
Machine Learning, 44, 121–141, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Some Statistical-Estimation Methods
for Stochastic Finite-State Transducers∗
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València, Valencia, Spain

Editors: Vasant Honavar and Colin de la Higuera

Abstract. Formal translations constitute a suitable framework for dealing with many problems in pattern recog-
nition and computational linguistics. The application of formal transducers to these areas requires a stochastic
extension for dealing with noisy, distorted patterns with high variability. In this paper, some estimation criteria
are proposed and developed for the parameter estimation of regular syntax-directed translation schemata. These
criteria are: maximum likelihood estimation, minimum conditional entropy estimation and conditional maximum
likelihood estimation. The last two criteria were proposed in order to deal with situations when training data is
sparse. These criteria take into account the possibility of ambiguity in the translations: i.e., there can be different
output strings for a single input string. In this case, the final goal of the stochastic framework is to find the highest
probability translation of a given input string. These criteria were tested on a translation task which has a high
degree of ambiguity.
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1. Introduction

A translationis a process that maps strings from a given language (input language) to strings
from another language (output language). The formal devices that implement translations
are known asformal transducersand have been thoroughly studied in the theory of for-
mal languages (Berstel, 1979). Initially, formal translations were proposed for compiling
computer programs (Aho & Ullman, 1972) and as a formal framework for the presentation
of error-correction models in syntactic pattern recognition (Gonz´alez & Thomason, 1978).

Regular translationsconstitute an important class of formal translations. The solid for-
malism on which the theory of transducers and regular translations is built (Berstel, 1979)
has allowed for a deep and rigorous study of these models. Even though regular translations
are much more limited than other more general translation models, the computational costs
of the algorithms that are needed to handle them are much lower.

Regular translation has recently become of great interest as a model in some practical
pattern recognition problems in which the classification paradigm is not adequate, since
the number of classes necessary could be large or even infinite (Vidal, Casacuberta &
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Garcı́a, 1995). In this case, the most general paradigm ofinterpretationseems to be a
better framework which can be tackled through formal translations. For example, many
tasks in automatic speech recognition can be viewed as simple translations from acoustic
sequences to sub-lexical or lexical sequences (acoustic-phonetic decoding), or from acoustic
or lexical sequences to sequences of commands to a data-base management system or
to a robot (semantic decoding). A more complex application is the translation between
natural languages (e.g., English to Spanish) (Amengual et al., 1998; Vidal, 1997). Formal
transducers are also used in computational linguistics for representing linguistic knowledge
such as the phonetics and morphosyntactics of natural languages (Gildea & Jurafsky, 1996;
Mohri, 1997; Oflazer, 1996; Roche & Schabes, 1995). On the other hand, formal transducers
can be learned automatically from examples (Oncina, Garc´ıa &Vidal, 1993; Casacuberta,
2000). This opens a wide field of applications based on the induction of translation models
from parallel corpora.

However, the application of formal transducers to syntactic pattern recognition (and also
sometimes to natural language processing) needs a stochastic extension due to the noisy
and distorted patterns which make the process of interpretation ambiguous (Fu, 1982).
The statistical parameters of the extended models define a probability distribution over
the possible translations that help determine the best translation of a given input sentence.
Given a formal transducer, a common way of setting these parameters is to learn them from
examples of translations.

Stochastic regular grammars are related to stochastic regular syntax-directed transla-
tion schemata (Maryanski & Thomason, 1979) and to some classes of widely-used hid-
den Markov models (Casacuberta, 1900). A stochastic regular syntax-directed translation
schema can be viewed as a stochastic regular grammar (or as some type of hidden Markov
model) together with an output function that relates transitions (or states) to the sets of
possible output strings. From this point of view, stochastic regular syntax-directed trans-
lation schemata represent formalisms that are more adequate for dealing with translation
than stochastic regular grammars (or hidden Markov models).

A maximum-likelihood algorithm for automatically learning the statistical parameters
of stochastic regular syntax-directed translation schemata from examples has recently been
proposed (Casacuberta, 1995, 1996). This algorithm estimates the parameter set by maxi-
mizing the likelihood of the training data over the model. Only the translations of a given
input string that explicitely appear in the training corpus are taken into account during the
estimation process, and, although the process is guaranteed to converge to the optimal model
for large enough data sets, its performance is poor for limited or sparse data.

The minimum conditional entropy estimation criterion, which is presented in Section 3.2,
is based on some ideas taken from maximum mutual information (Brown, 1987; Cardin,
Normandin & DeMori, 1994). The conditional maximum likelihood approach was originally
proposed for speech modelling in N´adas, Hahamoo and Picherny (1988). These two criteria
take into consideration not only the sentences that explicitly appear in the training corpus
but also take into consideration all the possible translations of these sentences that the model
can produce. These two criteria can be particularly useful when the training data is sparse.

The application of these approaches in stochastic regular syntax-directed translation
schemata was first proposed in Casacuberta (1996). Here, a different learning algorithm
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based on the maximum mutual information criterium was proposed. We have found the
original proposal to be inadequate for regular translation models. A discussion about this
matter is given in Section 3.2.3. Furthermore, the models and algorithms presented in this
paper are more general (empty rules are allowed) than those in Casacuberta (1996). New
experiments are reported here.

The rest of this paper is structured as follows. Section 2 presents the basic concepts of
finite-state transducers and the main parsing algorithms. Four different methods of proba-
bilistic estimation are developed in Section 3 and some experiments are reported in Section 4.
Finally, some conclusions are given in Section 5.

2. Formal translations

A formal translation Tis a subset of6? ×1?, where6 is aninput alphabet, and1 is an
output alphabet. Note that naming6 and1 as theinputandoutputalphabets is an arbitrary
decision. We will use the terms input and output whenever it helps to make the presentation
clearer.

A translationT is left-to-right ambiguousif there exists somef ∈6? such that the set
{( f, g) | ( f, g)∈ T} has more than one element. Similarly, a translationT is right-to-left
ambiguousif there exists someg∈1? such that the set{( f, g) | ( f, g)∈ T} has more than
one element.

Formal translations can be characterized in a manner which is similar to formal languages.
In fact, there are close relations between some types of translations and some types of
languages (Aho & Ullman, 1972). (Relations of this type were also extended to stochastic
translations and stochastic languages (Maryanski & Thomason, 1979)).

One important class of translations is constituted byregular or rational translations.
As for formal languages, there are different models for dealing with translations of this
class. One of them is therational transducer(Berstel, 1979). Another one is theregular
syntax-directed translation schema(Thomason, 1976). We have chosen the latter because it
is similar to regular grammars, and there are developments for regular grammars and their
corresponding stochastic extension which can be applied to translations, once they have
been conveniently adapted.

2.1. Definitions

A stochastic regular syntax-directed translation schema(SRT) is a systemT = (N, 6,1,
R, S, P), in whichN is a finite set of non-terminal symbols,6 and1 are finite sets of input
and output terminal symbols, respectively, andS∈ N is the initial symbol of the schema. If
we represent the empty string asλ, thenR is a set of rulesA→aB, zBor A→a, z, where
A, B∈ N, a∈6 ∪ {λ} andz∈1? (by 6? and1? we will denote the sets of finite-length
strings on6 and1, respectively). Rules of the formA→ B, B are calledλ-rules. Although
this is the definition of an SRT for the general case, in the remainder of the paper we will
only consider SRTs whereλ-rules do not form a loop.

The stochastic component of the schema is given byP : R→]0, 1], a probability assign-
ment to the rules such that the sum of probabilities of all rules rewriting a non-terminalA
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is equal to 1 (properSRT (González & Thomason, 1978). Formally, for any non-terminal
Ai , the set{Ai → ω1, Ai → ω2, . . . , Ai → ωn} of all rules that rewriteAi must satisfy
the following condition of stochasticity:

n∑
j=1

P(Ai → ω j ) = 1. (1)

This probability assignment,P, defines a set of probabilistic parameters that will be denoted
by8(T). On the other hand, for the sake of simplicity, in the remainder of the paper, we
will denotePr(X= x) asPr(x) andPr(Y= y | X= x) asPr(y | x) whereX andY are
stochastic variables andx andy are two possible values ofX andY, respectively.

A translation formthat yields thetranslation pair(x, y) ∈ 6? ×1? is a finite sequence
of rulestf = (r1, r2, . . . , rn) such that

(S, S)
r1⇒ (x1A1, y1A1)

r2⇒ (x1x2A2, y1y2A2) · · ·
rn⇒ (x, y).

If the translation formtf rewrites(S, S) as(x, y), we will denotex asinput(tf ), andy as
output(tf ).

An SRTT associates a probability to each possible translation formtf = (r1, r2, . . . , rn)

which is the product of the probabilities of the rules in the form:

Pr(tf |8(T)) = P(r1)P(r2) · · · P(rn). (2)

An SRT is, in general, non-deterministic. This means that a translation(x, y) ∈ 6?×1?

may then be produced by more than one translation formtf (so thatinput(tf )= x and
output(tf )= y.) When this possibility is considered, theprobability of a translation(x, y)
must be defined as the sum of probabilities of all the corresponding translation forms:

Pr(x, y | 8(T)) =
∑

∀tf /input(tf )=x
∧output(tf )=y

Pr(tf | 8(T)). (3)

When there is more than one possible translation form for some pair(x, y) we will speak
of agrammatically ambiguous SRT. When for a given inputx there is more than one output
string y such thatPr(x, y|8(T)) > 0 we will speak of anambiguous-in-translationSRT
(or simply anambiguousSRT).

We are now ready to define how the translation of a given input sentence is to be calculated.
Since the SRT can be ambiguous, a single input sentence may be translated into more than
one output sentence. The decision of which one of the possible different outputs is considered
to be the best will be made using a statistical criterion. Thestochastic translationof an input
stringx ∈6? in a SRTT is the stringy? ∈1? into whichx can be translated with the highest
probability:

y? = argmax
y∈1?

Pr(y | x,8(T)), (4)
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where

Pr(y | x,8(T)) = Pr(x, y | 8(T))
Pr(x | 8(T)) .

Given that the probabilityPr(x |8(T)) does not depend upon the maximization index
y, we can rewrite (4) as:

y? = argmax
y∈1?

Pr(x, y | 8(T)) (5)

The search of the optimaly? in (5) using definition (3) is a difficult computational problem
(Casacuberta & de la Higuera, 2000). The only possible algorithmic solution is the use of
some variant of theA? algorithm (e.g., the Stack-Decoding (Bahl, Jelinek & Mercer, 1983)),
which presents exponential computational costs in the worst case and, therefore, may not
be feasible for use in some real applications.

A computationally cheaper approximation to the stochastic translation can be defined.
Instead of defining the probability of a translation as shown in (3), we will work with the
Viterbi probability of a translation. This is defined as the probability of the translation form
that most probably yields(x, y):

P̂r(x, y | 8(T)) = max
∀t f/input(tf )=x
∧output(tf )=y

Pr(t f | 8(T)) (6)

Theapproximate stochastic translationis an approximation to (5) in which the Viterbi
probability is used instead of the standard probability defined in (3):

y?? = argmax
y∈1?

P̂r(x, y | 8(T)). (7)

There exists a polynomial algorithm for calculating (7). Given an input stringx, this
algorithm searches for the maximum probability translation formtf so thatinput(tf ) = x.
More formally, we will calculate the approximate stochastic translation as:

y?? = output

(
argmax

∀tf /input(t f )=x
Pr(tf | 8(T))

)
. (8)

The relationship between the exact result from (4) and the approximate result from (8)
is similar to the analogous relationship found in stochastic grammars (S´anchez & Bened´ı,
1997) and in hidden Markov models (Mergav & Ephraim, 1991). Algorithms for calculating
some of the expressions defined above will be presented in the following subsection. They
will also be useful in the estimation methods that are discussed in Section 3.

2.2. Algorithms

From this point on, we will use a slightly modified version of the SRT for reasons of simplic-
ity. Now, a new non-terminalF /∈ (N ∪6) is added. All rules of the formA→a, z∈ R are
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rewritten asA→aF, zF, for a∈6 ∪ {λ} andz∈1?, with the same probability value. The
only rule that has the non-terminalF on the left side isF → λ, λ. It can be demonstrated
that translation schemata with or without this modification are equivalent.

The names of the algorithms will be labeled with super-indexesI or O, depending on
whether they need an input string, an output string or both as an argument. We will use the
following notational convention: given a stringx= x1 . . . x|x| of length |x|, with xi ∈ 6
for 1 ≤ i ≤ |x|, and two indexesi , j such thati ≤ j , expressionxi ... j will stand for the
substringxi . . . xj . If the indexes are crossed over (i.e., if we are writingxi ... j wheni > j ),
it is understood that the expression is equivalent to the empty stringλ.

2.2.1. Forward and backward algorithms.LetT = (N, 6,1, R, S, P)be a SRT,x ∈ 6?,
A ∈ N ∪ {F}, 0≤ i ≤ |x|, 0≤ j ≤ |y|. We define the following two functions:

α I ,O(i, j, A) = Pr((S, S)
?⇒ (x1...i A, y1... j A) | 8(T)) (9)

β I ,O(i, j, A) = Pr((A, A)
?⇒ (xi+1...|x|, yi+1...|y|) | 8(T)) (10)

These two functions represent partial sums of probability which correspond to different
substrings of the input and output strings. The probability of a translation(x, y) can be
obtained from any of these two functions:

α I ,O(|x|, |y|, F) = β I ,O(0, 0, S) = Pr(x, y | 8(T)).

The so-calledforwardandbackwardalgorithms are two recursive algorithms that calcu-
lateα andβ. These algorithms are described in a recursive manner by means of two auxiliary
functions,α I ,O

λ andβ I ,O
λ . Assuming that the value ofα I ,O(i, j, A) is known∀A ∈ N, i ≥ 0,

j ≥ 0, we will define the auxiliary functionα I ,O
λ as follows, for 0≤ i ≤ |x|, 0≤ j ≤ |y|

andk > 0:

α
I ,O
λ (i, j, 0, A) =

∑
A′∈N

(∑
j ′≤ j

α I ,O(i − 1, j ′, A′) · P(A′ → xi A, yj ′+1··· j A)

+
∑
j ′< j

α I ,O(i, j ′, A′) · P(A′ → A, yj ′+1··· j A)

)
(11)

α
I ,O
λ (i, j, k, A) =

∑
A′∈N

α
I ,O
λ (i, j, k− 1, A′) · P(A′ → A, A).

More informally,α I ,O
λ (i, j, k, A) computes the probability of parsing the pair of sub-

strings(x1...i , y1... j ) and of then producing a derivation ofk λ-rules which ends up writing
the non-terminalA. The value ofα I ,O(i, j, A) can therefore be calculated as an infinite
sum over all the probabilities of all possible derivations, which may include any number of
λ-rules:

α I ,O(i, j, A) =
∞∑

k=0

α
I ,O
λ (i, j, k, A) (12)
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The value of this expression can be calculated in a simpler way by just making it depend
only onα I ,O

λ (i, j, 0, A). First of all, let us expand the second equation in (11):

α
I ,O
λ (i, j, k, A) =

∑
A1∈N

α
I ,O
λ (i, j, 0, A1) ·

∑
A2∈N

P(A1→ A2, A2) · . . .

. . . ·
∑
Ak∈N

P(Ak−1→ Ak, Ak) · P(Ak → A, A)

Now we can make substitutions in (12) and reorder sums:

α I ,O(i, j, A) =
∞∑

k=0

α
I ,O
λ (i, j, k, A) =

∑
A′∈N

α
I ,O
λ (i, j, 0, A′) ·

∞∑
k=0

[Pk] A′,A (13)

The matrixP of λ-rules has dimensions|N| × |N|. Each one of its elements is defined
asPA,B = P(A→ B, B), for A, B∈ N. Each element of the infinite power series ofP,∑∞

k=0[Pk] A,B, is equal to the sum of probabilities of all possible derivations withλ-rules
that rewriteA into B. We represent the identity matrix asI . If matrix I −P can be inverted,
then the value of the matrix power series is known (Jelinek & Lafferty, 1991), and we can
use expression (14) for calculating the exact value ofα I ,O(i, j, A). Otherwise, expression
(13) can be used to find an approximate value by truncating the power series.

α I ,O(i, j, A) =
∑
A′∈N

α
I ,O
λ (i, j, 0, A′) · [(I − P)−1] A′,A (14)

Finally, the base case in the recursion ofα I ,O can be calculated as:

α I ,O(i, j, A) =
∑
A′∈N

δ(A′, S) · [(I − P)−1] A′,A,

where functionδ means:

δ(A, B) =
{

0 if A 6= B,

1 if A = B.

Similar reasonings yield the following analogous expressions forβ I ,O andβ I ,O
λ :

β I ,O(|x|, |y|, A) =
∑
A′∈N

δ(A′, F) · [(I − P)−1] A,A′

β I ,O(i, j, A) =
∑
A′∈N

β
I ,O
λ (i, j, 0, A′) · [(I − P)−1] A,A′

β
I ,O
λ (i, j, 0, A) =

∑
A′∈N

(∑
j ′≥ j

P(A→ xi+1A′, yj+1··· j ′A′) · β I ,O(i + 1, j ′, A′)

+
∑
j ′> j

P(A→ A′, yj+1··· j ′A′) · β I ,O(i, j ′, A′)

)
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β
I ,O
λ (i, j, k, A) =

∑
A′∈N

β
I ,O
λ (i, j, k− 1, A′) · P(A→ A′, A′).

The time complexity of theα I ,O andβ I ,O algorithms isO(|x| · |y| · |R|) if dynamic
programming is used.

2.2.2. Viterbi algorithm. The Viterbi probability of a translation(x, y) can be calculated
by defining a functionγ I ,O which is very similar toα I ,O but uses maximizations instead
of sums, such that:

γ I ,O(|x|, |y|, F) = P̂r(x, y | 8(T)).

Let us first define an auxiliary functionγ I ,O
λ :

γ
I ,O
λ (i, j, 0, A) = max

A′∈N

(
max
j ′≤ j

γ I ,O(i − 1, j ′, A′) · P(A′ → xi A, yj ′+1··· j A)

+ max
j ′< j

γ I ,O(i, j ′, A′) · P(A′ → A, yj ′+1··· j A)

)
γ

I ,O
λ (i, j, k, A) = max

A′∈N
γ

I ,O
λ (i, j, k− 1, A′) · P(A′ → A, A), (15)

The limits of the indexes are 0≤ i ≤ |x|, 0≤ j ≤ |y| andk > 0.
The expressionγ I ,O

λ (i, j, k, A) computes the Viterbi probability of parsing the pair of
substrings(x1...i , y1... j ) and of then producing a derivation ofk λ-rules with ends up writing
the non-terminalA. The value ofγ I ,O(i, j, A) can therefore be calculated as an infinite
application of the operator maximization over all the probabilities of all possible derivations,
which may include any number ofλ-rules:

γ I ,O(i, j, A) = ∞
max
k=0

γ
I ,O
λ (i, j, k, A) (16)

The value of this expression can be calculated in a simpler way by just making it depend
only onγ I ,O

λ (i, j, 0, A), as we did forα I ,O
λ . Before doing this, however, it will be helpful

to introduce some new notation for the products of matrix using maximizations.
Let M = [ai j ]n×m andM ′ = [bi j ]m×n be two matrices. Let themax-productof M andM ′,

denoted asM ⊗ M ′, be a matrix where each element is calculated as follows:

[M ⊗ M ′] i, j = max
1≤p≤m

aipbpj .

Thekth power of matrixP can be defined through the max-product instead of the standard
product:Pk

max= Pk−1
max⊗ P.

Now, by expanding the second equation in (15) and making substitutions, (16) can be
rewritten as:

γ I ,O(i, j, A) = ∞
max
k=0

γ
I ,O
λ (i, j, k, A) = max

A′∈N
γ

I ,O
λ (i, j, 0, A′)

∞
max
k=0

[
Pk

max

]
A′,A (17)
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Each element of the infinite power series ofP, max∞k=0[Pk
max] A,B, is equal to the maximum

probability among the probabilities of all derivations withλ-rules that rewriteA into B.
Note that the longest possible derivation fromA into B with maximum probability is the one
which rewrites each non-terminal once and only once, since the existence of any cycle would
necessarily cause the probability to be lower with respect to the same derivation without
the cycle. Consequently, the limit in (17) attains its maximum for values ofk smaller than
|N|, and can be calculated as:

P̃A,B = max
k=0···|N|

[
Pk

max

]
A,B

Finally, we can reformulate algorithmγ I ,O in the following manner:

γ I ,O(0, 0, A) = max
A′∈N

δ(A′, S) · P̃A′,A

γ I ,O(i, j, A) = max
A′∈N

γ
I ,O
λ (i, j, 0, A′) · P̃A′,A, (18)

whereγ I ,O
λ (i, j, 0, A) can be calculated as shown in (15). The time complexity of algorithm

γ I ,O is O(|x| · |y| · |R|) if dynamic programming is used.

2.2.3. Viterbi translation algorithm. The maximization contained in the expression for
the approximate stochastic translation (given by Eq. (8)) can be calculated with a variation
of the Viterbi algorithm shown in Section 2.2.2. For any given input stringx, we will define
some functionγ I such that:

γ I (|x|, F) = max
∀tf /input(tf )=x

Pr(tf | 8(T)). (19)

The algorithm for calculating the functionγ I is described in a recursive manner by means
of an auxiliary functionγ I

λ which is similar to functionγ I ,O
λ in the previous section. At

each step of recursion inγ I , functionγ I
λ keeps track of all the paths that are formed only

by rules of the formA→ B, zB, z ∈ 1?, and, therefore, do not consume any input symbol.
Assuming thatγ I (i − 1, A) is known, the auxiliary functionγ I

λ is recursively defined as
follows,∀A ∈ N, ∀i ≥ 0:

γ I
λ (i, 0, A) = max

A′∈N
z∈1?

γ I (i − 1, A′) · P(A′ → xi A, z A)

(20)
γ I
λ (i, j, A) = max

A′∈N
z∈1?

γ I
λ (i, j − 1, A′) · P(A′ → A, z A) 1≤ j ≤ k

The value ofγ I (i, A) can be calculated as an infinite maximization over all the probabilities
of all possible derivations, which may include any number of rules of the formA→ B, zB:

γ I (i, A) = ∞
max
k=0

γ I
λ (i, k, A) (21)
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If we define some matrixP′ of dimensions|N| × |N|asP′A,B= max∀z∈1? P(A→ B, zB),
for A, B ∈ N, andP̃′ is defined as in (17), then algorithm (21) can be reformulated as fol-
lows, by a reasoning similar to the one in the previous section:

γ I (0, A) = max
A′∈N

δ(A, S) · P̃′A′,A
γ I (i, A) = max

A′∈N
γ I
λ (i, 0, A′) · P̃′A′,A. (22)

2.2.4. Forward and backward algorithms for input and output.We will finally define
two more new variants of theforward andbackwardalgorithms. Following our notation,
these versions will be denoted asα I , β I , αO andβO. They correspond to the calculation
of the forward andbackwardvalues of probability when the derivations are followed by
keeping track only of either the input or the output string. These functions will be useful
in Section 3, where we will discuss the learning of the probabilities of schemata from
translation samples.

The proper definition of these functions need an additional restriction over the structure
of the STRs: rules of the formA → B, zB′, for z ∈ 1?, must not form a loop for the
application ofα I andβ I , and rules of the formA → aB, B, for a ∈ 6 ∪ {λ}, must not
form a loop for the application ofαO andβO.

The calculation ofα I will require the definition of an auxiliary recursive functionα I
λ,

which is similar to the one used in the previous development. Assuming that the value of
α I (i − 1, A), ∀A ∈ N, ∀i ≥ 0 is known, we will defineα I

λ as:

α I
λ(i, 0, A) =

∑
A0∈N

z∈1?

α I (i − 1, A0) · P(A0→ xi A, z A)

(23)
α I
λ(i, j, A) =

∑
Aj ∈N

z∈1?

α I
λ(i, j − 1, Aj ) · P(Aj → A, z A) 1≤ j ≤ k

We can expressα I (i, A) as an infinite sum of the probabilities of all possible derivations
which end up generating the non-terminalA and are composed only by rules of the form
A→ B, zB, in a way similar to the one forγ I :

α I (i, A) =
∞∑

k=0

α I
λ(i, k, A) =

∑
A′∈N

α I
λ(i, 0, A′) ·

∞∑
k=0

[
P′′k

]
A′,A (24)

Here, matrixP′′ registers the probabilities of rules inT of the form A → B, zB, so that
each element is defined asP′′A,B =

∑
∀z∈1? P(A→ B, zB). Again, if matrix I − P′′ can

be inverted, then the value of the matrix power series is known and we can use expression
(25) for calculating the exact value ofα I (i, A).

α I (i, A) =
∑
A′∈N

α I
λ(i, 0, A′) · [(I − P′′)−1] A′,A (25)
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Similar reasonings yield the following analogous expressions for the three remain-
ing algorithms. The definition of the matrixP′′′ for expressions (27) and (28) isP′′′A,B=∑
∀a∈6∪{λ} P(A→ aB, B).

β I (i, A) =
∑
A′∈N

β I
λ(i, 0, A′) · [(I − P′′)−1] A,A′ (26)

αO( j, A) =
∑
A′∈N

αO
λ ( j, 0, A′) · [(I − P′′′)−1] A′,A (27)

βO( j, A) =
∑
A′∈N

βO
λ ( j, 0, A′) · [(I − P′′′)−1] A,A′ (28)

3. Probabilistic estimation

The stochastic translation schemata discussed in the previous section are statistical models
which can describe probability distributions over the universe of all possible pairs of input-
output strings,6?×1?. These distributions depend on the structure of each particular
schema, and on the set of probability parameters associated with the set of rules. In practice,
building one of these schemata for adequately modeling a certain probability distribution
is, therefore, a process that may be performed in two separate phases. First, a non-stochastic
schema is generated, and, second, a set of probability values for the rules in the schema is
chosen. The generation of the structure can be done either manually or automatically—for
instance, with some techniques for inferring grammars from samples (Casacuberta, 2000;
Oncina, Garc´ıa & Vidal, 1993). Once a schema is given, the parameter set will often need
to be estimated from a representative sample of translation pairs, so as to obtain a stochastic
schema that approximates the real probability distribution as closely as possible.

The problem of estimating the parameters of a model from a finite set of data has been
thoroughly studied in statistics. A well-known, general-purpose method for this is the so-
calledexpectation-maximizationmethod (Dempster, Laird & Rubin, 1977). Here we will use
the Baum-Welch algorithm, a more specific version of the expectation-maximization method
which is suitable for estimating the probabilities of rules in a SRT. The four estimation
criteria presented in this paper follow the same general procedure. First, we define a function
that depends both on the statistical parameters that we want to estimate and on the training
translation pairs. This function is supposed to be sensitive to therelevantinformation in
the sample, so that higher values of the function correspond to better approximations of the
model to reality. Then we use the Baum-Welch algorithm or some variation of it for finding
a local optimal value.

The Baum-Welch algorithm (Baum & Sell, 1968) allows us to approximate the optimal
value of a function by an iterative process. Functions must be polynomials with non-negative
coefficients. The following theorem indicates how to build certaingrowth transformations,
so that the increase of the function value is guaranteed when they are applied for reestimation.

Theorem 1. Let P(2) be a homogeneous polynomial in the variables2={2ij } with
non-negative coefficients. Letθ ={θij } be one point of D= {θij | θij ≥ 0,

∑qi

j=1 θij = 1,
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i = 1, . . . , p and j= 1, . . . ,qi }. Let Q(θ) be one point of D defined as

Q(θ)ij =
θij
(
∂P(2)
∂2ij

)
θ∑qi

k=1 θik
(
∂P(2)
∂2ik

)
θ

(29)

such that
∑qi

k=1 θik(∂P(2)/∂2ik)θ 6= 0. Then, P(Q(θ)) > P(θ) unless Q(θ) = θ .

The growth transformationsQ(x) can now be used iteratively in a straight-forward
algorithm:

INPUT: P(2)
PROCEDURE:

θ := initial values
repeat

computeQ(θ) usingP(2) and (29)
θ := Q(θ)

until convergence
OUTPUT: θ

We will also use an extension of the previous theorem to rational functions by
Gopalakrishnan et al. (1991). We need to define some concepts before we can state the
theorem. The functionR(2)= S1(2)/S2(2) is a rational function over the domainD in
Theorem 1, whereS1(2) andS2(2) are polynomials with real coefficients and variables
2={2ij }. FunctionS2(2) only presents positive values inD. The polynomialPθ (2) =
S1(2)−R(θ)S1(2)will be denoted asPθ . Given a rational functionR(2) and a real number
C, let us define the following functions:

0ij (θ;C) = θij

(
∂Pθ (2)

∂2ij
(θ)+ C

)
(30)

and

0i (θ;C) =
qi∑

j=1

0ij (θ;C). (31)

We will say thatC is admissible(for R(2)) if for any i , j andθ ∈ D, then0ij (θ;C) ≥ 0,
and0i (θ;C) > 0.

Theorem 2. Let R(2) be a rational function in the variables2 = {2ij }with non-negative
coefficients. Letθ = {θij } be one point of D= {θij |θij ≥ 0,

∑qi

j=1 θij = 1, i = 1, . . . , p and
j = 1, . . . ,qi }. Let Q(θ) be one point of D defined as

Q(θ)ij =
θij
((
∂P(2)
∂2ij

)
θ + C

)∑qi

k=1 θik
((
∂P(2)
∂2ik

)
θ + C

) . (32)
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Then, there exists a constant NR such that for any C≥ NR, NR is admissible for R(2),
and, for such C, function Q is a growth transformation of R(2). This is, R(Q(θ))> R(θ),
except if Q(θ) = θ .

The demonstration of this theorem developed in Gopalakrishnan et al. (1991) provides
an expression for calculatingNR. However, in practice we often find that the algorithm
converges much more slowly the greater the value ofC is. Furthermore, if we reduce the
value ofC and make it smaller than that of the theoreticalNR, convergence still holds. This
property is lost for values ofC which are too low, in which case the algorithms produce
oscillations of the value ofR(θ). In practical executions of the algorithm, the value ofC
will be chosen by trial and error.

3.1. Estimation through maximization of the sample likelihood

The two estimation methods presented in this section are based on the maximization of the
likelihood of the training data set within the translation model. Both methods differ in the
way translation probabilities are calculated. The first one uses the probability of a translation
as shown in (3), while the second one approximates it through theViterbi probability of a
translation, defined in (6).

3.1.1. Maximum likelihood estimation. A sampleis formally a finite collection of trans-
lation pairs with repetitions allowed—i.e., a sample is a multiset drawn from6?×1?. The
function that will constitute the criterion for reestimation will be the so-calledmaximum
likelihoodof a sampleTS:

RMLE(8(T)) =
∏

(x,y)∈TS

Pr(x, y | 8(T)) (33)

Likelihood RMLE(8(T)) is the probability that a sampleTSis acceptedby the SRTT with
parameters8(T). Themaximum likelihood estimation(MLE) of 8(T) is the value8̂(T)
which maximizesRMLE(8(T)). The corresponding growth transformations are drawn from
the application of the Theorem 1:

QMLE
TS (P(A→ aB, zB))

=
∑

(x,y)∈TS
1

Pr(x,y|8(T))
∑

i

∑
j H(x, y, (A→ aB, zB), i, j )∑

(x,y)∈TS
1

Pr(x,y|8(T))
∑

i

∑
j L(x, y, A, i, j )

(34)

where

H(x, y, (A→ aB, zB), i, j ) = δ(a, xi ...i−1+|a|) · δ(z, yj+1... j+|z|)
·α I ,O(x1...i , y1... j , A) · P(A→ aB, zB)

·β I ,O(xi+|a|...|x|, yj+|z|+1...|y|, B),

L(x, y, A, i, j ) = α I ,O(x1...i , y1... j , A) · β I ,O(xi−1+|a|...|x|, yj ...|y|, A).
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3.1.2. Viterbi-like estimation. This method (from now on, VLE) attempts to maximize
the Viterbi probability of the translation model for a given training sample. We say that a
translation formtf generatesa sentence pair(x, y) if input(tf ) = x andoutput(tf ) = y. The
Viterbi probability of the translation model is a function of the multiset of translation forms
that generate the pairs in the training sample with maximum probability. This function is not
a homogeneous polynomial and, therefore, cannot be used as an objective function for the
Baum-Welch algorithm. Instead, we will define the objective function for a generic set of
translation forms, so the function is polynomial and growth transformations can be drawn
from the application of Theorem 1. Then, we will apply the growth transformations to the
particular case of the set of maximum probability translation forms.

Given a sampleTSand a set of translation formsTF that compose the pairs inTS, the
objective function that we want to maximize is:

RVLE(8(T)) =
∏
∀tf∈TF:
(input(tf ),

output(tf ))∈TS

Pr(tf | 8(T)). (35)

This function accomplishes the necessary conditions for applying Theorem 1. The following
growth transformations are obtained,∀(A→ aB, zB) ∈ R, A, B ∈ N,a ∈ 6 ∪ {λ}, z ∈ 1?:

QVLE
TS (P(A→ aB, zB)) =

∑
∀tf∈TF N((A→ aB, zB), tf )∑

∀tf∈TF N(A, tf )
(36)

In this expression,N((A→a A, zB), tf ) denotes the number of times that the ruleA→a A,
zB has been used intf ∈ TF; N(A, tf ) is the number of times that the non-terminalA has
been used intf ∈TF, andQVLE

TS is an application from the space8(T) into itself.
When these transformations are used, the value of function (35) increases. As a particular

case,TF can be chosen to be the set of translation forms of maximum probability, so that
the Viterbi-like estimation is obtained. The search for the optimal translation form can be
achieved as a byproduct of the Viterbi algorithm (18) by keeping track of the rules which
produce the maximum probability derivations during the execution.

3.1.3. Computational complexity.The time complexity of the transformation rules in
(34) and (36) isO(|TS| · Lx · L y · |R|) for each iteration, where|TS|, |R|, Lx andL y are the
number of pairs in the sample, the number of rules in the schema and the maximum length
of the input and output strings, respectively. This upper bound is deduced from the fact that
the values ofα I ,O andβ I ,O in MLE, andγ I ,O in VLE, must be calculated once for each
pair in the sample. The cost of these three algorithms isO(|x| · |y| · |R|). Note that even
though VLE has the same worst-case cost as MLE, its real cost is, in general, much lower.

3.1.4. Ambiguity. Maximum likelihood estimation and Viterbi-like estimation optimize
the same objective function when the SRT is not grammatically ambiguous. Moreover, in
this case the optimum of the function is global and is achieved in only one iteration. This
result is similar to the one with stochastic grammars (Casacuberta, 1994).
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3.2. Estimation through entropy measurements

Theentropy H(X) is a measure of the number of bits that are needed to specify the outcome
of a random eventX (Shannon, 1948). Intuitively, entropy can be understood as a plausible
measure of the level of uncertainty in the event. The definition is shown below.

H(X) = −
∑

x

Pr(x) logPr(x)

Similarly, theconditional entropyof the random eventX given the random eventY is a
measure of the uncertainty inX given the outcome ofY:

H(X | Y) = −
∑
x,y

Pr(x, y) logPr(x | y)

A statistical translation system can be interpreted as a bidirectional channel where two
sourcesX andY produce sentences in each of the languages involved, respectively, following
the real distribution of probability of sentences in either language. The bidirectional channel
establishes a relationship of translation between the two languages. The probability that
sentencesx andy from X andY are a translation of each other isPr(x, y).

If we assume that a real translation situation between two languages can be approached
as one of these statistical translation systems, then our goal is to obtain a statistical model
m which is as close as possible to the real system. Therefore, letHm(X | Y) stand for the
conditional entropy ofX givenY with respect to the probability distributions in the model
m. It has been demonstrated in Brown (1987) that the inequalityHm(X | Y) ≥ H(X | Y)
always holds. Furthermore, the smaller the value ofHm(X | Y) is, the more the distribution
in modelm resembles the real distribution.Hm(X | Y) andH(X | Y) are equal when the
two distributions are the same.

This observation permits us to define two different criteria for the estimation of the
probabilities in the model. As a first approximation, we would like to choose the model,m,
to minimizeHm(Y | X). On the other hand, as a second approximation, note that the model
is symmetrical with respect to the direction of translation. Hence, we might also want the
model to minimizeHm(X | Y). These two simultaneous goals can be achieved by looking
for a model that minimizes the sum of both values,

Hm(X | Y)+ Hm(Y | X) = −
∑
x,y

Pr(x, y) log
Pr2

m(x, y)

Prm(x) · Prm(y)
,

wherePrm(x, y), Prm(x) andPrm(y) are the probabilities yielded by the model.

3.2.1. Minimum conditional entropy estimation.The two criteria just mentioned can be
used to estimate the parameter set of an SRT. For a given SRTT , with parameter set8(T),
we will usePr(x, y | 8(T)) as the probabilityPrm(x, y). Since we do not know the real
probability distribution,Pr(x, y), we must instead assume that the pairs(x, y) in our sample
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TSare representative, and choose8(T) to minimize

−
∑

(x,y)∈TS

log
Pr2(x, y | 8(T))

Pr(x | 8(T)) · Pr(y | 8(T)) (37)

Therefore, the criterion function for theminimum conditional entropy estimation(MCEE),
which must be maximized due to a sign change, will be:

RMCEE(8(T)) =
∏

(x,y)∈TS

Pr2(x, y | 8(T))
Pr(x | 8(T)) · Pr(y | 8(T)) (38)

The reestimation formulae for this function will be obtained through the application
Theorem 2. LetQMCEE

TS be a transformation from the space8(T) into itself. Then,∀(A→
aB, zB) ∈ R we have:

QMCEE
TS (P(A→ aB, zB))

=
P(A→ aB, zB)

(
∂ log RMCEE(8(T))
∂P(A→aB,zB) + C

)∑
a′,z′,B′ P(A→ a′B′, z′B′)

(
∂ log RMCEE(8(T))
∂P(A→a′B′,z′B′) + C

) (39)

where the numerator of the second term can be deduced as

P(A→ aB, zB)
∂ log RMCEE(8(T))

∂P(A→ aB, zB)

=
∑

(x,y)∈T S

(
2

Pr(x, y | 8(T)) P(A→ aB, zB)
∂Pr(x, y | 8(T))
∂P(A→ aB, zB)

− 1

Pr(x | 8(T)) P(A→ aB, zB)
∂Pr(x | 8(T))

∂P(A→ aB, zB)

− 1

Pr(y | 8(T)) P(A→ aB, zB)
∂Pr(y | 8(T))

∂P(A→ aB, zB)

)
(40)

andC is an admissible constant (Gopalakrishnan et al., 1991).
The first term in the sum is similar to the term which appears in MLE, and can be computed

as in expression (34). The second term can be easily calculated by considering theinput
grammarof T , which is defined to beGi = (N, 6, Ri , S, Pi ), where, if(A→ aB, zB)∈ R,
then(A→ aB) ∈ Ri and Pi (A→ aB) = P(A→ aB, zB). The expressions which are
obtained for MLE in stochastic grammars can be used (Casacuberta, 1996). These formulae
need the use of algorithmsα I andβO presented in Section 2. Similarly, the third term
is obtained by considering theoutput grammarof T : Go= (N, 6, Ro, S, Po), where, if
(A→ aB, zB)∈ R, then(A→ zB) ∈ Ro and Po(A→ aB) = P(A→ aB, zB). This
can also be calculated as shown in (Casacuberta, 1996).



STOCHASTIC FINITE-STATE TRANSDUCERS 137

3.2.2. Conditional maximum likelihood estimation.This method is based on the mini-
mization of the conditional entropy in only one of the directions of the translation. Condi-
tional entropy can be calculated as:

Hm(Y|X) = −
∑
x,y

Pr(x, y) log
Prm(x, y)

Prm(x)
.

We can now reason as we did for MCEE and define an objective function to be maximized:

RCMLE(8(T)) =
∏

(x,y)∈T S

Pr(x, y | 8(T))
Pr(x | 8(T)) (41)

The denomination ofconditional maximum likelihoodis due to the fact that this criterion had
already been defined in Casacuberta (1996) and Cardin, Narmandin and DeMori (1994) as
a maximization of the conditional probability of an output sentence given an input sentence,
which happens to be equivalent:

argmax
8(T)

Pr(y|x,8(T)) = argmax
8(T)

Pr(x, y | 8(T))
Pr(x | 8(T)) (42)

The growth transformations forRCMLE can be obtained through the application of
Theorem 2. Thus, letQCMLE

TS be a closed transformation in the space8(T). Then,
∀(A→aB, zB) ∈ R,

QCMLE
TS (P(A→ aB, zB))

=
P(A→ aB, zB)

(
∂ log RC M L E(8(T))
∂P(A→aB,zB) + C

)∑
a′,z′,B′ P(A→ a′B′, z′B′)

(
∂ log RC M L E(8(T))
∂P(A→a′B′,z′B′) + C

) (43)

where the numerator of the second term can be deduced as

P(A→ aB, zB)
∂ log RC M L E(8(T))

∂P(A→ aB, zB)

=
∑

(x,y)∈T S

(
1

Pr(x, y|8(T)) P(A→ aB, zB)
∂Pr(x, y|8(T))
∂P(A→ aB, zB)

− 1

Pr(x|8(T)) P(A→ aB, zB)
∂Pr(x|8(T))

∂P(A→ aB, zB)

)
(44)

andC is an admissible constant (Gopalakrishnan, 1991).

3.2.3. Discussion. A different method based on entropy measures has been proposed in
Casacuberta (1996). It was a straight-forward application of themaximum mutual informa-
tion estimation(MMIE) by Brown (1987) to stochastic translation schemata. In Brown’s
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MMIE, it is claimed that minimizing the conditional entropyH(Y | X) is equivalent to
maximizing themutual information, I (X;Y), since

H(Y | X) = H(X)− I (X;Y).

H(X) represents the entropy of the sourceX and is supposed to be determined by some
known language model and, therefore, fixed. However, this approximation is not adequate if
(as is our case) the language model that is being used is not independent from the translation
model. When dealing with SRTs the probabilities of sourcesX andY given by the model
(i.e., Prm(x) = Pr(x | 8(T)) and Prm(y) = Pr(y | 8(T))) are a function of the set of
parameters of the SRT,8(T). Therefore, they arenot fixed during the estimation process
and MMIE cannot be applied as done in Casacuberta (1996).

MMIE could be used if an independent model for the probabilities of the input and the
output sentences were given. Such a model could be, for instance, a probabilistic model
that represented information about the context of appearance of sentences within a line of
discourse.

4. Experiments

Some experiments were carried out to compare the four estimation methods described
above. The selected task was the translation of Spanish sentences into English, as defined
in project EUTRANS-I (Amengual et al., 1998). The semantic domain of the sentences is
restricted to tourist information, consisting in sentences that a hotel guest would address
to a hotel receptionist at the information desk. A parallel corpus of paired Spanish-English
sentences was artificially generated.

The structure of an SRT was inferred from the corpus by means of a new method for build-
ing finite-state transducers using regular grammars and morphisms (Casacuberta, 2000). The
inferred SRT contained 490 non-terminal symbols and 1438 rules.

Training was done with 5 different series of training sets. Each series was composed of
5 mutually including sets of increasing size, containing 25, 50, 100, 200 and 300 pairs,
respectively. The training process was stopped when the value of the objective function
did not increase significatively. A set containing 500 different translation pairs was used
for testing in each one of the five series. The test sets were disjoint to all training sets in

Table 1. Word-error rate (in %) for the translation of the test set for different number of pairs of sentences in the
training set and differents estimation methods.

Number of pairs MLE VLE MCEE CMLE

25 33 33 27 26

50 30 30 27 26

100 26 27 27 25

200 24 25 25 23

300 25 26 26 25
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the series. All the results were averaged over the 5 series of experiments and are shown on
Table 1. The performance was evaluated in terms of translationword-error rate (WER),
which is the percentage of output words that have to be inserted, deleted and substituted in
order to exactly match the corresponding expected translations.

The behaviour of the estimation methods in these experiments can be observed in the
results shown in Table 1. The two methods based on entropy (CMLE and MCEE) performed
significantly better for small training sets (25 and 50 training pairs). For greater training
sets the results were similar for all four methods and no significant differences can be
appreciated. For small training sets CMLE performed slightly better that MCEE and MLE
did slightly better than Viterbi, though the differences are not very remarkable.

5. Conclusions

In this paper, we have presented a series of algorithms for obtaining some probabilistic
parameters associated with stochastic regular syntax-directed translation schemata. These
algorithms include the computation of the probability of a translation and the search for the
highest probability translation of a given input. They have been defined so as to operate with
schemata that incorporateλ-rules—i.e., rules in which the input and/or the output string is
an empty string.

Four methods have been presented for the estimation of the probabilities of the stochastic
syntax-directed translation schemata from translation samples. Two of them are based on
the maximimization of the sample likelihood, and the other two consider the possibility of
maximizing certain entropy measurements. The minimum conditional entropy estimation
is a new criterion, while the other three are an adaptation of estimation methods from other
fields to translation schemata. The criteria based on entropy have been proposed to deal
with sparse training data.

Some experiments were carried out on a translation task between natural languages and
the results show how the estimation criteria based on entropy measurements perform better
than maximum likelihood estimation and Viterbi-like estimation in reducing word-error
rates for small sample sizes.
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