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Abstract. In (DeodharGeom. Dedicata36(1) (1990), 95-119), Deodhar proposes a combinatorial framework

for determining the Kazhdan-Lusztig polynomidts,, in the case wher@/ is any Coxeter group. We explicitly
describe the combinatorics in the case whate- &, (the symmetric group on letters) and the permutation

is 321-hexagon-avoiding. Our formula can be expressed in terms of a simple statistic on all subexpressions of any
fixed reduced expression far. As a consequence of our results on Kazhdan-Lusztig polynomials, we show that
the Poincag polynomial of the intersection cohomology of the Schubert variety correspondinistd + q)' )

if and only if w is 321-hexagon-avoiding. We also give a sufficient condition for the Schubert vajety have

a small resolution. We conclude with a simple method for completely determining the singular Io¢usvifen

w is 321-hexagon-avoiding. The results extend easily to those Weyl groups whose Coxeter graphs have no branch
points Bn, Fa, G2).

Keywords: 321-hexagon-avoiding, Kazhdan-Lusztig polynomials, Schubert varieties, singular locus, defect
graph

1. Introduction

In [21], Kazhdan and Lusztig constructed certain representations of the Hecke algebra
associated to a Coxeter groMy in order to elucidate representation-theoretic questions
concerningW itself. To do this, they introduced a class of polynomials now known as the
Kazhdan-Lusztig polynomials. These polynomials were quickly seen to play an important
role in Lie theory. For instance, they give a natural setting for expressing multiplicities of
Jordan-Hblder series of Verma modules (see [1, 11]). Introductions to these polynomials
can be found in [9, 16, 20].

While there are many interpretations of, and uses for, these polynomials, their combina-
torial structure is far from clear. Kazhdan and Lusztig originally defined the polynomials
in terms of a complicated recursion relation. In [21], it was conjectured that the coefficients
of these polynomials are non-negative. This has been proved for many impdti@oich
as (affine) Weyl groups) [22], but not for arbitrary Coxeter groups. There has been limited
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success in finding non-recursive formulas for the Kazhdan-Lusztig polynomials. Brenti
[7, 8] has given a non-recursive formula in terms of an alternating sum over paths in the
Bruhat graph. Lascoux and Sdiaénberger [27] have given an explicit formula ey,

in the case wherdV is the symmetric group and, w are Grassmannian permutations.
Zelevinsky [36] has even constructed a small resolutioX gfin this case. Lascoux [26]
extends the results of [27] to twisted vexillary permutations. Finally, Shapiro, Shapiro and
Vainshtein [33] and Brenti and Simion [10] find explicit formulas for certain classes of
permutations.

Deodhar [15] proposes a combinatorial framework for determining the Kazhdan-Lusztig
polynomials for an arbitrary Coxeter group. The algorithm he describes is shown to work
for all Weyl groups. However, the algorithm is impractical for routine computations. In this
paper, we utilize Deodhar’s framework to calculBg, for 321-hexagon-avoiding elements
w € &,. For these elements, Deodhar’s algorithm turns out to be trivial. As a result, in these
cases we get a very explicit description of the polynomials. The algorithm consists of
calculating Deodhar’s defect statistic on each subexpression of a given reduced expression.
We also show that the property af being 321-hexagon-avoiding is equivalent to several
nice properties onw in the Hecke algebra and in the cohomology of the corresponding
Schubert varietyX,,. In particular, we have the following (the necessary definitions can be
found in Sections 2 and 3):

Theorem 1 Leta = s, --s, be areduced expression far € &,. The following are
equivalent

1. wis 321-hexagon-avoiding.

2. Let R ,, denote the Kazhdan-Lusztig polynomial fogxw. Then

Px,w = qu(a) (1)

where do) is the defect statistic and the sum is over all masksn a whose product
is X.
3. The Poincaé polynomial for the full intersection cohomology group qf iX

Y dim(IH? (X,)g' = L+ @)™, )

4. The Kazhdan-Lusztig basis elemerjt €atisfies ¢ = Cgl -+ Cf

Si”
5. The Bott-Samelson resolution of, X small.
6. IH,(X,) = H.(Y),where Y is the Bott-Samelson resolution qf. X

Remark 1 Equivalence of 2, 4 and 5 is implicit in Deodhar [15].

Remark 2 Lusztig [28] and Fan and Green [19] have already studied those elements
for which part 4 of the main theorem hold. In the terminology of these papers, sudb a
“tight.” Also, Fan and Green show the implication<4> 1 of Theorem 1.
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Remark 3 For concreteness, this paper refers onl@tp However, 2 through 6 hold for

all Weyl groups. In addition, our combinatorial characterization e 2 can be extended

to the other “non-branching” Wey! grou,, F4, G, (see [35]). One need simply replace
“321-avoiding” by “short-braid-avoiding” in any statements made (e.g., “321-hexagon-
avoiding” — “short-braid-hexagon-avoiding”). The characterization in 1 fails to hold for
Dy, Es, E7, Eg primarily due to failure of Lemma 1. An appropriate analogue of hexagon-
avoiding for these other Weyl groups would fix this deficiency.

The organization of the paper is as follows. In Section 2 we introduce necessary back-
ground definitions. In Section 3 we introduce the notion of pattern avoidance and in Section 4
we present Deodhar’s combinatorial framework. A critical tool used to prove Theorem 1 is
the defect graph explored in Section 5. In Section 6 this graph is used to prove Theorem 1.
Section 7 contains an application of Theorem 1 to a conjecture of Haiman. Section 8 de-
termines the singular locus of Schubert varieties corresponding to 321-hexagon-avoiding
permutations. Finally, Section 9 contains a table enumerating the eleme&sgafwhich
Theorem 1 applies. We do not know a closed form for this sequence.

2. Preliminaries

Let &, denote the symmetric group anletters. Choose the standard presenta@ign=
(S1.....s1: ¥ =158 =gj5 for i — j| > 1, and§s11S = §4155+41). Let S=
{s }iefr..n—1; denote the generating set 8. An expressiotis any product of generatoss
Thelength l(w) of an elementw € &, is the minimunr for which we have an expression
w =S5, S, .Areduced expressiom = s, - - - S, is an expression for whidw) =r. If
v, w € 6y, thenv < w will signify that v is beloww in the Bruhat-Chevalley order (see,
e.g., [20]). This order is characterized by w if and only if every reduced expression for
w contains a subexpression for

For the remainder of this section, all of our definitions apply to any finite Weyl gfdup
However, following this section, we will restrict our attention to the case witére &,,.

In order to define the Kazhdan-Lusztig polynomials, we now recall the notion of the
Hecke algebra{ associated to a finite Weyl groly. H has basisT,, indexed by the
elements of/V. For all generators of W, we have

TsTy, = Tg if I (sw) > 1(w), 3)
TSZ =@-DTs+qTe (4)
(wheree is the identity element o#V). This is an algebra oveA = Q(q'/?). Following

[21], we define an involution o by q1/2 = q~%2. Extend this to an involution of{ by
setting

z(ZawTw> = @™ (5)

From [21], we have that the Kazhdan-Lusztig polynomials are determined uniquely by the
following:
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Theorem 2 (Theoreml.1, [21) Foranyw € W, there is a unique element Gz H such
that

1. C, =q7'®™23 _ P,Tx, and

2.uCH)=C,,

where R, € A is a polynomial in g of degree at mo%(l (w) —1(xX) = 1 for x <w,
Pw,w = 1, and wa =0ifx f w.

As mentioned above, itis conjecturedin [21] that the coefficienB gfare non-negative.
Several of the conditions in Theorem 1 require some notation regarding cohomology. So

let W be the Weyl group of some semi-simple algebraic grGuwith Borel subgroufB.

C,, will denote the Schubert cell in the flag vari€by B corresponding ta € W (see, e.g.,

[6]). X,, will denote the corresponding Schubert variety, = U,<,,C,. For any varietyX

(such as som¥,,), we let IH (X) denote theé-th (middle) intersection cohomology group

of X. Suppose thaf : Y — X is a resolution of singularities of. The mapf is said to

be asmall resolutiorif for everyr > 0,

codim{x € X:dimf~(x) >r} > 2r. (6)

A commonly used resolution of the singularities Xf, is the Bott-Samelson resolution
(see [5, 13]). Theorem 1 yields an easy criterion for determining when such a resolution is
small.

3. Pattern avoidance and heaps

It will be useful to view elements a6, as permutations on [2, ..., n]. To this end, we

identify s with the transpositiofi, i +1). Letw(i) be the image of under the permutation
w. Hence, we have a one-line notation for a permutatiogiven by writing the image of
[1, 2,...,n]under the action ofv: [w(1), w(2), ..., w(n)].

The results of this paper pertain to a particular set of elemergs, of his subset will be
defined using the notion of pattern avoidance. b et Sc andw € §. Say thatw avoidsv
(orisv-avoiding) ifthere donotexistx iy < --- < iy <l withw(iy), w(iz), ..., w(ix)in
the same relative order agl), v(2), ..., v(k). We are interested in two particular instances
of pattern avoidance. The first is whare= [321]. It is shown by Billey-Jockusch-Stanley
[2] that the 321-avoiding permutations &, are precisely those for which no reduced
expression contains a substring of the f&®..;5 . In the context of reduced expressions,
321-avoiding permutations are callstort-braid-avoiding(terminology due to Zelevin-
sky, according to [18]). Short-braid-avoiding permutations have been studied by Fan and
Stembridge [17, 18, 30, 31].

The second instance of pattern-avoidance with which we will be concerned is most easily
visualized via a poset associateditoSo letw € &, be 321-avoiding and fix some reduced
expressiora = §; - - - 5, for w. By [32], all reduced expressions for such a 321-avoiding
w are equivalent up to moves of the foss; — s;s for |i — j| > 1. This allows us
to associate a well-defined posetwo(rather than just t@, see [30]). Let the generators
{s, }?:1 in our reduced expression label the elements of our poset. For an ordering, we take
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Figure 1 Let w = S9S%r8S91S39945Ss. The left image shows the result of the embedd:';qg—> @aj,
vl (s On the right is the result of pushing the “connected components” together.

the transitive closure of
Sj = Skif $j+l S Sk = Sksij+1 © Sy and Sjsk 75 Skﬁj’

We now wish to embed this poset in the plane in a very particular way. Effectively, what
we do is send a generatgy to the point in the planéi j, Ivi(s,)) where Ivls,) measures
the maximal length of a chaig, < --- < 5, over allb < j. However, in order for our
embedding to have the properties we need, this procedure needs to be adjusted slightly.
So, as above, embed this poset in the planesyia-> pt(j)'j:ef(ij, Ivl (s,)), where we
define Iv(s,) as follows: Letk be as small as possible in the interval [1 , j] such that
s, commutes withg, for all | with k <1 < j. Now, initially, define a level function by:
IVl (s;) =0ifk=1andIvi(s,) = IVI_(5,,) +Lifk>2.
For most purposes, Iv(-) gives us what we’d like. However, with Iv{-) as the level
function, “connected components” do not necessarily abut. Figure 1 gives an example
of the embeddindij, Ivl| (s;)) and how it can be improved by coalescing “connected

components.”
So, we first define connected components by imposing an equivalemtéhe generators
inour expression forw: Leg;, ~ s, if ij =ix+1land vl (s,) = IVl (s,) = 1. Extend this

equivalence transitively. Now, since we are assumingthaB21-avoiding, the components
have a canonical partial order. It is then a simple matter to uniformly adjust the levels of all
members of a particular connected component to allow distinct components to abut as much
as possible and hence “coalesce.” Definégyl to be this adjustment of the level |\, ).

We will refer to the realizatios;, — (ij, Ivl(s;)) of our poset as Hedp). The notion
of Heapgw) is due to Viennot [34], see also the work of Stembridge [30] in the context of
fully-commutative elements. Note thgt can covess, if and only if [ij —ix| = 1.

We are now ready to introduce the second class of patterns that we wish to avoid. Say
thatw is hexagon-avoidingf it avoids each of the patterns in

{[4,6,7,1,8,2,3,5],[4,6,7,8,1,2,3,5],
[5.6,7,1,8,2,3,4],[5,6,7,8,1, 2, 3,4]}. (7)

If we set

U = 39515035256 55453575655, 8)

then the permutations in (7) correspondit@s,, S4uU, 4US;.
The heap of any hexagon-avoiding permutation must not contain the hexagon in figure 2.
Permutations that are 321-avoiding and hexagon-avoiding (321-hexagon-avoiding) can, in
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Figure 2 Heagu) for u as in (8).

fact, be characterized as those for which no reduced expression contains a substring of either
of the forms

u' = Sj435)12Sj+15] 455 +4S]+3Sj+2 -
Sj+65]+5]+45]+35j47S+6Sj+5 foranyj >0, ©)
SjSj+1Sj foranyj > 1. (20)

It is this characterization of 321-hexagon-avoiding elements that we will use in the rest
of the paper.

Remark 4 Computationally, it is much more efficient (polynomial time) to recognize
321-hexagon-avoiding patterns via pattern avoidance rather than by scanning through all
reduced expressions for a particular subexpression (exponential time).

The heaps of 321-avoiding elements have a very important property that will be exploited
in the proof of Theorem 1. To develop this property, it will be useful to define the following
two subsets of the unit integer lattice foregcll < j <r:

Thelower cone Cone.(j) = {(ij + o, VI(s,) — B) € Z*: || < B}.
Theupper coneConé' (j) = {(ij +a, VI(s,) + B) € Z? : || < B}.

The boundaryof Cone,(j) (or Con€ (j)) corresponds to the points in this cone where
la| = |B] (see figure 3).

The following lemma yields a very nice property of 321-avoiding permutations. In
Remark 5, we interpret this result visually in terms of Haap

Lemma 1 (Lateral Convexity Label the generators o&, such that ss; = s;s if and
onlyif|i — j| > 2 (the standard labeling Thenw € &, is 321-avoiding if and only if any
two occurrences of someia a reduced expression far are separated by both an g and
an g4;.

Remark 5 Lemma 1 can be rephrased as follows. Supposeuthat s, - - -5, is 321-
avoiding and ptj), pt(k) € Heagw) withIvi(s;) < IVI(s,). Suppose further that for each
m e [ij, ix] (if ij <ix) orm e [ik, i;] (if ij > i), there is a poinim, vl (s,)) € Cone, (s, )
N Coné(sj) N Heagw) for somel, j < | < k. Then the entire diamond Cong, ) N
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Figure 3 Heapu) overlaid with Cong (6) and Coné& (6). The white nodes are in He@p. The black nodes are
in one of the cones, but not in He@p.

Figure 4 Ifitis known that the triangular nodes are in Héap, then Lemma 1 tells us that all the white circles
are also in Heafw).

Conev(sj) is contained in Heap). This is illustrated in figure 4. This interpretation
relies on Lateral Convexity, thai is 321-avoiding, and the “coalescing” performed in the

embedding that defines Heap).

Proof of Lateral Convexity: Supposevr € &, is 321-avoiding. Choose areduced expres-
sion forw for which a pair o ’s is as close together as possible for sénféese two copies
of 5§ mustbe separated by atleast ong of, otherwise our expression would not be reduced.
But then our reduced expression looks liks u,S +1U3S Us Wherel (w) = 3+ Z‘;zl I(uj).
If su; = ux§ anduss = sus, thenw has a reduced expressiofu,s S+15 UsUs. Such a
w is not 321-avoiding, which is a contradiction. So eitbgior uz must contairs ;.

For the reverse implication, suppose that every two copies of the same gemseiator
some reduced expression forare separated by both gn; and ars ;. Itis a theorem of
Tits [32], that any two reduced expressionsi#ioe G, can be obtained from each other by

a sequence of moves of the following two types:

Ciissj=sjs, ifli—jl>1 (12)
Cy:ssjs =sjss;, ifi=jx1 (12)

But, under our hypothesis, we are never able to appBs anove for such av. So all
reduced expressions far must be obtainable by a sequenceGagfmoves. Hencew is

321-avoiding. O
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4. Deodhar’s framework

For 321-hexagon-avoiding permutations, we will give an explicit combinatorial formula
for the Kazhdan-Lusztig polynomials. This will be done in a framework developed by
Deodhar [15] (using slightly different notation). The necessary concepts are reviewed in this
section.

Our construction of the Kazhdan-Lusztig polynomials will be in terms of subexpressions
of a fixed reduced expressian= s; - - - 5, . To this end, we definemasko (associated to
a) to be any binary wordoy, ..., ov) in the alphabet0, 1}. Seto|[ ] def (01, ...,0j) for
1<j<r.(Soo = o[r].) We'll use the notation

oi S, if gj =1,
i) 13
T ifo; =0, (13)

def

01 o

Hencewll = g7 ...5"" is a (not necessarily reduced) subexpression.dfet r (w1l
denote the correspondLlng element®f. P(a) will denote the set of (2possible) masks
of a. Note thatP(a) can be viewed as the power set{@f...,r}. Finally, forx € &, set
Px(@) C P(a) to be the subset consisting of those maslsuch thatr (w?) = x.

Define thedefect setD(o) of the fixed reduced expressi@nand associated mask
to be

Do)={j:2<j=n I(z(wl ). 5)<l(z@ )} (14)

Note thatj’s membership irD(o) is independent ofy for k > j. The elements oD(o)
are simply calledlefectgof the maskr).

Example 1 Let w = 9595959, 0 = (1,1,0,1,0,1,0,1,0). Thenw? =
w7l = 558, 7(w?) = S35, andD (o) = {6, 8, 9}. If X = 5,535, then

Py(@) = {0’ = (0,0,1,0,0,0,1,0, 1),
o’ =(0,0,1,0,1,0,1,0,0), (15)
o” =(1,0,1,0,0,0,1,0,0),
" =(1,0,1,0,1,0,1,0, 1)}

S0, D(o’) =0, D(a”) = {9}, D(6") = {5, 9}, andD(c"") = {5}.

Deodhar, in [15, Lemma 4.1, Definition 4.2, Proposition 4.5], gives a more combinato-
rial characterization of the Kazhdan-Lusztig polynomials. Specifically, he proves that one
can always find a subs&tC P(a) that yields the Kazhdan-Lusztig polynomials. This is
an amazing result. However, in general, the procedure to find this sSlisetomewhat
complicated. But we can restrict our attention to the case wletegP(a). In this case,
Deodhar’s result can be translated as follows:
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Theorem 3 Let W be any finite Weyl group aradbe a reduced expression for some
w e W. Set

Pd@= ) P (16)

oePy(a)

If degP(a) < %(I(w) —1(x) — 1) for all xeW, then R(a) is the Kazhdan-Lusztig
polynomial R, forall x € W.

Most of the content of Theorem 3 is that tRg(a) satisfy a recursive formula equivalent
to Theorem 2.

5. The defect graph

The purpose of the defect graph is to furnish us with a simple criterion for ensuring that

| D(o)| < %(I (w) — I (@w(w?)) — 1) as required by Theorem 3. However, it is advantageous

to first rephrase this inequality in another language. So again we introduce some notation.
Partition the defect séP (o) = Doéo') U DY(o) whereD< (o) consists of thosg € D (o)
forwhicho; =€ € {0, 1}. Leta[]] :efsl -5, forl < j <r.Also,sedj(o) d:'3f|2>(a[j])|,

d(@) E"D(o)], X[ 1L 7 welily andw([j] L 7 (a[ j]). Finally, set

Ao c1=ef|(w[j]) —|2(X[j]) -1

—D(a[jDlI. (17)

We write A, for Aqprp. Having A, > 0 implies that the inequality in Theorem 3 holds.
The defect graph will allow us to show that a condition equivalemt o> 0, stated in the
following lemma, holds whenever is 321-hexagon-avoiding.

Lemma 2 Leta = s,---S, be areduced expression for some= S,. Supposer =
(01, ...,0r) € P(@ with r(w?) # w. ThenA, > 0if and only if

#of Osin{oy,...,or}) = 2 [D%o)| + 1. (18)

Proof: Letk be the smallestindex for whiety = 0. Such & must exist by our stipulation
that 7 (w?) # w. Consider the sequeneglk], wik + 1], .... Sinces, - --s, is reduced,
D(o[K]) = 9. Hence,A,q = 0. We now investigate the differences,jj — Agpj_1; for

j > k. There are four possibilities (note that in each cb@ej]) = (w[j — 1]) + 1):

1. j € D(o), oj = 1. Thendj(o) = dj_1(a), |(X[j]) = (X[ — 1]) + 1. S0A,j] —

2. jAZz“{)t];, S—, — 0. Thend; (o) = dj_1(), |X[j1) = I (X[j — 1]). SOA () — Aofj_1 =

3. Jyezb(a), o = 1. Thend; (o) =d;_1(o) + 1, |(X[j]) = (X[j — 1]) — L. S0 A4 —

a. jAUe“_B](;,O&j —0. Thend; (o) = di_1(0) + 1 I(x[J]) = I(X[J — 1]). S0 Agpjy —
Aopigy = —1/2.
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So, the only cases we need to consider are the second and the fourth. From this it follows
that for eachj > Kk,

Ao >0 = #ofOsinfoxi1,...,04} > 2-[D%a[j])I. (19)
The conclusion of the lemma follows by induction upon setting r.

Recall that we need to show that (18) is satisfied for 321-hexagon-avoiding permutations
for any choice of reduced expression. To do this, we define a gégplwhose vertices
are in one-to-one correspondence with the defect®%#r). In Lemmas 3, 4, and 5 we
develop some technical results relating the shape of Heajo the shape o6,. Then in
Proposition 1 we show th&,, is a forest ifw is 321-hexagon-avoiding. The proof of this
Proposition is rather intricate and is given as a “proof by picture.” Finally, in Section 6 we
conclude by a simple combinatorial argument th& if is a forest, then (18) is satisfied.

The edges o6, will depend on how the various defects and zeras are intertwined.

To measure this intertwining, we overlay strings on He@p In particular, we will overlay
thelinesy = +£x+ C for C € Z. At each point ptj) of our heap we will move these strings
according to the following rule: I&; = 0, then “bounce” the strings as in figure 5(a). If
oj = 1, then “cross” the strings as in figure 5(b).

In either casey; and y, are said tomeetat pt(j) and each ofyy, y» is said toen-
counterpt(j). If we number the strings from left to right along the bottom of our heap,
reading the order of the strings at the top gives the permutatiarf). Figure 6 gives an
example.

Remark 6 In the heap model, defects occur when two strings meet that have previously
crossed an odd number of times.

Remark 7 In our diagrams, we make the following conventions. First, every diamond
point is known to be a defect. Second, white nodes are known to be in our heap. Third,
the inclusion of black nodes within the heap is undetermined at the time the picture is first
referenced.

Supposej € D(o). For the strings meeting at ([ to have previously crossed, they
both need to have changed direction at some point (see figure 7). Formally, there must be

Y1 Y2 Yi Y2

Y1 Y2 Y2 Y1

Figure 5 Overlay of string diagram corresponding to sosnen Heagw).
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Y1 Y2 Y3 Ve Y5 Y4 Y8 Y7

Y1 Y2 Y3 Ya Y5 Ye Y7 Y8

Figure 6. Heapw) overlaid with a string diagram for the reduced expressiens 35S S5 S6S54S76Ss
ando=(1,0,1,0,1,1,0,1,0,0,0, 1, 0, 0). Note thatr (w?)s4Ss4S7, giving the permutation [1, 2, 3, 6, 5, 4,

8, 7]. The defects are represented by diamonds. As an illustration of our terminology regarding strings, note that
yay7 meet at pt9) (for our reduced expressia@). And ys encounters gf ) for j € {5, 6, 7, 11} (also fora).

a,bwithl <a#b < janda, 8 > 0suchthatij, IVl(s))) = (ia +a,IVI(s,) + @) =
(ip — B, VI(s,) + B) whereoi, = oj, = 0. Otherwise, the strings meeting(@{, Ivl(s;))
could not have previously crossed.

Chooseq, b as above and as large as possible. Calljlcz pt(a) theleft critical zero
and rczj) = pt(b) theright critical zeroof j (or of pt(j)). In terms of the heap, the left
and right critical zeros (Iag ) and rcZ j)) are the closest zeros to(pj on the boundary of
Cone.(j).

Now, for j € Do), {lcz(j), rcz(j), pt(j)} are thecritical zerosof j. For this reason,
we will sometimes refer to pi) as themiddle critical zeroof j (denoted mcgj)). A point
pt(j) is sharedif pt(j) is a critical zero for two separate defects.

Thereis one final construct we will need to prove Theorem 1. Define a @aplssociated
to o as follows. Let the vertex set @, be{ver(j)};cpo). The edge set consists of those
(ver(j), ver(k)) for which

{lcz(j), rcz(j), mcz(j)} N {lcz(k), rcz(k), mcz(k)} # @. (20)

In figure 8, we give an example of a heap along with its associated @aph

Opt(7) = mez(j)
Jo(rea(s)
lez(j) )o(

Figure 7. Heap showing necessity of existence of 0's on boundary of Canevhenj € D(o).
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J ) ver(j
3 ver(l)
k 9 < m
& o Ol
&
e]
& 5 ver(k) ver(m)
ver(n)
O
8]
a. b. &

Figure 8 In (a), we depict the permutatian = [6,7, 8, 1, 9, 2, 3, 4, 5] along with the maslk = (1,0, 1, 1,
0,1,10,1,0,1,1,1,0,0,0,0,0,0). In(b),G, is graphically overlaid on He&m). The critical zeros correspond
to the corners of the triangles. In (c), we have an abstract realization of the graph.

The key fact we need in the proof of (18) is tla$ does not contain any cycles. Before
proving this fact in Proposition 1, we first introduce some lemmas that illuminate the
structure ofG,,. The first two lemmas are easy and stated only for reference. The second
and third give criteria for Heg) to contain a hexagon.

Lemma 3 Supposew is 321-avoiding and kI € D°) with pt(l) = Icz(k). Then
pt() + (1, —3) € Heapw). Similarly, if pt(l) = rcz(k), thenpt(l) — (1, 3) € Heapgw).
(Seefor examplefigure9(c).)

Lemma4 Letw be a32l-avoiding permutation anpt(h), pt(k) € Heagw) with pt(h) €
Cone, (pt(k) — (0, 6)). If h and k are encountered by a common stritigen Heagw)
contains a hexagor{See for examplefigure9(c).)

Lemmab5 Letw e &, be32l-avoiding.Heagw) contains a hexagon if any of the follow-

ing three situations are met

1. The pointlcz(r) = pt(m) = rcz(l) with m, r,| € D°o). (See figurd(a).)

2. The stringy encounters three distinct strings, y», y3 at defects |k, me D%o), re-
spectively. Furthermorept(m) = rcz(l), pt(l) = lcz(k) and pt(m) is on the boundary
of Cone, (pt(k) — (0, 2)). (See figur®(b).)

3. We havept(l) = Icz(k), pt(r) =rcz(k) and k |, r € D°(o). (See figurel0.)

Parts 1 and 3 of Lemma 5 tell us that any three defectsirshape or a\-shape imply that
our heap has a hexagon. Part 2 of Lemma 5 tells us that, under certain conditions, if one
string encounters three defects, then we also have a hexagon.

Proof of part 1. A picture is given in figure 9(a). The claim follows immediately from
Lateral Convexity by applying Lemma 3 to the paird ptpt(m) and ptr), pt(m).
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Figure 9 lllustration (a) shows the situation of Lemma 5.1. lllustrations (b, c) refer to Lemma 5.2. In these latter
two pictures, it is possible that(at) = pt(k).

Figure 10  Situation of Lemma 5.3.

Proof of part 2:  First consider the case whergm) = pt(k) + (8, —2 — §) for § > 1.
This is illustrated in figure 9(b). By Lemma 3,(gt) = pt(m) — (1, 3) is in Heagw).
Since ptf) € Cone (pt(k) + (6 — 1, =5 — §)), Heapgw) contains the indicated hexagon
by Lemma 4.

Alternatively, we can have ph) = pt(k) — (8,2 + §) for § > 0. This is illustrated in
figure 9(c). Recall that thg, are assumed to be distinct. So, starting atmpt— (1, 1), y
must move down to the right at least twice (to crggsand y3), and move down to the
left at least once (to cross). Hence, the lowest of the three crossingg must occur
in Cone, (pt(h)) = Cone, (pt(m) — (0, 4)) = Cone.(pt(a) — (8,6 + 3)). By Lemma 4,
Heapw) must therefore contain a hexagon.
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Proof of part 3: By Lemma 3, in order to avoid a hexagon in Héajp, we need at least
one of ptl), pt(r) to be a distance of exacthy/2 from pt(k).

Suppose first that both @3 = pt(k) — (1, 1) and ptr) = pt(k) + (1, —1). Then we are
in the situation of figure 10(a). Note thatdf, = 0 thena € D°(o) and we can appeal
to Lemma 5.1. So we can consider only the case where there is a crossirig)atfpy
is eithery; or y3, then it still needs to cross a string currently to its right (eitpeor y4,
respectively). This can only happen in Cii€). The only alternative is that = y”. But
theny,y, cannot cross until Cong f ). Either way, ptf) € Heagw). Arguing analogously
with y’, we see that i) € Heagw). So Heagw) contains a hexagon.

Now suppose that only one of(p}, pt(r) is a distance of/2 away from ptk). Without
loss of generality, we assume that this point $)pWWe argue depending on whether or not
pt(r) € Con€ (pt(m) + (0, 2)) where ptm) = rcz(l).

Assume first that gt ) € Cone’ (pt(m) + (0, 2)). We are in the situation of figure 10(b).
Since ptr) # ptk) + (1, —1), pt(m) = pt(k) + (8, —2— ) for somes > 2. Hence, in order
to avoid a hexagon, we must hayg/, cross as shown. But then it is easily seen that the
crossingysys must occur in Cong(h). This ensures that Heap) contains the indicated
hexagon.

If pt(r) ¢ Coné€ (pt(m) + (0, 2)), then we are in the situation of figure 10(c). Sinee
must go left once below pin) — (1, 1) (to crossy;) andys must go right once (to cross),
we see that the lowest of the crossings must occur in Cong(h). If pt(r) # pt(a), then
by Lemma 4, Heafw) contains a hexagon. If gt) = pt(a), then we need the additional
fact that ptm) # pt(k) — (0, 2) to ensure that gh) € Cone, (pt(k) — (0, 6)). But this follows
from the assumption that (o9 is not at a distance of2 from ptk). O

Proposition 1  If w is 321-hexagon-avoiding ané € P(a), then G, is a forest.

Proof: Assume thatG, is not a forest—i.e.5, contains a cycle. We will assume that
w is 321-avoiding and show that®,, contains a cycle then Heép) contains a hexagon.
Note that sincev is 321-avoiding, Lemma 1 (Lateral Convexity) holds.

LetV ¢ Do) be a minimal subset such that the subgr&ghof G,, spanned by is
acycle. Hence, for each € V, ver(p) € G, has degree at least 2. Cho@e& Z as large
as possible such that(gy is on the liney = x 4+ C for somej € V. Now choosé € V
to be minimal among such By choice ofV, pt(m) = rcz(l) must be shared and we must
have ptl) = Icz(k) for somek € V. So our heap looks like figure 11(a).

In the discussion that follows, “shared” should be interpreted in the contég of
SinceV is minimal, either ptk) = Icz(u) for someu € V, or pt(p) = rcz(k) is shared. In
the first case, gp) + (1, 1) must be in Heafw) by Lateral Convexity. Consider the second
case—where [pp) is shared. By Lemma 5.3 ¢ V. So p{p) = Icz(r) for somer € V.

So in both cases, we have the following fact which we state for reference.

Fact 1 If pt(p) = rcz(k), thenpt(q) = pt(p) + (1, 1) € Heapgw).

Two other simple facts we state for reference are the following.
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Boundary of Conen(pt(k) — (0,2))

Figure 11 Configuration of Heafw). Recall that diamond nodes are known defects and white nodes are known
to be in Heapw).

Fact 2 By Lateral Convexity, any point encountered by a string that still needs to cross
below that point must be in the he&gfter pushing together connected compongerisr
example, if je D(o), then pt(j) — (0, 2) must be in the heap

Fact 3 Recall thatpt(m) is defined as right critical zero of the left critical zero (k)
(see figure 1()). If Heagw) does not contain a hexagptihen the point m must lie along
the boundary o€one, (pt(k) — (0, 2)).

We now show that, regardless of the characteristicendf.e., values ofi,,, Ivl(m),
and whether or nah € D(o)), Heagw) must contain a hexagon. Suppose tinat V. By
Lemma5.2, the only way this can happen s if the other string encountefimgiptys. Since
V is minimal, we then need either lgmr) or rcz(m) shared. Consider figure 12. Suppose
pt(n) = Icz(m) is shared. By choice of (i) on the liney = x + C, this implies thah € V.
But then by Lemma 3, i9h) € Heagw). Then by Lateral Convexity, p¢) € Heapgw).
The alternative is that r¢m) is shared. Again, this implies that(pt € Heagw). Since
pt(q) € Heapgw) by Fact 1, Heafw) contains a hexagon.

Y2 Vs

Figure 12  This figure depicts the case wherémt is not the left critical zero of another defectVh
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Figure 13 Case | of proof of Proposition 1.

So we can assume that ¢ V. But by choice of, pt(m) must be shared. This implies
that p{m) = Icz(r) for somer € V. We now argue that He&p) must contain a hexagon
according to the position of ph) relative to ptk).

Case I: pt(m) = pt(k) — (8,2 + 8) for § > 0. There are three cases to consider.
Figure 13(a) depicts the first. Herg,andy3 both encounter [gt). SinceV is minimal,
either rczr) or pt(r) must be shared. By choice of our liye= x + C and the fact that
p ¢ V, we see that, in fact, ré¢z) must be shared. But then(p} € Heapw). Since
pt(g) € Heagw), Heagw) contains the indicated hexagon.

The second alternative is that(pt € Cone, (pt(k)) but 3 does not encounter along
any of the nodes between(pt). This is depicted in figure 13(b). &. = 0, theny,y3 must
cross in Cong(g). If o = 1, thenyy’ must cross in Conge). In either case, Hedp)
must contain the indicated hexagon.

The third possibility is that gt ) ¢ Cone, (pt(k)) (Figure 13(c)). In fact, this is the only
possibility for pt(r) whens = 0. Here we see that the pathyafmust be as shown in order
to avoid Cong(g). But theny,ys cannot cross until Conge). So we have the indicated
hexagon.

Case ll: pt(m) = pt(k) + (8, —2 — §) for somes > 1. The situation is depicted in
figure 14(a). For bothr1y, andy»y; to cross outside of Congh), we need/,y; to cross in
Con€ (m). This is shown in figure 14(b). We mention three additional assertions we have
made in figure 14(b). Firsty must cross» as shown in figure 14(b) in order to avoid having
Heapw) contain a hexagon. Second(gx € Heagw) by Fact 1. Third, since r¢am) must
be shared, g&) € Heapgw) as shown. So, by Lateral Convexity, Héap contains the
hexagon indicated in figure 14(b). (It is possible thaapt= pt(p) or pt(a) = pt(k), but
this does not change our conclusion.)
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Figure 14 Case Il of proof of Proposition 1.

6. Proof of Theorem 1
We present one remaining needed lemma and then the proof of Theorem 1.

In the following lemma, we lea = s, -- -5, be a reduced expression far and set
s =s,. Then leta/s denote the truncated reduced expressipn - s, , for ws.

Lemma6 Letse S ws < w. Then

Pc@ = %Y Pc(a/s) + g %Y Ps(a/s), (21)
here 1, if xs<x, (22)
W X) =
Cs(X) 0, if xs> x.

Proof: Partition Px(a) = P(@)UPL(a) where PS(a) consists of all masks iPy(a)
ending ine for e € {0, 1}. There are natural bijectiorBl(a) ~ Pys(a/s) and P2(a) ~
Px(a/s) given byo — o[r — 1]. So, to prove the lemma, we need only comp&?ér)|
to [D(o[r — 1))

If o € P2(a), theno[r — 1] € Px(a/s). In this case, iks > x (cs(x) = 0), thenr ¢ D(o),
so|D(o[r — 1)) | = |D(o)|. Alternatively, ifxs < x (cs(X) = 1), thenD(o) = D(o[r — 1)U
{r}and|D(o)|=|D(o[r — 1])| + 1. This accounts for the first term in (21).

Sincecs(xs) = 1 — ¢s(x), proof of the second term in (21) reduces to the above
case. O

Proof of Main Theorem. 1 = 2 :

Assumeuw is 321-hexagon-avoiding. We need to show thatfhea) are the Kazhdan-
Lusztig polynomials.

Now, everyj € D%o) has three critical zeros. Furthermore, by Lemma 5, no point is
a critical zero for 3 distinct defects. So the number of edg&s jrequals the number of
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shared critical zeros. Hence,

#of0sin{oy, ..., o0} > #of critical zeros inoy, ..., o1} (23)
= 3.|D%0)| — (# of edges irG,,). (24)

Now, by Proposition 1G,, is a forest with|D% )| vertices. HenceG, has at most
|D%(o)| — 1 edges (see, e.g., [4]). Hence,

#ofOUsin{or,...,o0} > 2- |D%0)| + 1. (25)

So by Lemma 2A, > 0. Therefore the inequalityD(o)| < %(I (w) — I (x(w?)) — 1)
holds. Now apply Theorem 3, from which it follows thf(a) = Py ,, for all x € W.

2—1:

We shall prove (not 13= (not 2). Assumaey is not 321-avoiding. We can find a reduced
expression fow of the forma = v§ 5115V with [(w) =1 (v) +1(v") + 3. Set
1(v) 1(v')
—— ——
c=(1,...,1,100,1,...,1). (26)

Then|D%o)| = 1 and|{j : oj = 0}| = 2. By Lemma 2,A, < 0. SoPx(a) does not
satisfy the properties of the, ,, listed in Theorem 2.

Now assume is 321-avoiding but not hexagon avoiding. Then we can wite vuiv’
whereu! as in Section 2 andw) = | (v) + | (v') + 14. Set

1(v) I(v)
— —
c=(,...,1,1,1010,1,0,1,1,0,0,0,0,0,1,...,1). 27)

The masko is depicted graphically in figure 15. Th¢R%(o)| = 4 and|{j :0; = O}| =
8. By Lemma 2,A, < 0. So Ps(a) does not satisfy the properties of tiRg ,, listed in
Theorem 2.

2—3:

We first appeal to a result of Kazhdan and Lusztig relating the intersection Poinaiyr”
nomial of the Schubert variet,, to the Kazhdan-Lusztig polynomial®y , (22,
[Corollary 4.9]):

> dimIH? (Xu)a' =Y 0™ P (@). (28)

X<w

Now, we are assuming th&; (a) = Py, for all x € &,. So we need only show that

> dUP@=a+9)". (29)

X<w
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Figure 15 Heap view of mask in (27). The black nodes are not known to be in the heap.

We proceed by induction, the result being obvioud far) = 1. Choose as € Ssuch that
wsS < w. From [20, Lemma 7.4], we know that:

If ws <w, thenx <w <= xs<w. (30)

Using (30), along with Lemma 6, we can write

Y dYP@= Y d%P@ +d*Ps@ (31)
=1+q Y d%P(@/9) +qRs(@/s) (32)
=1+a) Y d%Pua/s) +9'%Pus(a/s). (33)

X<w, X<XS

If Py(a/s) # 0, thenx < ws, so this becomes

=1+ Y dYP(@/9) (34)

X<wSs

=L+ +9'™¥ =1+9'™. (35)
The last line is by the induction hypothesis.
3= 2:

Deodhar [15] proves that for any Weyl groMg, we can always find a subs§tc P(a)
such that

Z q\DW)\ = P (36)

oeS
T (w?)=X

for all x, w € W. (More generally, he shows that such&exists when the coefficients of



130 BILLEY AND WARRINGTON

P« » are already known to be non-negative. Due to their interpretation in terms of dimensions
of intersection cohomology groups, this is known for any Weyl group.)
Hence, for such a8, we have the following string of equalities:

A+ '™ = "dim(H* (X,)g' =Y d®PP, = Y ¢®gPl (37)
i X<w oeS
T(w?)=x

Settingg = 1, we find that #*) = |S|. But thenS = P(a). So Px(a) = Py, for all
X, w € Gy.

2= 4:
This follows from Deodhar [15, Proposition 3.5 and Corollary 4.8].
3=5:
This is the content of Deodhar [15, Proposition 3.9].
5=6:
This is a standard result on small resolutions. See, for example, [23, Section 6.5].
6= 3:

Recall thaty denotes the Bott-Samelson resolutionqf (corresponding to some reduced
expressiora). By [5, Proposition 4.2],

Zolim(H2i YN = L+ q)'™. (38)

We are assuming that,(Y) = IH.(X,). By Poinca€ duality, we know thaH ay)
IHZ (X,,). Combining (30) with this isomorphism yields

> " dim(IH? (X,)q' = (1+ '™ (39)
i
as desired.
This completes the proof of the Theorem 1. O
Corollary1 Ifw =s,---s, withiy, ..., i, all distinct then R ,, = 1forall x < w.

7. A conjecture of Haiman and a generalization

Defineq-Fibonacci numbers b¥#,(q) = Fn_1(q) + qF_2(q) whereF,(q) =0ifn < 0
andFy(q) = F1(q) = 1. Theorem 1 gives us a simple proof of the following conjecture of
Haiman ([9, Conjecture 7.18]):
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Corollary 2 Letwy € &, have reduced expression

a=SS-15%+1%---S5-1€6h, 2<k <l <n. (40)

Then Fg,u)kj = FI—k+1(Q)-

Recently, Brenti-Simion [10] have independently proved this conjecture and generalized

it to a class of elements that are not 321-hexagon-avoiding. In fact, the corollary can be

generalized to apply to any 321-hexagon-avoiding element for which no generator appears
more than twice.

Proof: As a permutation,
w=I[1,2,....k—2,k+1,.... 1+ k=1 kI1+2...,n]. (41)
This is easily seen to be 321-hexagon-avoiding. So by Theordg(d), = Pe ,,, -
The claim is true fodl =k. The proof is by induction. The situation of the general
case is illustrated in figure 16 for somee € Pe(a). Letr = I(w). In figure 16(b), no
new defect is introduced by, so |D(o)| = |D(o[r — 2])|. In figure 16(c), we have

|D(o)| = |D(er — 4])| + 1. The claim follows by the induction hypothesis. O

We give below the generalization where Héapis a 3x (I — k + 1) diamond rather
than a 2x (I — k + 1) diamond.

Theorem 4 Supposey € &, has reduced expression

a=95119429-159+1 " - kSk+1%+2 (42)
v vy
a l b . C
o) o
o o o - )o
QO @] O @] O
O O @] O (@]
O O } O
Y v Y

Figure 16 It is clear thaty must remain in its column in order far(w?) = e. This is shown in (a). Diagrams
(b) and (c) show the only two possibilities for the pathyof
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Y1 Y2 Y3 V4 Y1 Y2 Y3 Y4 Yi Y2 Y3 Y4 Y1 Y2 Y3 Y4
O @]
o{ V4 of 73 Y4 Y3
ol Y of 1+ . of M . of 7
2o ' Y2 CEER Y4 "
Y1 » st . Y1 . 1
Pevvk+1,z quk+2ﬂ-’k+l,l qP5k+1y'Uk+l,l q2P5k+15k+2’vk+l,t
a. b. C. d.

Figure 17. Terms contributing t@e, vk -

forsomel <k <1 <n— 2. Then R,,, € Z[q] is given by the coefficient of#** in the
generating function

1+ g2+ 3B

Ge(2) = (1+09z+ 9222 (-1+ z+qz+qZ + 9222 + 223 — q*z%)’

Proof: We only sketch the proof. We see thgj is clearly 321-hexagon-avoiding, so by
Theorem 1,P,,, = Px@. The idea is to use recursion on= | — k. From figure 17, it
is easy to see thﬂe,v“ = Pe,vk+1.| +4 PS.<+1,vk+1.| +4 P5k+2»vk+1.l + q2P5k+15k+2~Uk+1.l' Similar
recurrences can be found & , , wherex € &,4. Solving these recurrences & ,, ,
yields (4). O

8. Singular loci of 321-hexagon-avoiding elements

The Schubert variet¥,, is said to besingularat a pointx < w (or, more properly, on the
Schubert celC, c X,) if the Zariski tangent space ¥, atx has dimension strictly greater
thanl (w). The set of singular points forms a lower order ideal in the Bruhat-Chevalley order
([3]). We defineX;,"“to consist of the maximal elements (under this Bruhat-Chevalley order)
of the set{x € &, : x < w andx singulas. .

The following theorem gives a complete descriptiongf™ whenw is 321-hexagon-
avoiding. In fact, this proves a conjecture of Lakshmibai and Sandhya [25] in this special
case.

Theorem5 Letw € &, be32l-hexagon-avoidinghenceHeaw) is well-definedl Then
every diamond with verticeX, y), X —a, Yy —a), X+ 8,y —8), X —a+ B,y — o —
B), a, B > 0in the heap determines an element if}"X More explicitly let

T={(.kheZ:1<jkl<r, pt(j) = ptk) — («, @),
pt() = ptk) + (8, —pB) for somex, 8 > O,
andCone,(j) N Cone (1) N Heagw) # @} (43)
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and

Y={oceP@:(j,kleT, oj=ok=o0 =0,
andoy, = 1form# j, k,1}. (44)

Then the maximal singular locuss$ of X,, is given by X" = {7 () : 0 € T).

Proof: It has been proved by Deodhar [14] that ¥8f = &, andv < w, X,, is smooth
on the Schubert cel, if and only if P, ,, = 1. By Theorem 1P (a) = Py, for every
X € G,. So to show thak,, is singular, we need only show th&i{@) contains a mask of
positive defect.

Let o € X correspond t@j, k, 1) € T. Since every defect must have two critical zeros
(in addition to the defect itself)(w) — [ ( (o)) = 3. Lateral Convexity tells us that if
[(w) — l(w(o)) < 3 for some othew € P(a), then|D(o)| = 0. So foroe X, if X,
is singular aiC g, 7 (o) is maximally singular. Now, the conditions in (43) imply that
k € D(o). By Theorem 1, this implies tha, (o)., # 1. So{n (o) : 0 € T} € X3"°

The only fact that remains to be checked is thay is a singular point ofX,,, then
y < n(o) for someo € X. So pick somer € Py(a) with |D(o)| > 1. Chooseh € D(o)
and suppose ) = Icz(b) and ptc) = rcz(b). Now define a mask’ by setting

;|1 me{ab,c}
Im = {O, m e {a, b, c}. (43)

Using the characterization of Bruhat-Chevalley order in terms of subexpressions (see, e.g.,
[20]), itis easily checked that(o) < 7 (o”). Sinces’ is in X, we are done. O

Corollary 3  For w 321-hexagon-avoidingeach element of ;i(‘g has codimensioB3 in
Xop-

Example 2 Here we give an example of calculating the singular locus as in Theorem 5.
We have setr = $5S595S%S%Ss- Figure 18 illustrates the eight different points in the
maximal singular locus oX,,. Namely,

X;ing =1{[3,1,6,2,7,4,5],[1,6,3,2,7,4,5],[3,1,6,4,2,7,5],
[3,1,6,52,4,7],[1,3,7,2,6,4,5],[3,2,6,1,4,7,5],
[3,2,6,1,5,4,7],[3,4,6,1,2,5,7]}.

Example 3 Foruy 4 as in Theorem 4,X;"% = 18.

Remark 8 Let w = [w(1),...,w(n)]. A result of Lakshmibai and Sandhya [25,
Theorem 1] is thaX,, is nonsingular if an only ifw avoids [3 4 12] and [4 2 31]. It is

shown in [12] thatX,, is non-singular precisely wheR. , = 1. So from Theorem 1 and
Corollary 1, we see that i is 321-hexagon-avoiding arXi, is singular, then we must be
able to find a [3 4 12]-sequenceiin
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Figure 18 Description ofXy,

Y3 YT Ye Y2 Y7 Y4 s

Y1 Y2 Y3 Y4 Y5 Ye V7

Y3 Y1 Ye Y5 Y2 Y4 V7

>

Y1 Y2 Y3 Y4 Y5 Ve Y7

Y1 Y6 Y3 Y2 Y7 Y4 V5

O

Y1 Y2 Y8 Y4 Y5 Ve Y7

Y1 Y3 Y7 Y2 Y6 Y4 Y5

Yr Y2 Y38 Y4 Y5 Ye V7
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Y3 Y1 Ye Y4 Y2 Y7 V5

&

Yt Y2 Y3 Y4 Y5 Y V7

Y3 Y2 Ye Vi Y4 Y7 Y5

Yi Y2 Y3 Y4 Y5 Ve V7

Y3 Y2 Y6 Y1 Y5 Y4 Y7 Y3 Y4 Y6 Y1 Y2 ¥Ys Y7
O
e O O
Yi Y2 Y3 Y4 Vs Ye Y7 Y1 Y2 Y3 Y4 Y5 Ve Y7

sing

for example 2.

9. Example and enumeration of 321-hexagon-avoiding elements

Table 1 lists both the number of 321-avoiding element&jpand the number of 321-

hexagon-avoiding elements@y, for 7 < n < 13 (these numbers are equal fox 7). The

number of 321-hexagon-avoiding elements has been calculated by computer. The number
of 321-avoiding elements is well-known to be given by the Catalan numbers (see, e.g.,

[2, 24, 29)]).
Below we give an example showing the use of Theorem 1 for calcul&ing

Example 4 Here we calculat®y ,, for w = $,55%%S3. As a permutationy is[345 1

2], which is clearly 321-hexagon-avoiding. (Note that= w, 4 in the sense of Corollary

2.) Itis a result of Deodhar that for eagh< w, there exists a unique mask #x(a) of
defect 0. Table 2 lists all of the < P(a) for which |D(o)| > 0. For thisw, all of these
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Table 1 Number of 321-hexagon-avoiding elementsip.

n 7 8 9 10 11 12 13

321-avoiding 429 1430 4862 16796 58786 208012 742900
321-hexagon-avoiding 429 1426 4806 16329 55740 190787 654044

Table 2 ComputingPy ,, using the defect statistic.

$251539%4S3 7 (w?) 9251535243 7 (w?)

001001 e 111001 S
100100 e 100001 93
011001 s 101000 93
101001 S 101101 8
100000 S 100111 us3
100101 S3 100010 S
001000 S3 100011 SHUS3
100110 (A 101100 SRS
011000 5] 111000 1S3

masks happen to hav®(o)| = 1. Hence, we see that far< w,

1+2q, ifxeles, s, ),
1+q, ifxe{s,u 518 281, 89, 4,
Px,w = (46)
N, KU, KBS, 1S3},

1, otherwise
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