
Information Retrieval, 4, 5–31, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Text Categorization Based on Regularized Linear
Classification Methods

TONG ZHANG tzhang@watson.ibm.com
FRANK J. OLES oles@watson.ibm.com
Mathematical Sciences Department, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

Received March 2, 2000; Accepted November 13, 2000

Abstract. A number of linear classification methods such as the linear least squares fit (LLSF), logistic regression,
and support vector machines (SVM’s) have been applied to text categorization problems. These methods share the
similarity by finding hyperplanes that approximately separate a class of document vectors from its complement.
However, support vector machines are so far considered special in that they have been demonstrated to achieve
the state of the art performance. It is therefore worthwhile to understand whether such good performance is
unique to the SVM design, or if it can also be achieved by other linear classification methods. In this paper, we
compare a number of known linear classification methods as well as some variants in the framework of regularized
linear systems. We will discuss the statistical and numerical properties of these algorithms, with a focus on text
categorization. We will also provide some numerical experiments to illustrate these algorithms on a number of
datasets.

Keywords: text categorization, linear classification, regularization

1. Background

The text categorization problem is to determine predefined categories for an incoming
unlabeled message or document containing text based on information extracted from a
training set of labeled messages or documents. Text categorization is an important practical
problem for companies that wish to use computers to categorize incoming email, thereby
either enabling an automatic machine response to the email or simply assuring that the email
reaches the correct human recipient. But, beyond email, text items to be categorized may
come from many sources, including the output of voice recognition software, collections
of documents (e.g., news stories, patents, or case summaries), and the contents of web
pages.

The text categorization problem can be reduced to a set of binary classification problems—
one for each category—where for each one wishes to determine a method for predicting
in-class versus out-of-class membership. Such supervised learning problems have been
widely studied in the past. Recently, many methods developed for classification problems
have been applied to text categorization. For example, Apte et al. (1994) applied an in-
ductive rule learning algorithm, SWAP1, to the text categorization problem. In Yang and
Chute (1994) proposed a linear least squares fit algorithm to train linear classifiers. Yang also
compared a number of statistical methods for text categorization in Yang (1999). The best
performances previously reported in the literature are from weighted resampled decision

6 ZHANG AND OLES

trees in Weiss et al. (1999) and (linear) support vector machines in Joachims (1998) and
Dumais et al. (1998).

Integral parts of all these approaches are tokenization, feature selection, and creating
numeric vector representations of documents. The first step, tokenization, is laid out in
detail in figure 1. This functionality is common to most methods of text categorization. In
the tokenization procedure depicted in figure 1, one or both of Steps 4 and 5 may be omitted,
although keeping them may improve performance. If both steps are retained, elimination
of stopwords (Step 5) may also be done before stemming (Step 4). Also, the elimination of
stopwords (Step 5) may in some instances be subsumed by subsequent feature selection,
to be discussed below. For consistency, the same tokenization procedure would be used
both (1) for documents used in training to build categorization rules and (2) for incoming
documents to be categorized by a system employing the classifiers obtained in the training
phase.

After tokenization, each document is represented by a list of word occurrences. A program
should then be used to carry out feature selection. (However, feature selection could also
be skipped entirely, so that tokens were to be taken by themselves to be the sole features of
interest.) We will not take up the specifics of feature selection, but a number of methods of
varying degrees of sophistication have been studied in Yang and Pedersen (1997). Feature
selection might be done only once for the entire data set, but experience indicates that better
results will be obtained by doing feature selection separately for each category, reflecting
the intuition that features indicative of category membership will differ as one moves from

Figure 1. Document tokenization.

TEXT CATEGORIZATION 7

Figure 2. Feature selection.

category to category. Feature selection, under the assumption that a separate set of features
is to be selected for each category, is laid out in figure 2. The output of feature selection
would normally be a specification of a separate list of selected features (words) for each
category for which we intend to generate a classifier. The specification would necessarily
be detailed enough to permit a computer to identify each occurrence of each feature in the
tokenized representation of a document.

After feature selection, each document is represented by a vector of word occurrences
for each category where each vector component corresponds to a word feature selected for
the category in the previous step. Figure 3 shows the steps necessary to use a list of features
selected for relevance to a particular category to convert a tokenized representation of a
document to a numeric vector representing the document. Because of the vast numbers of
different words that may appear in text, generally the numerical vectors of world occurrences
one gets are sparse vectors of very high dimensionality. Thus, text categorization necessitates
using techniques of supervised two-class categorization problem that are well suited to high-
dimensional sparse data.

Formally, a two-class categorization problem is to determine a label y ∈ {−1, 1} as-
sociated with a vector x of input variables. A useful method for solving this problem is
by using linear discriminant functions, which consist of linear combinations of the input
variables. Various techniques have been proposed for determining the weight values for
linear discriminant classifiers from a training set of labeled data (x1, y1), . . . , (xn, yn).
Here, and throughout this document, n is the number of items in a training set. Specifically,
we seek a weight vector w and a threshold θ such that wT x < θ if its label y = −1 and
wT x ≥ θ if its label y = 1. Thus, the hyperplane consisting of all x such that wT x = θ

would approximately separate the in-class vectors from the out-of-class vectors.
The problem just described may readily be converted into one in which the threshold θ

is taken to be zero. One does this by embedding all the data into a space with one more
dimension, and then translating the original space by some chosen nonzero distance A from
its original position. Normally, one takes A = 1. Hence, in this conversion, each vector
(z1, . . . , zm) is traded in for (z1, . . . , zm, A). For each hyperplane in the original space, there
is a unique hyperplane in the larger space that passes through the origin of the larger space.
Instead of searching for both an m-dimensional weight vector along with a threshold θ , we

8 ZHANG AND OLES

Figure 3. Creating a vector to represent a document using the selected features.

can therefore search for an (m + 1)-dimensional weight vector along with an anticipated
threshold of zero.

Under the assumption that the vectors of input variables have been suitably transformed
so that we may take θ = 0, the training error rate for a linear classifier with weight vector
w is given by

1

n

n∑
i=1

s(wT xi yi), (1)

where s is the step function

s(z) =
{

1 if z ≤ 0,

0 if z > 0.
(2)

A number of approaches to solving categorization problems by finding linear discrim-
inant functions have been advanced over the years. In the early statistical literature, the
weight was obtained by using linear discriminant analysis, which makes the assumption
that each class has a Gaussian distribution (cf. Ripley 1996, chapter 3). Similar to linear
discriminant analysis, an approach widely used in statistics (usually for regression rather
than classification) is the least square fit algorithm. Least squares fit has been applied to
text categorization problems in Yang and Chute (1994). Without any assumption on the

TEXT CATEGORIZATION 9

underlying distribution, a linear separator can be obtained by using the perceptron scheme
that minimizes the training error (Minsky and Papert 1990). Another commonly used ap-
proach in statistics for obtaining a linear classifier is logistic regression. Logistic regression
is closely related to support vector machines, which have recently gained much popularity.

There has been a long history of using logistic regression in information retrieval, as
can be seen from the following partial list (Cooper et al. 1992, Fuhr and Pfeifer 1991,
Gey 1994, Ittner et al. 1995, Lewis and Gale 1994, Schütze et al. 1995). However, for a
number of reasons, the method was not used in an effective way for text categorization.
As a result, the comparison in Schütze et al. (1995) suggested negative opinions on the
performance of logistic regression. The combination of the following factors could have led
to the negative results in Schütze et al. (1995). One reason could be the lack of regularization
in their formulation. Keep in mind that regularization is important to the success of SVM.
We will come back to the issue of regularization in the next section. Another reason could
be their choice of the Newton-Raphson method of numerical optimization, which in our
experience could become unstable, especially without regularization. In this paper, we
instead introduce a stable numerical optimization procedure. A third reason could be the
threshold adjustment problem which we will explain in Section 4—however, this problem
does not affect the break-even performance measurement. Furthermore, in the previous
studies, logistic regression was typically employed with a relatively small set of features.
However, as suggested in Joachims (1998), it can be helpful to use a very large set of features
(in the order of tens of thousands). Our experiments in Section 4 confirm this observation.

This paper is organized as follows. In Section 2, we describe various linear classification
algorithms. We discuss issues related to the effectiveness of the algorithms from a statistical
point of view. Using this analysis, we introduce a method that is a variant of the linear
least squares method and SVM. The presence of large feature sets has introduced some
numerical challenges. These issues will be discussed in Section 3, where we investigate
the computational aspects of all the algorithms including logistic regression and support
vector machines. Some experiments will be given in Section 4 to compare the performance
of the different methods. In particular, we illustrate that logistic regression achieves results
comparable with support vector machines. We summarize this paper in Section 5.

2. Linear classifiers

We start our discussion with the least squares algorithm, which is based on the following
formulation to compute a linear separator ŵ:

ŵ = arg inf
w

1

n

n∑
i=1

(wT xi − yi)
2. (3)

The solution is given by

ŵ =
(

n∑
i=1

xi x
T
i

)−1 (
n∑

i=1

xi yi

)
.

10 ZHANG AND OLES

One problem with the above formulation is that the matrix
∑n

i=1 xi xT
i may be singular or

ill-conditioned. This occurs, for example, when n is less than the dimension of x . Note
that in this case, for any ŵ, there exists infinitely many solutions w̃ of w̃T xi = ŵT xi for
i = 1, . . . , n. This implies that (3) has infinitely many possible solutions ŵ.

A remedy of this problem is to use a pseudo-inverse (Yang and Chute 1994). However,
one problem of the pseudo-inverse approach is its computational complexity. In order
to handle large sparse systems, we need to use iterative algorithms which do not rely on
matrix factorization techniques. Therefore in this paper, we use the standard ridge regression
method (Hoerl and Kennard 1970) that adds a regularization term to (3):

ŵ = arg inf
w

1

n

n∑
i=1

(wT xi yi − 1)2 + λw2, (4)

where λ is an appropriately chosen regularization parameter. The solution is given by

ŵ =
(

n∑
i=1

xi x
T
i + λnI

)−1 (
n∑

i=1

xi yi

)
,

where I denotes the identity matrix. Note that
∑n

i=1 xi xT
i + λnI is always non-singular,

which solves the ill-condition problem.
Statistically, the least squares formulation (4) is often associated with the regression

model yi = wT xi + ni , where ni is assumed to be an iid noise. If we further assume
that the noise ni comes from a zero-mean Gaussian distribution, then the formulation
corresponds to a penalized maximum likelihood estimate with a Gaussian prior. Under
such a condition, the least squares method can be the optimal estimator in the sense that
it corresponds to the optimal Bayesian estimator in the Bayesian framework. However, in
other situations, this method is typically sub-optimal. Unfortunately, the Gaussian noise
assumption, which is continuous, can only be satisfied approximately for classification
problem, since yi ∈ {−1, 1} is discrete. In statistics, logistic regression (cf. Hastie and
Tibshirani 1990, Section 4.5) has often been employed to remedy this problem.

As we have pointed out before, even though there have been considerable interest in apply-
ing logistic regression for text categorization, its effectiveness has not been fully explored.
Despite the close relationship between logistic regression and support vector machines, no
results on text categorization using direct large scale logistic regression have been reported
in the literature on the standard Reuters dataset. We shall therefore briefly describe the
logistic regression method and its connection to linear SVM’s below for completeness.

In logistic regression, we model the conditional probability P(y = 1 | w, x) as
1/(exp(−wT x) + 1). It then follows that the likelihood P(y | w, x) = 1/(exp(− wT xy) + 1)

(note that P(−1 | w, x) + P(1 | w, x) = 1). A standard procedure to obtain an estimate of
w is by the maximum likelihood estimate which minimizes

ŵ = arg inf
w

1

n

n∑
i=1

ln(1 + exp(−wT xi yi)). (5)

TEXT CATEGORIZATION 11

Similar to (3), formulation (5) may be ill-conditioned numerically. The standard method to
solve this problem is by adding a scaling of the identity matrix to the Hessian of (5), which
is equivalent to the following regularized logistic regression formulation:

ŵ = arg inf
w

1

n

n∑
i=1

ln(1 + exp(−wT xi yi)) + λw2, (6)

where λ is an appropriately chosen regularization parameter. This regularized formulation
also belongs to a class of methods called penalized likelihood (cf. Hastie and Tibshirani
1990, Section 6.5.2), which in the Bayesian framework, can be interpreted as a MAP
estimator with prior P(w) ∝ exp(λw2). Furthermore, we can employ a slightly more general
family a ln(1 + b exp(cz)), instead of the log-likelihood function ln(1 + exp(−z)) in (6),
where both a and c can be absorbed into the regularization parameter λ.

The support vector machine is a method originally proposed by Vapnik (Cortes and
Vapnik 1995, Scholkopf et al. 1999, Vapnik 1998) that has nice properties from the sample
complexity theory. It is designed as a modification of the Perceptron algorithm. Slightly
different from our approach of forcing threshold θ = 0, and then compensating by appending
a constant component A (usually we take A = 1) to each document vector, the standard
linear support vector machine (cf. Scholkopf et al. 1999, chapter 1) explicitly includes θ

into a quadratic formulation as follows:

(ŵ, θ̂) = arg inf
w,θ

1

n

n∑
i=1

ξi + λw2,

s.t. yi (w
T xi − θ) ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . , n.

(7)

By eliminating ξi , the above formula is equivalent to the following formulation:

(ŵ, θ̂) = arg inf
w,θ

1

n

n∑
i=1

g(yi (w
T xi − θ)) + λw2, (8)

where

g(z) =
{

1 − z if z ≤ 1,

0 if z > 1.
(9)

As a comparison, we plot the SVM loss function g(z), the logistic loss function ln(1 +
exp(−z)), and a modified logistic loss function 1

γ
ln(1 + exp(γ (1 − z))) in figure 4. The

shapes of all three functions are very similar. Much of the differences about their shapes can
be absorbed into a scaling of the regularization parameter λ; the remaining differences are
insignificant for text categorization purposes (as we will later demonstrate in our experi-
ments). We shall also note that g(z) = limγ→∞ 1

γ
ln(1 + exp(γ (1 − z))), and hence the

support vector machine formulation can be regarded as an approximation and the limiting
case of a generalized family of logistic regression formulations.

12 ZHANG AND OLES

Figure 4. Loss functions: g(z) = ‘solid’; ln(1 + exp(−z)) = ‘dash’; 1
3 ln(1 + exp(3(1 − z))) = ‘dotted’.

The standard support vector machine should be solved directly as the quadratic pro-
gramming problem (7) or in its dual formulation (which we describe later), since the
non-smoothness of its corresponding loss function g(z) in (8) introduces difficulties for
the direct numerical optimization of (8). However, if the loss function g(z) in (8) can be
replaced by a smooth function (as in the case of logistic regression and the least squares fit
algorithm), then it will be much easier to be solved directly in its primal formulation.

Thus we shall intentionally replace g(z) by a smoother function, and so we consider the
following alternative formulation

ŵ = arg inf
w

1

n

n∑
i=1

h(wT xi yi) + λw2, (10)

where

h(z) =
{

(1 − z)2 if z ≤ 1,

0 if z > 1.
(11)

This formulation is sufficiently smooth so that direct numerical optimization of (10) can
be performed efficiently (see Section 3). Compared with logistic regression, it has an ad-
vantage that no expensive exponential function evaluation is required during the numerical
optimization.

Although this particular choice of h(z) is equivalent to an instance of a more general form
of support vector machine (see Scholkopf et al. 1999, chapter 1), it is interesting to note

TEXT CATEGORIZATION 13

that the formulation (10) is intentionally excluded from a standard SVM as described both
in chapter 1 of Scholkopf et al. (1999) and in chapter 10 of Vapnik (1998). Their argument
comes from the impression that g(z) looks to be a better approximation to the step function
s(z) than h(z) does. This argument relies on the statistical learning theory basis of SVM
that regards g(z) as an approximation to the classification error function s(z).

However, the above reasoning is only partially correct. From the statistical point of view,
if we regard the logistic model

P(y | w, x) = 1/(exp(−wT xy) + 1)

as a good approximation to the true conditional probability P(y | x), then by the well-
known asymptotic optimality property of the maximum likelihood estimate (that is, the
maximum likelihood estimate is an asymptotically most efficient estimator of a distribution
dependent parameter among all asymptotically unbiased estimators), an estimator based on
(5) is asymptotically more efficient than an estimator based on (1) such as the support vector
machine. This suggests that to achieve better efficiency, we need a better distribution model
and we need to incorporate such a model into a regularized maximum likelihood estimate,
where the regularization is to control numerical stability.

From this point of view, (10) can be a better distribution model of P(y | w, x) than (3)
since it captures the heavy tail probability of the histogram of wT xy presented in the more
reasonable logistic model of conditional likelihood. As explained earlier, the Gaussian noise
assumption of (3) can only be satisfied approximately. Figure 5 compares the histograms
of ŵT xy on the training set at the estimated projection parameter ŵ using the least squares
method (4) and the modified least squares method (10). The experiment is done with the
“earn” category (the largest category) in the Reuters news story dataset (see Section 4).
Not surprisingly, the least squares method computes a ŵ that fits a Gaussian-like histogram
while the modified least squares method accommodates a heavy tailed distribution which
is more appropriate for classification problems.

Since the least squares fit method has a close to the state of the art performance (Yang
1999), it is reasonable to expect the state of the art performance can be achieved from the

Figure 5. Projected histogram of ŵT xy.

14 ZHANG AND OLES

better distribution model based on (10). On the other hand, statistical learning theory in its
current stage lacks both the concept of efficiency and the concept of distribution modeling,
therefore it does not fully explain the superior performance of (10) compared with the
standard support vector machine formulation (7) on text categorization problems reported
in Section 4.

Due to the above mentioned different philosophies, and to avoid unnecessary confusion
with the standard SVM (and a modified SVM we introduce later), it is appropriate to regard
(10) as a modified (regularized) least squares method (4) that incorporates the heavy tail
distribution aspect of the logistic model into the Gaussian model of the least squares method.
Compared with the logistic model, the modified least squares formula has the advantage of
numerical efficiency (there is no need to evaluate the time consuming exponential functions
during the computation). However, the probability interpretation of the logistic model is
often very desirable in many applications.

It is possible to derive kernel methods (see Scholkopf et al. 1999) for all algorithms
mentioned in this section by using the dual formulation (see Section 3). However, for
text categorization problems, there is not sufficient evidence to show that kernel methods
help. For example, results from Dumais et al. (1998) and from this paper with plain linear
classifiers are slightly better than those of Joachims (1998) with kernels. Note that the
effectiveness of kernels relies on the assumption that high order word correlations (word
pairs, word triples, etc.) convey more information than single words. However, some of
this correlation can already be captured by linear combination of word occurrences. We
have conducted some preliminary experiments which failed to demonstrate statistically
significant evidence that high order methods such as using word pairs or kernels are helpful.
In addition, kernel classifiers are much more complex computationally. We will thus avoid
these methods in the paper.

3. Numerical algorithms

For text categorization problems, input vector xi is usually very sparse and of large dimen-
sionality. The traditional numerical techniques based on small dense problems for (4) and
(6) may not be suitable, especially if they require some kind of matrix factorization. In
this section, we study iterative methods for solving large sparse systems associated with
schemes discussed in this paper.

In the following, we use i to denote the index of training samples, and j to denote the
feature index. For example: xi j is the j-th component of the i-th training sample xi , while
w j is the j-th component of the weight vector.

3.1. A column relaxation algorithm

We consider a more general formulation

ŵ = arg inf
w

1

n

n∑
i=1

f (wT xi yi) + λw2, (12)

TEXT CATEGORIZATION 15

where f is a relatively smooth function which has a continuous first order derivative and a
non-negative piece-wise continuous second order derivative. In this case, the formulation
in (12) is convex, thus it has a unique local minimum which is also the global minimum.
Methods investigated in this section are based on the following generic relaxation algorithm
(for example, see Golub and Van Loan 1996):

Algorithm 1 (Gauss-Seidel)

let w = 0 and ri = wT xi = 0
for k = 1, 2, . . .

for j = 1, . . . , d
find �w j by approximately minimizing

1
n

∑
i f (ri + �w j xi j yi) + λ(w j + �w j)

2 (∗)

update r : ri = ri + �w j xi j yi (i = 1, . . . , n)

update w : w j = w j + �w j

end
end

In the following, we will specialize Algorithm 1 to produce computational routines
for solving the regularized linear least squares fit formulation (i.e. ridge regression) in
(4), the modified least squares formulation in (10), and the regularized logistic regression
formulation in (6).

For the regularized linear least squares fit formulation (4), we obtain Algorithm 2 where
(∗) is solved exactly. Note that for linear systems such as (4), the conjugate gradient
(CG) procedure is often preferred over the Gauss-Seidel method. In addition, a precon-
ditioned CG with a symmetrized Gauss-Seidel method as the preconditioner usually per-
forms better. In fact, without taking advantage of possible special structures (if any), this
combination is the method of choice as a general purpose symmetric large sparse linear
system solver. For more details, see relevant chapters in Golub and Van Loan (1996).
Even though CG can also be used for nonlinear optimization problems, due to a num-
ber of reasons, it is not very suitable to systems considered in this paper. For simplic-
ity and consistent with other methods, we shall use Algorithm 2 to solve (4) in our
experiments.

Algorithm 2 (CLS)

let w = 0 and ri = 0
for k = 1, 2, . . .

for j = 1, . . . , d
�w j = −(

∑
i (ri − 1)xi j yi + λnw j)/(

∑
i x2

i j + λn)

update r : ri = ri + �w j xi j yi (i = 1, . . . , n)

update w : w j = w j + �w j

end
end

16 ZHANG AND OLES

Instead of Algorithm 1, one may also apply Newton’s method directly to (12), as suggested
in Hastie and Tibshirani (1990) and used in Schütze et al. (1995). The resulting linear system
from Newton’s method can be solved by an iterative solver such as the Gauss-Seidel iteration
or CG. However, a properly implemented line search method, which can be complicated,
is required to guarantee convergence. Such a line search method can also result in small
step sizes, which slows down the convergence. As a comparison, Algorithm 1 has the
advantage of simplicity and guaranteed convergence, as long as we update �w j so that
the objective function (12) decreases in (∗) every time. For this purpose, we rewrite (∗) by
Taylor expansion: ∃0 < η < 1 such that[

1

n

∑
i

f (ri + �w j xi j yi) + λ(w j + �w j)
2

]
−

[
1

n

∑
i

f (ri) + λ(w j)
2

]

=
[

1

n

∑
i

f ′(ri)xi j yi + 2λw j

]
�w j

+ 1

2

[
1

n

∑
i

[
f ′′(ri + η�w j xi j yi)x2

i j + 2λ
]
�w2

j .

This equality implies that ∀� j > 0, if we let

�v j = −
1
n

∑
i f ′(ri)xi j yi + 2λw j

1
n

∑
i F(ri , � j |xi j |)x2

i j + 2λ
,

where F is an arbitrary function such that F(ri , η) ≥ sup|�ri |≤η f ′′(ri + �ri), and let

�w j =




−� j �v j < −� j

�v j �v j ∈ [−� j , � j]

−� j �v j > −� j

,

then the objective function always decreases after step (∗). This property ensures the con-
vergence of Algorithm 1.

We would like to apply this idea to (10). To do so, it is helpful to further enhance the
smoothness of f by introducing a continuation parameter c ∈ [0, 1], so that f (x) = f0(x)

and the smoothness of f ′′
c (x) decreases as c decreases:

fc(x) =
{

(x − 1)2 x ≤ 1

c(x − 1)2 x > 1.
(13)

Algorithm 1 should then be modified so that at each step k, a different ck is chosen (so
that 1 = c1 ≥ c2 ≥ · · · ≥ cK = 0), and the function f shall be replaced by fck . Note
that this introduction of a continuation parameter is not required in order for Algorithm 1
to converge. However, in our experience, this simple modification accelerates the rate of
convergence:

TEXT CATEGORIZATION 17

Algorithm 3 (CMLS)

let w = 0 and ri = 0
pick a decreasing sequence of 1 = c1 ≥ c2 ≥ · · · ≥ cK = 0
pick � j > 0 for j = 1, . . . , d
for k = 1, 2, . . . , K

define function Ck(ri) = 2(ri − 1) if ri ≤ 1 and Ck(ri) = 2ck(ri − 1) otherwise
define function Fk(x, y) = 2 if x ≤ 1 + |y| and Fk(x, y) = 2ck otherwise
for j = 1, . . . , d

�v j = −[
∑

i Ck(ri)xi j yi + 2λnw j]/[
∑

i Fk(ri , � j xi j)x2
i j + 2λn]

�w j = min(max(�v j , −� j), � j)

update r : ri = ri + �w j xi j yi (i = 1, . . . , n)

update w : w j = w j + �w j

update � j : � j = 2|�w j | + ε

end
end

For logistic regression (6), we obtain the following algorithm with a specific choice of F :

Algorithm 4 (CLG)

let w = 0 and ri = 0
pick � j > 0 for j = 1, . . . , d
for k = 1, 2, . . . , K

define function Fk(x, y) = min(0.25, e|y|/(2 + ex + e−x))

for j = 1, . . . , d
�v j = −[

∑
i − 1

exp(ri)+1 xi j yi + 2λnw j]/[
∑

i Fk(ri , � j xi j)x2
i j + 2λn]

�w j = min(max(�v j , −� j), � j)

update r : ri = ri + �w j xi j yi (i = 1, . . . , n)

update w: w j = w j + �w j

update � j : � j = 2|�w j | + ε

end
end

In Algorithm 4, we can also use other formulations of Fk(x, y), as long as the computation
can be organized efficiently.

The update formula for � j is to make sure that a sufficiently large step can be taken. ε is a
tolerance parameter than can be set to 0.1 for text categorization problems. The initial choice
of � j is unimportant, we can set it to be either 1 or ∞. The standard Newton’s procedure
can also be used initially to obtain estimates of � j . Other update formulae for � j can be
used. For example, a formula � j = max(2|�w j |, � j/2) gives a method that is very similar
to a standard trust-region update. Theoretically, this trust-region-like update is appealing
because � j → 0 as k → ∞, and hence each inner column-wise update asymptotically
behaves like Newton’s method.

18 ZHANG AND OLES

The above algorithms are written in the form of fixed iteration algorithms where K is
picked beforehand (usually 100 is sufficient for text categorization purposes). It is not diffi-
cult to impose an explicit stopping criterion which checks the convergence of the parameter
by some measure after each iteration. As an example, for text categorization applications,
if the change of

∑
i |�ri | is less than 0.1 percent of 1 + ∑

i |ri |, we can terminate the
algorithm.

3.2. A row relaxation algorithm

We introduce a dual form of (12), and suggest a class of numerical algorithms to solve the
dual formulation. By using the dual formulation, we can obtain a representation of w in a
so-called Reproducing Kernel Hilbert Space (RKHS) (Wahba 1999). Such a representation
allows a linear classifier to learn non-linear functions in the original input space, and thus
is considered a major advantage of kernel methods including recently popularized support
vector machines and Gaussian processes (dual ridge regression). Although we have men-
tioned in Section 2 that we are unable to observe any statistically significant evidence that
kernel methods are superior for general text-categorization tasks, they could be helpful for
special problems. It is thus useful to know that methods such as logistic regression and
modified least squares share the same advantage of SVM in terms of kernel representation.

To proceed, we introduce a dual form of (12) by considering an auxiliary variable ζi for
each data xi :

(ŵ, ζ̂) = arg inf
w

sup
ζ

1

n

n∑
i=1

[−k(ζi) + ζiw
T xi yi] + λw2, (14)

where k(·) is the Legendre transform of f (·) : k(v) = supu(uv − f (u)). It is well known
that k is convex. By switching the order of infw and supζ , which is valid for the above
minimax convex programming problem (a proof is given in Appendix A), we obtain

ζ̂ = arg sup
ζ

1

n

n∑
i=1

[−k(ζi) + ζiw
T xi yi] + λw2, (15)

where w is minimized at w = − 1
2λn

∑
i ζi xi yi . Substituting into the above equation, we

obtain

ζ̂ = arg inf
ζ

n∑
i=1

k(ζi) + 1

4λn

(
n∑

i=1

ζi xi yi

)2

, (16)

and

ŵ = − 1

2λn

∑
i

ζ̂i xi yi . (17)

TEXT CATEGORIZATION 19

Similar to Algorithm 1 which solves the primal problem (12), the following generic re-
laxation algorithm solves the dual problem (16):

Algorithm 5 (Dual Gauss-Seidel)

let ζ = 0 and v j = 0 for j = 1, . . . , d
for k = 1, 2, . . .

for i = 1, . . . , n
find �ζi by approximately minimizing

k(ζi + �ζi) + 1
4λn (2�ζiv

T xi yi + �ζ 2
i x2

i) (∗∗)

update v: v j = v j + �ζi xi j yi (j = 1, . . . , d)

update ζ : ζi = ζi + �ζi

end
end
let w = − 1

2λn v.

The dual formulation (16) also leads to kernel methods which embed the feature vector
x into a Hilbert space. Instead of computing w in the associated Hilbert space which is
computationally infeasible, we may choose to keep the dual variable ζ . In order to compute
vT xi = ∑

k ζk xT
k xi yi in (∗∗), we replace the inner product xT

k xi by a kernel function
K (xk, xi) just like in a kernel SVM (Vapnik 1998).

An important implementation issue for Algorithm 5 is that the data ordering can have a
significant effect on the rate of convergence (the feature ordering does not appear to have
a very noticeable effect on Algorithm 5). More specifically, if we order the data points
such that members in each class are grouped together, then we may experience a very slow
convergence. On the other hand, the dual algorithm appears to work very well with a random
data ordering. Intuitively, this phenomenon is not too surprising, since if class members are
grouped together, then as we go through the data in one class, we tend to over-fit the portion
of data until we encounter some data in the other class. However, we still do not have a deep
understanding of the data ordering issue. Future study may potentially lead to a systematic
method of data re-ordering to accelerate convergence.

An attractive property of the dual formulation is that after the computation of x2
i (which

can also be pre-computed and stored in memory) and vT xi yi , the update step (∗∗) be-
comes a small system which can be efficiently solved in constant time (approximately to
any pre-determined numerical accuracy) by a line-search algorithm. However, the rate of
convergence of a dual (row-wise) algorithm can be different than that of a primal (column-
wise) algorithm. In general, for f (·) in (12) that is sufficiently smooth, we have not found
any sufficient evidence that the dual algorithm is more efficient.

On the other hand, the dual formulation is computationally very useful for an SVM
due to the non-smooth loss function in its primal form. For the standard SVM (8), a good
method for text categorization is SMO (Dumais et al. 1998), which is based on the dual
formulation described in chapter 12 of Scholkopf et al. (1999). One complication of the
dual SVM (8) which employs an explicit threshold θ is the associated equality constraint∑

i ζi yi = 0 on the dual variable, which has to be specially treated in a numerical opti-
mization routine. For example, in SMO, this is done by modifying a pair of dual variable

20 ZHANG AND OLES

components simultaneously at each step to enforce the constraint
∑

i ζi yi = 0. Heuristics
are used to select pairs of dual variables to optimize. Our experience with SMO indicates
that a non-negligible amount of time is spent on the heuristic dual pair selection procedure,
rather than numerical optimization.

A simple remedy of the problem is to set θ = 0 in a standard SVM and append a constant
feature as we do for all other algorithms in this paper. This modification leads to a variant
of SVM without the dual equality constraint. Specifically, its dual formulation is given by
(16) with k(z) defined as

k(z) =
{

z −1 ≤ z ≤ 0,

+∞ otherwise.

The +∞ value is effectively a simple constraint for each dual variable: −1 ≤ ζi ≤ 0.
Algorithm 5 can be applied to this formulation with (∗∗) given by the following update:

�ζi = −max

(
ζi , min

(
1 + ζi , η

2λn + vT xi yi

x2
i

))
. (18)

This procedure was also mentioned by Platt in Chapter 12 of Scholkopf et al. (1999),
although he dismissed it as inferior to a standard SVM. We shall later present experimental
evidence contrary to Platt’s opinion. In fact, the method has also been successfully employed
in Jaakkola et al. (2000). To distinguish this procedure from a standard SVM, we shall call
it modified SVM in this paper. The update (18) with η = 1 corresponds to the exact
minimization of the dual objective functional in (∗∗). However, in practice, we observe that
it is useful to use a smaller update step with 0 < η < 1.

For the modified least squares formulation (10), k(z) is defined only for z ≤ 0 (k(z) =
+∞ for z > 0): k(z) = z2/4 + z. We thus obtain an instance of Algorithm 5 with (∗∗)

replaced by the following the closed form solution of (∗∗):

�ζi = min

(
−ζi , − (2 + ζi)λn + vT xi yi

λn + x2
i

)
.

For logistic regression (6), the Legendre dual of f is k(z) = −z ln(−z)+(1+z) ln(1+z)
where k(·) is defined only in [−1, 0]. The solution of (∗∗) can be obtained by solving the
following equation:

ln
1 + ζi + �ζi

−(ζi + �ζi)
+ 1

2λn
(vT xi yi + x2

i �ζi) = 0.

4. Experimental results

In this section, we compare the following methods already discussed in the paper: the
regularized linear least squares fit method (4) denoted as Lin Reg, the modified least squares
formulation (10) denoted as Mod Least Squares, the regularized logistic regression (6)

TEXT CATEGORIZATION 21

denoted as Logistic Reg, the (linear) support vector machine (8) denoted as SVM, and the
modified SVM corresponding to (18) denoted as Mod SVM. For comparison purposes, we
also include results of Naive Bayes (McCallum and Nigam 1998) as a baseline method.

4.1. Some implementation issues

A number of feature selection methods for text categorization were compared in Yang and
Pedersen (1997). In our experiments, we employ a method similar to the information gain
(IG) approach described in Yang and Pedersen (1997). However, we replace the entropy
scoring in the IG criterion by Gini index. The reason for our choice is that we do not
remove stopwords in the preprocessing step. In our experience, Gini index seems to remove
stopwords more effectively than the entropy function. However, the difference is rather
small. We didn’t experiment with other methods described in Yang and Pedersen (1997).

In our experiments, we select 10000 features as the input to the algorithms, ignoring
features occurring less than 3 times as suggested in Joachims (1998). Each feature is a binary
word occurrence ∈ {0, 1}, indicating whether the word occurs or not in the document. A
word in the title is regarded as a different feature than the same word in the body. More
complicated representations such as TFIDF weighting schemes (Joachims 1998) can also be
employed. In this work, we didn’t compare the effectiveness of these different approaches.

Our implementation of Naive Bayes is based on the multinomial model formulation
described in McCallum and Nigam (1998). However, we replace the Laplacian smoothing
where each probability count is increased by 1, by a λ-smoothing where each probability
count is increased by λ. This formulation can be considered as a regularization method
to avoid the zero-denominator problem. In our experience, the replacement of Laplacian
smoothing with λ < 1 smoothing makes a significant difference in practice. λ = 1 is almost
never a good choice. For certain data such as IndustrySector (see below for description), the
Laplacian smoothing gives a classification accuracy of below 60%, which is significantly
worse than the 85% average reported in Table 5 with λ = 10−2.

For methods described in this paper, our implementation is based on algorithms described
in Section 3. The default number of iterations K is chosen to be 100. The algorithms can
be further accelerated with feature selection inside the iterations of the algorithms: we
can truncate small column weight variables to zero, and ignore the corresponding column
iteration. In addition to computation speed up, this may also enhance the classification
performance. Lin Reg (4) is solved by Algorithm 2, and Logistic Reg (6) is solved by
Algorithm 4. For Mod Least Squares (10), we choose ck = max(0, 1−k/50) in Algorithm 3.
The standard SVM (8) is solved by an implementation of the SMO algorithm (Scholkopf
et al. 1999, chapter 12). The modified SVM is solved by Algorithm 5 with (∗∗) given by
(18), where we choose η = 0.1.

On the Reuters dataset (see below), the regularization parameter λ for each algorithm is
determined by a 5-fold cross-validation with the training set. We fix this parameter to be
identical for all categories. We try values of λ at 10−k with k = 0, . . . , 6. The particular
optimal choices of λ we obtain are summarized in Table 1. For other datasets, we simply
use the λ computed on the Reuters dataset. Our experience indicates that the difference of
using this choice and using the optimal value for each specific dataset is relatively small.

22 ZHANG AND OLES

Table 1. Values of the regularization parameter.

Naive Bayes Lin Reg Mod Least Squares Logistic Reg SVM Mod SVM

λ 10−2 10−3 10−3 10−4 10−3 10−3

Due to different formulations, termination criteria and parameter choices, it is difficult to
make rigorous timing comparisons for different algorithms. However, to have a rough idea,
in our implementation, Naive Bayes is typically an order of magnitude faster than the other
algorithms. Lin Reg is slower than NB but faster than the others due to its simplicity. Mod
Least Squares and Mod SVM have similar speed, which is about five minutes on Reuters
using a Pentium 400 Mhz Linux PC with 10000 features. This timing, which includes feature
selection, corresponds to approximately 2.5 seconds per category. Both logistic regression
and the standard SVM using SMO are noticeably slower in our particular implementation.

4.2. Classification performance

In text categorization, it frequently happens that each category contains only a small per-
centage of documents. When this happens, the standard classification error measurement is
often not very indicative, because one can get a low error rate simply by saying no item is
in any class, which is not likely to result in a very useful categorizer. In text categorization,
the standard performance measures of a classification method are the precision and recall
instead of classification error:

precision = true positive

true positive + false positive
× 100

recall = true positive

true positive + false negative
× 100

If a classification algorithm contains a parameter that can be adjusted to facilitate a trade-
off between precision and recall, then one can compute the break-even point (BEP), where
precision equals recall, as an evaluation criterion for the performance of a classification
algorithm (Yang and Liu 1999). Another widely used single number metric is the F1 metric
defined as the harmonic mean of the precision and the recall (Yang 1999).

The standard dataset for comparing text categorization algorithms is the Reuters set of
news stories, publicly available at

http://www.research.att.com/∼lewis/reuters21578.html.

We use Reuters-21578 with ModApte split to partition the documents into training and
validation sets. This dataset contains 118 non-empty classes (in addition, there are some
documents that are not categorized), with 9603 documents in the training set and 3299
documents in the test set. The micro-averaged (that is, the precision and the recall are com-
puted by using statistics summed over the confusion matrices of all classes) performances

TEXT CATEGORIZATION 23

Table 2. Binary classification performance on Reuters (all 118 classes).

Naive Bayes Lin Reg Mod Least Squares Logistic Reg SVM Mod SVM

Precision 77.0 87.1 89.2 88.0 89.2 89.4

Recall 76.9 84.9 85.3 84.9 84.0 83.7

F1 77.0 86.0 87.2 86.4 86.5 86.5

BEP 75.8 86.3 86.9 86.9 86.5 86.7

of the algorithms over all 118 classes are reported in Table 2. Each BEP is computed by first
adjusting the linear decision threshold individually for each category to obtain a BEP for
the category, and then micro-averaged over all 118 classes. Our SVM result is consistent
with the previously reported results in Dumais et al. (1998) and Joachims (1998). The Naive
Bayes result is consistent with Dumais et al. (1998).

It is interestingly to note that for our particular experimental setup, we have obtained a
very good performance from the least squares method. This can be partially explained by
using the statistical learning theory argument of SVM in Vapnik (1998). From the learning
theory point of view, an SVM can perform well if there exists a linear separator w with a
small 2-norm that separates in-class data from out-of-class data with a relative large margin:
wT xy ≥ 1 shall be valid for most data. On the other hand, the SVM learning bounds require
‖x‖2 small for x , which means that |wT x | ≤ ‖w‖2‖x‖2 should also be small. Therefore the
overall effect is that wT x is clustered around a positive point for in-class data and clustered
around a negative point for out-of-class data. Since the least squares method computes a
weight w so that wT x is clustered around 1 for in-class data and clustered around −1 for
negative data, therefore it can perform reasonably well as long as an SVM is suitable for
the problem.

In our experiments, we have noticed that, except for Naive Bayes, all methods find
hyperplanes of comparable quality. This is reflected by their similar break-even points.
However, we also found that the F1 numbers with unmodified computed thresholds are
usually suboptimal for all methods. We found this is because for many small categories in
the Reuters dataset, the computed thresholds are biased towards causing fewer errors for
the dominant out-of-class data—this effect can be compensated by lowering the computed
thresholds. In our experiments, we adjust the threshold after the hyperplane is computed
to compensate for this problem (we do this by finding a value that minimizes the training
error). This phenomenon has also been observed in Platt (1999), where Platt found that
fitting a sigmoid to the output of SVM can enhance the performance on Reuters—the effect
of such a sigmoid fitting is equivalent to using a different threshold.

It is unclear what is the best procedure to adjust the threshold after the hyperplane is
computed. This topic requires further investigation. Since the BEP metric is independent of
different threshold choices, therefore it can be regarded as a pure measure of the quality of
the computed hyperplane itself. It can also be regarded as a lower-bound estimate of the best
F1 metric we can obtain if we can find the “ideal” threshold. We include break-even points
in Table 2. The results of modified least squares and naive Bayes indicate that a good choice
of threshold can potentially lead to a better F1 value (implying a smaller classification
error) than the BEP value. On the other hand, logistic regression is more likely to end

24 ZHANG AND OLES

Figure 6. Macro averaged F1 measure.

up with a suboptimal threshold, which is reflected by its much better BEP measure than
its F1 measure. In addition to micro-average results, as argued in Yang and Liu (1999),
it is also useful to report macro-averaged F1 values over categories, which correspond to
(un-weighted) averages of F1 values for each class. Figure 6 shows the macro-averaged F1

values over top 5, 10, 20, 40, 60, 80, 100, and all 118 categories. We also include F1 values
for the 10 largest categories of the Reuters dataset in Table 3, where the best number for
each category is highlighted.

Figure 7 shows the break-even performance of logistic regression at different feature
sizes. As we can see, the performance improves as the number of features increases. This
suggests that excessive feature selection is not beneficial for regularized linear classification
methods. However, if we eliminate the feature selection step so that all stop-words (as well
as noisy features occurring less than 3 times) are present, then the performance degrades
to a break-even point of about 85. Note that in this study, we have used the BEP metric to
avoid complications of threshold adjustment discussed earlier.

Figure 8 shows the break-even performance of logistic regression with different values of
regularization parameter λ. In theory, the performance of logistic regression is unpredictable
as λ → 0. This is because if the problem is linearly separable, then the solution of non-
regularized logistic regression is ill-defined: let ŵ linearly separate the data so that ŵT xi yi

> 0 for all i , then for a positive scaling parameter γ , it is easy to verify that the logistic
objective function

∑
i ln(1+exp(−γ ŵT xi yi)) decreases to zero as γ → +∞. This implies

TEXT CATEGORIZATION 25

Table 3. F1 performance on Reuters (top 10 classes).

Naive Bayes Lin Reg Mod Least Squares Logistic Reg SVM Mod SVM

Earn 96.6 97.1 98.4 98.4 98.1 98.1

Acq 91.7 93.2 95.4 95.2 95.3 94.5

Money-fx 70.0 73.2 76.0 75.2 74.4 74.5

Grain 76.6 91.6 90.3 88.4 89.6 90.6

Crude 84.1 86.2 84.9 85.9 84.8 84.0

Trade 52.3 70.8 76.3 72.9 73.4 74.8

Interest 68.2 75.2 75.7 78.1 75.9 74.7

Ship 76.4 80.7 83.6 81.9 82.4 83.8

Wheat 58.1 89.6 88.5 88.2 88.9 89.6

Corn 52.4 89.3 88.1 88.7 86.2 86.7

Figure 7. Break-even performance of logistic regression against feature size.

that the optimal solution of the non-regularized logistic regression cannot be finite (i.e. ill-
defined) if the data is linearly separable (this situation happens in Reuters). However, figure
8 implies that the performance degradation of logistic regression as λ → 0 is not severe.
We do not have a definitive explanation for this phenomenon. However, we conjecture that

26 ZHANG AND OLES

Figure 8. Break-even performance of logistic regression against λ.

it could be due to the fact that we use a relatively small number of iterations, and at each
iteration the update step size is small, with the consequence that the weight vector does not
get large.

Although when λ → 0, an SVM is well behaved for linearly separable data, it is ill-
behaved for linearly non-separable data. However, interestingly, even when λ → 0, the
dual algorithms are relatively well-behaved if we use a fixed number of iterations. For
Mod SVM and Mod Least Squares, the micro-averaged BEPs are reduced to about 85
as λ → 0, when we fix the number of iterations to be 100 in the dual algorithms. The
reason for this good behavior is due to the slow convergence of the dual algorithms when
λ → 0. For example, in (18), when λ → 0, �ζi becomes proportionally small, so that
ζ/λ does not become large within a reasonable number of iterations. However, it can
be shown that for non-separable data with λ → 0, the optimal value of ζ/λ cannot be
finite. Therefore in this case, the slow convergence of a dual algorithm avoids the bad
scenario of infinite ζ/λ. Consequently, the primal algorithm for solving (10) leads to a
poorer result (around 80 BEP) than that of the corresponding dual algorithm (around 85
BEP), even though the primal algorithm converges faster (which is verified by comparing
the objective function values in (10) with the computed weights). In our experience, the
least squares method degrades more severely in the limit of λ → 0, with a micro-averaged
break-even point of around 70. However, if we use only 100 features instead of 10000
features, than the least squares method achieves a break-even point of about 83 in the limit
of λ → 0.

TEXT CATEGORIZATION 27

Table 4. Binary classification performance on AS400.

Naive Bayes Lin Reg Mod Least Squares Logistic Reg SVM Mod SVM

Precision 66.1 78.5 77.7 76.3 78.9 78.7

Recall 74.9 64.0 70.9 71.4 63.8 63.6

F1 70.2 70.5 74.1 73.8 70.6 70.4

BEP 69.1 71.7 74.4 73.8 73.9 73.8

In Table 4, we give comparative results on another data set (AS400) which consists
of records of call center inquiries from IBM customers. This data, categorized into 36
classes, is partitioned into a training set of 59557 items and a test set of 14235 items. The
characteristics of this data is rather different than that of the Reuters. The BEP performances
of the algorithms are more or less consistent. However, the F1 metric again demonstrates
that the choice of linear threshold can significantly affect the performance of an algorithm,
even when the algorithm has a good break-even points.

Even though for some text categorization problems such as Reuters, each document can be
multiply classified, in many other applications, documents are singly classified. In this case,
one is usually interested in treating the problem directly as a single multi-class problem,
rather than many separate binary-class problems. The overall classification accuracy defined
as the percentage of correctly predicted category, is a useful performance measure for this
type of problems. We compare the algorithms on the following datasets. The first three
datasets are available at http://www.cs.cmu.edu/TextLearning/datasets.html.

• 20NewsGroup, which is a collection of 20,000 messages, from 20 different newsgroups,
with one thousand messages from each newsgroup.

• IndustrySector, which is a collection of about 10000 web pages of companies from
various economic sectors. There are 105 categories.

• WebKB, which contains about 8000 web pages collected from computer science depart-
ments of various universities in January 1997. We use the version with the following
seven categories: “student”, “faculty”, “staff”, “department”, “course”, “project”, and
“other”.

• GRANT, which contains about 5000 grant proposals. There are 42 categories correspond-
ing to areas of the proposals.

• IBMweb, which contains about 7000 web pages collected from www.ibm.com, catego-
rized into 42 classes.

We use the same choices for the regularization parameter λ as listed in Table 1 for
the various algorithms. We observe the performance difference of this default choice is
close to that of the optimal parameter for the above datasets. This implies that parameters
we use can be reasonably good across a variety of datasets, which can partially eliminate
the necessity of cross-validation parameter selection, if such a procedure is undesirable due
to the extra computational cost. Unlike the binary classification case, we do not perform any
threshold adjustment in these experiments. To obtain a multi-class categorizer, we compute
a linear classifier with weight wl for each category l by treating it as a binary problem; we

28 ZHANG AND OLES

Table 5. Multi-class classification accuracy.

Method 20NewsGroup IndustrySector WebKB GRANT IBMweb

Naive Bayes-1 89.7 ± 0.5 84.8 ± 0.5 65.0 ± 0.7 59.4 ± 1.9 77.2 ± 0.4

Naive Bayes-2 92.4 ± 0.4 91.0 ± 0.6 68.7 ± 1.1 64.2 ± 1.3 79.6 ± 0.7

Lin Reg 94.1 ± 0.2 93.4 ± 0.5 83.8 ± 0.3 67.0 ± 0.8 85.7 ± 0.5

Mod Least Squares 94.5 ± 0.3 93.6 ± 0.4 88.7 ± 0.5 70.2 ± 1.2 86.2 ± 0.7

Logistic Reg 94.4 ± 0.3 92.3 ± 0.9 89.0 ± 0.5 70.6 ± 1.2 86.2 ± 0.6

SVM 94.8 ± 0.3 93.6 ± 0.5 88.4 ± 0.5 70.0 ± 1.2 86.1 ± 0.4

Mod SVM 94.7 ± 0.3 93.6 ± 0.4 88.5 ± 0.5 69.8 ± 1.2 85.8 ± 0.7

then predict the class of a data-point x as the label l with the largest value of wT
l x . For

Naive Bayes, this gives a method we call Naive Bayes-2. For comparison purposes, we have
also implemented a direct multi-class Naive Bayes method as described in McCallum and
Nigam (1998), which we call Naive Bayes-1. Although there are studies suggesting certain
coding schemes (such as error-correcting output code) to convert a binary classifier into
a multi-class categorizer, we have found no statistically significant improvement by using
any of such coding schemes in our implementation.

We select 10000 features for all algorithms except Naive Bayes-1. No feature selection
is performed for Naive Bayes-1. The consistent improvement of Naive Bayes-2 over Naive
Bayes-1 is surprising. We observe that the improvement is not entirely due to feature se-
lection. However, we still do not have a good explanation for this phenomenon. For each
dataset, we generate five random training-test splits, with training set size four times that of
test set size. Table 5 reports classification accuracies of the algorithms with the five random
splits for each dataset. The result is in a format of mean ± standard deviation. The relative
performances of the algorithms are rather consistent (except logistic regression is worse
than linear regression on IndustrySector).

In conclusion, Naive Bayes is consistently worse than the other methods. There also seems
to be a statistically significant difference to indicate that linear regression is worse than the
remaining algorithms (except Naive Bayes). The differences among other algorithms are
not significant enough to draw any firm conclusion. We also observe that the differences
among the algorithms are more significant on some datasets than others. It is unclear how to
characterize a dataset in order to predict how significant are the performances of different
algorithms.

5. Summary

In this paper, we have applied the logistic regression model and a modification of the least
squares fit method for text categorization. We have also compared them with other linear
classification methods such as support vector machines.

Statistical properties of different methods were discussed in Section 2, providing useful
insights for the various methods. We argued that the text categorization application requires
numerical iterative algorithms that are suitable for solving large sparse systems associated

TEXT CATEGORIZATION 29

with the proposed formulations. Numerical issues were discussed in Section 3. Specifically,
we introduced a column-wise relaxation algorithm and a row-wise relaxation algorithm
to solve these large sparse systems. In our experience, the proposed algorithms are rather
efficient. However, it may be possible to further enhance these algorithms, for example,
by using a quasi-Newton acceleration on top of the iterations. The insufficient smoothness
of some formulations described in this paper may cause trouble in such a quasi-Newton
enhancement. It is therefore still an open question on how significant an improvement we
can obtain.

Experimental comparisons of the algorithms on a number of datasets were reported.
Naive Bayes is consistently worse than the other algorithms. Although the regularized linear
least squares method has a performance very close to the state of the art, this (relatively
small) difference appears to be statistically significant. We have also demonstrated that
an appropriately implemented regularized logistic regression can perform as well as an
SVM, which is regarded as the state of the art in text categorization. Furthermore, logistic
regression has the advantage of yielding a probability model, which can be useful in many
applications.

Finally, there are a number of open issues revealed in our study. One interesting problem
is how to find a good threshold given a computed hyperplane. Another interesting issue
is the effect of changing the regularization parameter λ, as well as a simple method to
select a good value of λ given a dataset. We have only briefly touched this issue in this
paper. Behaviors of different algorithms as λ → 0 were examined in Section 4. In addition,
our experience suggests that fixing λ at a default value leads to reasonable performance
across a variety of datasets (compared with the baseline Naive Bayes). However, it would
still be useful to carefully investigate related issues such as the impact of certain dataset
characteristics (e.g. the training sample size, or the average length of a document, etc.) on
the choice of λ.

The feature selection issue has also been investigated in our experiments. We showed that
a moderate amount of feature selection is useful. Although, this issue has been discussed
in many previous works, further studies on the effect of feature selection on regularization
methods, such as those discussed in the paper, would be valuable.

We have also observed that the performance differences among the algorithms are data
dependent. It would be useful to find dataset characteristics to explain this variation. Such
a characterization could provide valuable insights on how different algorithms behave and
why they perform well or poorly with a particular data.

Appendix A: Validity of the dual formulation

We would like to show that it is valid to interchange the order of infw and supζ in (14). Let

L(w, ζ) = 1

n

n∑
i=1

[−k(ζi) + ζi (w
T xi yi)] + λw2.

Then we need to show that there exists (ŵ, ζ̂) such that

L(ŵ, ζ̂) = inf
w

sup
ζ

L(w, ζ) = sup
ζ

inf
w

L(w, ζ). (19)

30 ZHANG AND OLES

It is well-known (for example, see Rockafellar 1970) that the duality gap G is non-
negative, where

G = inf
w

sup
ζ

L(w, ζ) − sup
ζ

inf
w

L(w, ζ).

Furthermore, Eq. (19) has a solution if G = 0. We need to find (ŵ, ζ̂) such that

L(ŵ, ζ̂) = inf
w

L(w, ζ̂) = sup
ζ

L(ŵ, ζ). (20)

In this case, (ŵ, ζ̂) is called a saddle point.
To construct a saddle point, we consider ŵ that minimizes the primal problem, which

satisfies the following estimation equation:

1

n

n∑
i=1

f ′(ŵT xi yi)xi yi + 2λŵ = 0.

Now, let ζ̂i = f ′(ŵT xi yi), we obtain:

ŵ = − 1

2λn

n∑
i=1

ζ̂i xi yi .

This implies that ŵ achieves the minimum of

1

n
wT

n∑
i=1

ζ̂i xi + λw2.

That is,

L(ŵ, ζ̂) = inf
w

L(w, ζ̂). (21)

Also by the definition of ζ̂i as the derivative of f (·) at ŵT xi yi , we know that ζ̂i achieves
the maximum of

ζiw
T xi yi − k(ζi).

That is,

L(ŵ, ζ̂) = sup
ζ

L(ŵ, ζ). (22)

Combining (21) and (22), we obtain (19), which implies the interchangeability of the
order of infw and supζ in (14).

TEXT CATEGORIZATION 31

References

Apte C, Damerau F and Weiss SM (1994) Automated learning of decision rules for text categorization. ACM
Transactions on Information Systems, 12:233–251.

Cooper WS, Gey FC and Dabney DP (1992) Probabilistic retrieval based on staged logistic regression. In: SGIR
92, pp. 198–210.

Cortes C and Vapnik V (1995) Support vector networks. Machine Learning, 20:273–297.
Dumais S, Platt J, Heckerman D and Sahami M (1998) Inductive learning algorithms and representations for text

categorization. In: Proceedings of the 1998 ACM 7th International Conference on Information and Knowledge
Management, pp. 148–155.

Fuhr N and Pfeifer U (1991) Combining model-oriented and description-oriented approaches for probabilistic
indexing. In: SIGIR 91, pp. 46–56.

Gey FC (1994) Inferring probability of relevance using the method of logistic regression. In: SIGIR 94, pp.
222–231.

Golub G and Van Loan C (1996) Matrix Computations, 3rd ed. Johns Hopkins University Press, Baltimore, MD.
Hastie TJ and Tibshirani RJ (1990) Generalized Additive Models, Chapman and Hall Ltd., London.
Hoerl AE and Kennard RW (1970) Ridge regression: Biased estimation for nonorthogonal problems. Technomet-

rics, 12(1):55–67.
Ittner DJ, Lewis DD and Ahn DD (1995) Text categorization of low quality images. In: Symposium on Document

Analysis and Information Retrieval, pp. 301–315.
Jaakkola T, Diekhans M and Haussler D (2000) A discriminative framework for detecting remote protein homolo-

gies. Journal of Computational Biology, 7:95–114.
Joachims T (1998) Text categorization with support vector machines: Learning with many relevant features. In:

European Conference on Machine Learing, ECML-98, pp. 137–142.
Lewis DD and Gale WA (1994) A sequential algorithm for training text classifiers. In: SIGIR 94, pp. 3–12.
McCallum A and Nigam K (1998) A comparison of event models for naive bayes text classification. In:

AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41–48.
Minsky M and Papert S (1990) Perceptrons, MIT Press, Cambridge, MA, expanded edition.
Platt J (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods.

In: Smola A, Bartlett P, Scholkopf B and Schuurmans D, Eds. Advances in Large Margin Classifiers, MIT Press,
Cambridge, MA.

Ripley B (1996) Pattern Recognition and Neural Networks, Cambridge University Press, Cambridge, MA.
Rockafellar RT (1970) Convex Analysis, Princeton University Press, Princeton, NJ.
Schölkopf B, Burges CJC and Smola AJ, Eds. (1999) Advances in Kernel Methods: Support Vector Learning,

MIT Press, Cambridge, MA.
Schütze H, Hull DA and Pedersen JO (1995) A comparison of classifiers and document representations for the

routing problem. In: SIGIR 95, pp. 229–237.
Vapnik V (1998) Statistical Learning Theory, John Wiley & Sons, New York.
Wahba G (1999) Advances in Kernel Methods: Support Vector Learning, MIT Press, Cambridge, MA, Ch.6.
Weiss S, Apte C, Damerau F, Johnson D, Oles F, Goetz T and Hampp T (1999) Maximizing text-mining perfor-

mance. IEEE Intelligent Systems, 14:69–90.
Yang Y (1999) An evaluation of statistical approaches to text categorization. Information Retrieval Journal, 1:69–

90.
Yang Y and Chute CG (1994) An example-based mapping method for text categorization and retrieval. ACM

Transactions on Information Systems, 12:252–277.
Yang Y and Liu X (1999) A re-examination of text categorization methods. In: SIGIR 99, pp. 42–49.
Yang Y and Pedersen J (1997) A comparative study on feature selection in text categorization. In: Proceedings of

the Fourteenth International Conference on Machine Learning.

