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Abstract. In (Deodhar,Geom. Dedicata, 36(1) (1990), 95–119), Deodhar proposes a combinatorial framework
for determining the Kazhdan-Lusztig polynomialsPx,w in the case whereW is any Coxeter group. We explicitly
describe the combinatorics in the case whereW = Sn (the symmetric group onn letters) and the permutationw
is 321-hexagon-avoiding. Our formula can be expressed in terms of a simple statistic on all subexpressions of any
fixed reduced expression forw. As a consequence of our results on Kazhdan-Lusztig polynomials, we show that
the Poincar´e polynomial of the intersection cohomology of the Schubert variety corresponding tow is (1+q)l (w)

if and only ifw is 321-hexagon-avoiding. We also give a sufficient condition for the Schubert varietyXw to have
a small resolution. We conclude with a simple method for completely determining the singular locus ofXw when
w is 321-hexagon-avoiding. The results extend easily to those Weyl groups whose Coxeter graphs have no branch
points (Bn, F4, G2).

Keywords: 321-hexagon-avoiding, Kazhdan-Lusztig polynomials, Schubert varieties, singular locus, defect
graph

1. Introduction

In [21], Kazhdan and Lusztig constructed certain representations of the Hecke algebra
associated to a Coxeter groupW in order to elucidate representation-theoretic questions
concerningW itself. To do this, they introduced a class of polynomials now known as the
Kazhdan-Lusztig polynomials. These polynomials were quickly seen to play an important
role in Lie theory. For instance, they give a natural setting for expressing multiplicities of
Jordan-H¨older series of Verma modules (see [1, 11]). Introductions to these polynomials
can be found in [9, 16, 20].

While there are many interpretations of, and uses for, these polynomials, their combina-
torial structure is far from clear. Kazhdan and Lusztig originally defined the polynomials
in terms of a complicated recursion relation. In [21], it was conjectured that the coefficients
of these polynomials are non-negative. This has been proved for many importantW (such
as (affine) Weyl groups) [22], but not for arbitrary Coxeter groups. There has been limited



112 BILLEY AND WARRINGTON

success in finding non-recursive formulas for the Kazhdan-Lusztig polynomials. Brenti
[7, 8] has given a non-recursive formula in terms of an alternating sum over paths in the
Bruhat graph. Lascoux and Sch¨utzenberger [27] have given an explicit formula forPx,w

in the case whereW is the symmetric group andx, w are Grassmannian permutations.
Zelevinsky [36] has even constructed a small resolution ofXw in this case. Lascoux [26]
extends the results of [27] to twisted vexillary permutations. Finally, Shapiro, Shapiro and
Vainshtein [33] and Brenti and Simion [10] find explicit formulas for certain classes of
permutations.

Deodhar [15] proposes a combinatorial framework for determining the Kazhdan-Lusztig
polynomials for an arbitrary Coxeter group. The algorithm he describes is shown to work
for all Weyl groups. However, the algorithm is impractical for routine computations. In this
paper, we utilize Deodhar’s framework to calculatePx,w for 321-hexagon-avoiding elements
w ∈Sn. For these elements, Deodhar’s algorithm turns out to be trivial. As a result, in these
cases we get a very explicit description of the polynomials. The algorithm consists of
calculating Deodhar’s defect statistic on each subexpression of a given reduced expression.
We also show that the property ofw being 321-hexagon-avoiding is equivalent to several
nice properties onw in the Hecke algebra and in the cohomology of the corresponding
Schubert varietyXw. In particular, we have the following (the necessary definitions can be
found in Sections 2 and 3):

Theorem 1 Let a = si1 · · · sir be a reduced expression forw ∈ Sn. The following are
equivalent:
1. w is 321-hexagon-avoiding.
2. Let Px,w denote the Kazhdan-Lusztig polynomial for x≤ w. Then

Px,w =
∑

qd(σ) (1)

where d(σ) is the defect statistic and the sum is over all masksσ on a whose product
is x.

3. The Poincaŕe polynomial for the full intersection cohomology group of Xw is∑
i

dim(IH2i (Xw))q
i = (1+ q)l (w). (2)

4. The Kazhdan-Lusztig basis element C′w satisfies C′w = C′si1
· · ·C′sir

.

5. The Bott-Samelson resolution of Xw is small.
6. IH∗(Xw) ∼= H∗(Y), where Y is the Bott-Samelson resolution of Xw.

Remark 1 Equivalence of 2, 4 and 5 is implicit in Deodhar [15].

Remark 2 Lusztig [28] and Fan and Green [19] have already studied those elementsw

for which part 4 of the main theorem hold. In the terminology of these papers, such aw is
“tight.” Also, Fan and Green show the implication 4H⇒ 1 of Theorem 1.
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Remark 3 For concreteness, this paper refers only toSn. However, 2 through 6 hold for
all Weyl groups. In addition, our combinatorial characterization of 1⇐⇒ 2 can be extended
to the other “non-branching” Weyl groupsBn, F4,G2 (see [35]). One need simply replace
“321-avoiding” by “short-braid-avoiding” in any statements made (e.g., “321-hexagon-
avoiding” 7→ “short-braid-hexagon-avoiding”). The characterization in 1 fails to hold for
Dn, E6, E7, E8 primarily due to failure of Lemma 1. An appropriate analogue of hexagon-
avoiding for these other Weyl groups would fix this deficiency.

The organization of the paper is as follows. In Section 2 we introduce necessary back-
ground definitions. In Section 3 we introduce the notion of pattern avoidance and in Section 4
we present Deodhar’s combinatorial framework. A critical tool used to prove Theorem 1 is
the defect graph explored in Section 5. In Section 6 this graph is used to prove Theorem 1.
Section 7 contains an application of Theorem 1 to a conjecture of Haiman. Section 8 de-
termines the singular locus of Schubert varieties corresponding to 321-hexagon-avoiding
permutations. Finally, Section 9 contains a table enumerating the elements ofSn for which
Theorem 1 applies. We do not know a closed form for this sequence.

2. Preliminaries

Let Sn denote the symmetric group onn letters. Choose the standard presentationSn =
〈s1, . . . , sn−1 : s2

i = 1, si sj = sj si for |i − j | > 1, andsi si+1si = si+1si si+1〉. Let S =
{si }i∈[1...n−1] denote the generating set forSn. An expressionis any product of generatorssi .
The length l(w) of an elementw ∈ Sn is the minimumr for which we have an expression
w = si1 · · · sir . A reduced expressionw = si1 · · · sir is an expression for whichl (w) = r . If
v,w ∈ Sn, thenv ≤ w will signify that v is beloww in the Bruhat-Chevalley order (see,
e.g., [20]). This order is characterized byv ≤ w if and only if every reduced expression for
w contains a subexpression forv.

For the remainder of this section, all of our definitions apply to any finite Weyl groupW.
However, following this section, we will restrict our attention to the case whereW = Sn.

In order to define the Kazhdan-Lusztig polynomials, we now recall the notion of the
Hecke algebraH associated to a finite Weyl groupW. H has basisTw indexed by the
elements ofW. For all generatorss of W, we have

TsTw = Tsw if l (sw) > l (w), (3)

T2
s = (q − 1)Ts + qTe (4)

(wheree is the identity element ofW). This is an algebra overA = Q(q1/2). Following
[21], we define an involution onA by q1/2 = q−1/2. Extend this to an involution onH by
setting

ι

(∑
w

αwTw

)
=
∑
w

ᾱw(Tw−1)−1. (5)

From [21], we have that the Kazhdan-Lusztig polynomials are determined uniquely by the
following:
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Theorem 2 (Theorem1.1, [21]) For anyw ∈ W, there is a unique element C′w ∈H such
that
1. C′w = q−l (w)/2∑

x≤w Px,wTx, and
2. ι(C′w) = C′w,
where Px,w ∈ A is a polynomial in q of degree at most1

2(l (w) − l (x) − 1) for x<w,
Pw,w = 1, and Px,w = 0 if x 6≤ w.

As mentioned above, it is conjectured in [21] that the coefficients ofPx,w are non-negative.
Several of the conditions in Theorem 1 require some notation regarding cohomology. So

let W be the Weyl group of some semi-simple algebraic groupG with Borel subgroupB.
Cw will denote the Schubert cell in the flag varietyG/B corresponding tow ∈ W (see, e.g.,
[6]). Xw will denote the corresponding Schubert variety,Xw = ∪v≤wCv. For any varietyX
(such as someXw), we let IHi (X) denote thei -th (middle) intersection cohomology group
of X. Suppose thatf : Y −→ X is a resolution of singularities ofX. The mapf is said to
be asmall resolutionif for every r > 0,

codim{x ∈ X : dim f −1(x) ≥ r } > 2r. (6)

A commonly used resolution of the singularities ofXw is the Bott-Samelson resolution
(see [5, 13]). Theorem 1 yields an easy criterion for determining when such a resolution is
small.

3. Pattern avoidance and heaps

It will be useful to view elements ofSn as permutations on [1, 2, . . . ,n]. To this end, we
identify si with the transposition(i, i +1). Letw(i ) be the image ofi under the permutation
w. Hence, we have a one-line notation for a permutationw given by writing the image of
[1, 2, . . . ,n] under the action ofw: [w(1), w(2), . . . , w(n)].

The results of this paper pertain to a particular set of elements ofSn. This subset will be
defined using the notion of pattern avoidance. Letv ∈ Sk andw ∈ Sl . Say thatw avoidsv
(or isv-avoiding) if there do not exist 1≤ i1 < · · · < i k ≤ l withw(i1), w(i2), . . . , w(i k) in
the same relative order asv(1), v(2), . . . , v(k). We are interested in two particular instances
of pattern avoidance. The first is wherev = [321]. It is shown by Billey-Jockusch-Stanley
[2] that the 321-avoiding permutations inSn are precisely those for which no reduced
expression contains a substring of the formsi si±1si . In the context of reduced expressions,
321-avoiding permutations are calledshort-braid-avoiding(terminology due to Zelevin-
sky, according to [18]). Short-braid-avoiding permutations have been studied by Fan and
Stembridge [17, 18, 30, 31].

The second instance of pattern-avoidance with which we will be concerned is most easily
visualized via a poset associated tow. So letw ∈ Sn be 321-avoiding and fix some reduced
expressiona = si1 · · · sir for w. By [32], all reduced expressions for such a 321-avoiding
w are equivalent up to moves of the formsi sj → sj si for |i − j | > 1. This allows us
to associate a well-defined poset tow (rather than just toa, see [30]). Let the generators
{si j }rj=1 in our reduced expression label the elements of our poset. For an ordering, we take
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Figure 1. Let w = s9s6s7s8s2s1s3s2s4s5s6. The left image shows the result of the embeddingsi j 7→ (i j ,

lvl L (si j )). On the right is the result of pushing the “connected components” together.

the transitive closure of

si j ¹ sik if si j+1 · · · sik−1sik = siksi j+1 · · · sik−1 and si j sik 6= siksi j .

We now wish to embed this poset in the plane in a very particular way. Effectively, what
we do is send a generatorsi j to the point in the plane(i j , lvl(si j )) where lvl(si j ) measures
the maximal length of a chainsib ¹ · · · ¹ si j over all b ≤ j . However, in order for our
embedding to have the properties we need, this procedure needs to be adjusted slightly.

So, as above, embed this poset in the plane viasi j 7→ pt( j )
def= (i j , lvl (si j )), where we

define lvl(si j ) as follows: Letk be as small as possible in the interval [1, . . . , j ] such that
si j commutes withsil for all l with k ≤ l ≤ j . Now, initially, define a level function by:
lvl L(si j ) = 0 if k = 1 and lvlL(si j ) = lvl L(sik−1)+ 1 if k ≥ 2.

For most purposes, lvlL(·) gives us what we’d like. However, with lvlL(·) as the level
function, “connected components” do not necessarily abut. Figure 1 gives an example
of the embedding(i j , lvl L(si j )) and how it can be improved by coalescing “connected
components.”

So, we first define connected components by imposing an equivalence∼on the generators
in our expression for w: Letsi j ∼ sik if i j = i k±1 and lvlL(si j ) = lvl L(sik)±1. Extend this
equivalence transitively. Now, since we are assuming thatw is 321-avoiding, the components
have a canonical partial order. It is then a simple matter to uniformly adjust the levels of all
members of a particular connected component to allow distinct components to abut as much
as possible and hence “coalesce.” Define lvl(si j ) to be this adjustment of the level lvlL(si j ).

We will refer to the realizationsi j 7→ (i j , lvl(si j )) of our poset as Heap(w). The notion
of Heap(w) is due to Viennot [34], see also the work of Stembridge [30] in the context of
fully-commutative elements. Note thatsi j can coversik if and only if |i j − i k| = 1.

We are now ready to introduce the second class of patterns that we wish to avoid. Say
thatw is hexagon-avoidingif it avoids each of the patterns in

{[4, 6, 7, 1, 8, 2, 3, 5], [4, 6, 7, 8, 1, 2, 3, 5],

[5, 6, 7, 1, 8, 2, 3, 4], [5, 6, 7, 8, 1, 2, 3, 4]}. (7)

If we set

u = s3s2s1s5s4s3s2s6s5s4s3s7s6s5, (8)

then the permutations in (7) correspond tou, us4, s4u, s4us4.
The heap of any hexagon-avoiding permutation must not contain the hexagon in figure 2.

Permutations that are 321-avoiding and hexagon-avoiding (321-hexagon-avoiding) can, in
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Figure 2. Heap(u) for u as in (8).

fact, be characterized as those for which no reduced expression contains a substring of either
of the forms

u j = sj+3sj+2sj+1sj+5sj+4sj+3sj+2 ·
sj+6sj+5sj+4sj+3sj+7sj+6sj+5 for any j ≥ 0, (9)

sj sj±1sj for any j ≥ 1. (10)

It is this characterization of 321-hexagon-avoiding elements that we will use in the rest
of the paper.

Remark 4 Computationally, it is much more efficient (polynomial time) to recognize
321-hexagon-avoiding patterns via pattern avoidance rather than by scanning through all
reduced expressions for a particular subexpression (exponential time).

The heaps of 321-avoiding elements have a very important property that will be exploited
in the proof of Theorem 1. To develop this property, it will be useful to define the following
two subsets of the unit integer lattice for eachj , 1≤ j ≤ r :

The lower cone: Cone∧( j ) = {(i j + α, lvl(si j )− β) ∈ Z2 : |α| ≤ β}.
Theupper cone: Cone∨( j ) = {(i j + α, lvl(si j )+ β) ∈ Z2 : |α| ≤ β}.

The boundaryof Cone∧( j ) (or Cone∨( j )) corresponds to the points in this cone where
|α| = |β| (see figure 3).

The following lemma yields a very nice property of 321-avoiding permutations. In
Remark 5, we interpret this result visually in terms of Heap(w).

Lemma 1 (Lateral Convexity) Label the generators ofSn such that si sj = sj si if and
only if |i − j | > 2 (the standard labeling). Thenw ∈ Sn is 321-avoiding if and only if any
two occurrences of some si in a reduced expression forw are separated by both an si−1 and
an si+1.

Remark 5 Lemma 1 can be rephrased as follows. Suppose thatw = si1 · · · sir is 321-
avoiding and pt( j ), pt(k) ∈ Heap(w) with lvl(si j ) < lvl(sik). Suppose further that for each
m ∈ [i j , i k] (if i j ≤ i k) or m ∈ [i k, i j ] (if i j > i k), there is a point(m, lvl(sil ))∈Cone∧(sik)

∩ Cone∨(si j ) ∩ Heap(w) for somel , j ≤ l ≤ k. Then the entire diamond Cone∧(sik) ∩
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Figure 3. Heap(u) overlaid with Cone∧(6) and Cone∨(6). The white nodes are in Heap(u). The black nodes are
in one of the cones, but not in Heap(u).

Figure 4. If it is known that the triangular nodes are in Heap(w), then Lemma 1 tells us that all the white circles
are also in Heap(w).

Cone∨(si j ) is contained in Heap(w). This is illustrated in figure 4. This interpretation
relies on Lateral Convexity, thatw is 321-avoiding, and the “coalescing” performed in the
embedding that defines Heap(w).

Proof of Lateral Convexity: Supposew ∈ Sn is 321-avoiding. Choose a reduced expres-
sion forw for which a pair ofsi ’s is as close together as possible for somei . These two copies
of si must be separated by at least one ofsi±1, otherwise our expression would not be reduced.
But then our reduced expression looks likeu1si u2si±1u3si u4 wherel (w) = 3+∑4

j=1 l (u j ).
If si u2 = u2si andu3si = si u3, thenw has a reduced expressionu1u2si si±1si u3u4. Such a
w is not 321-avoiding, which is a contradiction. So eitheru2 or u3 must containsi∓1.

For the reverse implication, suppose that every two copies of the same generatorsi in
some reduced expression forw are separated by both ansi−1 and ansi+1. It is a theorem of
Tits [32], that any two reduced expressions forw ∈ Sn can be obtained from each other by
a sequence of moves of the following two types:

C1 : si sj = sj si , if |i − j | > 1, (11)

C2 : si sj si = sj si sj , if i = j ± 1. (12)

But, under our hypothesis, we are never able to apply aC2 move for such aw. So all
reduced expressions forw must be obtainable by a sequence ofC1 moves. Hence,w is
321-avoiding. 2
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4. Deodhar’s framework

For 321-hexagon-avoiding permutations, we will give an explicit combinatorial formula
for the Kazhdan-Lusztig polynomials. This will be done in a framework developed by
Deodhar [15] (using slightly different notation). The necessary concepts are reviewed in this
section.

Our construction of the Kazhdan-Lusztig polynomials will be in terms of subexpressions
of a fixed reduced expressiona= si1 · · · sir . To this end, we define amaskσ (associated to
a) to be any binary word(σ1, . . . , σr ) in the alphabet{0, 1}. Setσ[ j ]

def= (σ1, . . . , σ j ) for
1≤ j ≤ r . (Soσ = σ[r ].) We’ll use the notation

s
σ j

i j
=
{

si j , if σ j = 1,

1, if σ j = 0.
(13)

Hence,wσ[ j ] def= sσ1
i1
· · · sσ j

i j
is a (not necessarily reduced) subexpression ofw. Letπ(wσ[ j ])

denote the corresponding element ofSn. P(a) will denote the set of (2r possible) masks
of a. Note thatP(a) can be viewed as the power set of{1, . . . , r }. Finally, for x ∈ Sn, set
Px(a) ⊂ P(a) to be the subset consisting of those masksσ such thatπ(wσ) = x.

Define thedefect setD(σ) of the fixed reduced expressiona and associated maskσ
to be

D(σ) = { j : 2≤ j ≤ n, l
(
π
(
wσ[ j−1]

) · si j

)
< l
(
π(wσ[ j−1]

))}
. (14)

Note that j ’s membership inD(σ) is independent ofσk for k ≥ j . The elements ofD(σ )
are simply calleddefects(of the maskσ).

Example 1 Let w = s3s2s1s4s3s2s5s4s3, σ = (1, 1, 0, 1, 0, 1, 0, 1, 0). Thenwσ =
wσ[9] = s3s2s4s2s4, π(wσ) = s3, andD(σ) = {6, 8, 9}. If x = s1s3s5, then

Px(a) = {σ′ = (0, 0, 1, 0, 0, 0, 1, 0, 1),
σ′′ = (0, 0, 1, 0, 1, 0, 1, 0, 0),
σ′′′ = (1, 0, 1, 0, 0, 0, 1, 0, 0),
σ′′′′ = (1, 0, 1, 0, 1, 0, 1, 0, 1)}.

(15)

So,D(σ′) = ∅,D(σ′′) = {9},D(σ′′′) = {5, 9}, andD(σ′′′′) = {5}.

Deodhar, in [15, Lemma 4.1, Definition 4.2, Proposition 4.5], gives a more combinato-
rial characterization of the Kazhdan-Lusztig polynomials. Specifically, he proves that one
can always find a subsetS ⊆P(a) that yields the Kazhdan-Lusztig polynomials. This is
an amazing result. However, in general, the procedure to find this subsetS is somewhat
complicated. But we can restrict our attention to the case whereS =P(a). In this case,
Deodhar’s result can be translated as follows:
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Theorem 3 Let W be any finite Weyl group anda be a reduced expression for some
w ∈ W. Set

Px(a) =
∑

σ∈Px(a)

q|D(σ)|. (16)

If degPx(a) ≤ 1
2(l (w) − l (x) − 1) for all x ∈W, then Px(a) is the Kazhdan-Lusztig

polynomial Px,w for all x ∈ W.

Most of the content of Theorem 3 is that thePx(a) satisfy a recursive formula equivalent
to Theorem 2.

5. The defect graph

The purpose of the defect graph is to furnish us with a simple criterion for ensuring that
|D(σ)| ≤ 1

2(l (w)− l (π(wσ))− 1) as required by Theorem 3. However, it is advantageous
to first rephrase this inequality in another language. So again we introduce some notation.
Partition the defect setD(σ) = D0(σ) ∪D1(σ) whereDε(σ) consists of thosej ∈ D(σ)
for whichσ j = ε ∈ {0, 1}. Leta[ j ]

def= si1 · · · si j for 1≤ j ≤ r . Also, setdj (σ)
def= |D(σ[ j ])|,

d(σ)
def= |D(σ)|, x[ j ]

def= π(wσ[ j ]) andw[ j ]
def= π(a[ j ]). Finally, set

1σ[ j ]
def= l (w[ j ])− l (x[ j ])− 1

2
− |D(σ[ j ])|. (17)

We write1σ for 1σ[r ] . Having1σ ≥ 0 implies that the inequality in Theorem 3 holds.
The defect graph will allow us to show that a condition equivalent to1σ ≥ 0, stated in the
following lemma, holds wheneverw is 321-hexagon-avoiding.

Lemma 2 Let a = si1 · · · sir be a reduced expression for somew ∈Sn. Supposeσ =
(σ1, . . . , σr ) ∈ P(a) with π(wσ) 6= w. Then1σ ≥ 0 if and only if

(# of 0′s in {σ1, . . . , σr }) ≥ 2 · |D0(σ)| + 1. (18)

Proof: Letk be the smallest index for whichσk = 0. Such ak must exist by our stipulation
that π(wσ) 6=w. Consider the sequencew[k], w[k + 1], . . .. Sincesi1 · · · sik is reduced,
D(σ[k]) = ∅. Hence,1σ[k] = 0. We now investigate the differences1σ[ j ] − 1σ[ j−1] for
j > k. There are four possibilities (note that in each case,l (w[ j ]) = l (w[ j − 1])+ 1):

1. j 6∈ D(σ), σ j = 1. Thendj (σ) = dj−1(σ), l (x[ j ]) = l (x[ j − 1]) + 1. So1σ[ j ] −
1σ[ j−1] = 0.

2. j 6∈ D(σ),σ j = 0. Thendj (σ) = dj−1(σ), l (x[ j ]) = l (x[ j−1]). So1σ[ j ]−1σ[ j−1] =
1/2.

3. j ∈D(σ), σ j = 1. Thendj (σ)= dj−1(σ) + 1, l (x[ j ])= l (x[ j − 1]) − 1. So1σ[ j ] −
1σ[ j−1] = 0.

4. j ∈ D(σ), σ j = 0. Thendj (σ) = dj−1(σ) + 1, l (x[ j ]) = l (x[ j − 1]). So1σ[ j ] −
1σ[ j−1] = −1/2.
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So, the only cases we need to consider are the second and the fourth. From this it follows
that for eachj > k,

1σ[ j ] ≥ 0 ⇐⇒ # of 0′s in{σk+1, . . . , σ j } ≥ 2 · |D0(σ[ j ])|. (19)

The conclusion of the lemma follows by induction upon settingj = r .

Recall that we need to show that (18) is satisfied for 321-hexagon-avoiding permutations
for any choice of reduced expression. To do this, we define a graphGσ whose vertices
are in one-to-one correspondence with the defects ofD0(σ). In Lemmas 3, 4, and 5 we
develop some technical results relating the shape of Heap(w) to the shape ofGσ. Then in
Proposition 1 we show thatGσ is a forest ifw is 321-hexagon-avoiding. The proof of this
Proposition is rather intricate and is given as a “proof by picture.” Finally, in Section 6 we
conclude by a simple combinatorial argument that ifGσ is a forest, then (18) is satisfied.

The edges ofGσ will depend on how the various defects and zeros inσ are intertwined.
To measure this intertwining, we overlay strings on Heap(w). In particular, we will overlay
the linesy = ±x+C for C ∈ Z. At each point pt( j ) of our heap we will move these strings
according to the following rule: Ifσ j = 0, then “bounce” the strings as in figure 5(a). If
σ j = 1, then “cross” the strings as in figure 5(b).

In either case,γ1 and γ2 are said tomeetat pt( j ) and each ofγ1, γ2 is said toen-
counterpt( j ). If we number the strings from left to right along the bottom of our heap,
reading the order of the strings at the top gives the permutationπ(wσ). Figure 6 gives an
example.

Remark 6 In the heap model, defects occur when two strings meet that have previously
crossed an odd number of times.

Remark 7 In our diagrams, we make the following conventions. First, every diamond
point is known to be a defect. Second, white nodes are known to be in our heap. Third,
the inclusion of black nodes within the heap is undetermined at the time the picture is first
referenced.

Supposej ∈ D(σ). For the strings meeting at pt( j ) to have previously crossed, they
both need to have changed direction at some point (see figure 7). Formally, there must be

Figure 5. Overlay of string diagram corresponding to someσ on Heap(w).
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Figure 6. Heap(w) overlaid with a string diagram for the reduced expressiona= s4s3s2s1s5s4s3s2s6s5s4s7s6s5

andσ= (1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0). Note thatπ(wσ)s4s5s4s7, giving the permutation [1, 2, 3, 6, 5, 4,
8, 7]. The defects are represented by diamonds. As an illustration of our terminology regarding strings, note that
γ4γ7 meet at pt(9) (for our reduced expressiona). And γ6 encounters pt( j ) for j ∈ {5, 6, 7, 11} (also fora).

a, b with 1 ≤ a 6= b < j andα, β > 0 such that(i j , lvl(si j )) = (ia + α, lvl(sia) + α) =
(i b − β, lvl(sib) + β) whereσia = σib = 0. Otherwise, the strings meeting at(i j , lvl(si j ))

could not have previously crossed.
Choosea, b as above and as large as possible. Call lcz( j ) = pt(a) the left critical zero

and rcz( j ) = pt(b) the right critical zeroof j (or of pt( j )). In terms of the heap, the left
and right critical zeros (lcz( j ) and rcz( j )) are the closest zeros to pt( j ) on the boundary of
Cone∧( j ).

Now, for j ∈ D0(σ), {lcz( j ), rcz( j ), pt( j )} are thecritical zerosof j . For this reason,
we will sometimes refer to pt( j ) as themiddle critical zeroof j (denoted mcz( j )). A point
pt( j ) is sharedif pt( j ) is a critical zero for two separate defects.

There is one final construct we will need to prove Theorem 1. Define a graphGσ associated
toσ as follows. Let the vertex set ofGσ be{ver( j )} j∈D0(σ). The edge set consists of those
(ver( j ), ver(k)) for which

{lcz( j ), rcz( j ),mcz( j )} ∩ {lcz(k), rcz(k),mcz(k)} 6= ∅. (20)

In figure 8, we give an example of a heap along with its associated graphGσ.

Figure 7. Heap showing necessity of existence of 0’s on boundary of Cone∧( j ) when j ∈ D(σ).



122 BILLEY AND WARRINGTON

Figure 8. In (a), we depict the permutationw = [6, 7, 8, 1, 9, 2, 3, 4, 5] along with the maskσ = (1, 0, 1, 1,
0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0). In (b),Gσ is graphically overlaid on Heap(w). The critical zeros correspond
to the corners of the triangles. In (c), we have an abstract realization of the graph.

The key fact we need in the proof of (18) is thatGσ does not contain any cycles. Before
proving this fact in Proposition 1, we first introduce some lemmas that illuminate the
structure ofGσ. The first two lemmas are easy and stated only for reference. The second
and third give criteria for Heap(w) to contain a hexagon.

Lemma 3 Supposew is 321-avoiding and k, l ∈ D0(σ) with pt(l ) = lcz(k). Then
pt(l ) + (1,−3) ∈ Heap(w). Similarly, if pt(l ) = rcz(k), thenpt(l ) − (1, 3) ∈ Heap(w).
(See, for example, figure9(c).)

Lemma 4 Letw be a321-avoiding permutation andpt(h), pt(k) ∈ Heap(w)withpt(h) ∈
Cone∧(pt(k) − (0, 6)). If h and k are encountered by a common string, then Heap(w)
contains a hexagon.(See, for example, figure9(c).)

Lemma 5 Letw ∈Sn be321-avoiding.Heap(w) contains a hexagon if any of the follow-
ing three situations are met:
1. The pointlcz(r ) = pt(m) = rcz(l ) with m, r, l ∈ D0(σ). (See figure9(a).)
2. The stringγ encounters three distinct stringsγ1, γ2, γ3 at defects l, k,m∈D0(σ), re-

spectively. Furthermore, pt(m) = rcz(l ), pt(l ) = lcz(k) andpt(m) is on the boundary
of Cone∧(pt(k)− (0, 2)). (See figure9(b).)

3. We havept(l ) = lcz(k), pt(r ) = rcz(k) and k, l , r ∈ D0(σ). (See figure10.)

Parts 1 and 3 of Lemma 5 tell us that any three defects in a∨-shape or a∧-shape imply that
our heap has a hexagon. Part 2 of Lemma 5 tells us that, under certain conditions, if one
string encounters three defects, then we also have a hexagon.

Proof of part 1: A picture is given in figure 9(a). The claim follows immediately from
Lateral Convexity by applying Lemma 3 to the pairs pt(l ), pt(m) and pt(r ), pt(m).
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Figure 9. Illustration (a) shows the situation of Lemma 5.1. Illustrations (b, c) refer to Lemma 5.2. In these latter
two pictures, it is possible that pt(a) = pt(k).

Figure 10. Situation of Lemma 5.3.

Proof of part 2: First consider the case where pt(m) = pt(k) + (δ,−2− δ) for δ ≥ 1.
This is illustrated in figure 9(b). By Lemma 3, pt( f ) = pt(m) − (1, 3) is in Heap(w).
Since pt( f ) ∈ Cone∧(pt(k) + (δ − 1,−5− δ)), Heap(w) contains the indicated hexagon
by Lemma 4.

Alternatively, we can have pt(m) = pt(k) − (δ, 2+ δ) for δ ≥ 0. This is illustrated in
figure 9(c). Recall that theγi are assumed to be distinct. So, starting at pt(m) − (1, 1), γ
must move down to the right at least twice (to crossγ2 andγ3), and move down to the
left at least once (to crossγ1). Hence, the lowest of the three crossingsγ γi must occur
in Cone∧(pt(h)) = Cone∧(pt(m) − (0, 4)) = Cone∧(pt(a) − (δ, 6+ δ)). By Lemma 4,
Heap(w) must therefore contain a hexagon.
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Proof of part 3: By Lemma 3, in order to avoid a hexagon in Heap(w), we need at least
one of pt(l ), pt(r ) to be a distance of exactly

√
2 from pt(k).

Suppose first that both pt(l ) = pt(k)− (1, 1) and pt(r ) = pt(k)+ (1,−1). Then we are
in the situation of figure 10(a). Note that ifσa = 0 thena ∈ D0(σ) and we can appeal
to Lemma 5.1. So we can consider only the case where there is a crossing at pt(a). If γ
is eitherγ1 or γ3, then it still needs to cross a string currently to its right (eitherγ2 or γ4,
respectively). This can only happen in Cone∧( f ). The only alternative is thatγ = γ ′′. But
thenγ1γ2 cannot cross until Cone∧( f ). Either way, pt( f ) ∈ Heap(w). Arguing analogously
with γ ′, we see that pt(g) ∈ Heap(w). So Heap(w) contains a hexagon.

Now suppose that only one of pt(l ), pt(r ) is a distance of
√

2 away from pt(k). Without
loss of generality, we assume that this point is pt(l ). We argue depending on whether or not
pt(r ) ∈ Cone∨(pt(m)+ (0, 2)) where pt(m) = rcz(l ).

Assume first that pt(r ) ∈ Cone∨(pt(m)+ (0, 2)). We are in the situation of figure 10(b).
Since pt(r ) 6= pt(k)+(1,−1), pt(m) = pt(k)+(δ,−2−δ) for someδ ≥ 2. Hence, in order
to avoid a hexagon, we must haveγ1γ2 cross as shown. But then it is easily seen that the
crossingγ3γ4 must occur in Cone∧(h). This ensures that Heap(w) contains the indicated
hexagon.

If pt(r ) 6∈ Cone∨(pt(m) + (0, 2)), then we are in the situation of figure 10(c). Sinceγ2

must go left once below pt(m)− (1, 1) (to crossγ1) andγ3 must go right once (to crossγ4),
we see that the lowest of the crossingsγ γi must occur in Cone∧(h). If pt(r ) 6= pt(a), then
by Lemma 4, Heap(w) contains a hexagon. If pt(r ) = pt(a), then we need the additional
fact that pt(m) 6= pt(k)−(0, 2) to ensure that pt(h)∈Cone∧(pt(k)−(0, 6)). But this follows
from the assumption that pt(r ) is not at a distance of

√
2 from pt(k). 2

Proposition 1 If w is 321-hexagon-avoiding andσ ∈P(a), then Gσ is a forest.

Proof: Assume thatGσ is not a forest—i.e.,Gσ contains a cycle. We will assume that
w is 321-avoiding and show that ifGσ contains a cycle then Heap(w) contains a hexagon.
Note that sincew is 321-avoiding, Lemma 1 (Lateral Convexity) holds.

Let V ⊂ D0(σ) be a minimal subset such that the subgraphG′σ of Gσ spanned byV is
a cycle. Hence, for eachp ∈ V , ver(p) ∈ G′σ has degree at least 2. ChooseC ∈ Z as large
as possible such that pt( j ) is on the liney = x + C for some j ∈ V . Now choosel ∈ V
to be minimal among suchj . By choice ofV , pt(m) = rcz(l ) must be shared and we must
have pt(l ) = lcz(k) for somek ∈ V . So our heap looks like figure 11(a).

In the discussion that follows, “shared” should be interpreted in the context ofG′σ.
SinceV is minimal, either pt(k) = lcz(u) for someu ∈ V , or pt(p) = rcz(k) is shared. In

the first case, pt(p)+ (1, 1)must be in Heap(w) by Lateral Convexity. Consider the second
case—where pt(p) is shared. By Lemma 5.3,p 6∈ V . So pt(p) = lcz(r ) for somer ∈ V .
So in both cases, we have the following fact which we state for reference.

Fact 1 If pt(p) = rcz(k), thenpt(q) = pt(p)+ (1, 1) ∈ Heap(w).

Two other simple facts we state for reference are the following.
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Figure 11. Configuration of Heap(w). Recall that diamond nodes are known defects and white nodes are known
to be in Heap(w).

Fact 2 By Lateral Convexity, any point encountered by a string that still needs to cross
below that point must be in the heap(after pushing together connected components). For
example, if j∈ D(σ), then pt( j )− (0, 2) must be in the heap.

Fact 3 Recall thatpt(m) is defined as right critical zero of the left critical zero ofpt(k)
(see figure 11(b)). If Heap(w) does not contain a hexagon, then the point m must lie along
the boundary ofCone∧(pt(k)− (0, 2)).

We now show that, regardless of the characteristics ofm (i.e., values ofim, lvl(m),
and whether or notm∈D(σ)), Heap(w) must contain a hexagon. Suppose thatm∈V . By
Lemma 5.2, the only way this can happen is if the other string encountering pt(m) isγ3. Since
V is minimal, we then need either lcz(m) or rcz(m) shared. Consider figure 12. Suppose
pt(n) = lcz(m) is shared. By choice of pt(k) on the liney = x+C, this implies thatn ∈ V .
But then by Lemma 3, pt(h)∈Heap(w). Then by Lateral Convexity, pt(e)∈Heap(w).
The alternative is that rcz(m) is shared. Again, this implies that pt(e) ∈ Heap(w). Since
pt(q) ∈ Heap(w) by Fact 1, Heap(w) contains a hexagon.

Figure 12. This figure depicts the case where pt(m) is not the left critical zero of another defect inV .



126 BILLEY AND WARRINGTON

Figure 13. Case I of proof of Proposition 1.

So we can assume thatm 6∈ V . But by choice ofl , pt(m) must be shared. This implies
that pt(m) = lcz(r ) for somer ∈ V . We now argue that Heap(w) must contain a hexagon
according to the position of pt(m) relative to pt(k).

Case I: pt(m) = pt(k) − (δ, 2 + δ) for δ ≥ 0. There are three cases to consider.
Figure 13(a) depicts the first. Here,γ andγ3 both encounter pt(r ). SinceV is minimal,
either rcz(r ) or pt(r ) must be shared. By choice of our liney = x + C and the fact that
p 6∈ V , we see that, in fact, rcz(r ) must be shared. But then pt(b) ∈ Heap(w). Since
pt(q)∈Heap(w), Heap(w) contains the indicated hexagon.

The second alternative is that pt(r ) ∈ Cone∧(pt(k)) but γ3 does not encounterγ along
any of the nodes between pt(m). This is depicted in figure 13(b). Ifσc = 0, thenγ2γ3 must
cross in Cone∧(g). If σc = 1, thenγ γ ′ must cross in Cone∧(e). In either case, Heap(w)
must contain the indicated hexagon.

The third possibility is that pt(r ) 6∈ Cone∧(pt(k)) (Figure 13(c)). In fact, this is the only
possibility for pt(r ) whenδ = 0. Here we see that the path ofγ3 must be as shown in order
to avoid Cone∧(g). But thenγ4γ5 cannot cross until Cone∧(e). So we have the indicated
hexagon.

Case II: pt(m) = pt(k) + (δ,−2− δ) for someδ ≥ 1. The situation is depicted in
figure 14(a). For bothγ1γ2 andγ2γ3 to cross outside of Cone∧(h), we needγ2γ3 to cross in
Cone∨(m). This is shown in figure 14(b). We mention three additional assertions we have
made in figure 14(b). First,γ1 must crossγ2 as shown in figure 14(b) in order to avoid having
Heap(w) contain a hexagon. Second, pt(q) ∈ Heap(w) by Fact 1. Third, since rcz(m)must
be shared, pt(e) ∈ Heap(w) as shown. So, by Lateral Convexity, Heap(w) contains the
hexagon indicated in figure 14(b). (It is possible that pt(a) = pt(p) or pt(a) = pt(k), but
this does not change our conclusion.)
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Figure 14. Case II of proof of Proposition 1.

6. Proof of Theorem 1

We present one remaining needed lemma and then the proof of Theorem 1.
In the following lemma, we leta = si1 · · · sir be a reduced expression forw and set

s= sir . Then leta/s denote the truncated reduced expressionsi1 · · · sir−1 for ws.

Lemma 6 Let s∈ S, ws< w. Then

Px(a) = qcs(x)Px(a/s)+ q1−cs(x)Pxs(a/s), (21)

wherecs(x) =
{

1, if xs< x,

0, if xs> x.
(22)

Proof: PartitionPx(a) = P0
x (a)∪̇P1

x (a) wherePεx(a) consists of all masks inPx(a)
ending inε for ε ∈ {0, 1}. There are natural bijectionsP1

x (a)≈Pxs(a/s) andP0
x (a) ≈

Px(a/s) given byσ 7→ σ[r − 1]. So, to prove the lemma, we need only compare|D(σ)|
to |D(σ[r − 1])|

If σ ∈ P0
x (a), thenσ[r −1]∈Px(a/s). In this case, ifxs> x (cs(x)= 0), thenr 6∈ D(σ),

so|D(σ[r −1])| = |D(σ)|. Alternatively, ifxs< x (cs(x)= 1), thenD(σ)=D(σ[r −1])∪
{r } and|D(σ)| = |D(σ[r − 1])| + 1. This accounts for the first term in (21).

Since cs(xs) = 1 − cs(x), proof of the second term in (21) reduces to the above
case. 2

Proof of Main Theorem. 1H⇒ 2 :

Assumew is 321-hexagon-avoiding. We need to show that thePx(a) are the Kazhdan-
Lusztig polynomials.

Now, every j ∈ D0(σ) has three critical zeros. Furthermore, by Lemma 5, no point is
a critical zero for 3 distinct defects. So the number of edges inGσ equals the number of
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shared critical zeros. Hence,

# of 0′s in {σ1, . . . , σr } ≥ # of critical zeros in{σ1, . . . , σr } (23)

= 3 · |D0(σ)| − (# of edges inGσ). (24)

Now, by Proposition 1,Gσ is a forest with|D0(σ)| vertices. Hence,Gσ has at most
|D0(σ)| − 1 edges (see, e.g., [4]). Hence,

# of 0′s in {σ1, . . . , σr } ≥ 2 · |D0(σ)| + 1. (25)

So by Lemma 2,1σ ≥ 0. Therefore the inequality|D(σ)| ≤ 1
2(l (w) − l (π(wσ)) − 1)

holds. Now apply Theorem 3, from which it follows thatPx(a) = Px,w for all x ∈ W.

2H⇒ 1 :

We shall prove (not 1)H⇒ (not 2). Assumew is not 321-avoiding. We can find a reduced
expression forw of the forma= vsi si±1si v

′ with l (w) = l (v)+ l (v′)+ 3. Set

σ = (
l (v)︷ ︸︸ ︷

1, . . . ,1, 1, 0, 0,

l (v′)︷ ︸︸ ︷
1, . . . ,1). (26)

Then |D0(σ)| = 1 and|{ j : σ j = 0}| = 2. By Lemma 2,1σ < 0. So Px(a) does not
satisfy the properties of thePx,w listed in Theorem 2.

Now assumew is 321-avoiding but not hexagon avoiding. Then we can writew = vu j v′

whereu j as in Section 2 andl (w) = l (v)+ l (v′)+ 14. Set

σ = (
l (v)︷ ︸︸ ︷

1, . . . ,1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0,

l (v′)︷ ︸︸ ︷
1, . . . ,1). (27)

The maskσ is depicted graphically in figure 15. Then|D0(σ)| = 4 and|{ j : σ j = 0}| =
8. By Lemma 2,1σ < 0. So Px(a) does not satisfy the properties of thePx,w listed in
Theorem 2.

2H⇒ 3 :

We first appeal to a result of Kazhdan and Lusztig relating the intersection Poincar´e poly-
nomial of the Schubert varietyXw to the Kazhdan-Lusztig polynomialsPx,w (22,
[Corollary 4.9]):∑

i

dim(IH2i (Xw))q
i =

∑
x≤w

ql (x)Px,w(q). (28)

Now, we are assuming thatPx(a) = Px,w for all x ∈ Sn. So we need only show that∑
x≤w

ql (x)Px(a) = (1+ q)l (w). (29)
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Figure 15. Heap view of mask in (27). The black nodes are not known to be in the heap.

We proceed by induction, the result being obvious forl (w) = 1. Choose ans ∈ Ssuch that
ws< w. From [20, Lemma 7.4], we know that:

If ws< w, thenx ≤ w⇐⇒ xs≤ w. (30)

Using (30), along with Lemma 6, we can write∑
x≤w

ql (x)Px(a) =
∑

x≤w, x<xs

ql (x)Px(a)+ ql (xs)Pxs(a) (31)

= (1+ q)
∑

x≤w, x<xs

ql (x)(Px(a/s)+ q Pxs(a/s)) (32)

= (1+ q)
∑

x≤w, x<xs

ql (x)Px(a/s)+ ql (xs)Pxs(a/s). (33)

If Px(a/s) 6= 0, thenx ≤ ws, so this becomes

= (1+ q)
∑
x≤ws

ql (x)Px(a/s) (34)

= (1+ q)(1+ q)l (ws) = (1+ q)l (w). (35)

The last line is by the induction hypothesis.

3H⇒ 2 :

Deodhar [15] proves that for any Weyl groupW, we can always find a subsetS ⊂P(a)
such that∑

σ∈S
π(wσ)=x

q|D(σ)| = Px,w (36)

for all x, w ∈ W. (More generally, he shows that such anS exists when the coefficients of
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Px,w are already known to be non-negative. Due to their interpretation in terms of dimensions
of intersection cohomology groups, this is known for any Weyl group.)

Hence, for such anS, we have the following string of equalities:

(1+ q)l (w) =
∑

i

dim(IH2i (Xw))q
i =

∑
x≤w

ql (x)Px,w =
∑
σ∈S

π(wσ)=x

ql (x)q|D(σ)|. (37)

Settingq = 1, we find that 2l (w) = |S|. But thenS = P(a). So Px(a) = Px,w for all
x, w ∈ Sn.

2⇐⇒ 4 :

This follows from Deodhar [15, Proposition 3.5 and Corollary 4.8].

3H⇒ 5 :

This is the content of Deodhar [15, Proposition 3.9].

5H⇒ 6 :

This is a standard result on small resolutions. See, for example, [23, Section 6.5].

6H⇒ 3 :

Recall thatY denotes the Bott-Samelson resolution ofXw (corresponding to some reduced
expressiona). By [5, Proposition 4.2],∑

i

dim(H2i (Y))qi = (1+ q)l (w). (38)

We are assuming thatH∗(Y) ∼= IH∗(Xw). By Poincaré duality, we know thatH2i (Y) ∼=
IH2i (Xw). Combining (30) with this isomorphism yields∑

i

dim(IH2i (Xw))q
i = (1+ q)l (w) (39)

as desired.
This completes the proof of the Theorem 1. 2

Corollary 1 If w = si1 · · · sir with i1, . . . , i r all distinct, then Px,w = 1 for all x ≤ w.

7. A conjecture of Haiman and a generalization

Defineq-Fibonacci numbers byFn(q) = Fn−1(q) + q Fn−2(q) whereFn(q) = 0 if n < 0
andF0(q) = F1(q) = 1. Theorem 1 gives us a simple proof of the following conjecture of
Haiman ([9, Conjecture 7.18]):



KAZHDAN-LUSZTIG POLYNOMIALS 131

Corollary 2 Letwk,l ∈ Sn have reduced expression

a= sksk−1sk+1sk · · · sl sl−1 ∈ Sn, 2≤ k < l < n. (40)

Then Pe,wk,l = Fl−k+1(q).

Recently, Brenti-Simion [10] have independently proved this conjecture and generalized
it to a class of elements that are not 321-hexagon-avoiding. In fact, the corollary can be
generalized to apply to any 321-hexagon-avoiding element for which no generator appears
more than twice.

Proof: As a permutation,

w = [1, 2, . . . , k− 2, k+ 1, . . . , l + 1, k− 1, k, l + 2, . . . ,n]. (41)

This is easily seen to be 321-hexagon-avoiding. So by Theorem 1,Pe(a) = Pe,wk,l .

The claim is true forl = k. The proof is by induction. The situation of the general
case is illustrated in figure 16 for someσ ∈ Pe(a). Let r = l (w). In figure 16(b), no
new defect is introduced byγ , so |D(σ)| = |D(σ[r − 2])|. In figure 16(c), we have
|D(σ)| = |D(σ[r − 4])| + 1. The claim follows by the induction hypothesis. 2

We give below the generalization where Heap(w) is a 3× (l − k + 1) diamond rather
than a 2× (l − k+ 1) diamond.

Theorem 4 Supposevk,l ∈ Sn has reduced expression

a= sl sl+1sl+2sl−1sl sl+1 · · · sksk+1sk+2 (42)

Figure 16. It is clear thatγ must remain in its column in order forπ(wσ) = e. This is shown in (a). Diagrams
(b) and (c) show the only two possibilities for the path ofγ .
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Figure 17. Terms contributing tope, vk,l .

for some1≤ k ≤ l < n− 2. Then Pe,vk,l ∈ Z[q] is given by the coefficient of zl−k+1 in the
generating function

Ge(z) = −1+ q2z2+ q3z3

(1+ qz+ q2z2)(−1+ z+ qz+ qz2+ q2z2+ q2z3− q4z4)
.

Proof: We only sketch the proof. We see thatvk,l is clearly 321-hexagon-avoiding, so by
Theorem 1,Px,w = Px(a). The idea is to use recursion onn = l − k. From figure 17, it
is easy to see thatPe,vk,l = Pe,vk+1,l + q Psk+1,vk+1,l + q Psk+2,vk+1,l + q2Psk+1sk+2,vk+1,l . Similar
recurrences can be found forPx,vk,l wherex ∈ S4. Solving these recurrences forPe,vk,l

yields (4). 2

8. Singular loci of 321-hexagon-avoiding elements

The Schubert varietyXw is said to besingularat a pointx ≤ w (or, more properly, on the
Schubert cellCx ⊂ Xw) if the Zariski tangent space toXw atx has dimension strictly greater
thanl (w). The set of singular points forms a lower order ideal in the Bruhat-Chevalley order
([3]). We defineXsing

w to consist of the maximal elements (under this Bruhat-Chevalley order)
of the set{x ∈ Sn : x ≤ w andx singular}.

The following theorem gives a complete description ofXsing
w whenw is 321-hexagon-

avoiding. In fact, this proves a conjecture of Lakshmibai and Sandhya [25] in this special
case.

Theorem 5 Letw ∈ Sn be321-hexagon-avoiding(henceHeap(w) is well-defined). Then
every diamond with vertices(x, y), (x − α, y− α), (x + β, y− β), (x − α + β, y− α −
β), α, β > 0 in the heap determines an element in Xsing

w . More explicitly, let

T = {( j, k, l ) ∈ Z3 : 1≤ j, k, l ≤ r, pt( j ) = pt(k)− (α, α),
pt(l ) = pt(k)+ (β,−β) for someα, β > 0,

andCone∧( j ) ∩ Cone∧(l ) ∩ Heap(w) 6= ∅} (43)
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and

6 = {σ ∈ P(a) : ( j, k, l ) ∈ T, σ j = σk = σl = 0,

andσm = 1 for m 6= j, k, l }. (44)

Then the maximal singular locus Xsing
w of Xw is given by Xsing

w = {π(σ) :σ ∈ 6}.

Proof: It has been proved by Deodhar [14] that forW = Sn andv ≤ w, Xw is smooth
on the Schubert cellCv if and only if Pv,w = 1. By Theorem 1,Px(a) = Px,w for every
x ∈ Sn. So to show thatXw is singular, we need only show thatP(a) contains a mask of
positive defect.

Let σ ∈6 correspond to( j, k, l ) ∈ T . Since every defect must have two critical zeros
(in addition to the defect itself),l (w) − l (π(σ)) = 3. Lateral Convexity tells us that if
l (w) − l (π(σ)) < 3 for some otherσ ∈P(a), then |D(σ)| = 0. So forσ ∈6, if Xw
is singular atCπ(σ), π(σ) is maximally singular. Now, the conditions in (43) imply that
k ∈ D(σ). By Theorem 1, this implies thatPπ(σ),w 6= 1. So{π(σ) : σ ∈6} ⊆ Xsing

w .
The only fact that remains to be checked is that ify is a singular point ofXw, then

y ≤ π(σ) for someσ ∈6. So pick someσ ∈Py(a) with |D(σ)| ≥ 1. Chooseb ∈ D(σ)
and suppose pt(a) = lcz(b) and pt(c) = rcz(b). Now define a maskσ′ by setting

σ ′m =
{

1, m 6∈ {a, b, c},
0, m ∈ {a, b, c}. (45)

Using the characterization of Bruhat-Chevalley order in terms of subexpressions (see, e.g.,
[20]), it is easily checked thatπ(σ) ≤ π(σ′). Sinceσ′ is in6, we are done. 2

Corollary 3 For w 321-hexagon-avoiding, each element of Xsing
w has codimension3 in

Xw.

Example 2 Here we give an example of calculating the singular locus as in Theorem 5.
We have setw = s2s1s5s4s3s2s6s5s4s3. Figure 18 illustrates the eight different points in the
maximal singular locus ofXw. Namely,

Xsing
w = {[3, 1, 6, 2, 7, 4, 5], [1, 6, 3, 2, 7, 4, 5], [3, 1, 6, 4, 2, 7, 5],

[3, 1, 6, 5, 2, 4, 7], [1, 3, 7, 2, 6, 4, 5], [3, 2, 6, 1, 4, 7, 5],

[3, 2, 6, 1, 5, 4, 7], [3, 4, 6, 1, 2, 5, 7]}.

Example 3 Forv1,4 as in Theorem 4,|Xsing
w | = 18.

Remark 8 Let w = [w(1), . . . , w(n)]. A result of Lakshmibai and Sandhya [25,
Theorem 1] is thatXw is nonsingular if an only ifw avoids [3 4 12] and [4 2 31]. It is
shown in [12] thatXw is non-singular precisely whenPe,w = 1. So from Theorem 1 and
Corollary 1, we see that ifw is 321-hexagon-avoiding andXw is singular, then we must be
able to find a [3 4 12]-sequence inw.



134 BILLEY AND WARRINGTON

Figure 18. Description ofXsing
w for example 2.

9. Example and enumeration of 321-hexagon-avoiding elements

Table 1 lists both the number of 321-avoiding elements inSn and the number of 321-
hexagon-avoiding elements inSn for 7≤ n ≤ 13 (these numbers are equal forn ≤ 7). The
number of 321-hexagon-avoiding elements has been calculated by computer. The number
of 321-avoiding elements is well-known to be given by the Catalan numbers (see, e.g.,
[2, 24, 29]).

Below we give an example showing the use of Theorem 1 for calculatingPx,w.

Example 4 Here we calculatePx,w for w = s2s1s3s2s4s3. As a permutation,w is [3 4 5 1
2], which is clearly 321-hexagon-avoiding. (Note thatw = w2,4 in the sense of Corollary
2.) It is a result of Deodhar that for eachx ≤ w, there exists a unique mask inPx(a) of
defect 0. Table 2 lists all of theσ ∈ P(a) for which |D(σ)| > 0. For thisw, all of these
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Table 1. Number of 321-hexagon-avoiding elements inSn.

n 7 8 9 10 11 12 13

321-avoiding 429 1430 4862 16796 58786 208012 742900

321-hexagon-avoiding 429 1426 4806 16329 55740 190787 654044

Table 2. ComputingPx,w using the defect statistic.

s2s1s3s2s4s3 π(wσ) s2s1s3s2s4s3 π(wσ)

0 0 1 0 0 1 e 1 1 1 0 0 1 s2s1

1 0 0 1 0 0 e 1 0 0 0 0 1 s2s3

0 1 1 0 0 1 s1 1 0 1 0 0 0 s2s3

1 0 1 0 0 1 s2 1 0 1 1 0 1 s3s2

1 0 0 0 0 0 s2 1 0 0 1 1 1 s4s3

1 0 0 1 0 1 s3 1 0 0 0 1 0 s2s4

0 0 1 0 0 0 s3 1 0 0 0 1 1 s2s4s3

1 0 0 1 1 0 s4 1 0 1 1 0 0 s2s3s2

0 1 1 0 0 0 s1s3 1 1 1 0 0 0 s2s1s3

masks happen to have|D(σ)| = 1. Hence, we see that forx ≤ w,

Px,w =


1+ 2q, if x ∈ {e, s2, s3, s2s3},
1+ q, if x ∈ {s1, s4, s1s3, s2s1, s3s2, s4s3,

s2s4, s2s4s3, s2s3s2, s2s1s3},
1, otherwise.

(46)
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