different fashion. Section 4 is presented in
a more or less chronological order. It starts with Joachims’ algorithm, fully motivated by
the feasible direction method. Then the criterion for testing optimality of a working set is
presented, and the maximal inconsistency working set selection rule is derived from this
criterion. Finally, equivalence between the maximal inconsistency algorithm and Joachims’
algorithm is proved. The order of presentation is reversed for the regression SVM in Section
5. The maximal inconsistency algorithm is introduced first, followed by its interpretation as
a feasible direction decomposition algorithm. Experimental results for the regression SVM
are presented in Section 6.

2. SVM decomposition

Given the data {(x1, y1), . . . , (xl , yl)}, and hence the kernel matrix Ki j = K (xi , x j ), the
classical problem of SVM training can be expressed as the following quadratic
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program:

Maximize W (α̃) = ẽT α̃ − 1

2
α̃T H̃α̃

subject to: c̃T α̃ = 0

α̃ − C1 ≤ 0

α̃ ≥ 0

(1)

The use of notation x̃ for various quantities is aimed at highlighting the affinity between the
two types of SVM. Interpretation of tilded quantities varies between the pattern recognition
and the regression problems. For the pattern recognition SVM,

α̃ = α ẽ = 1 H̃ = yyT � K c̃ = y (2)

For the regression SVM,

α̃ =
[
α

α∗

]
ẽ =

[
y − ε1

−y − ε1

]
H̃ =

[
K −K

−K K

]
c̃ =

[
1

−1

]
(3)

Details of formulation of SVM training problems can be found in various sources, e.g.,
Vapnik (1995, 1999), Schölkopf (1997), and Smola (1998).

As it was mentioned in the introduction, the main idea of decomposition is to allow only
a subset of optimization variables to change weights at a current iteration. The iteration
process is repeated until termination conditions are met.

Let α̃B denote the variables included in the current working set (of fixed size q), and let
α̃N denote the rest of the variables. The corresponding parts of vectors c̃ and ỹ will also
bear subscripts N and B. Matrix H̃ will be partitioned into H̃B B , H̃B N = H̃ T

N B and H̃N N .
Optimization of the working set turns out to be also a quadratic program. This can be

seen by rearranging the terms of the objective function and the equality constraint in (1) and
dropping the terms independent of α̃B from the objective. The resulting quadratic program
(the “sub-problem”) becomes:

Maximize WB(α̃B) = (
ẽT

B − α̃T
N H̃N B

)
α̃B − 1

2
α̃T

B H̃B Bα̃B

subject to: c̃T
Bα̃B = −c̃T

N α̃N

α̃B − C1 ≤ 0

α̃B ≥ 0

(4)

The termination conditions of the decomposition algorithm are derived from the KKT
conditions (Osuna, Freund, & Girosi, 1997; Osuna, 1998). It is best to consider them
separately for the two types of SVM.

For the pattern recognition SVM, let2

�i =
l∑

j=1

α j y j K (xi , x j ) + b (5)
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where b is the threshold of SVM computed as (Joachims, 1999):

b = 1

|SV|
∑
i∈SV

[
yi −

l∑
j=1

α j y j K (xi , x j )

]
(6)

Then the point satisfies the KKT conditions provided:

yi�i = 1, if 0 < αi < C

yi�i ≤ 1, if αi = C

yi�i ≥ 1, if αi = 0

(7)

For the regression SVM, let

�i =
l∑

j=1

(α j − α∗
j )K (xi , x j ) + b (8)

where

b = 1

|SV|
∑
i∈SV

[
yi −

l∑
j=1

(α j − α∗
j )K (xi , x j ) − ε

]
(9)

Then the point satisfies the KKT conditions provided:

|�i − yi | = ε, if 0 < αi < C and 0 < α∗
i < C

|�i − yi | ≥ ε, if αi = C or α∗
i = C

|�i − yi | ≤ ε, if αi = 0 and α∗
i = 0

(10)

Conditions (7) or (10) are checked for individual points: if, at a given iteration, one of
them is violated for some point, this point is exchanged with some point in the current
working set. Thus the new working set becomes sub-optimal, and strict improvement of the
overall objective function is ensured.

The problem with using conditions (7) or (10) is that they require knowledge of the
threshold b, which is also the Lagrange multiplier for the equality constraint of the SVM
problem. The formulas for computing b given in (6) and (9) tacitly assume that the set SV
of unbounded support vectors is non-empty. Usually this assumption is true; however, it
cannot be guaranteed, especially for small working sets. While a simple trick can rectify
the problem for the pattern recognition SVM, by letting

b = −m + M

2
(11)
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where

m = min
i∈SV

l∑
j=1

α j y j K (xi , x j )

and

M = max
i∈SV

l∑
j=1

α j y j K (xi , x j )

a similar trick does not work for the regression SVM.
Overcoming this problem has been the initial motivation for the new termination condition

proposed in this article. Instead of individual points, optimality of the entire working set
will be considered. The new condition is described in detail in Section 4.2.

In general, intelligent selection of working sets is of primary importance for computa-
tional efficiency of decomposition algorithms. Before presenting in detail the working set
selection techniques the sourse of their motivation needs to be introduced.

3. The method of feasible directions

Let 
 be a feasible region of a general constrained optimization problem. Then a vector d
is said to be a feasible direction at the point α ∈ 
, if there exists λ̄ such that α+ λd ∈ 


for all 0 ≤ λ ≤ λ̄.
The main idea of the method of feasible direction is to find a path from the initial feasible

solution to the optimal solution by making steps along feasible directions. At each iteration
the feasible direction algorithm proceeds as follows:

– find the optimal feasible direction—that is, the feasible direction providing the largest
rate of increase of the objective function,

– determine the step length along the feasible direction that maximizes the objective func-
tion (“line search”).

The algorithm terminates when no feasible direction can be found which improves the
objective function. For a general constrained optimization problem in the form

Maximize f (α)

subject to: Aα ≤ b

the optimal feasible direction is found by solving the direction finding linear program:3

Maximize ∇ f T d

subject to: Ad ≤ 0

‖d‖2 ≤ 1

(12)
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The method of feasible directions can be applied directly to SVM training (Osuna, 1998).
In this case, the respective optimal feasible direction problem can be stated as follows:

Maximize g̃T d (13)

subject to: c̃T d = 0 (14)

di ≥ 0, if αi = 0 (15)

di ≤ 0, if αi = C (16)

‖d‖2 ≤ 1 (17)

where g̃ is the gradient of the objective function of (1).
It turns out that solving the linear program of the full size at each iteration is expensive,

and the overall performance of this method for SVM training is inferior to traditional
optimization methods. However, with a slight modification, an approximate solution to the
optimal feasible direction problem can be obtained in linear time, and it can serve as a
powerful guide for working set selection. This approximate solution lies at the core of the
feasible direction decomposition algorithms described in the ensuing sections.

4. Feasible direction decomposition of the pattern recognition SVM

4.1. Joachims’ decomposition algorithm

The key observation of Joachims is that adding a requirement that only q components of
d be non-zero provides a straightforward working set selection rule: the variables corre-
sponding to these non-zero components should be included in the new working set. Unlike
Zoutendijk’s method, the optimal feasible direction vector is not to be followed exactly.
With re-optimization assumed to be cheap, one can afford finding an optimal solution in
the entire subspace spanned by non-zero components of d, instead of doing line search
strictly along d. Unfortunately, with the additional constraint, the optimal feasible direction
problem becomes intractable. Therefore, one has to seek an approximate solution. One such
solution is realized in Joachims’ algorithm. In the rest of this section a detailed account of
this solution is presented—in order to provide some insight and to underline the ideas used
in the extension of this algorithm to the regression SVM.

The approximate solution is obtained by changing the normalization constraint (17) to

di ∈ {−1, 0, 1}

With this normalization, in order to satisfy the equality constraint (14),4 it suffices that the
number of elements with sign matches between di and yi is equal to the number of elements
with sign mismatches between di and yi . Obviously, for a working set of size q this condition
holds only when each number is equal to q/2. Therefore, the equality constraint (14) can
be enforced by performing two passes on the data: the “forward pass” selects q/2 elements
with sign mismatches, and the “backward pass”—q/2 elements with sign matches.5

How should directions be determined for the elements? Recall that the goal is to maximize
the objective function (13) subject to constraints. In the pattern recognition case the gradient
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of the objective is given by:

g = 1 − Kα (18)

In the absence of constraints (14)–(16) the maximum of the objective function would have
been achieved by selecting q points with the highest values of |gi | and assigning directions
di = −sign(gi ) to them. Consider the largest contribution γk to the objective function
provided by some point k, subject to the equality constraint. During the forward pass the
signs of dk and yk must be different, therefore:

yk = 1 ⇒ dk = −1 ⇒ γk = max
i : yi =1

(−gi ) ⇒ γk = min
i : yi =1

(gi yi )

yk = −1 ⇒ dk = 1 ⇒ γk = max
i : yi =−1

(gi ) ⇒ γk = min
i : yi =−1

(gi yi )

and hence, combining the subscripts,

γk = min
i

(gi yi )

Likewise, for the backward pass the signs of dk and yk must be the same, therefore:

yk = 1 ⇒ dk = 1 ⇒ γk = max
i : yi =−1

(gi ) ⇒ γk = max
i : yi =1

(gi yi )

yk = −1 ⇒ dk = −1 ⇒ γk = max
i : yi =1

(−gi ) ⇒ γk = max
i : yi =−1

(gi yi )

and hence, combining the subscripts,

γk = max
i

(gi yi )

Thus the quantity gi yi reflects the element’s contribution to the objective function subject
to the equality constraint. The working set composition rule can then be stated as follows:
sort data elements by gi yi in increasing order and select q/2 elements from the front of
the list (hence, the “forward pass”), and q/2 elements from the back of the list (hence, the
“backward pass”).6

Finally, to account for inequality constraints (15) and (16), some points may have to be
skipped if they violate one of these constraints. For such points, the direction leading to
improvement of the objective function of the optimal feasible direction problem is infeasible.

Joachims’ algorithm is summarized in Algorithm 1.

Algorithm 1 Joachims’ SVM decomposition algorithm.

Let S be a list of all samples.
while (termination conditions (7) are not met)

– sort S by yi gi in increasing order
– select q/2 samples from the front of S such that 0 < αi < C or di = −yi satisfies (15)

and (16) (forward pass)
– select q/2 samples from the back of S such that 0 < αi < C or di = yi satisfies (15) and

(16) (backward pass)
– re-optimize the working set
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4.2. Optimality of a working set

As it was mentioned earlier, the point-wise termination criteria in Osuna’s and Joachims’
algorithms require knowledge of the threshold b of the SVM. This threshold can be difficult
to calculate, especially for the regression SVM. In this section an alternative termination
condition is presented, which allows testing whether or not the entire working set is sub-
optimal and hence suitable for re-optimization. The new condition is based on examination
of the KKT conditions. We will first state the KKT theorem in the general form for the
problem (1) and will specialize it later for the particular kind of SVM.

Theorem 1 (Karush-Kuhn-Tucker Theorem). The primal vector α̃ solves the quadratic
problem (1) if and only if it satisfies the constraints of (1) and there exists a dual vector
uT = (µΠT ΥT ) such that:

H̃α̃ − ẽ + µc̃ + Υ − Π = 0 (19)

Υ ≥ 0 (20)

Π ≥ 0 (21)

ΥT (α̃ − C1) = 0 (22)

ΠT α̃ = 0 (23)

Conditions (19) and (21) can be combined into an equivalent condition:

Π = H̃α̃ − ẽ + µc̃ + Υ ≥ 0 (24)

It follows from the Karush-Kuhn-Tucker Theorem that if for all u satisfying conditions
(20)–(23) the system of inequalities (24) is inconsistent then the solution of problem (1)
is not optimal. Since the sub-problem (4) was obtained by merely re-arranging terms in
the objective function and the constraints of the initial problem (1), the same conditions
guarantee that the sub-problem (4) is not optimal. Thus, our main strategy for identifying
sub-optimal working sets will be to enforce inconsistency of the system (24) while satisfying
conditions (20)–(23). Notice that all constant terms in (24) represent the negative gradient
vector −g̃ = H̃α̃ − ẽ.

Let us now consider the particular form of the pattern recognition SVM. Each inequality
in (24) can be written as follows:

πi = −gi + yiµ + υi ≥ 0 (25)

where gi is defined as in (18). Consider three cases, according to the values that αi can take:

1. 0 < αi < C . In this case, the complementarity conditions (22), (23) imply that πi = 0,
υi = 0. Then inequality (25) becomes

−gi + yiµ = 0 (26)
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2. αi = 0. In this case, the complementarity condition (22) implies that υi = 0. Then in-
equality (25) becomes

−gi + yiµ ≥ 0 (27)

3. αi = C . In this case, the complementarity condition (23) implies that πi = 0. Then in-
equality (25) becomes

−gi + yiµ ≤ 0 (28)

It can be easily seen that enforcing the complementarity constraints (22), (23) causes µ to
become the only free variable in the system (24). Each point restricts µ to a certain interval
on a real line. Such intervals will be denoted as µ-sets in the rest of the article. The rule for
computation of µ-sets can be summarized as follows:

Mi =




[gi/yi ], if 0 < αi < C[
gi , +∞), if αi = 0 and yi = 1

(−∞, −gi ], if αi = 0 and yi = −1

(−∞, gi ], if αi = C and yi = 1

[−gi , +∞), if αi = C and yi = −1

(29)

The development in this section proves the following theorem:

Theorem 2. The vector α solves the quadratic program (1)–(2) if and only if intersection
of µ-sets computed by (29) is non-empty.

It also follows from the expressions (29) that if at least one αi is strictly between the
bounds, then at the optimal solution the intersection of all µ-sets (which is non-empty by
the Kuhn-Tucker theorem) is a single point set. This is consistent with the known property
of SVM that at the optimal solution b = µ. The intersection of µ-sets at the optimal solution
can only be a non-empty, non single point set if all variables are at the bounds. In this case
any point from the intersection of µ-sets can be taken as b; in particular, it can be the value
suggested in (11).

4.3. Maximal inconsistency algorithm

While inconsistency of the working set at each iteration guarantees convergence of decom-
position, the rate of convergence is quite slow if arbitrary inconsistent working sets are
chosen. A natural heuristic is to select “maximally inconsistent” working sets, hoping that
such choice would provide the greatest improvement of the objective function. The notion
of “maximal inconsistency” is easy to define: let it be the gap between the smallest right
boundary and the largest left boundary of µ-sets of elements in the training set:

G = L − R
L = max

0<i<l
µl

i , R = min
0<i<l

µr
i
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where µl
i , µr

i are the left and the right boundaries respectively (possibly minus or plus
infinity) of µ-set Mi . It is convenient to require that the largest possible inconsistency
gap be maintained between all pairs of points comprising the working set. The obvious
implementation of this strategy is to select q/2 elements with the largest values of µl and
q/2 elements with the smallest values of µr .

One feature of Joachims’ method needs to be retained—rejection of Zoutendijk-infeasible
points (c.f. (15), (16)). Inclusion of such points into the working set doesn’t make sense
anyway because their values of α will not change after re-optimization. In the pattern
recognition case, the µ-set constraints are not capable of encoding feasibility.7 Since the
notion of the direction is not explicitly maintained in the maximal inconsistency algorithm
the feasibility test needs to be slightly modified: the point is infeasible if αi = 0 and gi < 0
or if αi = C and gi < 0.

The maximal inconsistency strategy is summarized in Algorithm 2.

4.4. Equivalence between Joachims’ algorithm and the maximal inconsistency algorithm

So far the motivation for the maximal inconsistency algorithm has been purely heuristic. A
natural question arises: does inconsistency gap indeed provide a good measure of optimality
for a working set at a given iteration? An affirmative answer to it is developed in this section
by showing the equivalence between Joachims’ algorithm and the maximal inconsistency
algorithm.

Algorithm 2 Maximal inconsistency algorithm for the pattern recognition SVM.

Let S be a list of all samples.
while (intersection of all µ-sets is empty)

– compute Mi according to the rules (29) for all elements in S
– select q/2 feasible samples with the largest values of µl (“left pass”)
– select q/2 feasible samples with the smallest values of µr (“right pass”)
– re-optimize the working set

To show that the algorithms are equivalent we have to prove that they produce identical
working sets at each iteration8 and that their termination conditions are equivalent. The two
propositions below handle each claim.

Proposition 1. The working set of Joachims’ algorithm is identical to the working set of
the maximal inconsistency algorithm at each iteration.

Proof: The statement above will be proved for the half of the working set; namely, that
the set of elements selected by the “forward pass” of Joachims’ algorithm is identical to
the set of elements selected by the “right pass” of the maximal inconsistency algorithm.
Similar argument allows to establish equivalence of the other half of working sets.
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Let F be the set of all feasible samples at some iteration. Let rJ (p) denote the rank
(position) of sample p in the array obtained by sorting F by yi gi ; let rI (p) be the rank of
sample p in the array obtained by sorting F by µr

i .
Let the set HJ = {p : rJ (p) ≤ q/2} be the half of the working set selected by the “forward

pass” of Joachims’ algorithm. Let p̄ be the sample whose rJ ( p̄) = q/2, i.e. the element in
HJ with the largest value of the key. Let HI = {p : µr (p) ≤ µr ( p̄)}. We are going to prove
that HJ ≡ HI .

For any sample pi selected by the “forward pass” di = −yi . Considering the possible
values of αi , we conclude that, for any p ∈ HJ :

0 < αi < C ⇒ µr
i = yi gi

αi = 0 ⇒ d = 1 ⇒ yi = −1 ⇒ µr
i = −gi = −1 · gi = yi gi

αi = C ⇒ d = 1 ⇒ yi = 1 ⇒ µr
i = gi = 1 · gi = yi gi

(30)

We can see that the order of µr (p) is preserved when mapping HJ �→ HI . Therefore, if
p ∈ HJ then p ∈ HI .

To prove set equivalence, it remains to be shown that if p ∈ HI then p ∈ HJ . Suppose,
by the way of contradiction this is not the case, i.e., there exists a sample p̃ such that
µr ( p̃) < µr ( p̄) and p̃ /∈ HJ . Since p̃ /∈ HJ , rJ ( p̃) ≥ rJ ( p̄). What is µr ( p̃) equal to? Three
of the five possible cases are covered in (30), and in each of them µr ( p̃) = gi yi . In this
case µr ( p̃) < µr ( p̄) ⇒ rJ ( p̃) < rJ ( p̄) which contradicts our previous conclusion that
rJ ( p̃) ≥ rJ ( p̄). In the remaining two cases of (29) µr ( p̃) = +∞ which contradicts our
assumption that µr ( p̃) < µr ( p̄). Thus we can conclude that HJ ≡ HI . ✷

Proposition 2. Termination conditions of the Joachims’ algorithm are satisfied if and only
if the termination conditions of the maximal inconsistency algorithm are satisfied.

Proof: The maximal inconsistency algorithm terminates when the system (24) is consis-
tent while at the same time conditions (20)–(23) are enforced. Hence, the KKT conditions
are satisfied, and consequently, the algorithm terminates if and only if the optimal solution
is found. Likewise, termination conditions (5)–(7) also have an “if and only if ” relationship
to the KKT conditions and hence to the optimality of the solution, except when the solution
contains all variables strictly at the bounds and (11) is used for calculation of b. In the
latter case, however, condition (11) satisfies the KKT conditions of the primal SVM train-
ing problem (to which the problem (1)–(2) is a dual). Then it follows from Dorn’s duality
theorem (Mangasarian, 1969), that the solution of the dual problem is also optimal. Hence,
both algorithms terminate at the same point in the solution space. ✷

5. Feasible direction decomposition of the regression SVM

5.1. Maximal inconsistency algorithm

We now turn our attention to the maximal inconsistency algorithm for the regression SVM.
Recall that the quadratic program for the latter is given by Eqs. (1) and (3). The derivation
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will progress in the same way as in the pattern recognition case and will consist of: (a) the
statement of the Karush-Kuhn-Tucker Theorem, (b) the derivation of rules for computation
of µ-sets, and (c) the definition of the inconsistency gap to be used for working set selection
in the algorithm.

The general statement of the Karush-Kuhn-Tucker Theorem, as well as its use to test
optimality of the working set, remain the same (see Theorem 1 and the ensuing discussion).

For the regression SVM, each inequality in (24) has one of the following forms:

πi = − φi + ε + υi + µ ≥ 0 (31)

π∗
i = φi + ε − υ∗

i − µ ≥ 0 (32)

where

φi = yi −
l∑

j=1

(α j − α∗
j )Ki j (33)

Considering the possible values of αi we have:

1. αi = 0. In this case, by complementarity condition (22) υi = 0. Then inequality (31)
becomes:

πi = − φi + ε + µ ≥ 0 ⇒ µ ≥ φi − ε

2. αi = C . By complementarity condition (23) πi = 0. Then inequality (31) becomes:

− φi + ε + µ + υi = 0 ⇒ µ ≤ φi − ε

3. 0 < αi < C . By complementarity conditions (22) (23), υi = 0, πi = 0. Then inequality
(31) becomes:

− φi + ε + µ = 0 ⇒ µ = φi − ε

Similar reasoning for α∗
i and inequality (32) yields the following results:

1. α∗
i = 0. Then

µ ≤ φi + ε

2. α∗
i = C . Then

µ ≥ φi + ε

3. 0 < α∗
i < C . Then

µ = φi + ε
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Finally, taking into account that for the regression SVM αiα
∗
i = 0, the rules for compu-

tation of µ-sets for the regression SVM are the following:

Mi =




[φi − ε, φi + ε], if αi = 0, α∗
i = 0

[φi − ε, φi − ε], if 0 < αi < C, α∗
i = 0

(−∞, φi − ε], if αi = C, α∗
i = 0

[φi + ε, φi + ε], if αi = 0, 0 < α∗
i < C

[φi + ε, +∞), if αi = 0, α∗
i = C

(34)

This development leads to the following theorem.

Theorem 3. The vector α solves the quadratic program (1)–(3) if and only if intersection
of µ-sets computed by (34) is non-empty.

The maximal inconsistency algorithm for the regression SVM is summarized in Algo-
rithm 3.

Feasibility of samples can be tested by the following rule: during the left pass skip samples
with αi = C, α∗ = 0; during the right pass skip samples with αi = 0, α∗ = C . Justification
of this rule is given in Lemma 1 in Section 5.2.

5.2. Interpretation of the maximal inconsistency algorithm in the feasible
direction framework

As it was shown in Section 4.4, the maximal inconsistency algorithm is equivalent to
Joachims’ algorithm, which was motivated by Zoutendijk’s feasible direction problem. In
this section it will be shown that the maximal inconsistency algorithm for the regression
SVM can also be interpreted as a feasible direction algorithm.

Algorithm 3 Maximal inconsistency algorithm for the regression SVM.

Let S be a list of all samples.
while (intersection of µ-sets is empty)

– compute Mi according to the rules (34) for all elements in S
– select q/2 feasible samples with the largest values of µl (“left pass”)
– select q/2 feasible samples with the smallest values of µr (“right pass”)
– re-optimize the working set

Recall the SVM optimal feasible direction problem stated in (13)–(17). The problem-
specific components g̃ and c̃ have the following expressions for the regression SVM:

g̃ =
[

g

g∗

]
, c̃ =

[
1

−1

]
(35)
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where

gi = φi − ε

g∗
i = −φi − ε

(36)

and φ is defined in (33). In addition, a feasible direction algorithm must satisfy the constraint

|{di : di �= 0}| = q (37)

To develop an equivalent feasible direction algorithm, we will construct a mapping �α̃α ,
which maps the state of the maximal inconsistency algorithm to a direction vector d, and a
normalization Nd, similar to Joachims’ normalization, which replaces (17). The construction
will possess the following properties:

1. At each iteration, d = �α̃α is the solution to the optimal feasible direction problem with
normalization Nd.

2. Termination condition of the maximal inconsistency algorithm holds if and only if d is
a zero direction.

Intuitively, the first property shows that working sets selected by the maximal inconsistency
algorithm are the same as those selected by a feasible direction algorithm using normaliza-
tion Nd. The second property ensures that both algorithms terminate at the same time.

Consider the normalization

di ∈ {(1, 0), (0, −1), (−1, 0), (0, 1), (0, 0)} (38)

and the mapping

(�α̃α)i =




(1, 0) or (0, −1), whichever is feasible, during the left pass

(−1, 0) or (0, 1), whichever is feasible, during the right pass

(0, 0), if sample i is infeasible or not reached

(39)

For the sake of brevity, the optimal feasible direction problem comprising Eqs. (13)–(16),
(37), (38) will be denoted as the feasible direction problem.

First, we need to make sure that �α̃α is not ambiguous, i.e., that only one of the non-zero
directions suggested in (39) is feasible.

Lemma 1. Mapping �α̃α is not ambiguous.

Proof: Let us denote directions (1, 0), (0, −1), (−1, 0), (0, 1) as Ia, Ib, IIa, IIb (Type I
directions are assigned during the left pass, and Type II directions—during the right pass).
Table 1 shows feasibility of different directions depending on the values of optimization
variables: Infeasibility of directions marked by † is due to the special property of the
regression SVM that αiα

∗
i = 0. It follows from the table that at each pass only one direction

is feasible. ✷
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Table 1. Feasibility of directions.

Optimization variables Feasible Infeasible

αi = 0, α∗
i = 0 Ia, IIb Ib, IIa

0 < αi < C , α∗
i = 0 Ia, IIa Ib, IIb†

αi = C , α∗
i = 0 IIa Ia, Ib, IIb†

αi = 0, 0 < α∗
i < C Ib, IIb Ia†, IIa

αi = 0, α∗
i = C Ib Ia†, IIa, IIb

This lemma justifies the feasibility test of the maximal inconsistency algorithm. It is
clear from Table 1 that during the left pass there is no feasible direction for samples with
αi = C , α∗

i = 0. Likewise, during the right pass there is no feasible direction for samples
with αi = 0, α∗

i = C .
The next two lemmas show that �α̃α provides a solution to the feasible direction problem.

Lemma 2. �α̃α satisfies all constraints of the feasible direction problem.

Proof: The equality constraint of the optimal feasible direction problem for the regression
SVM has the form:

l∑
i=1

di =
l∑

i=1

d∗
i (40)

Let m1, m2, n1, n2 be the number of selected elements with directions {1, 0}, {−1, 0},
{0, −1}, {0, 1} respectively. Then

l∑
i=1

di = m1 · 1 + m2 · (−1) = m1 − m2

l∑
i=1

d∗
i = n1 · (−1) + n2 · 1 = n2 − n1

By the selection policy:

m1 + n1 = q/2 = m2 + n2

from which it follows that

m1 − m2 = n2 − n1
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Hence, �α̃α satisfies the equality constraint of the optimal feasible direction problem.
Inequality constraints and the cardinality constraint are trivially satisfied by the construc-

tion of �α̃α . ✷

Lemma 3. �α̃α provides the optimal value of the objective function of the feasible direction
problem.

Proof: Let Bl and Br denote the halves of the working set selected by the left and the
right passes respectively. Suppose, by the way of contradiction, that there exists a feasible
sample i such that gi di > g j d j for some sample j ∈ Bl ∪ Br .

For any element k considered during the left pass

gkdk =
{

1 · gk = φk − ε = µl
k if (1, 0) is feasible

−1 · g∗
k = −(−φk − ε) = φk + ε = µl

k if (0, −1) is feasible

Therefore, if j ∈ Bl , then

gi di = µl
i < µl

j = g j d j

which contradicts the hypothesis that gi di > g j d j .
Likewise, for any element k considered during the right pass

gkdk =
{

−1 · gk = −(φk − ε) = −µr
k if (−1, 0) is feasible

1 · g∗
k = −φk − ε = −(φk + ε) = −µr

k if (0, 1) is feasible

Therefore, if j ∈ Br , then

−gi di = µr
i > µr

j = −g j d j

which contradicts the hypothesis that gi di > g j d j . ✷

Lemma 4. Intersection of µ-sets is non-empty if an only if the feasible direction problem
has a zero solution.

Proof: By Theorem 3, non-empty intersection of µ-sets implies optimality of the solution
to the quadratic program (1)–(3) which rules out existence of a non-zero feasible direction
which would otherwise have led to a new optimal solution.

On the other hand, if the optimal solution to the feasible direction problem is zero, this
implies that all other feasible directions have negative projections on the gradient vector,
and hence decrease the value of the objective function. It follows that the solution of the
quadratic program (1)–(3) is optimal, and intersection of µ-sets is non-empty. ✷

Lemmas 1–4 prove the two properties of the mapping �α̃α and the normalization Nd

claimed earlier in this section.
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6. Experimental results

The aim of this section is to provide insight into some properties of feasible direction
decomposition algorithms that might explain their behavior in different situations. It is
not our intent to perform comprehensive numerical evaluation of several SVM training
algorithms. The following issues are of prime interest:

– Overall scaling factors. This is the traditional way of analyzing performance of SVM
training algorithms, introduced by Platt (1999) and Joachims (1999). To perform at least
qualitative comparison with their results (which are reported for the pattern recognition
SVM, while we are primarily interested in the regression case), a similar evaluation is
performed for the maximal inconsistency algorithm.

– Experimental convergence rates. In numerical optimization literature algorithms are most
often evaluated in terms of their convergence rates. Since decomposition algorithms are
iterative and derive their core ideas from optimization theory, it is natural to attempt
to establish their rates of convergence. It will be shown that the maximal inconsistency
algorithm seems to have linear rate of convergence, which is consistent with known linear
convergence rates for gradient descent methods. This result is particularly important in the
context of ongoing theoretical investigation of convergence of decomposition algorithm.

– Profiled scaling factors. While decreasing the number of iterations is highly desirable,
it must not be achieved at a cost of significantly increasing the cost of an iteration. It
is therefore important to investigate the “profile” of one iteration of the decomposition
algorithm. The results will demonstrate that complexity of the main steps of the algorithm
is linear, much as predicted theoretically.

– Optimal working set size. Since the working set size is an additional parameter of the
feasible direction algorithms, it is desirable to investigate its impact on the training time.
It turns out that dependence of training time on the working set size is tightly related to
iteration profiles.

Experimental evaluation of the new algorithm was performed on the modified KDD
Cup 1998 data set. The original data set is available under http://www.ics.uci.edu/∼kdd/
databases/kddcup98/kddcup98.html.

The following modifications were made to obtain a pure regression problem:

– All 75 character fields were eliminated.
– Numeric fields CONTROLN, ODATEDW, TCODE and DOB were eliminated.

The remaining 400 features and the labels were scaled between 0 and 1. Initial subsets of
the training database of different sizes were selected for evaluation of the scaling properties
of the new algorithm. Experiments were run on a SUN4U/400 Ultra-450 workstation with
300 MHz clock and 2048M RAM. RBF kernel with γ = 10, termination accuracy9 0.001,
and cache size of 300 M were used. The value of the box constraint C was 1, and the working
set of size 10 was used. Two sets of experiments were performed: one using the full set of
400 features, another one using only the first 50 features (“reduced set”). As it turns out, the
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second problem is more constrained, with a larger proportion of bounded support vectors.
Also, for the full set of features kernel computation dominates the overall training time.

The current implementation does not employ the shrinking heuristic described in Joachims
(1999). It uses MINOS to solve optimization (sub)-problems.

6.1. Overall scaling factors

The training times, with and without decomposition,10 for different samples sizes, are
displayed in Tables 2 and 3, for the full and the reduced sets of features respectively. The
scaling factors are computed by plotting training times versus sample sizes on a log-log
scale and fitting straight lines. The SV-scaling factors are obtained in the same fashion, only
using the number of unbounded support vectors instead of the sample size as an abscissa.
The actual plots are shown in figure 1. The plots demonstrate fine linear dependence on a
log-log scale.

It can be easily seen that decomposition improves the running time by an order of mag-
nitude. Its scaling factors are also significantly better. Although this results is far from

Table 2. Training time (sec) and number of SVs for the KDD Cup problem.

No dcmp dcmp

Examples Time Total SV BSV Time Total SV BSV

500 9.818 184 0 4.962 170 0

1000 91.193 454 0 24.907 429 0

2000 665.566 932 2 118.131 894 2

5000 10785.4 2305 7 914.359 2213 7

10000 92684.7 4598 28 4958.26 4454 26

Scaling factor 3.03 2.29

SV-scaling factor 2.86 2.13

Table 3. Training time (sec) and number of SVs for the KDD Cup problem, reduced feature set.

No dcmp dcmp

Examples Time Total SV BSV Time Total SV BSV

500 16.958 114 29 14.175 128 26

1000 129.591 242 65 52.451 324 59

2000 998.191 445 114 178.752 656 104

5000 10759.6 977 323 929.523 1667 255

10000 79323.2 1750 633 2782.35 3383 491

Scaling factor 2.80 1.76

SV-scaling factor 3.12 1.60
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Figure 1. Scaling factor fits: (a) full set of features (Table 2), (b) reduced set of features (Table 3).
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Table 4. Objective function values for KDD Cup problem.

Examples No dcmp dcmp Ratio

500 0.10799 0.10795 0.99962

1000 0.43501 0.43488 0.99970

2000 1.27695 1.27662 0.99974

5000 3.19561 3.19414 0.99953

10000 6.74862 6.74507 0.99947

Table 5. Objective function values for KDD Cup problem, reduced feature set.

Examples No dcmp dcmp Ratio

500 1.11129 1.10823 0.99724

1000 3.25665 3.24853 0.99750

2000 6.41472 6.39787 0.99456

5000 14.5490 14.5164 0.99776

10000 26.9715 26.9119 0.99779

surprising, noteworthy is consistency of the observed scaling factors with the scaling factors
presented in Joachims (1999) for the pattern recognition SVM. This supports the claim of
equivalence between the maximal inconsistency and Joachims’ algorithms made earlier in
this article.

A number of other interesting findings can be made from the results above. First, training
with decomposition does not produce an identical solution to training without. The solu-
tions differ in the number of support vectors, especially for the more constrained problem
with the reduced set of features. This difference is due to the fact that termination condi-
tions of the decomposition algorithm require that the KKT condition is satisfied only to a
given numerical precision. Thus the decomposition algorithm does have a disadvantage of
producing an approximate solution, which can be further seen from Tables 4 and 5. These
tables display the values of the objective functions attained by training with and without
decomposition, and their ratio. The latter shows that in the relative terms a solution of the
more constrained problem with the reduced feature set is roughly 10 times worse that the
solution of the less constrained problem with the full feature set. However, no deterioration
of the accuracy with the sample size has been observed.

Another important observation is that the scaling factors and the SV-scaling factors vary
among different problems. For the two particular problems, a possible explanation might be
that the fixed termination accuracy is in fact looser for the more constrained problem, thereby
producing a less accurate solution but taking less time in doing so. In general, however,
the results above demonstrate that the scaling factors produce a rather crude measure of
performance of the decomposition algorithms.11
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6.2. Convergence rates

In optimization literature a common performance measure for iterative algorithms is conver-
gence rate. The notion of convergence rate is generally defined for any numeric sequence;
for the purpose of analysis of decomposition algorithms we will be concerned with the
sequence of objective function values. The following definitions can be found in Nocedal
and Wright (1999).

Let xk be a sequence in R
n that converges to x∗. Convergence is said to be Q-linear if

there is a constant r ∈ (0, 1) such that

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ r, for all k sufficiently large.

The prefix “Q” stands for “quotient” because the quotient of successive distances from
the limit point is considered. Likewise, convergence is said to be Q-super-linear if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0,

and is said to be of order p (for p > 1) or quadratic (for p = 2) if

‖xk+1 − x∗‖
‖xk − x∗‖p

≤ M, for all k sufficiently large,

where M is a positive constant not necessarily less than 1. It can be easily seen that a
Q-convergent sequence of order strictly greater than 1 converges Q-super-linearly.12

Convergence rates can be observed experimentally by recording the values of the objective
function through the course of iteration and plotting the respective ratios versus the iteration
number. Sample plots are shown in figures 2 and 3 for both problems on a training sample of
size 10000. Limit points have been obtained from training without decomposition. Similar
plots have been observed in other experiments.

It is evident from the convergence plots that the decomposition algorithm converges
linearly but not super-linearly or quadratically. The plots for the linear ration are bounded
by 1, while the plots for other two ratios are unbounded.13 The plots also reveal that the
training problem is very ill-conditioned, as the ratio stays very close to 1.

The above results are consistent with known linear convergence rates for gradient descent
methods of unconstrained optimization. Noteworthy is particular semblance for the full
feature set problem in which most of the variables stay away from the upper bounds and thus
resemble an unconstrained case. Another important message is that convergence analysis
(experimental or theoretical) is of special importance for decomposition algorithms. Unlike
the scaling factors it reveals the effects of conditioning on the algorithm’s performance.
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Figure 2. Convergence rates for the full feature space.
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Figure 3. Convergence rates for the reduced feature space.
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6.3. Profiled scaling factors

The overall processing performed during an iteration of the feasible direction decomposition
algorithm can be broken up into 5 main steps:

1. Optimization: optimization proper and calculation of support vectors.
2. Update of gradients.
3. Kernel evaluation: all requests for dot products (from all modules of the system). Notice

that with caching of kernel evaluations, this operation is not equally distributed across
iterations: at the beginning it takes longer when kernels must be computed; towards the
end all kernels end up in cache.14

4. Selection: computation of maximal violation of KKT conditions, left and right passes.
5. Evaluation: computation of objective function and threshold.

In the following section the scaling factors per iteration are established for the five factors
(overall scaling factors for kernel evaluation).

6.3.1. Optimization scaling factors. The values of obtained selection scaling factors are
0.237 for the full feature space and 0.176 for the reduced feature space, however, the
quality of fits is low. The expected behavior was constant-time per iteration, because the
working sets are of constant size. Perhaps, for larger data sets conditioning of sub-problems
deteriorates slightly, thus increasing the number of iterations in the optimizer. The fits are
displayed in figure 4.

6.3.2. Update scaling factors. The values of obtained update scaling factors are 1.060
for the full feature space and 1.064 for the reduced feature space. This coincides with the
theoretical expectations of linear growth order of update operation. The fits are displayed
in figure 5.

6.3.3. Kernel scaling factors. Kernel scaling factors are computed based on the timing
accumulated over the entire run. The obtained values are 2.098 and 2.067 for the full and
the reduced sets of features respectively. This coincides with the expected quadratic order
of growth. The fits are displayed in figure 6.

6.3.4. Selection scaling factors. The values of obtained selection scaling factors are 1.149
for the full feature space and 1.124 for the reduced feature space. This is close to the
theoretical expectations of linear growth order of selection operation.15 The fits are displayed
in figure 7.

6.3.5. Evaluation scaling factors. The values of obtained evaluation scaling factors are
1.104 for the full feature space and 1.118 for the reduced feature space. This is close to the
theoretical expectations of linear growth order of evaluation operation. The fits are displayed
in figure 8.
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Figure 4. Optimization scaling factor fits.
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Figure 5. Update scaling factor fits.



342 P. LASKOV

Figure 6. Kernel scaling factor fits.
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Figure 7. Selection scaling factor fits.
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Figure 8. Evaluation scaling factor fits.
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Figure 9. Training time (sec) for the KDD Cup problem for various working set sizes, full feature set, 10000
examples.

6.4. Determination of working set size

The profiled timing experiments have been performed for the working sets ranging from
size 2 to size 20, in the same setup as the experiments in the previous section. The results are
shown in figures 9 and 10. The circled solid lines display total execution time, the dashed
lines—evaluation time, dot-dashed lines—selections time, regular solid lines—update time,
dotted line—kernel evaluation time. Optimization time was inferior and is not shown on
the plots.

The seemingly most apparent conclusion is that the optimal working set is very small,
perhaps 2 or 4. However, examination of the components of the training time reveals that
this may vary for different problems and different implementations of the algorithm. While
the kernel computation time is almost independent of the working set size, one can see that
selection time decreases with the growth of the working set, while evaluation and update
times increase. The reason for such different behavior lies in different orders of growth of
these components with respect to the working set size q. The selection time is of order log q,
whereas the evaluation and the update times are of order q, per iteration. The number of
iterations decreases with growing working set size, although the order of decrease is hard
to establish because it depends on convergence properties of the decomposition algorithm.
However, this order seems to be between logarithmic and linear—exemplified by the fact
that this decrease dominates the logarithmically growing selection time but is inferior to the
linearly growing update and evaluation times. One can also notice that if the three factors are
more balanced16 the optimal working set may be significantly larger. This fact demonstrates
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Figure 10. Training time (sec) for the KDD Cup problem for various working set sizes, reduced feature set,
10000 examples.

the possible advantage of the feasible direction decomposition over SMO: it adds another
implementation-dependent leverage to improve computational efficiency.

Similar results were observed for the value of C = 10. The running times are significantly
larger, because the algorithm has to “climb” in a larger bounding box of constraints, however
the relationship between the contributions of the main steps of the algorithm is similar.

7. Discussion

To complement presentation of the feasible direction decomposition algorithms, we would
like to discuss two main alternative approaches to speeding up training of SVM that have
been proposed in the last years. Some of them have been mentioned in the main exposition;
however, the ensuing discussion provides a more systematic review and comparison.

The most popular group of algorithms utilizes the idea of Sequential Minimal Optimiza-
tion (SMO). Initiated in the work of Platt (1999), is has received a number of important
extensions. Its adaptation to the regression SVM has been done in Smola and Schölkopf
(1998).17 A series of important results related to SMO are due to S. Keerthi and his group.
In Keerthi et al. (1999) and Shevade et al. (1999) they address the threshold computation
in SMO. They present examples on which SMO spends a significant amount of time at
the end of training trying to establish the single optimal threshold b which is involved in
the Osuna-style KKT conditions (c.f. Eq. (6) and (9)). A significant improvement in ef-
ficiency is reportedly achieved by maintaining two thresholds blow and bup, and using the
termination condition bup −blow < τ for some tolerance parameter τ . A similar construction
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involving τ and insensitivity ε is used for regression. One can easily see that these con-
ditions are of the same flavor as the conditions of the maximal inconsistency algorithm:
both approaches maintain the interval of allowable values of the Lagrangian multiplier
associated with the equality constraint. Keerthi’s conditions do not seem to account for a
possibility of either value to be infinite, which may happen if all examples of one class
(or examples lying above or below the hyperplane representing the regression function)
have α’s strictly at the bound. In general, the SMO-like algorithms differ from the feasible
direction algorithms in that their working set selection is rather heuristic, which makes it
difficult to compare these two approaches. A comprehensive numerical evaluation is highly
desirable.

Another important group of algorithms builds on the idea of Successive Over-relaxation
(SOR). The original algorithms for the pattern recognition and the regression SVM ap-
peared in Mangasarian and Musicant (1999b) and Mangasarian and Musicant (1999a)
respectively. This method redefines the formulation of the SVM problem to obtain the
quadratic program lacking the equality constraint. As a result, the SOR method, well-
known from the classical optimization literature, can be directly applied, coupled with
a specially designed chunking technique. This becomes possible because, with only in-
equality constraints present, the values of the variables can be adjusted one at a time.
A modification of this algorithm, due to Hsu and Lin (1999), deals with balanced selec-
tion of positive and negative examples and avoids alternating working sets. The numerical
experiments presented in the latter work yield performance similar to that of SVMlight,
the implementation of Joachims’ algorithm. The advantage of SOR-based methods is
that they are better understood from the theoretical point of view; in particular, they are
known to converge linearly (Mangasarian and Musicant, 1999b), Theorem 3.3. Their dis-
advantage lies in the re-formulation of the SVM training problem: it has been shown in
Cristianini and Shawe-Taylor (2000) that this approach can increase V C-dimension and
thus yield higher classification error. In general, it is likewise hard to draw a comparison
between this group of algorithms and the feasible direction methods except by experimental
evaluation.

Lastly, we would like to remark that, independently from the presented work, an iden-
tical algorithm for the regression SVM has been recently developed by utilizing the direct
extension of Joachims’ algorithm for the regression SVM (Collobert and Bengio, 2000).
Their numerical results demonstrate significantly lower training time in comparison with
SMO.

8. Conclusions

The unified treatment of the working set selection in SVM decomposition algorithms pre-
sented in this article provides a general view of decomposition methods rooted in the
principle of feasible direction, regardless of the particular SVM formulation. The new al-
gorithm, based on the idea of maximal inconsistency of KKT conditions, is realized in a
conceptually similar fashion for both the pattern recognition and the regression SVM. For-
mal justification of the maximal inconsistency strategy has been presented which provides
a useful insight into the mechanism of working set selection.
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The experimental results presented in the article demonstrate that, similar to the pattern
recognition case, significant decrease of training time can be achieved by using the decompo-
sition algorithm. While the scaling factors of the decomposition algorithms are significantly
better than those of straightforward optimization, a word of caution needs to be said with
regard to the constants. It can be seen from the profiled experiments that the worst-case
growth orders can only be given on a per-iteration basis, and the number of iterations, which
depends on the convergence rate and the required precision, adds another dimension to run-
ning time analysis. An important experimental result establishes the linear convergence
rate of the feasible direction decomposition algorithms. It was also observed that problem
conditioning can make significant impact on the constants involved in linear convergence.

A number of open questions remain regarding the SVM decomposition algorithms. Can
the linear convergence rate be established theoretically? Can a super-linear or a quadratic
convergence rate be achieved by a different algorithm? Finally, extremely far-reaching
results can be borne by investigation of conditioning of the training problem: since the
latter is a by-product of a number of factors, such as the choice of kernel, the box constraint,
the risk functional, etc, conditioning of the optimization problem might be useful to guide
the selection of SVM parameters.

Notes

1. Another possible bottleneck is computation of the kernel matrix. If real dimension of data points is large, this
time may become comparable with training time. However it will be assumed in the rest of this article that
kernel computation is not the main factor contributing to the complexity of training.

2. In the notation of Osuna, Freund, & Girosi (1997) the quantity below is denoted by gi ; however, it makes
more sense to reserve notation g for the gradient of the objective function used later in this article.

3. Several alternative statements of the direction finding problem can be found in Zoutendijk (1960).
4. Recall that for the pattern recognition SVM the equality constraint is yT d = 0.
5. The motivation for the names “forward” and “backward” will be clear shortly.
6. In practice, sorting which takes O(n log n) operations can be replaced with heap-based algorithms yielding

the complexity of O(n log q) or O(q log n) depending on how the heap is built.
7. They will be in the regression case.
8. Since both algorithms use identical feasibility check for every sample, it is obvious that infeasible samples

will never be included in a working set in both algorithms.
9. In order for the results to be conceptually compatible with Joachims’ I used the old point-wise termination

conditions.
10. Without decomposition, MINOS was used to solve the full-size problem.
11. The scaling factors also vary in Joachims (1999).
12. The prefix “Q” will be omitted in the rest of the presentation in this section.
13. It is difficult to see from the plot for the reduced feature set, but there is a tiny margin of ∼0.0001 which

separates the ratios from 1.
14. In the experiments above enough memory was allocated for the kernel cache to hold the values of kernels for

all support vectors.
15. The implementation uses heap-based method whose theoretical running time order is O(n log q). The loga-

rithmic factor does not feature in the scaling factor because q is assumed constant.
16. For example, the dominant evaluation time can be readily eliminated because computation of objective function

at every iteration is not crucial for decomposition and computation of the threshold can be avoided in the
maximal inconsistency algorithm; in the current implementation if was purposely done in the same way as in
Joachims’ algorithm.

17. Platt’s work was available as a technical report in 1998, hence the seemingly bizarre reference.
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