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Abstract. The notion of matroid has been generalized to Coxeter matroid by Gelfand and Serganova. To each
pair (W, P) consisting of a finite irreducible Coxeter group W and parabolic subgroup P is associated a collec-
tion of objects called Coxeter matroids. The (ordinary) matroids are the special case where W is the symmetric
group (the An case) and P is a maximal parabolic subgroup. This generalization of matroid introduces interesting
combinatorial structures corresponding to each of the finite Coxeter groups. Borovik, Gelfand and White began
an investigation of the Bn case, called symplectic matroids. This paper initiates the study of the Dn case, called
orthogonal matroids. The main result (Theorem 2) gives three characterizations of orthogonal matroid: alge-
braic, geometric, and combinatorial. This result relies on a combinatorial description of the Bruhat order on Dn

(Theorem 1). The representation of orthogonal matroids by way of totally isotropic subspaces of a classical
orthogonal space (Theorem 5) justifies the terminology orthogonal matroid.
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1. Introduction

Matroids, introduced by Hassler Whitney in 1935, are now a fundamental tool in combi-
natorics with a wide range of applications ranging from the geometry of Grassmannians to
combinatorial optimization. In 1987 Gelfand and Serganova [9, 10] generalized the matroid
concept to the notion of Coxeter matroid. To each finite Coxeter group W and parabolic
subgroup P is associated a family of objects called Coxeter matroids. Ordinary matroids
correspond to the case where W is the symmetric group (the An case) and P is a maximal
parabolic subgroup.

This generalization of matroid introduces interesting combinatorial structures corre-
sponding to each of the finite Coxeter groups. Borovik, Gelfand and White [2] began
an investigation of the Bn case, called symplectic matroids. The term “symplectic” comes
from examples constructed from symplectic geometries. This paper initiates the study of
the Dn case, called orthogonal matroid because of examples constructed from orthogonal
geometries.

The first goal of this paper is to give three characterizations of orthogonal matroids:
algebraic, geometric and combinatorial. This is done in Sections 3, 4 and 6 (Theorem 2)
after preliminary results in Section 2 concerning the family Dn of Coxeter groups. The
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algebraic description is in terms of left cosets of a parabolic subgroup P in Dn . The Bruhat
order on Dn plays a central role in the definition. The geometric description is in terms of
a polytope obtained as the convex hull of a subset of the orbit of a point in R

n under the
action of Dn as a Euclidean reflection group. The roots of Dn play a central role in the
definition. The combinatorial description is in terms of k-element subsets of a certain set
and flags of such subsets. The Gale order plays a central role in the definition. Section 5
gives a precise description of the Bruhat order on both Bn and Dn in terms of the Gale order
on the corresponding flags (Theorem 1). A fourth characterization, in terms of oriflammes,
holds for an important special case (Theorem 3 of Section 6).

Section 7 concerns the relationship between symplectic and orthogonal matroids. Every
orthogonal matroid is a symplectic matroid. Necessary and sufficient conditions are provided
when a Lagrangian symplectic matroid is orthogonal (Theorem 4). More generally, the
question remains open.

Section 8 concerns the representation of orthogonal matroids and, in particular, justifies
the term orthogonal. Just as ordinary matroids arise from subspaces of projective spaces,
symplectic and orthogonal matroids arise from totally isotropic subspaces of symplectic
and orthogonal spaces, respectively (Theorem 5).

2. The Coxeter group Dn

We give three descriptions of the family Dn of Coxeter groups: (1) in terms of generators
and relations; (2) as a permutation group; and (3) as a reflection group in Euclidean space.

Presentation in terms of generators and relations. A Coxeter group W is defined in terms
of a finite set S of generators with the presentation

〈s ∈ S | (ss ′)mss′ = 1〉,

where mss ′ is the order of ss ′, and mss = 1 (hence each generator is an involution). The
cardinality of S is called the rank of W . The diagram of W is the graph where each gen-
erator is represented by a node, and nodes s and s ′ are joined by an edge labeled mss ′

whenever mss ′ ≥ 3. By convention, the label is omitted if mss ′ = 3. A Coxeter system
is irreducible if its diagram is a connected graph. A reducible Coxeter group is the direct
product of the Coxeter groups corresponding to the connected components of its diagram.
The finite irreducible Coxeter groups have been completely classified and are usually de-
noted by An(n ≥ 1), Bn(=Cn)(n ≥ 2), Dn(n ≥ 4), E6, E7, E8, F4, G2, H3, H4, and I2(m)

(m ≥ 5, m �= 6), the subscript denoting the rank. The diagrams of the families An, B/Cn

and Dn appear in figure 1, these being the families of concern in this paper.
Permutation representation. Throughout the paper we will use the notation [n]

= {1, 2, . . . , n} and [n]∗ = {1∗, 2∗, . . . , n∗}. As a permutation group, An is isomorphic
to the symmetric group on the set [n + 1] with the standard generators being the adjacent
transpositions

S = {(1 2), (2 3), . . . , ((n − 1) n)}.
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Figure 1. Diagrams of three Coxeter families.

Likewise Bn is isomorphic to the permutation group acting on [n] ∪ [n]∗ generated by the
involutions

S = {(1 2)(1∗ 2∗), (2 3)(2∗ 3∗), . . . , ((n − 1) n)((n − 1)∗ n∗), (n n∗)}.
We will use the convention i∗∗ = i for any i ∈ [n]. Call a subset X ⊂ [n] ∪ [n]∗

admissible if X ∩ X∗ = ∅, i.e., if X does not contain both i and i∗ for any i . The group Bn

acts simply transitively on ordered, admissible n-tuples; hence

|Bn| = 2n n!.

The group Dn is isomorphic to the permutation group acting on [n] ∪ [n]∗ and generated
by the involutions

S = {(12)(1∗2∗), (23)(2∗3∗), . . . , ((n − 1)n)((n − 1)∗n∗), ((n − 1)n∗)((n − 1)∗n)}.
Note that Dn is a subgroup of Bn . More precisely, Dn consists of all the even permutations
in Bn; hence

(Bn : Dn) = 2 and |Dn| = 2n−1 n!.

Reflection group. A reflection in a Coxeter group W is a conjugate of some involution in S.
Let T = T (W ) denote the set of all reflections in W . Every finite Coxeter group W can be
realized as a reflection group in some Euclidean space E of dimension equal to the rank of
W . In this realization, each element of T corresponds to the orthogonal reflection through
a hyperplane in E containing the origin.

It is not difficult to give an explicit representation of Bn and Dn as reflection groups. If
i ∈ [n], let ei denote the ith standard coordinate vector. Moreover, let ei∗ = −ei . Regard
Bn , or its subgroup Dn , as a permutation group as given above. Then for w ∈ Bn , the
representation of w as an orthogonal transformation is given by letting

w(ei ) = ew(i) (2.1)

for each i ∈ [n] and expanding linearly.
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As a reflection group, each finite Coxeter group W acts on its Coxeter complex. Let �

denote the set of all reflecting hyperplanes of W , and let E ′ = E\ ⋃
H∈� H . The connected

components of E ′ are called chambers. For any chamber 	, its closure 	̄ is a simplicial
cone in E. These simplicial cones and all their faces form a simplicial fan called the Coxeter
complex and denoted 
 := 
(W ). It is known that W acts simply transitively on the set of
chambers of 
(W ).

A flag of an n-dimensional polytope is a nested sequence F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 of faces.
A polytope is regular if its symmetry group is flag transitive. Each of the irreducible Coxeter
groups listed above, except Dn, E6, E7, and E8, is the symmetry group of a regular convex
polytope. In particular An is the symmetry group of the (n − 1)-simplex, the permutation
representation above being the action on the set of n vertices, each vertex labeled with
an element of [n]. The group Bn is the symmetry group of the n-cube or its dual, the
cross polytope (generalized octahedron). For this reason, the group Bn is referred to as
the hyperoctahedral group. The permutation representation is the action on the set of 2n
vertices of the cross polytope, each vertex labeled with an element of [n] ∪ [n]∗, the vertex
i∗ being the vertex antipodal to the vertex i . Dually, the action is on the set of 2n facets of
the n-cube, the facet i∗ being the one opposite the facet i . In the cases where Coxeter group
W is the symmetry group of a regular polytope, the intersection of the Coxeter complex

(W ) with a sphere centered at the origin is essentially the barycentric subdivision of the
polytope.

The Coxeter group of type Dn also acts on the n-cube Qn , although not quite flag
transitively; Dn acts transitively on the set of k-dimensional faces of Qn for all k except
k = 0. However, there are two orbits in its action on the set of vertices of Qn , and hence
two orbits in its action on the set of flags of Qn .

3. Dn Matroids

Three definitions of Dn matroid (orthogonal matroid) are now given: (1) algebraic, (2) ge-
ometric, and (3) combinatorial. That these three definitions are equivalent is the subject of
Sections 4, 5 and 6. Three such definitions are also given of An (ordinary) matroids and Bn

(symplectic) matroids.

Algebraic description. We begin with a definition of the Bruhat order on a Coxeter group
W ; for equivalent definitions see e.g., [7, 12]. We will use the notation � for the Bruhat
order. For w ∈ W a factorization w = s1s2 · · · sk into the product of generators in S is
called reduced if it is shortest possible. Let l(w) denote the length k of a reduced factori-
zation of w.

Definition 1 Define u � v if there exists a sequence v = u0, u1, . . . , um = u such that
ui = ti ui−1 for some reflection ti ∈ T (W ), and l(ui ) > l(ui−1) for i = 1, 2 . . . , m.

Every subset J ⊂ S gives rise to a (standard) parabolic subgroup PJ generated by J . The
Bruhat order can be extended to an ordering on the left coset space W/P for any parabolic
subgroup P of W .
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Definition 2 Define Bruhat order on W/P by ū � v̄ if there exists a u ∈ ū and v ∈ v̄

such that u � v.

Associated with each w ∈ W is a shifted version of the Bruhat order on W/P , which
will be called the w-Bruhat order and denoted �w.

Definition 3 Define ū �w v̄ in the w-Bruhat order on W/P if w−1ū � w−1v̄.

Definition 4 The set L ⊆ W/P is a Coxeter matroid (for W and P) if, for each w ∈ W ,
there is a ū0 ∈ L such that ū �w ū0 for all ū ∈ L .

The condition in Definition 4 is referred to as the Bruhat maximality condition. A Coxeter
diagram with a subset of the nodes circled will be referred to as a marked diagram. The
marked diagram G of W/P is the diagram of W with exactly those nodes circled that do
not correspond to generators of P . Likewise, if L is a Coxeter matroid for W and P , then
G is referred to as the marked diagram of L .

Geometric description. Consider the representation of a Coxeter group W as a reflection
group in Euclidean space E as discussed in Section 2. A root of W is a vector orthogonal to
some hyperplane of reflection (a hyperplane in the Coxeter complex). For Dn , with respect
to the same coordinate system used in Eq. (2.1), the roots are precisely the vectors

R = {ei ± e j | i, j ∈ [n], i �= j},

while the roots of Bn are

R ∪ {ei | : i ∈ [n]}.

For our purposes the norm of the root vector is not relevant.
In the Coxeter complex of W choose a fundamental chamber that is bounded by the

hyperplanes of reflection corresponding to the generators in S. With the Coxeter complex
of Dn as described in Section 2, a fundamental chamber is the convex cone spanned by the
vectors

e1, e1 + e2, . . . , e1 + e2 + · · · + en−2,

e1 + e2 + · · · + en−1 + en, (3.1)

e1 + e2 + · · · + en−1 − en.

Let x be any nonzero point in the closure of this fundamental chamber. Denote the orbit of
x by

Ox = {w(x) | w ∈ W }.

If L ⊆ Ox , then the convex hull of L , denoted 
(L), is a polytope. The following formu-
lation was originally stated by Gelfand and Serganova [10]; also see [12].
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Definition 5 The set L ⊆ Ox is a Coxeter matroid if every edge in 
(L) is parallel to a
root of W .

The marked diagram G of a point x is the diagram of W with exactly those nodes circled
that correspond to hyperplanes of reflection not containing point x . Note that x and y
have the same diagram if and only if they have the same stabilizer in W . If L ⊆ Ox is a
Coxeter matroid, then G is referred to as the marked diagram of L . The polytope 
(L) is
independent of the choice of x in the following sense. The proof appears in [5].

Lemma 1 If x and y have the same diagram and Lx ⊆ Ox and L y ⊆ Oy are corresponding
subsets of the orbits (i.e., determined by the same subset of W ), then 
(Lx ) and 
(L y) are
combinatorially equivalent and corresponding edges of the two polytopes are parallel.

Because of Lemma 1, there is no loss of generality in taking, for each diagram, one par-
ticular representative point x in the fundamental chamber and the corresponding orbit Ox .
In particular, we can take x in the set Z0 of points (x1, x2, . . . , xn) ∈ Z

n where each of the
following quantities equals either 0 or 1: xi − xi+1, i = 1, 2 . . . , n −2, and xn−1 −|xn|, and
|xn|. The set Z0 consists essentially of all possible barycenters of subsets of the vectors in
(3.1) that span the fundamental chamber. (Except, however, the single vector e1 +· · ·+en−1

is used instead of the last two vectors in (3.1) when both of those vectors are present. Thus,
if n = 3 for example, we get (2, 1, 0) ∈ Z0 instead of (3, 2, 0).)

Combinatorial description. Our combinatorial description of symplectic and orthogonal
matroids is analogous to the definition of an ordinary matroid in terms of its collection
of bases. Whereas the algebraic and geometric descriptions hold for any finite irreducible
Coxeter group, the definitions in this section are specific to the An, Bn and Dn cases. For a
generalization see [13].

An essential notion in these definitions is Gale ordering. Given a partial ordering � on a
finite set X , the corresponding Gale ordering on the collection of k-element subsets of X
is defined as follows: A ≤ B if, for some ordering of the elements of A and B,

A = (a1, a2, . . . , ak)

B = (b1, b2, . . . , bk),

we have ai � bi for all i . Equivalently, we need a bijection κ : B → A so that κ(b) ≤ b
for all b ∈ B. In later proofs when constructing such a bijection, we will refer to b as
dominating κ(b). The following lemma is straightforward.

Lemma 2 Let

A = (a1, a2, . . . , ak)

B = (b1, b2, . . . , bk),

and assume the elements have been ordered so that ai ≺ ai+1 and bi ≺ bi+1 for all i ≤ k − 1.
Then A ≤ B in the Gale order if and only if ai ≺ bi for all i .
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Define a flag F of type (k1, k2, . . . , km), 0 < k1 < k2 < · · · < km , as a nested sequence
of subsets of X

F = (A1 ⊂ A2 ⊂ · · · ⊂ Am)

such that |Ai | = ki . A flag of type k is just a single k-element set. Extend the Gale ordering
on sets to the Gale ordering on flags as follows. If

FA = (A1 ⊂ A2 ⊂ · · · ⊂ Am)

FB = (B1 ⊂ B2 ⊂ · · · ⊂ Bm)

are two flags, then FA ≤ FB if Ai ≤ Bi for all i .

An matroids. Consider flags F = (A1 ⊂ A2 ⊂ · · · ⊂ Am) where Ai ⊆ [n] for each i .
Let

A(k1,k2,...,km )

denote the set of all flags of type (k1, k2, . . . , km).

Definition 6 A collection L ⊆ A(k1,k2,...,km ) is an An matroid if, for any linear ordering of
[n], L has a unique maximal member in the corresponding Gale order.

If the flag consists of more than one subset, the An matroid is often referred to as an
ordinary flag matroid. In the case of single sets (flags of type k), it is a standard result in
matroid theory [14] that an An matroid is simply an ordinary matroid of rank k.

Bn matroids. Now consider flags F = (A1 ⊂ A2 ⊂ · · · ⊂ Am) where Ai ⊂ [n] ∪ [n]∗

for each i . Call such a flag admissible if Am ∩ A∗
m = ∅, i.e., if Am does not contain both i

and i∗ for any i . Let

A(k1,k2,...,km )

denote the set of all admissible flags of type (k1, k2, . . . , km) where 0 < k1 < k2 < · · · <

km ≤ n.
Define a partial order on [n] ∪ [n]∗ by

1 ≺ 2 ≺ . . . ≺ n − 1 ≺ n ≺ n∗ ≺ (n − 1)∗ ≺ · · · ≺ 2∗ ≺ 1∗. (3.2)

A partial order on [n] ∪ [n]∗ is called Bn-admissible if it is a shifted ordering ≺w for some
w ∈ Bn . By a shifted ordering we mean:

a �w b if and only if w−1(a) � w−1(b).

Note that an ordering � on [n] ∪ [n]∗ is admissible if and only if (1) � is a linear ordering
and (2) from i ≺ j it follows that j∗ ≺ i∗ for any distinct elements i, j ∈ [n] ∪ [n]∗. For
example, 2 ≺ 4∗ ≺ 1∗ ≺ 3 ≺ 3∗ ≺ 1 ≺ 4 ≺ 2∗ is an admissible ordering.
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Definition 7 A collection L ⊆ A(k1,k2,...,km ) is a Bn matroid (symplectic flag matroid) if, for
any admissible ordering of [n] ∪ [n]∗, L has a unique maximal member in the corresponding
Gale ordering.

The marked diagram G of A(k1,k2,...,km ) is the diagram for Bn with the nodes ki , i =
1, 2, . . . m, circled. Likewise, if L ⊂ A(k1,k2,...,km ) is a Bn matroid, then G is referred to as
the marked diagram of L .

Dn matroids. Again consider flags F = (A1 ⊂ A2 ⊂ · · · ⊂ Am) where Ai ⊂ [n] ∪ [n]∗

for each i . Let A(k1,k2,...,km ) denote the same set of admissible flags of type (k1, k2, . . . , km)

as in the Bn case, except when km = n. If km = n and km−1 ≤ n − 2, then let

A+
(k1,k2,...,km−1,n)

denote the set of admissible flags of type (k1, k2, . . . , km−1, n) with Am containing an even
number of starred elements, and let

A−
(k1,k2,...,km−1,n)

denote the set of admissible flags of type (k1, k2, . . . , km−1, n) with Am containing an odd
number of starred elements. Note that we do not permit both km−1 = n − 1 and km = n. In
the case km = n it should be understood, without explicitly stating it, that A means either
A+ or A−.

Define a partial order on [n] ∪ [n]∗ by

1 ≺ 2 ≺ . . . n − 1 ≺ n
n∗ ≺ (n − 1)∗ ≺ · · · ≺ 2∗ ≺ 1∗. (3.3)

Note that the elements n and n∗ are incomparable in this ordering. A partial order on
[n] ∪ [n]∗ is Dn-admissible if it is a shifted order ≺w for some w ∈ Dn:

a �w b if and only if w−1(a) � w−1(b).

Note that an ordering � is Dn-admissible if and only if it is of the form

a1 ≺ a2 ≺ · · · an−1 ≺ an

a∗
n

≺ a∗
n−1 ≺ . . . ≺ a∗

2 ≺ a∗
1 ,

where {a1, a2, . . . , an} is admissible and we again use the convention i∗∗ = i .

Definition 8 A collection L ⊆ A(k1,k2,...,km ) is a Dn matroid (orthogonal matroid) if, for
each admissible ordering, L has a unique maximal member in the corresponding Gale order.

The elements of L will be called bases of the matroid. If m > 1, then the matroid is
sometimes referred to as an orthogonal flag matroid. The marked diagram G of A(k1,k2,...,km )

is obtained from the diagram of Dn by considering three cases:
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Case 1. If km ≤ n − 2, then circle the nodes k1, k2, . . . , km .
Case 2. If km−1 ≤ n − 2 (or m = 1) and km = n, then circle the nodes k1, . . . , km−1

and the node n − 1 or n depending on whether the collection of flags is A−
(k1,k2,...,km ) or

A+
(k1,k2,...,km ), respectively.

Case 3. If km−1 ≤ n − 2 (or m = 1) and km = n − 1, then circle nodes k1, . . . , km−1 and
both nodes n − 1 and n.

Note that all possibilities for marked diagrams are realized. If L ⊆ A(k1,k2,...,km ) is a Dn

matroid, then G is referred to as its marked diagram.

4. Bijections

The definitions of Dn matroid in the previous section are cryptomorphic in the sense of ma-
troid theory; that is, they define the same object in terms of its various aspects. Likewise for
Bn matroids. For ordinary matroids there are additional definitions in terms of independent
sets, flats, cycles, the closure operator, etc. In this section we make the crytomorphisms
explicit for orthogonal matroids.

The definitions given for Dn matroid in the previous section are

(1) in terms of the set W/P of cosets (Definition 4),
(2) in terms of the set Ox of points in Euclidean space (Definition 5), and
(3) in terms of a collection A(k1,k2,...,km ) of admissible flags (Definition 8).

Explicit bijections are now established between W/P, Ox and A(k1,k2,...,km ), each with the
same marked diagram:

f : Dn/P → Ox

g : Dn/P → A(k1,...,km )

h : A(k1,...,km ) → Ox .

To define f , start with the collection Dn/P of cosets with marked diagram G. Fix a point
x ∈ R

n\{0} in the fundamental chamber with marked diagram G. In fact, we can take x
to be a point in the set Z0 defined in Section 3. In other words, the stabilizer of x in W is
exactly P . For w ∈ Dn , the point w(x) depends only on the coset wP . This gives a bijection

f : Dn/P → Ox

w̄ �→ w(x).

To describe the inverse of f , let y ∈ Ox and let w ∈ Dn be such that w(x) = y. If P is
the parabolic subgroup of Dn generated by exactly those reflections that stabilize x , then
f −1(y) = wP .

To define g, again consider the collection Dn/P of cosets with marked diagram G.
Let A(k1,...,km ) be the collection of admissible sets with the same marked diagram G (as
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described by the three cases in Section 3). If F = (A1 ⊂ A2 ⊂ · · · ⊂ Am) is a flag and
Ai = {a1, . . . , aki }, then the flag will often be denoted

F = a1a2 . . . ak1

∣∣ . . . ak2

∣∣ . . . . . .
∣∣ . . . akm . (4.1)

For example the flag {1, 2} ⊂ {1, 2, 3∗, 5} ⊂ {1, 2, 3∗, 5, 7∗} will be denoted simply
12 | 3∗5 | 7∗. Let F0 be the flag

F0 = 1 2 . . . | . . . . . . | . . . km

of type (k1, . . . , km), km < n, or, in the case km = n,

F0 = 1 2 . . . | . . . . . . | . . . n or

F0 = 1 2 . . . | . . . . . . | . . . n∗,

depending, respectively, on whether the node n − 1 or n is circled. Let F be an arbitrary flag
given in the form (4.1). The action of Dn as a permutation group on [n] ∪ [n]∗ as described
in Section 2 extends to an action on A(k1,k2,...,km ):

w(F) = w(a1)w(a2) . . . w
(
ak1

) ∣∣ . . . w
(
ak2

) ∣∣ . . . . . .
∣∣ . . . w(

akm

)
,

where w ∈ Dn . For this action of Dn on A(k1,...,km ) the stabilizer of F0 is P . So, for w ∈ Dn ,
the flag w(F) depends only on the coset wP . Thus a bijection is induced:

g : Dn/P → A(k1,...,km )

w̄ �→ w(F0).

The map g is surjective because, if km < n, then there is one orbit, A(k1,...,km ), in the action
of Dn on the set of admissible flags of type (k1, . . . , km). If km = n, then there are two
orbits, A+

(k1,...,km ) and A−
(k1,...,km ), the one consisting of those admissible flags such that Am

contains an even number of starred elements, and the other those admissible flags such that
Am contains an odd number of starred elements.

To describe the inverse of g, let F be an arbitrary flag inA(k1,...,km ) and let w ∈ Dn be such
that w(F0) = F . If P is the parabolic subgroup of Dn that stabilizes F0, then g−1(F) = wP .

The third bijection is h = f ◦ g−1. However, it is useful to provide a direct construction,
as follows. Let F be a flag of type (k1, . . . , km) where ki ∈ [n]:

F = (A1 ⊂ A2 ⊂ · · · ⊂ Am) = a1a2 . . . ak1

∣∣ . . . ak2

∣∣ . . . . . .
∣∣ . . . akm .

Recall that ei∗ = −ei for any i ∈ [n] and define the map h : A(k1,...,km ) → R
n by

h(F) =
km∑

i=1

αi eai ,
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where αi is the number of sets in the flag (A1 ⊂ A2 ⊂ · · · ⊂ Am) that contain ai . In
particular let

x = h(1 2 . . . k1 | . . . k2 | . . . . . . | . . . km) ∈ Z0,

where we allow km = n or km = n∗ when we are in case A = A+ or A = A−, respectively.
Now we have our map

h :A(k1,...,km ) → Ox .

There is an alternative way to describe the map h, in terms of the barycentric subdivision
β(Q) of the n-cube Q centered at the origin with edges parallel to the axes. Let the faces
of Q be labeled by [n] ∪ [n]∗, where i and i∗ are antipodal faces. If F ∈ Ak , then h(F)

is a vertex of β(Q) (appropriately scaled). For a flag F = (A1 ⊂ A2 ⊂ · · · ⊂ Am) ∈
A(k1,...,km ), the image h(F) is the barycenter of the simplex of β(Q) determined by the
vertices h(A1), h(A2), . . . , h(Am).

To describe the inverse of h, note that each vertex v in β(Q) represents a face fv of Q. If
A ⊂ [n] ∪ [n]∗ is the set of k facets of Q whose intersection is fv , then label v by A. Point x
is the barycenter of a simplex of β(Q) whose vertices are labeled, say [k1], [k2], . . . , [km],
where k1 < k2 < · · · < km (again, in the case A = A−, replace [km] = [n] = {1, 2, . . . , n}
by {1, 2, . . . ,−n}). Likewise each point y ∈ Ox is the barycenter of some simplex of β(Q)

whose vertices are labeled A1, A2, . . . , Am where A1 ⊂ A2 ⊂ · · · ⊂ Am and |Ai | = ki for
each i . Then

h−1(y) = F = (A1 ⊂ A2 ⊂ · · · ⊂ Am).

Proposition With the maps as defined above: h ◦ g = f .

Proof: Let w̄ ∈ Dn/P and use formula (2.1):

(h ◦ g)(w̄) = h (w(1)w(2) . . . w(k1) | . . . w(k2) | . . . . . . | . . . w(km))

=
km∑

i=1

αi ew(i) = w

(
km∑

i=1

αi ei

)
= w(x) = f (w̄).

✷

5. The Bruhat order on Dn

Let Dn/P and A(k1,...,km ) have the same marked diagram. In this section a combinatorial
description of the Bruhat order on Dn/P is given in terms of A(k1,...,km ). This is also done
in the Bn case.

Consider two flags of the same type:

FA = (A1 ⊂ A2 ⊂ · · · ⊂ Am)

FB = (B1 ⊂ B2 ⊂ · · · ⊂ Bm)
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Alternatively,

A = a1a2 . . . ak1

∣∣ . . . ak2

∣∣ . . . . . .
∣∣ . . . akm

B = b1b2 . . . bk1

∣∣ . . . bk2

∣∣ . . . . . .
∣∣ . . . bkm .

Assume, without loss of generality, that in A and B the elements between consecutive
vertical bars are arranged in descending order with respect to (3.2). This is possible because,
by definition, elements n and n∗ do not appear together in an admissible set.

Now we define a partial order on A(k1,...,km ) called the weak Dn Gale order. Consider
two distinct flags A and B (denoted as above) where, for each i , either (1) bi = ai or (2)
bi = a∗

i . In case (2) also assume that

(a) ai is unstarred and ai �= n;
(b) a j (and thus also b j ) is less than ai in numerical value for all j > i ; and
(c) all elements greater than ai in numerical value appear to the left of ai in A.

Clearly B > A in the Gale order for Dn . Call two flags with the above properties close. For
example, if n = 4 then B = 4 | 3∗1 and A = 4 | 31 are close, but B = 43∗1 = 3∗41 and
A = 431 are not close and B = 3∗ | 1 and A = 3 | 1 are not close. For any pair of flags that
are close, it is easy to check that one covers the other in the Gale order. Consider the Hasse
diagram of the Dn Gale order on the set A(k1,...,km ) of flags. Remove from the diagram all
covering relations that are close. Call the resulting partial order on A(k1,...,km ) the weak Dn

Gale order.
The following notation is used in the next lemma, which provides a formula for the length

l(u) of any element u ∈ Dn . Let Fu ∈ A(1,...,n−1). Since all nodes in the corresponding
diagram are circled, the parabolic subgroup in this case is trivial, so we are justified in using
the notation Fu , where u ∈ Dn . Let F ′

u be the flag in A(1,...,n) obtained from Fu by adjoining
the missing element at the end so that the number of starred elements is even. For a flag A
in A(1,...,n) define a descent as a pair (ai , a j ) of elements such that j > i and ai  a j . Let
d(A) denote the number of descents in flag A. Note that, as a permutation of [n] ∪ [n]∗, a
reflection t ∈ Dn is an involution of the form

(i j)(i∗ j∗) where i, j ∈ [n] ∪ [n]∗. (5.1)

A generating reflection is of the form (i(i + 1))(i∗ (i + 1)∗), i = 1, 2, . . . , n − 1 or
((n − 1) n∗)((n − 1)∗ n).

Lemma 3 Let Fu be the flag corresponding to an element u ∈ Dn. Then

l(u) = d(F ′
u) +

∑
s∗∈[n]∗∩F ′

u

(n − s).

Proof: The proof is by induction. For a flag in F = Fu ∈ A(1,...,n−1), denote the parameter
d(F ′) + ∑

s∗∈[n]∗∩F ′(n − s) by p(F). Note that applying any generating reflection s to F
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changes p(F) by at most 1. Since p(1 | 2 | . . . | n) = 0, necessarily l(u) ≥ p(F). But we
can always arrange it so that p(s F) = p(F) − 1, so l(u) = p(F). ✷

Theorem 1
(1) The correspondence g : Dn/P → A(k1,...,km ) is a poset isomorphism between Dn/P

with respect to the Bruhat order and A(k1,...,km ) with respect to the weak Dn Gale order.
In other words, for Dn, Bruhat order is weaker than Gale order.

(2) On the other hand, for Bn, Bruhat order on Bn/P is isomorphic to Gale order on
A(k1,...,km ).

Proof: In this proof the relation ≥ refers to the Dn weak Gale order. Let FA and FB be
two flags in A(k1,...,km ) and v̄ and ū the corresponding cosets in Dn/P . It must be shown that
FB ≥ FA if and only if ū � v̄. According to Definitions 1 and 2 in Section 3, in Dn/P we
have ū � v̄ in the Bruhat order if and only if there exists a sequence v̄ = ū0, ū1, . . . , ūm = ū
such that ūi = ti ūi−1 for some reflection ti ∈ T (Dn), and l(ui ) > l(ui−1) for i = 1, 2 . . . , m.
Let ū = t v̄ where t is a reflection, and let flags Fv and Fu be the corresponding flags. Note
that, according to Lemma 3, ū  v̄ if and only if Fu > Fv .

Below it will be shown that, in A(k1,...,km ), we have FB ≥ FA in the weak Dn order if and
only if there exists a sequence of flags FA = F0, F1, . . . , Fm = FB such that Fi = ti (Fi−1)

for some involution ti of the form (5.1), and Fi > Fi−1 for i = 1, 2 . . . , m. This will
prove the theorem. Thus it is now sufficient to show that, for any two flags FB > FA, there
is an involution t of the form (5.1) such that either FB ≥ FC = t (FA) > FA or FB > FC

= t (FB) ≥ FA.

To simplify notation assume that B > A are two flags. Let j be the first index such that
a j �= b j , and such that, furthermore, if b j = a∗

j then assume that either

(i) there is an ai , i > j, that is greater than a j in numerical value or
(ii) there is an element c greater than a j in numerical value such that neither c nor c∗ lies

to the left of a j in A.

Since A and B are not close, such a j must exist. To simplify notation let a = a j , b = b j .
If a  b, then it is not possible that B > A. Also b = n∗, a = n is not possible; otherwise
there would be an earlier pair ai , bi = a∗

i , i < j, that would qualify as the first pair such
a j �= b j . Thus b  a. Let [a, b] = {x | a � x � b}. One of the following cases must hold:

(1) There is a c ∈ [a, b] such that either c lies to the right of a in A or neither c nor c∗

appears in A.
(2) There is a c ∈ [a, b] such that c lies to the right of b in B or neither c nor c∗ appears

in B.
(3) There is a c∗ ∈ [a, b]∗ such that c∗ lies to the right of a in A.

In fact, if neither (1) nor (2) holds, then clearly b can play the role of c in (3) unless b = a∗.
But if b = a∗ and neither (1) nor (2) holds, then the non-closeness of A and B is violated.
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Case 1. Assume that such a c exists. If such c exists to the right of a in A, let c = ak be the
first such element as we move to the right of a in A. (If neither c nor c∗ appear in A for
all such c, let k = ∞.) The elements ai ∈ A between a and ak do not lie in [a, b].

There are now two subcases. Assume that ai = bi for all i < j . Let C be obtained
from A by applying the involution (ac)(a∗c∗). Clearly C > A, since c must occur in a
separate block of A from a, since c > a and we assumed elements in a block are ordered
in decreasing order. It remains to show that B ≥ C . We must show that Bi ≥ Ci for all
j < i < k. We have Bi > Ai and we may assume that all elements to the left of b in
Bi are used to dominate the elements to the left of a in A. The element b in Bi must be
used to dominate an element of A that is less than or equal to a. But then, without loss of
generality, we may assume that b is used to dominate a. Using the same correspondence
we have Bi ≥ Ci .

Now assume the other subcase, that bi = a∗
i for some i < j . Arguing as above, for

Bi > Ai it may be the case that b is used to dominate ai . By the choice of j satisfying
properties (i) and (ii) above, b is less than ai in numerical value, and hence it must be the
case that b  bi = a∗

i . But then, without loss of generality, we can take bi to dominate ai

and b to dominate a. Then proceed as in the paragraph above.

Case 2 is proved in an analogous fashion to Case 1, finding a C such that B > C ≥ A.

Case 3. Assume that neither case (1) nor case (2) holds. We have already seen that b �= a∗.
The situation is now divided into two possibilities. Either

(1) a and b are both unstarred or a is unstarred and b = n∗; or
(2) a and b are both starred or b is starred and a = n.

The two cases are exhaustive. To see this let a �= n be unstarred and b �= n∗ starred. Either
a is greater than b in numerical value or b is greater than a in numerical value. Assume the
former; the argument is the same in either case. Then a ∈ [a, b] and a∗ ∈ [a, b]. One of
the following must be true: neither a nor a∗ appear in B (which is case 2) or one of a or a∗

appears to the right of b in B (also case 2). (Note that b = n∗, a = n is not possible.)
We consider the case where both a and b are unstarred or a is unstarred and b = n∗; the

argument in the second case is analogous. We assume that there is a c∗ ∈ [a, b]∗ such that
c∗ lies to the right of a in A. Let c∗ = ak be the last such starred element as we move to the
right of a in A. In other words, all other elements in [a, b]∗ that lie to the right of a in A lie
to the left of c∗. Let C be obtained from A by applying the involution (ac)(a∗c∗). Clearly
C > A; it remains to show that B ≥ C . In particular, we must show that Bi ≥ Ci for all i
such that ki > j . We have Bi > Ai and we can assume, by the same reasoning as in case
(1), that all elements to the left of b in B are used to dominate the elements to the left of a
in A. Since no elements in [a, b] appear to the right of a in A, there is no loss of generality
in assuming that b is used to dominate a. Then, unless ki ≥ k, the same correspondence
between the elements of Ai and Bi shows that Bi ≥ Ci .

If ki ≥ k, then consider the set X of starred elements of Ai (and n if b = n∗) that lie to the
right of a and the set Y of starred elements of Bi that lie to the right of b. It is not necessary to
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consider elements to the left of a or b because, even if for some such pair we have bi = a∗
i ,

the element bi cannot be used to dominate any element of X in the Gale order Bi > Ai

since all elements in X are less than bi in numerical value (and hence greater in order). So
in the Gale order Bi > Ai the elements of X must be dominated by elements of Y . Indeed,
X ∩ ([a, b]∗) \ {b∗} ⊇ Y ∩ ([a, b]∗) \ {a∗}. There may be elements of ([a, b]∗) \ {a∗} not in
Bi , by virtue of appearing to the right of position ki . But in that case, even larger elements
of Y must be used to dominate X ∩ ([a, b]∗) \ {b∗}. By letting each element be used to
dominate itself, where possible, we see that there is no loss of generality in assuming that
x ≥ a∗, x ∈ Bi dominates b∗ ∈ Ai . But now almost the same correspondence shows that
Bi ≥ Ci . Merely make the changes that x ∈ Bi dominates a∗ ∈ Ci and c∗ ∈ Bi (or some
larger element) dominates b∗ ∈ Ci , whereas b now dominates c. This completes the proof
of statement (1) of Theorem 1.

A similar though considerably simpler proof of statement (2) in Theorem 1 can be given.
In fact, a general proof for all Coxeter groups with a linear diagram was given in [13]. This
would include the Bn case, but not the Dn case. ✷

6. Cryptomorphisms

We have seen that for Dn , the bijection g : Dn/P → A(k1,...,km ) is not a poset isomorphism
between Bruhat order and Gale order, but rather that Bruhat order is weaker than Gale order.
It is therefore somewhat surprising that the Bruhat maximality condition is still equivalent
to the Gale maximality condition. We now prove the equivalence of our three definitions of
Dn matroid, the algebraic, geometric, and combinatorial descriptions.

Theorem 2 Let L ⊆ Dn/P be a collection of cosets, let 
 = 
( f (L)) be the corre-
sponding polytope, and let F = g(L) ⊆ A(k1,...,km ) be the corresponding collection of flags.
Then the following are equivalent.
(1) L satisfies the Bruhat maximality condition,
(2) 
(L) satisfies the root condition,
(3) F satisfies the Gale maximality condition.

Proof: This theorem follows from Theorem 3 in [13]. However, that paper considers
a much more general setting, and the proof, including that of the prerequisite Theorem
1 of [13], is quite long and involved. The situation simplifies considerably in the current
setting. The equivalence of statements (1) and (2) is a special case of the Gelfand-Serganova
Theorem and is proved for any finite irreducible Coxeter group in [12, Theorem 5.2.] Now
we show the equivalence of (1) and (3).

Assume that L ⊆ Dn/P satisfies the maximality condition with respect to Bruhat order.
This means that, for any w ∈ Dn , there is a maximum ū0 ∈ L such that w−1ū0 � w−1ū for
all ū ∈ L . But by statement (1) of Theorem 1 this implies that w−1(ū0(F0)) = g(w−1ū0) ≥
g(w−1ū) = w−1(ū(F0)) in the weak Dn Gale order for all ū ∈ L , where F0 is the flag
defined in Section 4. So F satisfies the Gale maximality condition.

Conversely, suppose that F satisfies the Gale maximality condition with respect to ad-
missible Dn-orderings. Since every admissible Bn-ordering is a refinement of an admissible
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Dn-ordering, it is clear thatF satisfies the Gale maximality condition with respect to admis-
sible Bn-orderings. By statement (2) of Theorem 1, the corresponding collection of cosets
of Bn/P satisfies the Bruhat maximality condition, and hence the corresponding polytope

(L) satisfies the root condition for Bn by the above-mentioned equivalence of (1) and (2)
for finite irreducible Coxeter groups. Note that if we consider the same set of flags F as
both a Dn matroid and a Bn matroid, 
(L) is the same polytope in both cases. If 
(L)

also satisfies the root condition for Dn , we are done. Therefore we assume, by way of con-
tradiction, that 
(L) does not satisfy the root condition for Dn , and hence that there is an
edge of 
(L) which is parallel to ei for some i . Let this edge be δAδB for some pair of flags
A, B ∈ F , h(A) = δA and h(B) = δB , where h is the bijection from Section 4. Then A and
B differ only in element i , and hence for some k, ak = i, bk = i∗. Now let f = ∑n

j=1 γ j x j

be a linear functional which takes its maximum value on the polytope 
(L) only on the
two vertices δAδB and, of course, the edge between them. Clearly γi = 0. Without loss of
generality, we may assume that f is chosen so that γ j �= 0 for all j �= i . Now choose an
admissible Dn-ordering on [n] ∪ [n]∗ according to the values of γ j : if we write γ j∗ = −γ j ,
then when γ j > γk for j, k ∈ [n] ∪ [n]∗, set j > k, and when γ j = γk , break the tie
arbitrarily, as long as admissibility is attained. Also i and i∗ remain incomparable. In the
Gale order induced by this admissible order, A and B are unrelated. Suppose there exists
some flag X > A in the Gale order. Clearly f (δX ) ≥ f (δA), contradicting the fact that δA

and δB are the unique vertices of 
(L) on which f is maximized. Thus A, and likewise B,
are both maximal in the Dn Gale order, contrary to assumption. ✷

We now consider a fourth equivalent definition of orthogonal matroid in the case that
the marked diagram has both nodes n − 1 and n circled. In this case an orthogonal matroid
L ⊆ A(k1,...,km ) has km = n − 1, and the largest member Am of each flag is an admissible
set of cardinality n − 1. It is easily seen that the collection of all such (n − 1)-sets for all
members of L itself constitutes an orthogonal matroid of rank n − 1. (This is likewise true
for smaller ranks, as well as for all ranks for Bn and An matroids.) However, the present case
is the only one among all of these in which the parabolic subgroup P is not maximal since,
by the way the diagram is defined, the two generators corresponding to n − 1 and n are
both deleted to get the generators of P . Thus the idea presents itself that such an orthogonal
matroid of rank n − 1 should be equivalent in some way to a pair of orthogonal matroids of
opposite parity, corresponding to the two marked diagrams with either n − 1 or n circled.
This is indeed the case. Let

FA = (A1 ⊂ A2 ⊂ · · · ⊂ Am) ∈ A(k1,k2,...,km )

be a flag with km = n − 1, and let A+
m and A−

m denote the unique extensions of Am to
admissible sets of cardinality n having an even and an odd number of starred elements,
respectively. Let us denote

�A = (A1 ⊂ A2 ⊂ · · · ⊂ Am−1 ⊂ {A+
m, A−

m}),

where the notation is intended to convey that Am−1 is a subset of both A+
m and A−

m , whereas the
latter two are not to be regarded as occurring in any particular order since they are unrelated
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by containment. �A is sometimes referred to as an oriflamme. Given a Dn admissible order,
we will write �A ≤ �B if Ai ≤ Bi in Dn Gale order, for each i = 1, . . . , m − 1, and if,
furthermore, {A+

m, A−
m} ≤ {B+

m , B−
m }, which we define to mean that either A+

m ≤ B+
m and

A−
m ≤ B−

m , or A+
m ≤ B−

m and A−
m ≤ B+

m . We will refer to this ordering as modified Gale order.

Theorem 3 For any two flags FA, FB of the same type (k1, k2, . . . , km) with km = n − 1,

with corresponding oriflammes �A, �B, we have FA ≥ FB if and only if �A ≥ �B. Hence
a collection of flags is an orthogonal matroid if and only if the corresponding collection of
oriflammes satisfies the maximum condition for modified Gale order.

Proof: It suffices to consider the case m = 1, so that A = A1 and B = B1 are admissible
sets of cardinality n −1. We may also write �A = {A∪{x}, A∪{x∗}}, �B = {B ∪{y}, B ∪
{y∗}}, where x, x∗ are the unique pair neither of which is in A, and similarly y, y∗ for B.
Note that if x = y or y∗ then the theorem is trivial, so we assume henceforth that this is not
the case.

Suppose �A ≥ �B . If x > y, y∗ and y, y∗ > x∗, then since A ∪ {x∗} ≥ B ∪ {y}
or A ∪ {x∗} ≥ B ∪ {y∗}, we see immediately that A ≥ B. Similar arguments cover the
remaining possible cases of the admissible order restricted to x, x∗, y, y∗.

To prove the converse, assume that A ≥ B. We must prove that {A ∪ {x}, A ∪ {x∗}} ≥
{B ∪ {y}, B ∪ {y∗}}. The assumption that A ≥ B means that there is a bijection κ from A
to B, so that a ≥ κ(a) for all a ∈ A. Note that we can assume without loss of generality
that κ maps any element b of A ∩ B to itself, for if κ(a) = b and κ(b) = b′, then we can
reassign κ(a) = b′ and κ(b) = b. Thus we have κ(a) ∈ B \ A if and only if a ∈ A \ B.

Let us assume that our admissible ordering restricted to x, x∗, y, y∗ gives x > y, y∗ and
y, y∗ > x∗. The argument for the remaining cases is similar. (In particular, when x and
x∗ are between y and y∗, we just need to reverse the roles of A and B and reverse the
ordering to transform the argument to the above case.) Notice that A ∪ {x} ≥ B ∪ {y} and
A ∪ {x} ≥ B ∪ {y∗} as well. Thus we only need to prove either A ∪ {x∗} ≥ B ∪ {y} or
A ∪ {x∗} ≥ B ∪ {y∗}. Since x �= y, y∗, we have two cases: either x ∈ B or x∗ ∈ B.

Case 1: x ∈ B. Write x = b1, and since b1 �∈ A, we have b1 = κ(a1) for some a1 ∈ A\ B.
Since a1 > b1 ≥ y, y∗, and a1 �∈ B we have a∗

1 ∈ B \ A. We denote b2 = a1 < x∗ and
have b2 = κ(a2) for a2 ∈ A \ B. Now if a2 ≥ y or a2 ≥ y∗, then we are done, for we
can define κ ′(a2) = y and κ ′(x∗) = b2 (or similarly with y∗), with the rest of κ ′ agreeing
with κ , and κ ′ establishes the desired (modified) Gale dominance. Hence we may now
assume that a2 < y, y∗. Since a2 ∈ A \ B and a2 �= y, y∗, we have a∗

2 ∈ B \ A. Denoting
b3 = a∗

2 = κ(a3) for a3 ∈ A \ B and a3 > a∗
2 > y, y∗, so a∗

3 ∈ B \ A, and we write
b4 = a∗

3 = κ(a4) for some a4 ∈ A \ B.
We continue in this fashion until either two ai ’s coincide (and hence so do the corre-

sponding bi ’s), or until some ai ≥ y or ai ≥ y∗ for some even i , one of which must occur
eventually since A is finite. In the case of a coincidence, since ai > y, y∗ for i odd but
not for i even, our coincidence is of the form ai = a j for i, j of the same parity. Assume
that i is the minimal index in such a coincidence. But then bi = b j since κ is a bijection,
which if i ≥ 1 means a∗

i−1 = a∗
j−1, and hence ai−1 = a j−1. By minimality of i , we must
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have had b1 = bk for some odd k ≥ 3. But b1 = x and bk = a∗
k−1, showing that x∗ ∈ A, a

contradiction. Thus we could not have two ai ’s coincide, so we must instead have ai ≥ y
(or y∗) for some even i . Note that for even j ≥ 2, we have a j = b∗

j+1 ≥ a∗
j+1 = b j+2.

We now define κ ′(ai ) = y (or y∗), κ ′(a j ) = b j+2 for all even j with 2 ≤ j ≤ i − 2,
κ ′(x∗) = b2, and otherwise κ ′ agrees with κ . This gives the desired result for Case 1.

Case 2: x∗ ∈ B. Starting with b1 = x∗, we construct ai ’s and bi ’s exactly as above, except
that now it is the even-numbered ai which are always larger than y, y∗ and we want to
find one odd-numbered ai which is greater than either y or y∗. The rest of the proof is
similar to Case 1, with b1 = x∗ being used to contradict any coincidence among the ai ’s.

✷

7. Relation between symplectic and orthogonal matroids

In this section we view both symplectic matroids and orthogonal matroids in terms of their
combinatorial description. Both are defined in terms of admissible k-element subsets of
[n] ∪ [n]∗. The number k is called the rank of the symplectic or orthogonal matroid.

Corollary 1 Every orthogonal ( flag) matroid is a symplectic ( flag) matroid.

Proof: This follows directly from Theorem 2 since every admissible set of flags for Dn

is admissible for Bn and every root of Dn is a root of Bn . ✷

In general, the converse is false. For example, {12, 12∗} is a rank 2 symplectic (B2)
matroid, but is not an orthogonal (D2) matroid. We are not able, in general, to give a simple
combinatorial characterization of when a symplectic matroid is orthogonal (the geometric
characterization is obvious). Below, however, is a characterization for the special case of
a rank n symplectic matroid L ⊆ An , called a Lagrangian matroid in [2] or a symmetric
matroid in [6].

Theorem 4 A Bn matroid L of rank n is a Dn matroid if and only if L lies either entirely
in A+

n or entirely in A−
n .

Proof: Assume that L is a symplectic matroid. In one direction the result follows directly
from the definition of orthogonal matroid.

For the other direction, assume that L lies either entirely inA+
n or entirely inA−

n . Consider
any admissible orthogonal ordering � of [n] ∪ [n]∗. Without loss of generality, let � be
the ordering in (3.3). Use the notation �s for either one of the two admissible symplectic
orderings that are linear extensions of �. With respect to �s there is a Gale maximum
A = (a1, . . . , an), where the ai can be taken in descending order with respect to �s . Thus
for any B = (b1, . . . , bk), also in descending order, we have bi �s ai for all i . However, the
same inequality bi � ai also holds for the orthogonal ordering unless n and n∗ appear in
the same position in A and B, resp. But that can happen only if A ∩ [n − 1] = B ∩ [n − 1].
This would imply A ∈ A+

n and B ∈ A−
n or the other way around, a contradiction. ✷
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8. Representable orthogonal matroids

Some symplectic matroids and orthogonal matoids arise naturally from symplectic and
orthogonal geometries, respectively, in much the same way that ordinary matroids arise
from projective geometry. The representation of symplectic matroids was discussed in
[2]; the representation of orthogonal matroids is discussed in this section. However, it is
convenient to consider the symplectic and the orthogonal case simultaneously; this leads
to a simplified treatment of the symplectic case as well as a proof in the orthogonal case.
We will consider only the representation of symplectic and orthogonal matroids of type k,
for some k ≤ n. Flag symplectic and flag orthogonal matroids can similarly be represented
using flags of totally isotropic subspaces.

Both a symplectic space and an orthogonal space consist of a pair (V, f ) where V is a
vector space over a field of characteristic �= 2 with basis

E = {e1, . . . , en, e1∗ , . . . , en∗ },

and f is a bilinear form hereafter denoted just (·, ·). The bilinear form is antisymmetric for
a symplectic space and symmetric in an orthogonal space. In both cases

(ei , ei∗) = 1 for all i ∈ [n]

(ei , e j ) = 0 for all i �= j∗, where i, j ∈ [n] ∪ [n]∗.

A subspace U of V is totally isotropic if (u, v) = 0 for all u, v ∈ U .
Let U be a totally isotropic subspace of dimension k of either a symplectic or an orthogonal

space V . Since U ⊥ U , and dim U⊥ = 2n − dim U , we see that k ≤ n. Now choose a
basis {u1, u2, . . . , uk} of U , and expand each of these vectors in terms of the basis E :
ui = ∑n

j=1 ai, j e j + ∑n
j=1 bi, j e j∗ . Thus we have represented the totally isotropic subspace

U as the row-space of a k × 2n matrix (A | B), A = (ai, j ), B = (bi, j ), with the columns
indexed by [n] ∪ [n]∗, specifically, the columns of A by [n] and those of B by [n]∗.

Given a totally isotropic subspace U of dimension k, let C = (A | B) be a k × 2n matrix
defined above. If X is any k-element subset of [n] ∪ [n]∗, let CX denote the k × k minor
formed by taking the j-th column of C for all j ∈ X . Define a collection LU of k-
element subsets of [n] ∪ [n]∗ by declaring X ∈ LU if X is an admissible k-element set and
det(CX ) �= 0. Note that LU is independent of the choice of the basis of U .

Theorem 5 If U is a totally isotropic subspace of a symplectic or orthogonal space, then
LU is the collection of bases of a symplectic or orthogonal matroid, respectively.

Proof: The fact that the row space is totally isotropic implies∑
j

ai j bl j∗(e j , e j∗) + ai j∗bl j (e j∗ , e j ) = 0

for all i, l. In terms of the matrices A and B this is equivalent to

Ai • Bl ± Al • Bi = 0, (8.1)
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where Ai and Bi denote the respective row vectors and • denotes the the usual dot product.
The sign is + in the orthogonal case and − in the symplectic case. In the orthogonal case,
taking i = l, the equality (8.1) above implies

Ai • Bi = 0. (8.2)

Let � be any admissible ordering of [n] ∪ [n]∗. Order the columns of C in descending
order with respect to �. (The order of n and n∗ is arbitrary in the orthogonal case.) The
re-ordering may be done by first interchanging pairs of columns indexed by j and j∗ for
some j . In order to maintain (8.1) in the symplectic case (where we still consider A to be
the first n columns of C), one of the two interchanged columns must be multiplied by −1.
Note that this does not change LU . Second, do like column permutations on both A and B.
Finally, reverse the order of the columns of B. Then (8.1) and (8.2) remain valid, provided
we now interpret X • Y to mean the dot product of X with the reverse of Y .

In light of the preceding paragraph, we may, without loss of generality, assume � is the
ordering (3.2) in the symplectic case and the ordering (3.3) in the orthogonal case. This
will keep our notation simpler. We must show that LU contains a maximum member with
respect to the induced Gale ordering. Using the usual row operations, put C in echelon
form so that each row has a leading 1, the leading 1 to the right of the leading one in the
preceeding row, and zeros filling each column containing a leading 1. Let X0 be the subset
of [n] ∪ [n]∗ corresponding to the columns with leading ones. It is now sufficient to show
that (1) X0 is admissible, and (2) X ≤ X0 for any X such that the determinant of the k × k
minor CX of C corresponding to X is non-zero.

Concerning (1), assume that X0 is not admissible. Then both j and j∗ appear in X0 for
some j ∈ [n]. Let i and l be the rows for which there is a leading 1 at positions j and j∗,
respectively. Then Ai • Bl ± Al • Bi = 1, contradicting equality (8.1).

Concerning (2), if it is not the case that X ≤ X0, then, for some j , the first j columns
of CX have at least k − j + 1 rows of zeros. But such a matrix CX has determinant 0. The
exception to this argument is in the orthogonal case when X and X0 contain the incomparable
elements, n and n∗, in the same position when the elements of X and X0 are arranged in
descending order. However, for this to happen, there must be a row of C , say the j-th, such
that A j = (0, . . . , 0, 0) or A j = (0, . . . , 0, 1). If A j = (0, . . . , 0, 1), then by equality (8.2)
we have b jn∗ = A j • B j = 0. In either case the first j columns of CX or CX0 again have at
least k − j + 1 rows of zeros, implying that det(CX ) = 0 or det(CX0) = 0. ✷

References

1. A.V. Borovik, I.M. Gelfand, A. Vince, and N. White, “The lattice of flats and its underlying flag matroid
polytope,” Annals of Combinatorics 1 (1998), 17–26.

2. A.V. Borovik, I.M. Gelfand, and N. White, “Symplectic matroids,” J. Alg. Combin. 8 (1998), 235–252.
3. A.V. Borovik, I.M. Gelfand, and N. White, Coxeter Matroids, Birkhauser, Boston, to appear.
4. A.V. Borovik and K.S. Roberts, “Coxeter groups and matroids,” in Groups of Lie Type and Geometries, W.M.

Kantor and L.Di Martino (Eds.), Cambridge University Press, Cambridge, 1995, pp. 13–34.
5. A.V. Borovik and A. Vince, “An adjacency criterion for Coxeter matroids.” J. Alg. Combin. 9 (1999), 271–280.
6. A. Bouchet, “Greedy algorithm and symmetric matroids,” Math. Programming 38 (1987), 147–159.
7. V.V. Deodhar, “Some characterizations of Coxeter groups,” Enseignments Math. 32 (1986), 111–120.



ORTHOGONAL MATROIDS 315

8. I.M. Gelfand, M. Goresky, R.D. MacPherson, and V.V. Serganova, “Combinatorial Geometries, convex poly-
hedra, and Schubert cells,” Adv. Math. 63 (1987), 301–316.

9. I.M. Gelfand and V.V. Serganova, “On a general definition of a matroid and a greedoid,” Soviet Math. Dokl.
35 (1987), 6–10.

10. I.M. Gelfand and V.V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact
manifolds,” Russian Math. Surveys 42 (1987), 133–168; I.M. Gelfand, in Collected Papers, Vol. III, Springer-
Verlag, New York, 1989, pp. 926–958.

11. H. Hiller, Geometry of Coxeter Groups, Pitman, Boston, 1982.
12. V.V. Serganova, A. Vince, and A.V. Zelevinski, “A geometric characterization of Coxeter matroids,” Annals

of Combinatorics 1 (1998), 173–181.
13. A. Vince, “The greedy algorithm and Coxeter matroids,” J. of Alg. Combin., 11 (2000), 155–178.
14. N. White (Ed.), Theory of Matroids, Cambridge University Press, Cambridge, 1986.


