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Abstract. We develop a deductive data model for concept-based query expansion. It is based on three abstraction
levels: the conceptual, linguistic and string levels. Concepts and relationships among them are represented at the
conceptual level. The linguistic level gives natural language expressions for concepts. Each expression has one or
more matching patterns at the string level. The models specify the matching of the expression in database indices
built in varying ways. The data model supports a declarative concept-based query expansion and formulation
tool, the ExpansionTool, for heterogeneous IR system environments. Conceptual expansion is implemented by a
novel intelligent operator for traversing transitive relationships among cyclic concept networks. The number of
expansion links followed, their types, and weights can be used to control expansion. A sample empirical experiment
illustrating the use of the ExpansionTool in IR experiments is presented.
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1. Introduction

Retrieval of digital text documents is based on character string matching rather than re-
trieving meanings. The searcher is encumbered with the selection of strings that accu-
rately represent the needed information and match documents carrying that information.
Solutions for this problem, sometimes referred to as the vocabulary problem, have been
sought either at the storage or at the retrieval phase. At the storage phase, documen-
tation languages, like thesauri, may be used to control vocabulary. Because intellectual
document description is too expensive in most cases, more attention has been devoted
to the retrieval phase. Relevance feedback and different query expansion (QE for short)
methods are typical solutions. Relevance feedback has often proved to be beneficial, but
its effectiveness depends on search string selection of the initial queries, ranking func-
tion and the number of relevant items known, i.e., on the quality of the search results
(Beaulieu et al. 1997, Buckley et al. 1995, Harman 1992, Xu and Croft 1996). QE based
on knowledge structures (e.g., thesauri) does not depend on search output, but it has not
been found unambiguously useful (e.g. Voorhees 1994, Jones et al. 1995, Crestani et al.
1997).
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Our starting point for QE is different because we aim, instead of search strings, to start
query formulation from concepts. We believe that information needs may be represented as
sets of concepts, which in turn have several different search string representations depending
on the search environment. Our aim is to equip the searcher with a conceptual model
representing semantic relationships among concepts and giving for each concept a set of
search strings that may represent concepts in different search environments. The thesaural
structure controlling hierarchies, associative relations and synonymy suits well for this
kind of conceptual model. The model is managed by a tool that supports (1) searchers
to automatically construct and expand effective queries without prior understanding about
query structures and their interaction with expansion in various retrieval environments,
and (2) QE experimentation with query structures, expansion and other query construction
parameters.

Thesaurus modeling and software have received notable attention in IR literature. Jones
and others (1993, 1995) introduce a thesaurus data model, based on the relational data model
(RDM) and investigate the feasibility of incorporating intelligent algorithms into software
for thesaurus navigation. Paice (1991) proposed a spreading activation method for thesaurus
based QE. Term nodes, which are sufficiently loaded by spreading activation, are used to ex-
pand queries. Järvelin and others (1996) proposed a deductive data model (see, e.g., Ullman
1988) for thesaurus representation, query construction and expansion. Their deductive query
language allowed navigation of transitive relationships in thesauri, which were represented
as acyclic graphs. In it hierarchical relationships were processed by deductive operations,
e.g., by expanding an abstract concept step by step to all of its descendants. It was not pos-
sible to limit expansion by the number of expansion steps. Associative relationships, due to
their cyclic (symmetric) nature, could not be processed transitively. They were exploited by
a single step only through traditional relational processing. Although unrestricted expansion
over associative relationships is bound to impair performance, the single step limitation is
often too strict in practice. Several thesauri, e.g., statistical thesauri, may only have “asso-
ciative” relationships. Also spreading activation methods require uniform processing of all
terminological relationships. Therefore it is desirable to have a uniform representation for
all conceptual (or terminological) relationships and an expansion operator, which supports
expansion from selected concepts toward selected (semantic) directions, to an adjustable
distance, and/or until (as long as) an adjustable weighting criterion is fulfilled. In this paper
we propose such a representation and describe such an expansion operator.

Our data model contains three levels of abstraction (Järvelin et al. 1996). The conceptual
level represents concepts and conceptual relationships (e.g., hierarchical relationships). The
linguistic level represents natural language expressions for concepts and their relationships
(synonymy). Typically there are many expressions—including single words, compounds
and phrases—for each concept. Each expression may have one or more matching patterns
at the string level. Each matching pattern represents, in a query-language independent way,
how the expression may be matched in texts or database indices built in varying ways, e.g.,
with or without stemming, morphological normalization, and compound word splitting into
their component words. Query expansion is performed at all levels of abstraction.

Many languages are rich in compound words and have more complex inflectional prop-
erties than English (Alkula 2000 and Pirkola 2001). These properties may be handled in
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several ways in database indexing. Thus a desirable feature of a query construction tool
is to take automatically into account target database indexing (stemming, normalization,
compound splitting) in the formulation of individual search keys. Our query construction
and expansion tool is capable of this.

In modern IR environments both ordinary users and researchers often need to utilize or
test several different IR systems. Their query language paradigms, operators and expressive
power may vary strongly. There are, e.g., the probabilistic and Boolean paradigms. The
sets of operators may vary in operator names (e.g., “and”, “#and”, and “∗”), syntax (e.g.,
prefix form as in InQuery, or infix) and property details (e.g., “phrase”, “Wn”, and “ADJ”).
One language may allow disjunctive Boolean clauses within a proximity operator whereas
another does not. Therefore it is desirable that the tool for query construction and expan-
sion automatically converts the query into the required target query language. If precise
conversion is not possible, the nearest equivalent should be used. Our query construction
and expansion tool supports such conversions.

We introduce the query construction and expansion tool, called the ExpansionTool, and
demonstrate its use in the evaluation of query structuring and expansion in text retrieval.
Section 2 presents the basic data model and the new QE operator. A sample knowledge base
is also given. Section 3 gives a formal account of QE using the ExpansionTool and presents
its interface. Section 4 demonstrates the use of the ExpansionTool for query construction
and expansion in a test environment. Sections 5 and 6 contain discussion and conclusions.

2. The data model

2.1. Three abstraction levels

The three abstraction levels: conceptual, linguistic and string level are well founded in the
IR literature (Croft 1986, Paice 1991, UMLS 1994). Thus we can differentiate concepts
and relationships (e.g., the generic, partitive and associative relations) among them at the
conceptual level, concept expressions and their relationships (the equivalence relation) at
the linguistic level, and matching patterns (e.g., full-word strings, stems, string patterns
involving wildcards) indicative of linguistic expressions at the string level. Expressions
represent concepts and each concept may have several expressions in several natural and
artificial languages. The expressions may be basic words, compound words, phrases or
larger linguistic constructs, or common codes and abbreviations (e.g., USD49.90).

Figure 1 illustrates the roles of the three levels in query formulation. Search concepts are
first translated into search keys, which are (thesaurus) terms, common codes and/or natural
language expressions. Thereafter the search keys are translated into matching patterns.
Language-dependent aspects are represented at the linguistic and string levels.1 At the
string level all retrieval system dependent aspects are embedded in translators specific to
query languages, not in the matching patterns.

In the ExpansionTool, we use a relational database (e.g., Ullman 1988) to represent
concepts, their expressions (and relationships among expressions) and matching patterns.
For transitive processing, a collection of ternary (three-column) relations is used to represent
concept relationships. In many applications it is sufficient to use binary relations to represent
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Figure 1. The abstraction levels of query formulation.

data for transitive processing. However, for QE we need to attach a strength score to each
immediate connection between concepts. We therefore use ternary relations for modeling
concept relationships. They are chosen according to the application area and are either
generally hierarchic or associative. Different relations may represent different subtypes of
these relationships (e.g., generalization and partitive relationships).

The matching pattern language has, among others, the following features (Järvelin et al.
1996):

• Representing atomic basic words by their morphological basic forms, e.g., bw(accident).
• Representing compound words by their morphological basic forms, e.g., cw(<bw(jet),

bw(lag)>). The basic form matching patterns take into account that the database index may
or may not recognize the compound word components. Thus the matching patterns are
able to generate both whole compound word in the basic form and each of its components.

• Representing phrases with a specified word order through morphological basic
forms: for example, ‘information retrieval’ is modeled by phra(2,<bw(information),
bw(retrieval)>) indicating two components and listing them.

• Representing word proximity in a specified order, with intervening words allowed,
through morphological basic forms or stems. For example, ‘information retrieval’ would
be modeled by prox(2, <bw(information), bw(retrieval)>, 3) indicating two components,
listing them, and allowing for distance of 0–3 words.

We will not discuss the relational database in this paper but, instead, its formal repre-
sentation for QE. The formalization of the conceptual model is based on the set-theoretic
description of a thesaurus database by Sintichakis and Constantopoulos (1997), and no-
tations and formal representation conventions by Järvelin and Niemi (1993). The present
formalization is based on Kekäläinen’s (1999) definitions but modified for the new cyclic
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network based expansion. This formalization is a compact and exact way to define the query
expansion process in the ExpansionTool. However, the formalization is simplified: all de-
tails of the application (e.g., the reliability figures for expressions and matching patterns)
are not fully covered.

We discuss conceptual models based on nuclear waste management as a sample domain.
The following table (Table 1) describes the domain. It gives for each concept its identifier
(cno) and name (cname), its related concepts in specialization, generalization and associa-
tion relationships with their relationship strengths. The latter are real numbers in the range
(0.0, 1.0] and used for controlling expansion. Moreover, Table 1 gives for each concept
its expression identifier (eno) and expression with an indicator whether it is a term or not.
The final column abstracts the matching pattern for each expression with the number of
dots indicating the allowed distance between phrase components and an indicator (yes/no)
whether the model is precise or not. For example, concept c6 has c5 as a generalization and
c8 and c9 as associations. The term for c6 is t60, low active waste, which has two matching

Table 1. The sample domain of nuclear waste management.

Speciali- Gener- Associa-
Cno, Cname zations alizations tions Eno, expression, term Pattern, precise

c4, radioactive waste c5, 1.0 – c8, 0.7 t40, radioactive waste, “radioactive waste,” yes
c9, 0.6 yes; “radioactive...waste,”

no

c5, nuclear waste c6, 1.0 c4, 0.5 c8, 0.8 t50, nuclear waste, yes “nuclear waste,” yes;
c7, 1.0 c9, 0.8 “nuclear...waste,” no

c6, low active waste c5, 0.5 c8, 0.8 t60, low active waste, “low active waste,” yes;
c9, 0.8 yes “low ... active ...

waste,” no

c7, high active waste – c5, 0.5 c8, 0.8 t70, high active waste, “high active waste,” yes;
c9, 0.8 yes “high ... active ...

waste,” no

c8, fission product – – c4, 0.7 t80, fission product, yes “fission product,” yes
c5, 0.8 “fission...product,” no
c6, 0.8
c7, 0.8

c9, spent fuel – – c4, 0.6 t90, spent fuel, yes “spent fuel,” yes;
c5, 0.8 “spent...fuel,” no
c6, 0.8
c7, 0.8

c10, storage c11, 1.0 – t100, storage, yes; “storage,” yes;
nt101, store, no; “store,” no
nt102, stock, no “stock,” no

c11, repository c10, 0.5 – t110, repository, yes “repository,” yes

c12, process – – c13, 0.5 t120, process, yes “process,” yes
c14, 0.6

c13, refine – – c12, 0.5 t130, refine, yes “refine,” yes

c14, treat – – c12, 0.6 t140, treat, yes “treat,” yes
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patterns, the precise one being “low active waste”, and the other “low ... active ... waste”
which allows three intervening words.

Tuples and trees are commonly used data structures in information systems specification.
We need them in the formal representation of the conceptual model. We apply the following
notational conventions for their representation.

Notational convention 1: Sequences consisting of structurally homogeneous objects are
represented as n-tuples. Finite n-tuples are denoted between angle brackets, e.g., t1 =
<a,b,c>. The ith component of a tuple t is denoted by t[i]. For example, t1[3] = c.

Notational convention 2: Sequences consisting of structurally heterogeneous objects are
represented as trees. Trees are denoted between parenthesis. For example s1 = (a, b, {3, 7})
is a tree consisting of two atomic components and one set-valued component. Let s be
any finite tree with n components. The selector function σi (i = 1, . . . , n), selects the ith
component of s. For example, if s1 = (a, b, {3, 7}), then σ3(s1) = {3, 7}.

Our conceptual models consist of seven main components. Therefore the conceptual
model CM has the components CM = (c-term, e-strict, e-all, SYN, SPEC, GEN, ASS)
where

• c-term is a function which maps concepts at the conceptual level to their terms at the
linguistic level, i.e., concepts from the concept set C to the terms of the term set T.
The function c-term1 = {<c4, t40> <c5, t50>, <c6, t60>, <c7, t70>, <c8, t80>,

<c9, t90>, <c10, t100>, <c11, t110>, <c12, t120>, <c13, t130>, <c14, t140>}
is a sample function and gives t70 as the term for concept c7.

• e-strict is a function which maps each term expression to its precise (most reliable)
matching patterns. The sample function e-strict1 = {(t40, {phra(2,<bw(radioactive), bw
(waste)>)}), (t50, {phra(2, <bw(nuclear), bw(waste)>)}), (t60, {phra(2, <cw(<bw(low),
bw(active)>), bw(waste)>)}), (t70, {phra(2, <cw(<bw(high), bw(active)>), bw(waste)
>)})} gives for the term t70 a single element set which models the phrase high-active
waste as the compound high-active and the basic word waste.

• e-all is a similar function but maps each (term and non-term) expression to all its matching
patterns. The sample function e-all1 = {(t40,{phra(2, <bw(radioactive), bw(waste)>),
prox(2, <bw(radioactive), bw(waste)>, 3)}), (t70, {phra(2, <cw(<bw(high), bw (active)
>), bw(waste)>), prox(2, <cw(<bw(high), bw(active)>), bw(waste)>, 3)}), (nt101,
{bw(store)}> , <nt102, {bw(stock)})} gives, in addition to the above phrase model high-
active waste for the term t70, also the less reliable proximity model allowing three
word distance between the compound high-active and the basic word waste. The non-
terms nt101 and nt102 are given basic word models for store and stock,
respectively.

• SYN is a binary equivalence relation between the set of term expressions T and the
set of non-term expressions NT. It gives for each term identifier the set of identifiers
of synonymous expressions. For example, the relation SYN1 = {(t100, {nt101, nt102})}
gives nt101 and nt102 as synonymous expressions for t100.

• SPEC is a collection of specialization relations SPEC = {SR1, SR2, . . . , SRn}. Each spe-
cialization relation SRi consists of tuples <x, y, s> where y is the hierarchically narrower
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concept of x by the strength s. SPEC may contain more than one specialization relations
based on different specialization principles, e.g., genus–species, part–whole. These are
defined according to the application area. For example, SPEC1 = {{<c4, c5, 1.0>, <c5,
c6, 1.0>, <c5, c7, 1.0>, <c10, c11, 1.0> }} represents a genus-species relationship given
in Table 1 specifying, among others, c6 (low active waste) and c7 (high active waste) as
narrower concepts of c5 (nuclear waste), all with strength 1.0.

• GEN is a collection of generalization relations GEN = {GR1, GR2, . . . ,GRn}. Each gen-
eralization relation GRi consists of tuples < x, y, s > where y is the hierarchically broader
concept of x by the strength s. GEN may contain more than one generalization relations
based on different generalization principles, e.g., genus–species, part–whole. These are
defined according to the application area. For example, GEN1 = {{<c5, c4, 0.5>, <c6,
c5, 0.5>, <c7, c5, 0.5>, <c11, c10, 0.5>}} represents a genus–species relationship spec-
ifying, among others, c5 (nuclear waste) as a broader concept of c6 (low active waste)
and c7 (high active waste) with strength 0.5. Obviously, GEN represents the inverted
relationships of SPEC. Representing them separately has two advantages: firstly, the
strengths may be unsymmetrical, and secondly, the direction of conceptual expansion
may be controlled.

• ASS is a collection of association relations ASS = {AR1, AR2, . . . ,ARn}. Each associ-
ation relation ARi consists of tuples <x, y, s> where y is the semantically but non-
hierarchically associated with concept of x by the strength s. ASS may contain more
than one association relations based on different association principles, e.g., process–
outcome, object–instrument. These are defined according to the application area. For
example, ASS1 = {{<c4, c8, 0.7> , <c8, c4, 0.7>, <c4, c9, 0.6>, <c9, c4, 0.6>,
<c5, c8, 0.8>, <c8, c5, 0.8>, <c5, c9, 0.8>, <c9, c5, 0.8>, . . .}} represents, among
others, c5 (nuclear waste) as associated with c8 (fission product) and c9 (spent fuel)
with strength 0.8. Each direction of the association is represented separately allowing for
unsymmetrical strenghts.

Now we may refer to the components of the conceptual model as follows: σ1(CM) =
c-term, . . . , σ7(CM) = ASS. For simplicity, c-term, e-strict, e-all, SYN, SPEC, GEN, ASS,
C, T and EXP will be used below to denote the conceptual model components. Our sample
conceptual model is the model CM1 = (c-term1, e-strict1, e-all1, SYN1, SPEC1, GEN1,
ASS1) which is given in the appendix.

We use several functions to process the conceptual model. These are introduced be-
low briefly and informally. Full formal definitions are given in Järvelin et al. (2001).
The functions c-term, e-strict and e-all were already defined as components of the con-
ceptual models. They may applied in the normal functional way, e.g., c-term1(c4) = t40,
and e-all1(t40) = {phra(2, <bw(radioactive), bw(waste)>), prox(2, <bw(radioactive),
bw(waste) >3)}.

The function t-syns is based on the equivalence relation SYN and gives for an argument
term t its synonymous expressions. For example, t-syns(t100, SYN1) = {nt101, nt102}.

The function c-expr gives the set of all expressions related to an argument concept c. It is
based on the functions c-term and t-syns, and the equivalence relation SYN. The function
c-expr finds for an argument concept c its term and non-term expressions. For example,
c-expr(c10, c-term1, SYN1) = {t100, nt101, nt102}.
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Figure 2. A sample concept graph.

2.2. Network based concept expansion

The main operator of our tool is a conceptual QE operator intended for manipulation tran-
sitive relationships. Basically, the QE operator is a novel generalized operator for travers-
ing collections of cyclic graphs, consisting of concept nodes and of links between them.2

Figure 2 illustrates the concept graph of our conceptual model. The conceptual QE operator
is used for computing paths of nodes that satisfy the criteria given by the user. These may
concern:

• the starting nodes from which the paths start
• the target nodes at which the paths end
• the intermediate nodes, which must belong to the paths
• the maximum number of nodes that is allowed to belong to a path
• the minimum (maximum) weight a path is required to have (by link weight multiplication).

This operator is a generalized operator for traversing cyclic graphs and suitable for many
application areas. In the present paper, we shall consider its application in QE and call it the
CQE operator (for conceptual query expansion operator). Therefore, for our CQE operator,
the nodes are concept nodes and the links immediate concept relationships, with strengths
in the range (0, 1]. Different types of relationships are represented by different graphs.

Consider the sample concept graph of figure 2. They represent two subgraphs containing
hierarchies starting at concept nodes c4 and c10, and one graph based on associations
only. Hierarchical relationships (in black arrows), their inverted relationships (black arrows
inverted) and associations (gray dashed arrows in both directions) are represented with their
strengths. The graph is cyclic, because the links can be traversed to both directions.

Graphs can formally be represented by ternary relations R ⊆ C × C × R, where C de-
notes the set of concept nodes and R real numbers. Each element, say < c4, c5, 1.0 >, is a
tuple representing that two concept nodes (c4, c5) are related by the strength 1.0. Different
relationship types (or directions) may be represented in different relations. The specializa-
tion, generalization and association relations SPEC, GEN and ASS of the preceding section
are such collections of graphs. The sample relations SPEC1, GEN and ASS1 correspond to
figure 2. The tuple <c4, c5, 1.0> belongs to SPEC1 and the tuple <c5, c4, 0.5> to GEN1.
Both <c12, c13, 0.5> and <c12, c13, 0.5> belong to ASS1.
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Using the CQE operator, any concept node may be expanded by other nodes that are
within a required distance, lead toward a required node, can be reached via some specified
nodes, or can be reached while keeping the path weight above a required minimum. The
following are some paths the CQE operator may compute. The tuple <c4, c5, c6> represents
a path in SPEC1 and has length 3. Its weight is 1, calculated by multiplying the strength
figures (at the arrow heads in figure 2). The tuple <c7, c5, c4> represents a path in GEN1
and has weight 0.25, again calculated by multiplying the strength figures (at the arrow ends
in figure 2). Moreover, the tuple <c4, c5, c7, c9> represents a path in the union of SPEC1
and ASS1 with length 4 and weight 0.8. For query expansion, it is useful to constrain concept
paths by their length and weight, the latter computed by multiplication of strength values,
given in the range (0, 1), of the links and constrained by a minimum value.

Below we shall consider the CQE operator formally by defining the function expand
which expands a concept node to a set of all concept paths that are constructable from this
given start node without specifying any target or intermediate nodes, under length and/or
weight constraints. The function expand finally disassembles the paths and produces the
union of their constituent concept nodes, all passing the path length and/or weight con-
straints. This is the basic way of using CQE operator. The other ways of using the CQE
operator lead to analogous definitions but fall beyond the scope of this paper. Some further
notational conventions are introduced before the definitions of the functions.

Notational convention 3: Finite n-tuples are assembled by the catenation operator ↔. If
t1 = <a, b> and t2 = <c, d, e, f> are tuples, then t1 ↔ t2 = t = <a, b, c, d, e, f>. The length
of a tuple t is given by len(t). For example, len(t2) = 4. Analogously to set membership, we
use the notations c ∈ t, and c /∈ t, to test whether a given component c belongs or does not
belong to a given tuple t. For example, the expressions e ∈ t2, and a /∈ t2 are true.

Notational convention 4: The power set of a set S is denoted by P(S). For example, if
S = {a,b,c} the P(S) = {{},{a}, {b}, {c}, {a,b},{a,c},{b,c},{a,b,c}}. If S is any subset of a set D,
it belongs to the set P(D), because S ⊆ D. For example, {1, 2, 3, 4} ∈ P(I) where I denotes
the set of integers. The set of tuples consisting of elements, which belong to the same set
D, is denoted as T(D). Thus T(D) is the set of tuples constructable from the elements of D.
For example, <1, 2, 3, 4> ∈ T(I).

Notational convention 5: Let f : D → R be any function. In its signature f is a function
symbol, D is a domain, i.e., it defines a set of values to which the function can be applied, and
R is a range, i.e., it defines a set of values, to which the results of function applications belong.
In complex cases a domain set may be a Cartesian product or its subset (mathematically a
relation). If the function f has the signature f : D → R then dom(f) = D denotes the domain
of f and rng(f ) ⊆ R the range of f.

In the definition of the function expand we need two auxiliary functions, weight and path-
expansion. The former gives, for an immediate pair of concept nodes, the weight related
to their relationship in the underlying ternary relation. The latter gives, for a given initial
path Path, all concept paths ExpPath that extend the initial path and are (1) connected to the
initial path in the concept network, (2) do not repeat the nodes of the path (thus avoiding
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unterminating computation), and satisfy the given (3) length and (4) weight constraints
LC and WC. The definition is declarative, we bypass all implementation-related issues for
simplicity.

Definition 1. Let Scope be a ternary relation containing immediate concept relationships,
LC a given length constraint (LC ∈ I+), WC a given weight constraint (WC ∈ R, 0 < LC ≤ 1),
and Path be an original path to be expanded. The set of paths under the length and weight
constraints LC and WC extendable from Path are given by the function path-expansion:

path-expansion: P(C × C × R) × I × R × T(C) → P(T(C))

path-expansion(Scope, LC, WC, Path) =
{ExpPath | Path1 ∈ T(C): ExpPath = Path ↔ Path1

∧ ∀i ∈ {len(Path), . . . , len(ExpPath) − 1}: <ExpPath[i], ExpPath[i + 1],
w> ∈ Scope

∧ ∀i, j ∈ {1, . . . , len(ExpPath)}, i �= j ⇒ ExpPath[i] �= ExpPath[ j]
∧ len(ExpPath) ≤ LC
∧

∏
i=1,...,len(ExpPath)

weight(ExpPath[i], ExpPath[i + 1], Scope) ≥ WC}

where weight(c1, c2) = w, when <c1, c2, w> ∈ Scope.

Consider the sample concept network of figure 2. Let Scope1 be the union of the ternary
relations, Scope1 = SPEC1 ∪ ASS1. If we construct expansion paths for c4 without length
constraints by weight constraint 0.7 we use the expression path-expansion(Scope1, ∞, 0.7,
<c4>) which yields the path-set PS1 =

{<c4, c5>, /∗with weight 1.0 and length 2∗/
<c4, c8>, /∗with weight 0.7 and length 2∗/
<c4, c5, c6>, /∗with weight 1.0 and length 3∗/
<c4, c5, c7>, /∗with weight 1.0 and length 3∗/
<c4, c5, c8>, /∗with weight 0.8 and length 3∗/
<c4, c5, c9>, /∗with weight 0.8 and length 3∗/
<c4, c5, c6, c8>, /∗with weight 0.8 and length 4∗/
<c4, c5, c6, c9>, /∗with weight 0.8 and length 4∗/
<c4, c5, c7, c8>, /∗with weight 0.8 and length 4∗/
<c4, c5, c7, c9>} /∗with weight 0.8 and length 4∗/

The function expand constructs all possible paths from a single starting concept node
sn within a scope set SS consisting of a collection of concept relationships {R1, R2, . . . ,
Rn}, under given weight and path length constraints. The target and intermediate nodes are
not specified or limited in any way, and weight computation is based on multiplication and
constraining the score by minimum. The function expand unites the concept relationships
into a single scope set and constructs an elementary path <sn> consisting of the starting
concept-node. It then applies the function path-expansion in constructing the required paths.
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Definition 2. Let sn be the start node, SS the scope set or SS = {R1, R2, . . . , Rn}, LC
the length constraint, and WC the weight constraint for concept expansion. The expansion
result is defined by the function expand as follows:

expand : C × P(P(C × C × R)) × I × R → P(T(C))

expand(sn, SS, LC, WC) = path-expansion(∪R ∈ SSR, LC, WC, <sn>)

For example, the expression expand(c4, {SPEC1, ASS1}, ∞, 0.8) yields the path set
PS2 = {<c4, c5>, <c4, c5, c6>, <c4, c5, c7>, <c4, c5, c8>, <c4, c5, c9>, <c4, c5, c6,
c8>, <c4, c5, c6, c9>, <c4, c5, c7, c8>, <c4, c5, c7, c9>}. To obtain the set of concept
nodes that expand the start node sn from the result of the function expand, one takes the
union of the path components by the function nodes.

Definition 3. Let PS be a set of paths. The set of nodes forming the paths in PS is given
by the function nodes:

nodes: P(T(C)) → P(C)

nodes(PS) = ∪path ∈ PS {c | c ∈ path}
For example, the expression nodes(PS2) = CE1 = {c4, c5, c6, c7, c8, c9}. Any conceptual

expansion from a given node sn in the scope set SS with the length and weight constraints
LC and WC is expressed by the function:

nodes(PathSet), where PathSet = expand(sn, SS, LC, WC),

by adjusting the expansion scope SS, length constraint LC and weight constraint WC
suitably. Note that by a slightly modified definition of path-expansion it would be possible
to get the weight for each path node individually. Such weight could be used for weighting
the concepts individually. Now there only is the guarantee that all nodes found have a path
exceeding the required minimum weight, although some do this by a much greater marginal
than others.

The following four conceptual expansion functions perform conceptual expansion specif-
ically within the specialization, generalization, and association relationships, and generally
within all conceptual relationships.

Definition 4. Let SPEC, GEN and ASS be any collections of specialization, generalization
and association relationships (respectively), RELS = SPEC ∪ GEN ∪ ASS, c a concept
(c ∈ C) and s a real number indicating minimum concept weight constraint. All narrower,
broader and associated concepts of c, with the minimum weight s, without path length
constraints, are obtained by the functions c-spec, c-gen, c-asso, and c all, respectively.
These functions have the same signature or C × P(P(C × C × R)) × R → P(C) and are
defined analogously as follows:

c-spec(c, SPEC, s) = nodes(expand(c, SPEC, ∞, s))

c-gen(c, GEN, s) = nodes(expand(c, GEN, ∞, s))

c-asso(c, ASS, s) = nodes(expand(c, ASS, ∞, s))

c-all (c, RELS, s) = nodes(expand(c, RELS, ∞, s)).
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3. Query expansion in the ExpansionTool

3.1. Conceptual expansion

Unexpanded—or original—queries are formulated from concepts selected from the con-
ceptual model. Further, these concepts are interpreted as belonging to conjunctive facets
representing aspects of the information need. The concepts of each facet are alternative (or
disjunctive) interpretations of the facet.

Notational convention 6: Let c11, . . . , c1n1, c21, . . . , c2n2, . . . , ck1, . . . , cknk be concept
identifiers which belong to facets F1 = {c11, . . . , c1n1}, F2 = {c21, . . . , c2n2} and Fk =
{ck1, . . . , cknk}. A conceptual query Q is represented as a set of facets Q = {F1, F2, . . . , Fk} =
{{c11, . . . , c1n1}, {c21, . . . , c2n2}, . . . , {ck1, . . . , cknk}}.

In principle, there is an ‘AND’ between the facets F1, F2, . . . , Fk and an ‘OR’ between the
concepts within each facet, e.g., between c11, . . . , c1n1. This high-level structure is main-
tained throughout query construction and rejected only in the matching pattern translation
phase if the query structure requires this (e.g., through the use of a single probabilistic
operator instead of Boolean operators).

Query formulation from concepts to a query is illustrated by the following example.
Assume that the test request is about the processing and storage of radioactive waste.
In the sample conceptual model CM1, the concepts c4, c10, and c12 representing the
terms c-term1(c4) = t40 (for ‘radioactive waste’), c-term1(c10) = t100 (for ‘storage’) and c-
term1(c12) = t120 (for ‘process’) represent this information need. Two facets are
identified: F1 = {c4}, F2 = {c10, c12}. They form the concept query Q1 = {{c4}, {c10,
c12}}.

In conceptual query expansion, each concept is expanded to a disjunctive set of concepts
on the basis of conceptual relationships selected. For an original query Q = {F1, . . . , Fk}, the
expansion result is in each case an expanded concept query Q′ = {F′

1, . . . , F′
k} where each

facet Fi
′ = {ci1, ci11, ci12, . . . , ci1m1, . . . , cin, cin1, cin2, . . . , cinmn} contains the original con-

cept identifiers {ci1, . . . , cin}, and the expansion concept identifiers, {ci11, ci12, . . . , ci1m1, . . . ,

cin1, cin2, . . . , cinmn}.
Conceptual query expansion is performed within a selected collection of concept rela-

tionships RELS. Within this collection, all derivable conceptual expansions are performed
and combined, i.e., all original concepts, their narrower, broader and associative concepts
are collected if these concept relationships are included in RELS. The function for the full
expansion of a concept is defined as follows:

Definition 5. Let CM be a conceptual model CM = (c-term, e-strict, e-all, SYN, SPEC,
GEN, ASS), RELS be any collection concept relationships (RELS ⊆ SPEC ∪ GEN ∪
ASS), Q = {F1, . . . , Fk} be any query with F1, . . . , Fk facets and s the weight constraint.
The conceptually expanded query for the original query Q is obtained by the
function:

cons-q-expand : P(P(C)) × P(P(C × C × R)) × R → P(P(C))

cons-q-expand(Q, RELS, S) = {cons-f-expand(F, RELS, S) | F ∈ Q}
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when cons-f-expand : P(C) × P(P(C × C × R)) × R → P(C)

cons-f-expand(F, RELS, S) = ∪c∈F c-all(c, RELS, S).

By selecting RELS suitably, specific types of conceptual expansions are obtained. For
example, in the case of sample query Q1 the narrower concept expansion cons-q-expand(Q1,
SPEC1, 0.8) yields the expanded query Q1n = {{c4, c5, c6, c7}, {c10, c12, c11}}. The new
concepts are c5 (‘nuclear waste’), c6 (‘low-active waste’), c7 (‘high-active waste’), and c11
(‘repository’).

The associative concept expansion for Q1 is cons-q-expand(Q1, ASS1, 0.5) gives the
expanded query Q1a = {{c4, c8, c9}, {c10, c12, c13, c14}}. The new concepts are c8 (‘fission
product’), c9 (‘spent fuel’), c13 (‘refine’) and c14 (‘treat’).

The combined narrower and associative concept expansion for Q1 is cons-q-expand(Q1,
SPEC1 ∪ ASS1, 0.5) and gives the expanded query Q1n&a = {{c4, c5, c6, c7, c8, c9}, {c10,
c12, c11, c13, c14}}. The new concepts are as above.

3.2. Query expansion to terms and synonyms

After conceptual expansion, the next step in query construction is finding the terms and
their equivalent expressions (synonyms) for the (expanded) conceptual query. The following
definition gives two functions q-terms and q-syns, which perform these expansions. The
former gives only the terms for the concepts, the latter both the terms and their synonyms.
Below, we denote the set of terms by T, the set of non-term expressions by NT and all
expressions by EXP = T ∪ NT.

When terms only are used, the original concept facets are represented by expression
facets {E1, . . . , Ek}, where each facet Ei is derived from the corresponding concept facet Fi

by replacing each concept identifier in Fi by the identifier of the corresponding term. In the
synonym expansion, the set of concept facets {F1, . . . , Fk} is translated and expanded into
synonyms by adding all equivalent expressions of the terms of the original concepts to the
query. Again, the result is an expanded set of expression facets {E1, . . . , Ek}.

Definition 6. Let CM be a conceptual model CM = <c-term, e-strict, e-all, SYN, SPEC,
GEN, ASS> , and Q = {F1, . . . , Fk} be any conceptual query with F1, . . . , Fk facets. The
term and synonym expansions of the original query Q are obtained by the functions,
respectively:

q-terms: P(P(C)) × CM → P(P(T))

q-terms(Q, CM) = { f-terms(F, CM) | F ∈ Q}
when

f-terms: P(C) × CM → P(T)

f-terms(F, CM) = ∪c∈Fc-term(c)

q-syns: P(P(C)) × CM → P(P(EXP))

q-syns(Q, CM) = { f-syns(F, CM) | F ∈ Q}
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when

f-syns: P(C) × CM → P(EXP)

f-syns(F, CM) = ∪c∈F c-expr(c, c-term, SYN).

For example, q-syns(Q1, CM1) gives the synonymous expressions of the original unex-
panded Q1 query as the identifier set {{t40}, {t100, nt101, nt102, t120}}. On the other hand,
q-terms(Q1n, CM1) gives the terms of the narrower concept expanded query Q1n as the
identifier set {{t40, t50, t60, t70}, {t100, t110, t120}}.

3.3. Query expansion to matching patterns

After expression expansion, the next step in query construction is finding the matching
patterns for the (expanded) query. The following definition gives the functions q-strict-
patterns and q-patterns, which perform these expansions for any query, represented as
a faceted structure of expression identifiers. The former gives only the strict matching
patterns for the expressions, while the latter all matching patterns. Below, we denote the set
of matching patterns by MM.

In the matching pattern expansion all matching patterns of all expressions (exceeding the
weight constraint) are added to the query. The set of expression identifier facets {E1, . . . , Ek}
is translated and expanded into matching patterns by adding all applicable patterns to the
query. The result is an expanded set of matching pattern facets {P1, . . . , Pk}, where each facet
Pi is derived from the corresponding expression facet Ei by representing each expression
identifier in Ei by its matching patterns.

Definition 7. Let CM be a conceptual model CM = (c-term, e-strict, e-all, SYN, SPEC,
GEN, ASS), and Q = {E1, . . . , Ek}, be any expression level query with E1, . . . , Ek facets.
The strict and all matching pattern expressions of the original query Q are obtained by the
functions, respectively:

q-strict-patterns: P(P(T)) × CM → P(P(MM))

q-strict-patterns(Q, CM) = { f-strict-patterns(E, CM) | E ∈ Q}
when
f-strict-patterns: P(T) × CM → P(MM)

f-strict-patterns(E, CM) = ∪e∈E e-strict(e)

q-patterns: P(P(EXP)) × CM → P(P(MM))

q-patterns(Q, CM) = { f-patterns(E, CM) | E ∈ Q}
when
f-patterns: P(EXP) × CM → P(MM)

f-patterns(E, CM) = ∪e∈E e-all(e)

For example, q-strict-patterns(q-syns(Q1, CM1), CM1) gives the matching patterns for
the synonymous expressions of the original unexpanded Q1 query as the set Q1P = {{phra(2,
<bw(radioactive), bw(waste)>)}, {bw(storage), bw(store), bw(stock), bw(process)}}. On
the other hand, q-patterns(q-terms(Q1n, CM1), CM1) gives the matching patterns for the
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terms of the narrower concept expanded query Q1n as the set Q1Pn =
{{phra(2, <bw(radioactive), bw(waste)>),

prox(2, <bw(radioactive), bw(waste)>, 3),

phra(2, <bw(nuclear), bw(waste)>), prox(2, <bw(nuclear), bw(waste)>, 3),

phra(2, <cw(<bw(low), bw(active)>), bw(waste)>),

prox(2, <cw(<bw(low), bw(active)>), bw(waste)>, 3),

phra(2, <cw(<bw(high), bw(active)>), bw(waste)>),

prox(2, <cw(<bw(high), bw(active)>), bw(waste)>, 3)},
{bw(storage), bw(repository), bw(process)}}.

All conceptual, expression level and matching pattern expansions of an original con-
ceptual query are obtained by applying and nesting the functions cons-q-expand, q-strict-
patterns, q-patterns, q-terms and q-syns with suitable parameters. The queries represented as
matching pattern facet sets are still query language independent, and need now be translated
into query language specific expressions for execution.

3.4. Matching pattern translation

This step translates the query language independent expression into an expression of a given
language. The starting point of matching pattern translation is the expansion result con-
structed above. Matching pattern translation is implemented on the basis of logic grammars
(Abramson and Dahl 1989, Pereira and Warren 1980). Each grammar is a set of logical rules,
which generate well-formed expressions of a specified query language. Each query language
has its own logic grammar, which generates its specific expression types and structures.

The parameters of matching pattern translation are (1) a query structure indicator, (2)
the database index type indicator, (3) the target query language indicator, and (4) the key
reduction parameter. The first one is used to express how the facets are combined with
each other, and how the keys are combined with each other. Kekäläinen and Järvelin (1998,
2000) and Kekäläinen (1999) have shown the effect of query structure for the effective-
ness of expanded queries (see also Section 4.1). Therefore query structure is an important
construction parameter.

A query structure is the syntactic structure of a query expression, as expressed by the
query operators and parentheses. The structure of queries may be described as weak (queries
with a single operator or no operator, no differentiated relations between search keys) or
strong (queries with several operators, different relationships between search keys). More
precisely, typical strong query structures are based on facets. Each facet indicates one aspect
of the request, and is represented by one or more concepts, which, in turn, are expressed by
a set of search keys (Kekäläinen 1999).

The ExpansionTool provides several alternatives for query structures, ranging from the
conjunctive Boolean structure to probabilistic sum and weighted sum structures (all not
available to all target query languages), including:

• and for facet conjunction,
• para for facet paragraph proximity,
• sum for probabilistic facet sums,
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• syns for the probabilistic structure:3

#sum(#syn(term1 syn11 syn12 . . . ,), #syn(term2 syn21. . . ). . . ),

• wsyns(QW, FacetWList) for the probabilistic structure:

#wsum(1 w1 #syn(term1 syn11 syn12. . . ) w2 #syn(term2 syn21 . . . ). . . ), where
FacetWList = <w1, w2, . . . > gives the weight of facets as a list of integers.

The database index type indicators bw, cw and iw indicate index types “basic words with
compound words split,” “basic words with compounds” and “inflected words,” respectively.
Allowed query language identifiers currently are inquery (for InQuery v3.1 by the Center
for Intelligent Information Retrieval, University of Massachusetts), iso (for the ISO standard
query language; ISO 1993), topic (for TOPIC by Verity Inc.), or trip (for TRIP by PSI Inc.).

The parameter reduction specifies whether keywords for matching are reduced or not. If
reduced, duplicates or expressions logically covered by other expressions within each facet
are reduced from the query. For example, the key ‘industry’ covers all proximity expressions
containing the key ‘industry’ and other keys. Otherwise they are allowed. The options are
‘reduce’ for reduced keys and ‘duplicates’ for redundant keys. In the InQuery language,
#sum(industry) logically covers #sum(industry #uw3(forest industry) #20(wood industry))
and #uw10(forest industry) covers #uw3(forest industry). Note however that the expressions
may return different document sets. Reduction should always be used for Boolean queries.

If the target language of matching pattern translation does not support some specific fea-
ture of matching patterns or logical structure, then either the obvious closest or alternative
construct of the target language is generated or query construction terminates with an error
message. For example, the InQuery retrieval system (v3.1) does not have grammatical prox-
imity operators (e.g., “sentence”) but supports proximity conditions based on numeric word
distance. Therefore the sentence proximity condition is translated an adjustable numeric
proximity expression, e.g., #10 allowing 10 intervening words. InQuery neither supports
disjunctions within proximity operations, i.e., the structure #10(#or(a b) #or(d e)). Therefore
such structures are automatically converted into DNF, i.e., #or(#10(a d) #10(a e) #10(b d)
#10(b e)) which is supported. The TOPIC query language provides the proximity operators
“phrase,” “sentence” and “paragraph.” All such transformations are handled by the logic
grammars.

Järvelin and others (1996) describe the matching pattern translation phase in more detail.
The result of matching pattern translation is an expression of the target query language for an
index of the specified type. The query may be very long, if it contains many broad concepts
expanded by loose criteria, and if a proximity condition is applied between the facets.

Examples of query structures are given in Section 4.

4. Test on expansion effects

We demonstrate the properties of the ExpansionTool by constructing and testing queries
with different structures and expansion types. The interaction and effects of the following
variables are considered: the number of search concepts, the number of search strings
representing concepts, query expansion (QE) with different semantic relationships, and
query structures. The test demonstrates that by the use of the ExpansionTool one may
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automatically construct queries, which differ in structural and expansion aspects and yield
quite different effectiveness. Because it is fairly easy to define new query structures for
ExpansionTool, it is a flexible tool for experimentation in varying retrieval environments. It
has been used in IR experiments reported by Järvelin and others (1996), Kekäläinen (1999),
and Kekäläinen and Järvelin (1998, 2000).

4.1. Test environment and query structures

The test environment is a text database containing Finnish newspaper articles operated
under the InQuery retrieval system (see Turtle 1990, Turtle and Croft 1991). The database
contains 54,000 articles published in three Finnish newspapers. The average article length is
233 words, and typical paragraphs are two or three sentences in length. The database index
contains all keys in their morphological basic forms. In the basic word form analysis all
compound words are split into their component words in their morphological basic forms.
We use a collection of 30 requests, which are 1–2 sentences long, in the form of written
information need statements. For these requests there is a recall base of 16,540 articles.

The total number of concepts in the test thesaurus was 832 and the number of expressions
in the thesaurus is 1,345. The number of matching patterns in the thesaurus is 1,558. The
values of concept association strength were based on the judgments of the researchers.
Hierarchical relationships had strength 1.0 to the narrower concept direction and 0.5 to
the broader concept direction. The justification is that narrower concepts represent a given
concept more reliably than broader concepts.

InQuery was used in the demonstrative experiment. It supports both exact and best match
retrieval, allows search key weighting, and has a wide range of operators, including Boolean
operators and ‘probabilistic’ operators. The operators ‘#and,’ ‘#or,’ and ‘#not’ and proximity
searching by the operator ‘#n,’ where n is an integer, allow probabilistic retrieval by Boolean
operators, while ‘#band’ allows ordinary Boolean retrieval (with the result set ranked). The
proximity operator ‘#n’ spans over sentence and paragraph boundaries. The probabilistic
sum operators ‘#wsum’ and ‘#sum’ are also available.

In query formulation, search concepts are first selected from the ExpansionTool database
on the basis of a request. Then the parameters structure, the databse index type indicator
(‘bw’ in the experiment), the target query language identifier (here ‘inquery’), and the key re-
duction parameter (here ‘no’) are given. In the present experiment, the path length is always
‘∞,’ and the weight constraint for conceptually unexpanded queries is 1.0, and for expanded
queries 0.3. We formulate queries for the test requests using four query structures: Boolean
operators (‘and’), paragraph proximity operators (‘para’, allowed word distance 40) and the
‘probabilistic’ structures ‘ssyn’ and ‘sum.’ Queries are either unexpanded, when each con-
cept is represented by its term and the corresponding matching pattern, or expanded 1) by
synonyms and narrower concepts (s + n expansion; 2) by synonyms, narrower and associ-
ated concepts (full expansion). Next, we shall give examples of the structures and expansions
(unexpanded and synonym + narrower concept expanded queries).4 Our sample request is
“processing and storage of radioactive waste.” The following concepts are selected from
the thesaurus: c4 (radioactive waste), c10 (storage) and c12 (process) and form the concept
query Q1 = {{c4}, {c10, c12}} of Section 3. The expansions are also described in Section 3.
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Proximity operators put more strict demands on the occurrence of search keys than the
AND operator. However, when the proximity constraints are strict, the number of alternative
search keys becomes decisive in order to keep even precision acceptable (Kristensen 1993).
We reduced the number of search concepts per request in order not to set too strict conditions.
Two operators are used to combine the search key alternatives for each concept: disjunction
(ProxOr) and synonymity (ProxSyn). Because the queries are identical except for the initial
operator, examples of the ProxOr queries only are given. In the examples, expressions like
#0(low active) denote compound words (with hyphen).

• ProxOr, no expansion:

#or(#uw40(#1(radioactive waste) process) #uw40(#1(radioactive waste) storage))

• ProxOr, s + n expansion:

#or(#uw40(#1(radioactive waste) process) #uw40(#1(nuclear waste) process)
#uw40(#1(#0(high active) waste) process) #uw40(#1(#0(low active) waste)

process)
. . .

#uw40(#1(radioactive waste) storage) #uw40(#1(radioactive waste) stock)
#uw40(#1(radioactive waste) store) #uw40(#1(radioactive waste) repository)
. . .

#uw40(#0(low active) waste) storage) #uw40(#0(low active) waste) store)
#uw40(#0(low active) waste) stock) #uw40(#0(low active) waste) repository))

A query with the Boolean operators (BOOL) is constructed using the block search strategy.
In InQuery, a query with the ‘true’ Boolean operators5 retrieves a set of documents that agree
with the Boolean constraints. However, within the set the documents are ranked according
to the weighting scheme of the system. Only the expanded query is given below.

• BOOL, s + n expansion:

#band(#or(#1(radioactive waste) #1(nuclear waste)

#1(#0(high active) waste) #1(#0(low active) waste)

#or(process storage stock store repository))

In a SUM-of-synonym-groups-query (SSYN ) each facet forms a clause with the #syn
operator. The #syn clauses are combined with the #sum operator. Only the expanded query
is given below.

• SSYN, s + n expansion:

#sum(#syn(#1(radioactive waste)#1(nuclear waste)

#1(#0(high active) waste) #1(#0(low active) waste)

#syn(process storage stock store repository))
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SUM (average of the weights of keys) queries represent weak structures. An unexpanded
SUM query a single key, or a set of single keys corresponding to the term, represents each
original concept. In expansions all expressions were added as single words, i.e., no phrases
were included.

• SUM, s + n expansion:

#sum(radioactive waste nuclear waste #0(high active) waste #0(low active) waste
process storage stock store repository)

4.2. Test results

The average number of facets in the strongly structured queries was 3.7. In the proximity
queries the number of facets was pruned to 2.3. The average number of concepts in the
unexpanded queries was 4.9, and in the unexpanded proximity queries 2.7. The average
number of search keys (i.e., matching patterns) in the unexpanded queries when no phrases
were marked (i.e., SUM queries) was 6.1, and in the expanded queries without phrases as
follows: s + n expansion 30.6; full expansion 62.3. The number of search keys with phrases
was as follows: no expansion 5.4; s + n expansion 24.4; full expansion 52.4, on average.
For the proximity queries the corresponding average figures were 3.3 search keys in the
unexpanded queries; 13.4 in the s + n expanded queries; 34.3 in the fully expanded queries.
The test results are given as P-R curves (average precision at 10 recall points [10–100]).

Figure 3 shows the P-R curves for the proximity queries. Without expansion the perfor-
mance of the ProxOr and ProxSyn queries is equal, which is not surprising because most of

Figure 3. P-R curves for proximity queries with and without expansion.
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Figure 4. P-R curves for BOOL, SUM and SSYN queries with and without expansion.

the queries do not have more than one concept in a facet, and the query reduces to a simple
proximity query. The S + N expansion enhances performance in both query types; the Prox-
Syn queries are slightly more effective at high precision levels. An interesting difference in
performance between the query types arises with the full expansion: the performance of the
ProxSyn queries still enhances while the performance of the ProxOr queries drops (when
recall <80%). One should bear in mind that the operator just ranks the result set obtained
by a proximity search. The low precision figures after 80% recall show that the unexpanded
proximity queries actually never retrieve all relevant documents.

For Boolean queries the expansion also proves useful (figure 4a). The difference between
the unexpanded and fully expanded queries is considerable, especially at high precision
levels (recall <50%).6 The unexpanded best match query types, SUM and SSYN, have
almost similar performance (figure 4(b) and (c)). However, QE has different effects on
them: the performance of the SUM queries decreases slightly but the performance of the
SSYN queries increases markedly. The best results overall are achieved with the fully
expanded SSYN queries.

5. Discussion

The proposed query construction and expansion tool, the ExpansionTool, is intended for
use prior to the initial search for natural language text retrieval in heterogeneous document
collections lacking intellectual indexing. It has the following desirable features:

• It supports automatic construction and expansion of queries with adjustable query struc-
tures and other expansion parameters. Thus queries may be expanded without requiring
the users to understand query structures and their interaction with expansion in various
retrieval environments.

• Concept-based query formulation and QE are performed at three levels of abstraction
(the conceptual, linguistic and string levels). First, concepts representing requests are
selected from a conceptual model, second, queries are formulated in which the number
of concepts, the number of search keys representing the concepts, the query structure,
assumed indexing, and query language may vary.
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• It provides a uniform representation for all conceptual (or terminological) relationships
and an expansion operator, which supports expansion from selected nodes toward selected
(semantic) directions, to an adjustable distance, and/or until (as long as) an adjustable
weighting criterion is fulfilled.

• It takes target database indexing into account in the specific formulation of individual
search keys. Stemming, word normalization and/or compound splitting for the index are
hidden from the user.

• It automatically converts the query into the requested query language (among available
languages) and hides differences due to query language paradigms, operator names and
expressive power from the user.

The query expansion and construction examples show that the ExpansionTool makes
it easy to generate a range of quite differently behaving queries to a number of search
environments which are heterogeneous with respect to the overall retrieval strategy, query
language properties and database index construction strategies. Therefore the tool greatly
supports experimentation with query structures, expansion and other query construction
parameters. The ExpansionTool has been fully implemented in Prolog.

Construction of conceptual models is intellectual work and our sample model is hand
crafted. However, many phases of the construction process could be automated or automat-
ically supported. For example, candidates for semantic relations could be found through
word co-occurrencies or linguistic analysis of texts, or from dictionaries. Construction of
matching patterns could be supported by morphological analysis (i.e., by automatically pro-
ducing word stems, basic forms or components of the compound words). Also, the integrity
of relations could automatically be checked—as in any thesaurus tool. Conceptual models
are viable if the subject area has a stable conceptual structure and users demand high recall.

In the ExpansionTool query construction is to be started from concepts. It is also possible
to map user’s own search keys to the model by matching keys to the expressions representing
concepts. If there is no match, users could combine their own keys with the keys found in
the model. The meaning of each term representing a concept becomes evident from the
context the model gives to it. Because the ExpansionTool supports query construction for
search environments without vocabulary control at storage phase, the ambiguity in texts
cannot be eliminated. However, we believe that ambiguity is reduced through other search
concepts (Kekäläinen 1999, and Järvelin 2000).

So far, we have only used the weights representing the strength of semantic relations
to select the expansion concepts and their matching patterns. We are planning to test the
effectiveness of these weights in calculating weights for the search keys for queries.

We have developed a limited web version of the ExpansionTool, called CIRI (for Concept-
based Information Retrieval Interface). CIRI allows consulting several conceptual models,
and presents them as a concept networks. The user chooses concepts by navigating the net-
works. When completed, the server component constructs and supplies the corresponding
expanded query, which is then run on a document server. The resulting documents are pre-
sented in the CIRI interface. CIRI is fully implemented in Java and uses Java servlets and a re-
lational database for conceptual model storage and query construction. At the moment CIRI
constructs only Boolean queries. CIRI also has a subsystem for conceptual model creation
and maintenance. Thus domain knowledge may be collected from the users interactively
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(Paice 1991, Croft and Das 1990). The matching patterns are generated semi-automatically
from expressions. Further automation would require integration with NLP-tools.

CIRI and ExpansionTool constitute a fully conceptual approach to query construction
and bypass user’s direct interaction with search keys and query expressions by concept
network navigation. The main application areas of the ExpansionTool are query interfaces
and filter agents for networked IR. Obviously, the ExpansionTool approach can be utilized
in improving the parametrizability and matching expressions of information filter agents in
networked heterogeneous database environments.

6. Conclusions

The ExpansionTool is a versatile tool for concept-based query expansion and construction
for multiple heterogeneous database environments. It is based on three abstraction levels:
the conceptual, linguistic and string levels. Concepts and relationships among them are
represented at the conceptual level. The expression level gives natural language expressions
for concepts. Each expression has one or more matching patterns at the string level. The
patterns specify the matching of the expression in database indices built in varying ways.
Conceptual expansion is implemented by a novel operator for traversing collections of
cyclic concept networks. The number of links expanded, their types, and weights may vary.

The ExpansionTool is a powerful tool intended for end users to support automatic con-
structing and expanding effective queries so that they need not understand query structures
and their interaction with expansion in various heterogeneous retrieval environments. It also
is a research tool that supports experimentation with query structures, expansion and other
query construction parameters in similar retrieval environments. The empirical sample re-
trieval experiment demonstrated that the ExpansionTool supports easy construction of quite
differently behaving queries for IR experiments.

Appendix

Our sample conceptual model is CM1 = (c-term1, e-strict1, e-all1, SYN1, SPEC1, GEN1,
ASS1) as follows.

CM1 =
({<c4, t40>, <c5, t50>, <c6, t60>, <c7, t70>, <c8, t80>, <c9, t90>,

<c10, t100>, <c11, t110>, <c12, t120>, <c13, t130>, <c14, t140>},
{(t40, phra(2, <bw(radioactive), bw(waste)>)),

(t50, phra(2, <bw(<nuclear), bw(waste)>)),

(t60, phra(2, <cw(<bw(low), bw(active)>), bw(waste)>)),

(t70, phra(2, <cw(<bw(high), bw(active)>), bw(waste)>)),

(t80, phra(2, <bw(fission), bw(product)>)>,

<t90, phra(2, <bw(spend), bw(fuel)>)),

(t100, bw(storage)), (nt101, bw(store)), (nt102, bw(stock)),

(t110, bw(repository)), (t120, bw(process)), (t130, bw(refine)), (t140, bw(treat))},
{(t40, {phra(2, <bw(radioactive), bw(waste)>),

prox(2, <bw(radioactive), bw(waste)>, 3)}),
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(t50, {phra(2, <bw(<nuclear), bw(waste)>),

prox(2, <bw(<nuclear), bw(waste)>, 3)}),
(t60, {phra(2, <cw(<bw(low), bw(active)>), bw(waste)>),

prox(2, <cw(<bw(low), bw(active)>), bw(waste)>, 3)}),
(t70, {phra(2, <cw(<bw(high), bw(active)>), bw(waste)>),

prox(2, <cw(<bw(high), bw(active)>), bw(waste)>, 3)}),
(t80, {phra(2, <bw(fission), bw(product)>),

prox(2, <bw(fission), bw(product)>, 3)}),
(t90, {phra(2, <bw(spend), bw(fuel)>), prox(2, <bw(spend), bw(fuel)>, 3)}),
(t100, {bw(storage)}), (nt101, {bw(store)}), (nt102, {bw(stock)}),
(t110, {bw(repository)}), (t120, {bw(process)}),
(t130, {bw(refine)}), (t140, {bw(treat)})},

{<t100, {nt101, nt102}>},
{{<c4, c5, 1.0>, <c5, c6, 1.0>, <c5, c7, 1.0>, <c10, c11, 1.0>}},
{{<c5, c4, 0.5>, <c6, c5, 0.5>, <c7, c5, 0.5>, <c11, c10, 0.5>}},
{{<c4, c8, 0.7>, <c8, c4, 0.7>, <c4, c9, 0.6>, <c9, c4, 0.6>, <c5, c8, 0.8>,

<c8, c5, 0.8>, <c5, c9, 0.8>, <c9, c5, 0.8>, <c6, c8, 0.8>, <c8, c6, 0.8>,

<c6, c9, 0.8>, <c9, c6, 0.8>, <c7, c8, 0.8>, <c8, c7, 0.8>, <c7, c9, 0.8>,

<c9, c7, 0.8>, <c12, c13, 0.5>, <c13, c12, 0.5>, <c12, c14, 0.6>,

<c14, c12, 0.6>}}).
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Notes

1. We agree that languages may have some differences at the conceptual level, too. These are not taken into
account here.

2. Graphs consist of nodes of any kind and of links between them, and may be either directed or undirected.
Connected sequences of links form paths. A directed graph is acyclic if no node can be reached by following
any path leaving from it. Otherwise it is cyclic. Undirected graphs are always cyclic. Links between nodes may
be weighted to represent their length. Our conceptual QE operator uses collections of cyclic graphs, i.e. sets of
possibly overlapping graphs.

3. Using the InQuery query language operators (e.g., Rajashekar and Croft 1995; Kekäläinen and Järvelin 1998)
in the structures syns and wsyns. The operators are #sum for the probabilistic sum, #wsum for the weighted
probabilistic sum, and #syn for the synonym operator.

4. NB. Examples are translations of Finnish queries for an index containing the basic forms of words, and
abbreviated, thus they are illustrative but do not necessarily work as English queries.

5. The Boolean operator AND is denoted by #band and OR by #or in the InQuery query language.
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6. NB. The result set is strict Boolean though ranked. All relevant documents are not in the set, thus after 90%
recall the curve is not very reliable.
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