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Abstract. Formal translations constitute a suitable framework for dealing with many problems in pattern recog-
nition and computational linguistics. The application of formal transducers to these areas requires a stochastic
extension for dealing with noisy, distorted patterns with high variability. In this paper, some estimation criteria
are proposed and developed for the parameter estimation of regular syntax-directed translation schemata. These
criteria are: maximum likelihood estimation, minimum conditional entropy estimation and conditional maximum
likelihood estimation. The last two criteria were proposed in order to deal with situations when training data is
sparse. These criteria take into account the possibility of ambiguity in the translations: i.e., there can be different
output strings for a single input string. In this case, the final goal of the stochastic framework is to find the highest
probability translation of a given input string. These criteria were tested on a translation task which has a high
degree of ambiguity.
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1. Introduction

A translationis a process that maps strings from a given language (input language) to strings
from another language (output language). The formal devices that implement translations
are known agormal transducersind have been thoroughly studied in the theory of for-
mal languages (Berstel, 1979). Initially, formal translations were proposed for compiling
computer programs (Aho & Ullman, 1972) and as a formal framework for the presentation
of error-correction models in syntactic pattern recognition (Gtez& Thomason, 1978).

Regular translationgonstitute an important class of formal translations. The solid for-
malism on which the theory of transducers and regular translations is built (Berstel, 1979)
has allowed for a deep and rigorous study of these models. Even though regular translations
are much more limited than other more general translation models, the computational costs
of the algorithms that are needed to handle them are much lower.

Regular translation has recently become of great interest as a model in some practical
pattern recognition problems in which the classification paradigm is not adequate, since
the number of classes necessary could be large or even infinite (Vidal, Casacuberta &
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Garaa, 1995). In this case, the most general paradigrmigipretationseems to be a
better framework which can be tackled through formal translations. For example, many
tasks in automatic speech recognition can be viewed as simple translations from acoustic
sequences to sub-lexical or lexical sequences (acoustic-phonetic decoding), or from acoustic
or lexical sequences to sequences of commands to a data-base management system or
to a robot (semantic decoding). A more complex application is the translation between
natural languages (e.g., English to Spanish) (Amengual et al., 1998; Vidal, 1997). Formal
transducers are also used in computational linguistics for representing linguistic knowledge
such as the phonetics and morphosyntactics of natural languages (Gildea & Jurafsky, 1996;
Mohri, 1997; Oflazer, 1996; Roche & Schabes, 1995). On the other hand, formal transducers
can be learned automatically from examples (Oncina, @a&¥/idal, 1993; Casacuberta,
2000). This opens a wide field of applications based on the induction of translation models
from parallel corpora.

However, the application of formal transducers to syntactic pattern recognition (and also
sometimes to natural language processing) needs a stochastic extension due to the noisy
and distorted patterns which make the process of interpretation ambiguous (Fu, 1982).
The statistical parameters of the extended models define a probability distribution over
the possible translations that help determine the best translation of a given input sentence.
Given a formal transducer, a common way of setting these parameters is to learn them from
examples of translations.

Stochastic regular grammars are related to stochastic regular syntax-directed transla-
tion schemata (Maryanski & Thomason, 1979) and to some classes of widely-used hid-
den Markov models (Casacuberta, 1900). A stochastic regular syntax-directed translation
schema can be viewed as a stochastic regular grammar (or as some type of hidden Markov
model) together with an output function that relates transitions (or states) to the sets of
possible output strings. From this point of view, stochastic regular syntax-directed trans-
lation schemata represent formalisms that are more adequate for dealing with translation
than stochastic regular grammars (or hidden Markov models).

A maximum-likelihood algorithm for automatically learning the statistical parameters
of stochastic regular syntax-directed translation schemata from examples has recently been
proposed (Casacuberta, 1995, 1996). This algorithm estimates the parameter set by maxi-
mizing the likelihood of the training data over the model. Only the translations of a given
input string that explicitely appear in the training corpus are taken into account during the
estimation process, and, although the process is guaranteed to converge to the optimal model
for large enough data sets, its performance is poor for limited or sparse data.

The minimum conditional entropy estimation criterion, which is presented in Section 3.2,
is based on some ideas taken from maximum mutual information (Brown, 1987; Cardin,
Normandin & DeMori, 1994). The conditional maximum likelihood approach was originally
proposed for speech modelling irabas, Hahamoo and Picherny (1988). These two criteria
take into consideration not only the sentences that explicitly appear in the training corpus
but also take into consideration all the possible translations of these sentences that the model
can produce. These two criteria can be particularly useful when the training data is sparse.

The application of these approaches in stochastic regular syntax-directed translation
schemata was first proposed in Casacuberta (1996). Here, a different learning algorithm
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based on the maximum mutual information criterium was proposed. We have found the
original proposal to be inadequate for regular translation models. A discussion about this
matter is given in Section 3.2.3. Furthermore, the models and algorithms presented in this
paper are more general (empty rules are allowed) than those in Casacuberta (1996). New
experiments are reported here.

The rest of this paper is structured as follows. Section 2 presents the basic concepts of
finite-state transducers and the main parsing algorithms. Four different methods of proba-
bilistic estimation are developed in Section 3 and some experiments are reported in Section 4.
Finally, some conclusions are given in Section 5.

2. Formal translations

A formal translation Tis a subset oE* x A*, whereX is aninput alphabetandA is an

output alphabetNote that namin@ andA as tha@nputandoutputalphabets is an arbitrary
decision. We will use the terms input and output whenever it helps to make the presentation
clearer.

A translationT is left-to-right ambiguousf there exists somd € X* such that the set
{(f,9)| (f, g) € T} has more than one element. Similarly, a translafiois right-to-left
ambiguousf there exists somg e A* such that the sdi( f, g) | (f, g) € T} has more than
one element.

Formal translations can be characterized in a manner which is similar to formal languages.
In fact, there are close relations between some types of translations and some types of
languages (Aho & Ullman, 1972). (Relations of this type were also extended to stochastic
translations and stochastic languages (Maryanski & Thomason, 1979)).

One important class of translations is constitutedrdgyular or rational translations
As for formal languages, there are different models for dealing with translations of this
class. One of them is thational transducernBerstel, 1979). Another one is tmegular
syntax-directed translation schertiehomason, 1976). We have chosen the latter because it
is similar to regular grammars, and there are developments for regular grammars and their
corresponding stochastic extension which can be applied to translations, once they have
been conveniently adapted.

2.1. Definitions

A stochastic regular syntax-directed translation schg®BT) is a systerm = (N, =, A,
R, S, P), inwhich N is a finite set of non-terminal symbols,andA are finite sets of input
and output terminal symbols, respectively, &d N is the initial symbol of the schema. If
we represent the empty stringaghenR is a set of ruleA — aB, zBor A— a, z, where
A,BeN,ae X U{A} andze A* (by * and A* we will denote the sets of finite-length
strings onx andA, respectively). Rules of the fordly — B, B are called.-rules. Although
this is the definition of an SRT for the general case, in the remainder of the paper we will
only consider SRTs whevterules do not form a loop.

The stochastic component of the schema is giveR bjR —]0, 1], a probability assign-
ment to the rules such that the sum of probabilities of all rules rewriting a non-terdinal
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is equal to 1 roper SRT (Gonalez & Thomason, 1978). Formally, for any non-terminal
A, the sef A — w1, Al — wa, ..., A — wy} of all rules that rewrited; must satisfy
the following condition of stochasticity:

n

P(A — wj) =1 Q)
j=1
This probability assignmenk, defines a set of probabilistic parameters that will be denoted
by ®(T). On the other hand, for the sake of simplicity, in the remainder of the paper, we
will denotePr(X =x) asPr(x) andPr(Y =y | X=x) asPr(y | x) whereX andY are
stochastic variables andandy are two possible values of andY, respectively.

A translation formthat yields theranslation pair(x, y) € £* x A* is a finite sequence

of rulestf =(rq, r,, ..., ry) such that

(S 9 B (1AL Y1A1) 25 (XX Ao, Y1Y2A2) -+ 23 (X, Y).

If the translation forntf rewrites(S, S) as(x, y), we will denotex asinput(tf), andy as
outputtf).

An SRTT associates a probability to each possible translation tbea(r,,ro, ..., 1)
which is the product of the probabilities of the rules in the form:

Prf|®(T)) = P(ry)P(rp) --- P(rp). (2)

An SRT is, in general, non-deterministic. This means that a translation € X* x A*
may then be produced by more than one translation fifrigso thatinput(tf) =x and
outputtf) =y.) When this possibility is considered, tpeobability of a translation(x, y)
must be defined as the sum of probabilities of all the corresponding translation forms:

Prx,y | @(T) = > Prtf | &(T)). (3)
Vif /input(tf)=x
Aoutputtf)=y

When there is more than one possible translation form for some>pam we will speak
of agrammatically ambiguous SRWhen for a given inpux there is more than one output
string y such thatPr(x, y|®(T)) > 0 we will speak of arambiguous-in-translatiosRT
(or simply anambiguousSRT).

We are now ready to define how the translation of a given input sentence is to be calculated.
Since the SRT can be ambiguous, a single input sentence may be translated into more than
one outputsentence. The decision of which one of the possible different outputs is considered
to be the best will be made using a statistical criterion. §thehastic translatioof an input
stringx € ¥*ina SRTT is the stringy* € A* into whichx can be translated with the highest
probability:

y* =argmaxr(y | X, ®(T)), (4)
YEA*



STOCHASTIC FINITE-STATE TRANSDUCERS 125

where

Prix,y | ®(T))

Pr(y | X, ®(T)) = Prx [ &(T)

Given that the probabilityr(x | ®(T)) does not depend upon the maximization index
y, we can rewrite (4) as:

y* = argmaxPr(x, y | ®(T)) (5)
yEA*

The search of the optimat in (5) using definition (3) is a difficult computational problem
(Casacuberta & de la Higuera, 2000). The only possible algorithmic solution is the use of
some variant of thé\* algorithm (e.g., the Stack-Decoding (Bahl, Jelinek & Mercer, 1983)),
which presents exponential computational costs in the worst case and, therefore, may not
be feasible for use in some real applications.

A computationally cheaper approximation to the stochastic translation can be defined.
Instead of defining the probability of a translation as shown in (3), we will work with the
Viterbi probability of a translationThis is defined as the probability of the translation form
that most probably yield&x, y):

Pr(x,y | ®(T)) = y max Prf | ®(T)) (6)
tf/input(tf)=x
Aoutputtf)=y

The approximate stochastic translatiaos an approximation to (5) in which the Viterbi
probability is used instead of the standard probability defined in (3):

y*™* = argmaxPr(x, y | ®(T)). (7)
yeA*

There exists a polynomial algorithm for calculating (7). Given an input stxinthis
algorithm searches for the maximum probability translation fdrso thatinput(tf) = x.
More formally, we will calculate the approximate stochastic translation as:

y* = outpu( argmax Pr(tf | CD(T))). (8)

vif /input(t f )=x

The relationship between the exact result from (4) and the approximate result from (8)
is similar to the analogous relationship found in stochastic grammare(@z & Bened’
1997) and in hidden Markov models (Mergav & Ephraim, 1991). Algorithms for calculating
some of the expressions defined above will be presented in the following subsection. They
will also be useful in the estimation methods that are discussed in Section 3.

2.2. Algorithms

From this point on, we will use a slightly modified version of the SRT for reasons of simplic-
ity. Now, a new non-termindt ¢ (N U X) is added. All rules of the forrh — a, ze Rare
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rewritten asA — aF, zF, forae X U {1} andz e A*, with the same probability value. The
only rule that has the non-terminBlon the left side i — A, A. It can be demonstrated
that translation schemata with or without this modification are equivalent.

The names of the algorithms will be labeled with super-inddxes O, depending on
whether they need an input string, an output string or both as an argument. We will use the
following notational convention: given a string=X; ... Xjx; of length|x|, with x; € X
for 1 <i < |x|, and two indexes$, j such thai < j, expressiorx; ; will stand for the
substringx; . .. X;j. If the indexes are crossed over (i.e., if we are writing; wheni > j),
it is understood that the expression is equivalent to the empty string

2.2.1. Forward and backward algorithms.LetT = (N, X, A, R, S, P)beaSRTx € X*,
Ae NU{F},0<i <|x[,0< j < |y|. We define the following two functions:

@O, j, A =Pr((S,9 = (x.iA YA | (T)) ©
B G, j, A =Pr((A A S X1, Yistgy) | D(T)) (10)
These two functions represent partial sums of probability which correspond to different

substrings of the input and output strings. The probability of a transla@kogn) can be
obtained from any of these two functions:

a"O(xl, lyl, F) = °(0,0,9) = Pr(x, y | ®(T)).

The so-calledorward andbackwardalgorithms are two recursive algorithms that calcu-
latea andB. These algorithms are described in a recursive manner by means of two auxiliary
functions,ozi'o andﬁk"o. Assuming that the value of (i, j, A) isknownvA € N,i > 0,

j > 0, we will define the auxiliary function, © as follows, for 0<i < [x|,0< j < |y|
andk > 0:

G, j.0,A) =) (Zaw(i —1Lj A P(A = XA V1A

AeN \j'<j
+ > " Ch, | A P(A - A y,-/+1...,-A>) (11)
i'<]
1,0,/ _ 1,0/ / /
o, (1, ),k A) = o, (0, j, k=1L A)-P(A— A A).
AeN

More informally, ) (i, j, k, A) computes the probability of parsing the pair of sub-
strings(xy.;, y1...j) and of then producing a derivation bf.-rules which ends up writing
the non-terminalA. The value ofe'-C(i, j, A) can therefore be calculated as an infinite
sum over all the probabilities of all possible derivations, which may include any number of
A-rules:

OG0, 5, A=) a9, j. k A (12)
k=0
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The value of this expression can be calculated in a simpler way by just making it depend
only onai’o(i, i, 0, A). First of all, let us expand the second equation in (11):

0O, kA =Y @) 06.J.0.A) - Y P(AL—> Ag, Ap) ...

A]_EN AzEN
Y P(Ac1— A A) - P(Ac—> A A)
AkEN

Now we can make substitutions in (12) and reorder sums:

o O A=) a0k A=Y @6, ),0,A) ) [Paa (13)
k=0 k=0

AeN

The matrixP of A-rules has dimensiondN| x [N|. Each one of its elements is defined
asPag = P(A— B, B), for A, Be N. Each element of the infinite power seriesRf
> e o[P¥] a8, is equal to the sum of probabilities of all possible derivations witiles
that rewriteA into B. We represent the identity matrix hdf matrix | — P can be inverted,
then the value of the matrix power series is known (Jelinek & Lafferty, 1991), and we can
use expression (14) for calculating the exact value'd?(i, j, A). Otherwise, expression
(13) can be used to find an approximate value by truncating the power series.

@O0 A=) %6 .0, A) - [ —P) aa (14)
AeN

Finally, the base case in the recursiond® can be calculated as:

a6, A=Y 8N, 9 [ =P)

AeN
where functionS means:

0 if A% B,

S(A’B):{l ifA=B

Similar reasonings yield the following analogous expressiong fé&t andﬁk'*o:

BUOUXI, Iy, A = Y 8(A,F)-[(1 =P an
AeN
BOG. J. A =D 803 J.0.A) [ =P Man

AeN

BCG.j.0. A= (Z P(A— X1 A, Yja.p A) - 10>+ 1, )/, A)

AeN \jzj

+ Z P(A— ALy A) - 93, j/, A’))

i'>]
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BIOG. j. k. A =D BIC6 . k=1 A) - P(A—> A, A).
AeN

The time complexity of thex'"© and g'-© algorithms isO(|x| - |y| - |R]) if dynamic
programming is used.

2.2.2. Viterbi algorithm. The Viterbi probability of a translatiotx, y) can be calculated
by defining a functiony'-© which is very similar tax'-© but uses maximizations instead
of sums, such that:

Y "CUxI, lyl, F) = Pr(x, y | ®(T)).

Let us first define an auxiliary function©:

6. 1.0, A) = r/;naNx(maxy'voa — LA PA = XA Y1 A)
'€ i'=]

+ rjr)ajxy"o(i, ' A) - P(A — A, yj’+l-~jA)>

v, ik A = rApaNx;/;’o(i, i,k—1, A)-P(A - A A), (15)
/e

The limits of the indexes are8i < |x|,0< j < |y] andk > 0.

The expressiory, (i, j, k, A) computes the Viterbi probability of parsing the pair of
substringgx, i, y1..j) and of then producing a derivationlof.-rules with ends up writing
the non-terminalA. The value ofy'©(i, j, A) can therefore be calculated as an infinite
application of the operator maximization over all the probabilities of all possible derivations,
which may include any number afrules:

y"C.J. A = maxy G, .k A) (16)

The value of this expression can be calculated in a simpler way by just making it depend
only on ykl’o(i, j, 0, A, as we did fOI’oz)IL’O. Before doing this, however, it will be helpful
to introduce some new notation for the products of matrix using maximizations.

Let M =[a;j]nxm andM’ =[bij Jmxn be two matrices. Let theax-producbf M andM’,
denoted ad ® M’, be a matrix where each element is calculated as follows:

M® M= ipbp;-
[M®MT;j = max apbp,

Thekth power of matrixP can be defined through the max-product instead of the standard
product:PX =P 1o P,

max max
Now, by expanding the second equation in (15) and making substitutions, (16) can be

rewritten as:
(17)

1.0 & 2, 1.0 _ 1,LOg N 1S [ PK
7/ (I’ l’ A) - T:a()xyA (I’ 17 kv A) - rpgNXV;\ (|7 Jv 05 A) T:adX[Pmax]Ar‘A
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Each element of the infinite power seriefomax® ;[PX ,J a s, is equal to the maximum
probability among the probabilities of all derivations witkrules that rewriteA into B.
Note that the longest possible derivation frérinto B with maximum probability is the one
which rewrites each non-terminal once and only once, since the existence of any cycle would
necessarily cause the probability to be lower with respect to the same derivation without
the cycle. Consequently, the limit in (17) attains its maximum for valudssmhaller than
IN|, and can be calculated as:

D _ k
IDA,B - kg)]a-l)lsll [Pmax] A B

Finally, we can reformulate algorithga'-© in the following manner:
y"%(0,0, A) = maxs(A', S) - Pa.a
AeN

y O, A) = maxy/ OG0, .0 A) - Paa. (18)

whereyk' O, j, 0, A) can be calculated as shown in (15). The time complexity of algorithm
y"©is O(|x]| - ly| - |R]) if dynamic programming is used.

2.2.3. Viterbi translation algorithm. The maximization contained in the expression for
the approximate stochastic translation (given by Eq. (8)) can be calculated with a variation
of the Viterbi algorithm shown in Section 2.2.2. For any given input stxinge will define

some functiony' such that:

| —
y'(xI.F)y= max Prf | o(T)). (19)

The algorithm for calculating the functign' is described in a recursive manner by means
of an auxiliary functiony, which is similar to functionyx"O in the previous section. At
each step of recursion in', functiony, keeps track of all the paths that are formed only
by rules of the formA — B, zB, z € A*, and, therefore, do not consume any input symbol.
Assuming that' (i — 1, A) is known, the auxiliary functiony, is recursively defined as
follows,VA € N, Vi > 0:

Y (i,0, A) =maxy'(i —1, A)- P(A = x A, zA
AeN

ZEA* (20)
vid, i, A =maxy' (,j—1,A) - P(A - A zA 1<j<k

ZeNA*

The value of/' (i, A) can be calculated as an infinite maximization over all the probabilities
of all possible derivations, which may include any number of rules of the form B, zB:

v (i, A) = maxy .k, A) (21)
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Ifwe define some matriR’ of dimension$N| x [N|asP’a g = max;ca- P(A— B, zB),
for A, B € N, andP is defined as in (17), then algorithm (21) can be reformulated as fol-
lows, by a reasoning similar to the one in the previous section:

y' (0, A) = maxs(A, S) - Py A
AeN ’

y' (i, A) = maxy/(i,0, A) - Py 4. (22)
AeN ’

2.2.4. Forward and backward algorithms for input and outputWe will finally define

two more new variants of thierward andbackwardalgorithms. Following our notation,
these versions will be denoted @, 8', «© and8°. They correspond to the calculation

of the forward andbackwardvalues of probability when the derivations are followed by
keeping track only of either the input or the output string. These functions will be useful
in Section 3, where we will discuss the learning of the probabilities of schemata from
translation samples.

The proper definition of these functions need an additional restriction over the structure
of the STRs: rules of the forrh — B, zB, for z € A*, must not form a loop for the
application ofa' andg', and rules of the fornrA — aB, B, fora € X U {1}, must not
form a loop for the application af® andg®°.

The calculation ofx' will require the definition of an auxiliary recursive functios,
which is similar to the one used in the previous development. Assuming that the value of
o' (i —1,A),YA e N,Vi > 0is known, we will definex] as:

af(,0,A) = a'(i—1 A)-P(Ao— XA zA

AgeN
ZEA*

ol (i, ). A= afi.j—1LA) PA —>AzA 1<j=<k
AjEN
ZEA*

(23)

We can express' (i, A) as an infinite sum of the probabilities of all possible derivations
which end up generating the non-termiabnd are composed only by rules of the form
A — B, zB, in a way similar to the one for':

o' (A=) (kA=) a0 A [P, , (24)
k=0 AeN k=0 ’

Here, matrixP” registers the probabilities of rules i of the form A — B, zB, so that

each element is defined B4 g = ) ,.A- P(A — B, zB). Again, if matrix| — P” can

be inverted, then the value of the matrix power series is known and we can use expression
(25) for calculating the exact value @f (i, A).

o (i, A=) af(i,0, A)-[(1 —P) aa (25)
AeN
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Similar reasonings yield the following analogous expressions for the three remain-
ing algorithms. The definition of the matriR” for expressions (27) and (28) B'a g=
> vaesup P(A— aB, B).

B, A= B0, A)[(1 =P) an (26)
AeN

a®(, A =Y al(j,0,A)- [0 =P") @27)
AeN

B A =Y BG.0A)[(1 —=P") Man (28)
AeN

3. Probabilistic estimation

The stochastic translation schemata discussed in the previous section are statistical models
which can describe probability distributions over the universe of all possible pairs of input-
output strings,=* x A*. These distributions depend on the structure of each particular
schema, and on the set of probability parameters associated with the set of rules. In practice,
building one of these schemata for adequately modeling a certain probability distribution
is, therefore, a process that may be performed in two separate phases. First, a non-stochastic
schema is generated, and, second, a set of probability values for the rules in the schema is
chosen. The generation of the structure can be done either manually or automatically—for
instance, with some techniques for inferring grammars from samples (Casacuberta, 2000;
Oncina, Gar@ & Vidal, 1993). Once a schema is given, the parameter set will often need

to be estimated from a representative sample of translation pairs, so as to obtain a stochastic
schema that approximates the real probability distribution as closely as possible.

The problem of estimating the parameters of a model from a finite set of data has been
thoroughly studied in statistics. A well-known, general-purpose method for this is the so-
calledexpectation-maximizatianethod (Dempster, Laird & Rubin, 1977). Here we will use
the Baum-Welch algorithm, a more specific version of the expectation-maximization method
which is suitable for estimating the probabilities of rules in a SRT. The four estimation
criteria presented in this paper follow the same general procedure. First, we define a function
that depends both on the statistical parameters that we want to estimate and on the training
translation pairs. This function is supposed to be sensitive toeflegantinformation in
the sample, so that higher values of the function correspond to better approximations of the
model to reality. Then we use the Baum-Welch algorithm or some variation of it for finding
a local optimal value.

The Baum-Welch algorithm (Baum & Sell, 1968) allows us to approximate the optimal
value of a function by an iterative process. Functions must be polynomials with non-negative
coefficients. The following theorem indicates how to build certapwth transformations
sothatthe increase of the function value is guaranteed when they are applied for reestimation.

Theorem 1. Let P(®) be a homogeneous polynomial in the variabtes= {®;} with
non-negative coefficients. Let={6;} be one point of D= {6; | 6; > O, Z?‘zl 0 =1,
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i=1...,pand j=1,...,q}. Let O) be one point of D defined as

0 (%56.2),
Elzl Bik ( a;;i(-s) )9

such thaty ¥, 6, (0P (©)/00ix)y # 0. Then P(Q(9)) > P(6) unless Qb)) = 6.

Q) = (29)

The growth transformation®(x) can now be used iteratively in a straight-forward
algorithm:

INPUT. P(®)
PROCEDURE
6 := initial values
repeat
computeQ(9) using P(®) and (29)
0 := Q)
until convergence
OuUTPUT: 0

We will also use an extension of the previous theorem to rational functions by
Gopalakrishnan et al. (1991). We need to define some concepts before we can state the
theorem. The functiofiR(®) = S (©)/S(®) is a rational function over the doma in
Theorem 1, wher&,; (®) and $(©) are polynomials with real coefficients and variables
® ={0;}. Function$(®) only presents positive values ID. The polynomialP, (©) =
S (®)—R(9) S (®) willbe denoted a$, . Given a rational functioR(®) and areal number
C, let us define the following functions:

Py (®)
Ljj(0; C) = 6 (—(9) + C) 30
j (e, (30)
and
i
Ii(6;C) =) Tj(®; C). (31)
j=1

We will say thatC is admissiblg(for R(®)) if for anyi, j andé € D, thenl';(0; C) > O,
andrlhj(6; C) > 0.

Theorem 2. Let R(®) be arational function in the variableé® = {®;} with non-negative
coefficients. Leff = {6} be one point of D= {6;]6; > O, Z?‘zl ij=1i=1...,pand
j=1,...,q]}. Let 0) be one point of D defined as
6 ((%55,2)6 +C)

i IP(® :

E:l eik((éa(egi(k)))e + C)

Q) = (32)
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Then there exists a constant\such that for any C> Ng, Ng is admissible for R®),
and, for such G function Q is a growth transformation of(R). This is R(Q(9)) > R(9),
exceptif QO) = 0.

The demonstration of this theorem developed in Gopalakrishnan et al. (1991) provides
an expression for calculatinyg. However, in practice we often find that the algorithm
converges much more slowly the greater the valu€ of. Furthermore, if we reduce the
value ofC and make it smaller than that of the theoretidal, convergence still holds. This
property is lost for values of which are too low, in which case the algorithms produce
oscillations of the value oR(#). In practical executions of the algorithm, the valuetf
will be chosen by trial and error.

3.1. Estimation through maximization of the sample likelihood

The two estimation methods presented in this section are based on the maximization of the
likelihood of the training data set within the translation model. Both methods differ in the
way translation probabilities are calculated. The first one uses the probability of a translation
as shown in (3), while the second one approximates it througkfitaebi probability of a
translation, defined in (6).

3.1.1. Maximum likelihood estimation. A sampleis formally a finite collection of trans-
lation pairs with repetitions allowed—i.e., a sample is a multiset drawn £6m A*. The
function that will constitute the criterion for reestimation will be the so-cafteakimum
likelihoodof a samplers

Rue@(T) = [] Preyl @) (33)
(X,y)eTS

Likelihood Ry g(®(T)) is the probability that a samplESis acceptedyy the SRTT with
parametersb (T). Themaximum likelihood estimatiofMLE) of ®(T) is the vaIue(iJ(T)
which maximizeRy (P (T)). The corresponding growth transformations are drawn from
the application of the Theorem 1:

QWLE(P(A — aB, zB))
B Z(X,y)eTSW 22 HX Yy, (A—aB zB),i, j)
Y xyets Frocy ey i j LG Y AL )

(34)

where

Hx,y,(A— aB,zB),i, j) =@ X.i—1+ja) - 6(Z Yj+1..j+1z)
@' C(i,y1.j, A -P(A— aB,zB)
'ﬂI’O(Xi+|a|...\x|, Yi+iz+1.1y> B),
L(X, Yy, Av i7 J) = al’o(xl...i ’ yl...js A) . IBLO(Xi—lHa\..Jx\’ YJ|y\7 A)
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3.1.2. Viterbi-like estimation. This method (from now on, VLE) attempts to maximize
the Viterbi probability of the translation model for a given training sample. We say that a
translation forntf generates sentence paiKx, y) if input(tf) = x andoutputtf) = y. The
Viterbi probability of the translation model is a function of the multiset of translation forms
that generate the pairs in the training sample with maximum probability. This function is not
a homogeneous polynomial and, therefore, cannot be used as an objective function for the
Baum-Welch algorithm. Instead, we will define the objective function for a generic set of
translation forms, so the function is polynomial and growth transformations can be drawn
from the application of Theorem 1. Then, we will apply the growth transformations to the
particular case of the set of maximum probability translation forms.

Given a sampld Sand a set of translation fornid that compose the pairs ifS the
objective function that we want to maximize is:

Rue(@T) =[] Prf| o). (35)
VtfeTF:
(input(tf),
outputif)eTs

This function accomplishes the necessary conditions for applying Theorem 1. The following
growth transformations are obtain8dA — aB, zB) € R, A, B € N,ae Z U{A},z€ A*:

> wrete N((A — aB, zB), tf)

VLE(P(A — aB, zB)) =
Qs (P( ) > vierr NCA, )

(36)

Inthis expression\ ((A— aA, zB), tf) denotes the number of times that the rale> a A,
zBhas been used ifi € TF; N(A, tf) is the number of times that the non-termidahas
been used itf € TF, andQYLE is an application from the spade(T) into itself.

When these transformations are used, the value of function (35) increases. As a particular
case,TF can be chosen to be the set of translation forms of maximum probability, so that
the Viterbi-like estimation is obtained. The search for the optimal translation form can be
achieved as a byproduct of the Viterbi algorithm (18) by keeping track of the rules which
produce the maximum probability derivations during the execution.

3.1.3. Computational complexity.The time complexity of the transformation rules in
(34) and (36) iD(|TY - Ly - Ly - [R]) for each iteration, wherd@ g, |R|, Ly andL are the
number of pairs in the sample, the number of rules in the schema and the maximum length
of the input and output strings, respectively. This upper bound is deduced from the fact that
the values ofr''© andp'-© in MLE, andy"© in VLE, must be calculated once for each
pair in the sample. The cost of these three algorithn3(ix| - |y| - |R]). Note that even
though VLE has the same worst-case cost as MLE, its real cost is, in general, much lower.

3.1.4. Ambiguity. Maximum likelihood estimation and Viterbi-like estimation optimize
the same objective function when the SRT is not grammatically ambiguous. Moreover, in
this case the optimum of the function is global and is achieved in only one iteration. This
result is similar to the one with stochastic grammars (Casacuberta, 1994).
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3.2. Estimation through entropy measurements

Theentropy H(X) is a measure of the number of bits that are needed to specify the outcome
of arandom evenX (Shannon, 1948). Intuitively, entropy can be understood as a plausible
measure of the level of uncertainty in the event. The definition is shown below.

H(X) = = Pr(x)logPr(x)

Similarly, theconditional entropyof the random evenX given the random event is a
measure of the uncertainty X given the outcome of:

HX | Y) ==Y Pr(x,y)logPr(x | y)
Xy

A statistical translation system can be interpreted as a bidirectional channel where two
sourcesX andY produce sentences in each of the languages involved, respectively, following
the real distribution of probability of sentences in either language. The bidirectional channel
establishes a relationship of translation between the two languages. The probability that
sentenceg andy from X andY are a translation of each others(x, y).

If we assume that a real translation situation between two languages can be approached
as one of these statistical translation systems, then our goal is to obtain a statistical model
m which is as close as possible to the real system. ThereforelJ€X | Y) stand for the
conditional entropy o givenY with respect to the probability distributions in the model
m. It has been demonstrated in Brown (1987) that the inequilifgX | Y) > H(X | Y)
always holds. Furthermore, the smaller the valuelgf X | Y) is, the more the distribution
in modelm resembles the real distributiohl,(X | Y) andH (X | Y) are equal when the
two distributions are the same.

This observation permits us to define two different criteria for the estimation of the
probabilities in the model. As a first approximation, we would like to choose the muogel,
to minimizeH, (Y | X). On the other hand, as a second approximation, note that the model
is symmetrical with respect to the direction of translation. Hence, we might also want the
model to minimizeH,,(X | Y). These two simultaneous goals can be achieved by looking
for a model that minimizes the sum of both values,

~ Pr2(x,y)
Hin(X | Y) + Hn(Y | X) = — Xy: Prix.y) g 5 P

wherePrn (X, ¥), Prn(x) andPry(y) are the probabilities yielded by the model.

3.2.1. Minimum conditional entropy estimation. The two criteria just mentioned can be
used to estimate the parameter set of an SRT. For a giverTSRith parameter seb(T),
we will usePr(x, y | ®(T)) as the probabilityPr (X, y). Since we do not know the real
probability distributionPr(x, y), we mustinstead assume that the péitsy) in our sample
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TSare representative, and choaB€T ) to minimize

Pré(x, y | ®(T))
a ! 37
<x,y§Ts P Brx [®(T)) - Pr(y | &(T)) (37)

Therefore, the criterion function for theinimum conditional entropy estimatigiMCEE),
which must be maximized due to a sign change, will be:

Pré(x,y| ®(T))
Pr(x | ®(T)) - Pr(y | ®(T))

Rucee(®(M) = []

(X,y)eTS

(38)

The reestimation formulae for this function will be obtained through the application
Theorem 2. LeQYSEE be a transformation from the spa®&T) into itself. Then¥ (A —
aB, zB) € Rwe have:

YEEE(P(A — aB, zB))

P(A— aB.zB)(*ReT5” + )

= 3 _log Rucee(®(T))
Yaze P(A— aB,ZB)( TPAsas z8) T C)

(39)

where the numerator of the second term can be deduced as

9109 Rucee(®(T))
9P(A— aB.zB)

- ( 2 IPr(x, y | ®(T))

P(A — aB,zB)

(A - aB, zB)

I
w2 s \PrOGy | ®(T)) IP(A— aB, zB)

1 APr(x | ®(T))
- —— _ _P(A— aB,zB)
Pr(x | ®(T)) dP(A — aB, zB)

1 aPr(y | @(T))
T Rry ey AT 2B I A S B, zB))

(40)

andC is an admissible constant (Gopalakrishnan et al., 1991).

Thefirsttermin the sum is similar to the term which appearsin MLE, and can be computed
as in expression (34). The second term can be easily calculated by consideringuihe
grammarof T, whichisdefinedtob&; = (N, X, R, S, B), where,if(A — aB, zB) e R,
then(A — aB) € R andP, (A — aB) = P(A — aB, zB). The expressions which are
obtained for MLE in stochastic grammars can be used (Casacuberta, 1996). These formulae
need the use of algorithms and g° presented in Section 2. Similarly, the third term
is obtained by considering thautput grammarof T :Go= (N, X, Ry, S, P,), where, if
(A — aB,zB)e R, then(A — zB) € R, andP,(A — aB) = P(A — aB, zB). This
can also be calculated as shown in (Casacuberta, 1996).
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3.2.2. Conditional maximum likelihood estimation.This method is based on the mini-
mization of the conditional entropy in only one of the directions of the translation. Condi-
tional entropy can be calculated as:

Prm(x’ y)

Hm(Y[X) = _ZPr(x, y) log P00

Xy
We can now reason as we did for MCEE and define an objective function to be maximized:

Prix,y | ®(T))

(41)
Pr(x | ®(T))

Reme(®(T) = []

(X, Y)ETS

The denomination afonditional maximum likelihood due to the fact that this criterion had
already been defined in Casacuberta (1996) and Cardin, Narmandin and DeMori (1994) as
a maximization of the conditional probability of an output sentence given an input sentence,
which happens to be equivalent:

Prx, y | @(T))

ar%m)axPr(wx, ®(T)) = argmax P [OT) (42)

The growth transformations foRcwi e can be obtained through the application of

Theorem 2. Thus, 1eQSYE be a closed transformation in the spa®&T). Then,
V(A—aB,zB) e R,

QS¥E(P(A — aB, zB))

dlog RemLe(®(T))
P(A — aB, ZB)(% +C)

= 9109 RomLe(®(T))
Yaze P(A— @B, 2B)(5phas 78, +C)

(43)

where the numerator of the second term can be deduced as

dlogRemLE(P(T))
3P(A— aB.zB)

- ( 1 APr(x, y|®(T))

P(A— aB, zB)

Prx yiam) A 2B 2B e e 7

1 IPr(x|®(T)) )

(X,Y)eTS

(A — aB, zB)

~ o (44)
Pr(x|®(T)) dP(A — aB, zB)

andC is an admissible constant (Gopalakrishnan, 1991).

3.2.3. Discussion. A different method based on entropy measures has been proposed in
Casacuberta (1996). It was a straight-forward application afittoseimum mutual informa-
tion estimation(MMIE) by Brown (1987) to stochastic translation schemata. In Brown’s
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MMIE, it is claimed that minimizing the conditional entrogy (Y | X) is equivalent to
maximizing themutual information| (X; Y), since

HCY | X) = H(X) — 1 (X; Y).

H (X) represents the entropy of the souiXeand is supposed to be determined by some
known language model and, therefore, fixed. However, this approximation is not adequate if
(asis our case) the language model that is being used is not independent from the translation
model. When dealing with SRTs the probabilities of sourkeandY given by the model

(i.e., Prp(x) = Pr(x | ®(T)) andPrnh(y) = Pr(y | ®(T))) are a function of the set of
parameters of the SR®(T). Therefore, they armot fixed during the estimation process

and MMIE cannot be applied as done in Casacuberta (1996).

MMIE could be used if an independent model for the probabilities of the input and the
output sentences were given. Such a model could be, for instance, a probabilistic model
that represented information about the context of appearance of sentences within a line of
discourse.

4. Experiments

Some experiments were carried out to compare the four estimation methods described
above. The selected task was the translation of Spanish sentences into English, as defined
in project UTRANS-| (Amengual et al., 1998). The semantic domain of the sentences is
restricted to tourist information, consisting in sentences that a hotel guest would address
to a hotel receptionist at the information desk. A parallel corpus of paired Spanish-English
sentences was artificially generated.

The structure of an SRT was inferred from the corpus by means of a new method for build-
ing finite-state transducers using regular grammars and morphisms (Casacuberta, 2000). The
inferred SRT contained 490 non-terminal symbols and 1438 rules.

Training was done with 5 different series of training sets. Each series was composed of
5 mutually including sets of increasing size, containing 25, 50, 100, 200 and 300 pairs,
respectively. The training process was stopped when the value of the objective function
did not increase significatively. A set containing 500 different translation pairs was used
for testing in each one of the five series. The test sets were disjoint to all training sets in

Table 1 Word-error rate (in %) for the translation of the test set for different number of pairs of sentences in the
training set and differents estimation methods.

Number of pairs MLE VLE MCEE CMLE

25 33 33 27 26
50 30 30 27 26
100 26 27 27 25
200 24 25 25 23

300 25 26 26 25
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the series. All the results were averaged over the 5 series of experiments and are shown on
Table 1. The performance was evaluated in terms of translatard-error rate (WER),

which is the percentage of output words that have to be inserted, deleted and substituted in
order to exactly match the corresponding expected translations.

The behaviour of the estimation methods in these experiments can be observed in the
results shown in Table 1. The two methods based on entropy (CMLE and MCEE) performed
significantly better for small training sets (25 and 50 training pairs). For greater training
sets the results were similar for all four methods and no significant differences can be
appreciated. For small training sets CMLE performed slightly better that MCEE and MLE
did slightly better than Viterbi, though the differences are not very remarkable.

5. Conclusions

In this paper, we have presented a series of algorithms for obtaining some probabilistic
parameters associated with stochastic regular syntax-directed translation schemata. These
algorithms include the computation of the probability of a translation and the search for the
highest probability translation of a given input. They have been defined so as to operate with
schemata that incorporaterules—i.e., rules in which the input and/or the output string is

an empty string.

Four methods have been presented for the estimation of the probabilities of the stochastic
syntax-directed translation schemata from translation samples. Two of them are based on
the maximimization of the sample likelihood, and the other two consider the possibility of
maximizing certain entropy measurements. The minimum conditional entropy estimation
is a new criterion, while the other three are an adaptation of estimation methods from other
fields to translation schemata. The criteria based on entropy have been proposed to deal
with sparse training data.

Some experiments were carried out on a translation task between natural languages and
the results show how the estimation criteria based on entropy measurements perform better
than maximum likelihood estimation and Viterbi-like estimation in reducing word-error
rates for small sample sizes.
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