
Machine Learning, 43, 265–291, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Drifting Games

ROBERT E. SCHAPIRE schapire@research.att.com
AT&T Labs—Research, Shannon Laboratory, 180 Park Avenue, Room A279, Florham Park, NJ 07932-0971, USA

Editor: Yoram Singer

Abstract. We introduce and study a general, abstract game played between two players called the shepherd and
the adversary. The game is played in a series of rounds using a finite set of “chips” which are moved about in
Rn. On each round, the shepherd assigns a desired direction of movement and an importance weight to each of
the chips. The adversary then moves the chips in any way that need only be weakly correlated with the desired
directions assigned by the shepherd. The shepherd’s goal is to cause the chips to be moved to low-loss positions,
where the loss of each chip at its final position is measured by a given loss function.

We present a shepherd algorithm for this game and prove an upper bound on its performance. We also prove a
lower bound showing that the algorithm is essentially optimal for a large number of chips. We discuss computational
methods for efficiently implementing our algorithm.

We show that our general drifting-game algorithm subsumes some well studied boosting and on-line learning
algorithms whose analyses follow as easy corollaries of our general result.

Keywords: boosting, on-line learning algorithms

1. Introduction

We introduce a general, abstract game played between two players called theshepherd1

and theadversary. The game is played in a series of rounds using a finite set of “chips”
which are moved about inRn. On each round, the shepherd assigns a desired direction
of movement to each of the chips, as well as a nonnegative weight measuring the relative
importance that each chip be moved in the desired direction. In response, the adversary
moves each chip however it wishes, so long as the relative movements of the chips projected
in the directions chosen by the shepherd are at leastδ, on average. Here, the average is
taken with respect to the importance weights that were selected by the shepherd, andδ≥ 0
is a given parameter of the game. Since we think ofδ as a small number, the adversary need
move the chips in a fashion that is only weakly correlated with the directions desired by
the shepherd. The adversary is also restricted to choose relative movements for the chips
from a given setB ⊆ Rn. The goal of the shepherd is to force the chips to be moved to
low-loss positions, where the loss of each chip at its final position is measured by a given
loss functionL. A more formal description of the game is given in Section 2.

We present in Section 4 a newalgorithm called “OS” for playing this game in the role
of the shepherd, and we analyze the algorithm’s performance for any parameterization of
the game meeting certain natural conditions. Under the same conditions, we also prove in
Section 5 that our algorithm is the best possible when the number of chips becomes large.

266 R. E. SCHAPIRE

As spelled out in Section 3, the drifting game is closely related to boosting, the problem
of finding a highly accurate classification rule by combining many weak classifiers or
hypotheses. The drifting game and its analysis are generalizations of Freund’s (1995)
“majority-vote game” which was used to derive his boost-by-majority algorithm. This
latter algorithm is optimal in a certain sense for boosting binary problems using weak
hypotheses which are restricted to making binary predictions. However, the boost-by-
majority algorithm has never been generalized to multiclass problems, nor to a setting in
which weak hypotheses may “abstain” or give graded predictions between two classes. The
general drifting game that we study leads immediately to new boosting algorithms for these
settings. By our result on the optimality of the OS algorithm, these new boosting algorithms
are also best possible, assuming as we do in this paper that the final hypothesis is restricted
in form to a simple majority vote. We do not know if the derived algorithms are optimal
without this restriction.

In Section 6, we discuss computational methods for implementing the OS algorithm.
We give a useful theorem for handling games in which the loss function enjoys certain
monotonicity properties. We also give a more general technique using linear programming
for implementing OS in many settings, including the drifting game that corresponds to
multiclass boosting. In this latter case, the algorithm runs in polynomial time when the
number of classes is held constant.

In Section 7, we discuss the analysis of several drifting games corresponding to previ-
ously studied learning problems. For the drifting games corresponding to binary boosting
with or without abstaining weak hypotheses, we show how to implement the algorithm
efficiently. We also show that there are parameterizations of the drifting game under which
OS is equivalent to a simplified version of the AdaBoost algorithm (Freund & Schapire,
1997; Schapire & Singer, 1999), as well as Cesa-Bianchi et al.’s (1996) BW algorithm
and Littlestone and Warmuth’s (1994) weighted majority algorithm for combining the ad-
vice of experts in an on-line learning setting. Analyses of these algorithms follow as easy
corollaries of the analysis we give for general drifting games.

2. Drifting games

We begin with a formal description of the drifting game. An outline of the game is shown in
figure 1. There are two players in the game called theshepherdand theadversary. The game
is played inT rounds usingm chips. On each round, the shepherd specifies aweight vector
wt

i ∈Rn for each chipi . The direction of this vector,vt
i =wt

i /‖wt
i ‖p, specifies a desired

direction of drift, while the length of the vector‖wt
i ‖p specifies the relative importance of

moving the chip in the desired direction. In response, the adversary chooses adrift vector
zt

i for each chipi . The adversary is constrained to choose eachzt
i from a fixed setB⊆Rn.

Moreover, thezt
i ’s must satisfy

∑
i

wt
i · zt

i ≥ δ
∑

i

∥∥wt
i

∥∥
p (1)

DRIFTING GAMES 267

parameters: number of roundsT
dimension of spacen
setB ⊆ Rn of permitted relative movements
norml p wherep ≥ 1
minimum average driftδ ≥ 0
loss functionL : Rn → R
number of chipsm

for t = 1, . . . , T :

– shepherd chooses weight vectorwt
i ∈ Rn for each chipi

– adversary chooses drift vectorzt
i ∈ B for each chipi so that

m∑
i=1

wt
i · zt

i ≥ δ
m∑

i=1

∥∥∥wt
i

∥∥∥
p

the final loss suffered by the shepherd is1
m

m∑
i=1

L

(
T∑

t=1

zt
i

)

Figure 1. The drifting game.

or equivalently∑
i

∥∥wt
i

∥∥
pvt

i · zt
i∑

i

∥∥wt
i

∥∥
p

≥ δ (2)

whereδ≥ 0 is a fixed parameter of the game. (Here and throughout the paper, when clear
from context,

∑
i denotes

∑m
i = 1; likewise, we will shortly use the notation

∑
t for

∑T
t = 1.)

In words,vt
i ·zt

i is the amount by which chipi has moved in the desired direction. Thus, the
left hand side of Eq. (2) represents a weighted average of the drifts of the chips projected in
the desired directions where chipi ’s projected drift is weighted by‖wt

i ‖p/
∑

i ‖wt
i ‖p. We

require that this average projected drift be at leastδ.
Thepositionof chip i at timet , denoted byst

i , is simply the sum of the drifts of that chip
up to that point in time. Thus,s1

i = 0 andst+1
i = st

i + zt
i . The final position of chipi at the

end of the game issT+1
i .

At the end ofT rounds, we measure the shepherd’s performance using a functionL of
the final positions of the chips; this function is called theloss function. Specifically, the
shepherd’s goal is to minimize

1

m

∑
i

L
(
sT+1
i

)
.

Summarizing, we see that a game is specified by several parameters: the number of
roundsT ; the dimensionn of the space; a norm‖·‖p onRn; a setB⊆Rn; a minimum drift
constantδ≥ 0; a loss functionL; and the number of chipsm.

Since the length of weight vectorsw are measured using anl p-norm, it is natural to
measure drift vectorsz using a duallq-norm where 1/p + 1/q= 1. When clear from
context, we will generally dropp andq subscripts and write simply‖w‖ or ‖z‖.

268 R. E. SCHAPIRE

As an example of a drifting game, suppose that the game is played on the real line and
that the shepherd’s goal is to get as many chips as possible into the interval [2, 7]. Suppose
further that the adversary is constrained to move each chip left or right by one unit, and
that, on each round, 10% of the chips (as weighted by the shepherd’s chosen distribution
over chips) must be moved in the shepherd’s desired direction. Then for this game,n= 1,
B={−1,+1} andδ= 0.1. Any norm will do (since we are working in just one dimension),
and the loss function is

L(s)=
{

0 if s∈ [2, 7]
1 otherwise.

We will return to this example later in the paper.
Drifting games bear a certain resemblence to the kind of games studied in Blackwell’s

(1956) celebrated approachability theory. However, it is unclear what the exact relationship
is between these two types of games and whether one type is a special case of the other.

3. Relation to boosting

In this section, we describe how the general game of drift relates directly to boosting.
In the simplest boosting model, there is a boosting algorithm that has access to a weak
learning algorithm that it calls in a series of rounds. There arem given labeled exam-
ples(x1, y1), . . . , (xm, ym) wherexi ∈ X andyi ∈ {−1,+1}. On each roundt , the booster
chooses a distributionDt (i) over the examples. The weak learner then must generate a weak
hypothesisht : X→ {−1,+1} whose error is at most 1/2− γ with respect to distribution
Dt . That is,

Pri ∼ Dt [yi 6= ht (xi)] ≤ 1
2 − γ. (3)

Here,γ > 0 is known a priori to both the booster and the weak learner. AfterT rounds,
the booster outputs a final hypothesis which we here assume is a majority vote of the weak
hypotheses:

H(x)= sign

(∑
t

ht (x)

)
. (4)

For our purposes, the goal of the booster is to minimize the fraction of errors of the final
hypothesis on the given set of examples:2

1

m
|{i : yi 6= H(xi)}|. (5)

We can recast boosting as just described as a special-case drifting game; a similar game,
called the “majority-vote game,” was studied by Freund (1995) for this case. The chips are
identified with examples, and the game is one-dimensional so thatn= 1. The drift of a chip
zt

i is +1 if examplei is correctly classified byht and−1 otherwise; that is,zt
i = yi ht (xi)

DRIFTING GAMES 269

and B={−1,+1}. The weightwt
i is formally permitted to be negative, something that

does not make sense in the boosting setting; however, for the optimal shepherd described in
the next section, this weight will always be nonnegative for this game (by Theorem 7), so
we henceforth assume thatwt

i ≥ 0. The distributionDt (i) corresponds towt
i /
∑

i w
t
i . Then

the condition in Eq. (3) is equivalent to

∑
i

[
wt

i∑
i w

t
i

(
1− zt

i

2

)]
≤ 1

2
− γ

or ∑
i

wt
i z

t
i ≥ 2γ

∑
i

wt
i . (6)

This is the same as Eq. (1) if we letδ= 2γ . Finally, if we define the loss function to be

L(s)=
{

1 if s ≤ 0

0 if s> 0
(7)

then

1

m

∑
i

L
(
sT+1
i

)
(8)

is exactly equal to Eq. (5).
Our main result on playing drifting games yields in this case exactly Freund’s boost-by-

majority algorithm (1995). There are numerous variants of this basic boosting setting to
which Freund’s algorithm has never been generalized and analyzed. For instance, we have
so far required weak hypotheses to output values in{−1,+1}. It is natural to generalize this
model to allow weak hypotheses to take values in{−1, 0,+1} so that the weak hypotheses
may “abstain” on some examples, or to take values in [−1,+1] so that a whole range of
values is possible. These correspond to simple modifications of the drifting game described
above in which we simply changeB to {−1, 0,+1} or [−1,+1]. As before, we require
that Eq. (6) hold for all weak hypotheses and we attempt to design a boosting algorithm
which minimizes Eq. (8). For both of these cases, we are able to derive analogs of the
boost-by-majority algorithm which we prove are optimal in a particular sense.

Another direction for generalization is to the non-binary multiclass case in which labelsyi

belong to a setY={1, . . . ,n}, n> 2. Following generalizations of the boosting algorithm
AdaBoost to the multiclass case (Freund & Schapire, 1997; Schapire & Singer, 1999), we
allow the booster to assign weights both to examples and labels. That is, on each round, the
booster devises a distributionDt (i, `) over examplesi and labels̀ ∈Y. The weak learner
then computes a weak hypothesisht : X × Y → {−1,+1} which must be correct on a
non-trivial fraction of the example-label pairs. That is, if we define

χy(`)=
{+1 if y = `
−1 otherwise

270 R. E. SCHAPIRE

then we require

Pr(i,`)∼ Dt [ht (xi , `) 6=χyi (`)]≤ 1
2 − γ. (9)

The final hypothesis, we assume, is again a plurality vote of the weak hypotheses:

H(x)= arg max
y∈Y

∑
t

ht (x, y). (10)

We can cast this multiclass boosting problem as a drifting game as follows. We haven
dimensions, one per class. It will be convenient for the first dimension always to corre-
spond to the correct label, with the remainingn− 1 dimensions corresponding to incorrect
labels. To do this, let us define a mapπ` : Rn → Rn which simply swaps coordinates 1
and`, leaving the other coordinates untouched. The weight vectorswt

i correspond to the
distributionDt , modulo swapping of coordinates, a correction of sign and normalization:

Dt (i, `)=
∣∣[πyi

(
wt

i

)]
`

∣∣∑
i

∥∥wt
i

∥∥
The norm used here to measure weight vectors isl1-norm. Also, it will follow from Theo-
rem 7 that, for optimal play of this game, the first coordinate ofwt

i is always nonnegative
and all other coordinates are nonpositive. The drift vectorszt

i are derived as before from
the weak hypotheses:

zt
i =πyi (〈ht (xi , 1), . . . , ht (xi , n)〉).

It can be verified that the condition in Eq. (9) is equivalent to Eq. (1) withδ= 2γ . For
binary weak hypotheses,B={−1,+1}n.

The final hypothesisH makes a mistake on example(x, y) if and only if∑
t

ht (x, y)≤ max
`:` 6= y

∑
t

ht (x, `).

Therefore, we can count the fraction of mistakes of the final hypothesis in the drifting game
context as

1

m

∑
i

L
(
sT+1
i

)
where

L(s)=
{

1 if s1≤ max{s2, . . . , sn}
0 otherwise.

(11)

DRIFTING GAMES 271

Thus, by giving an algorithm for the general drifting game, we also obtain a generalization
of the boost-by-majority algorithm for multiclass problems. The algorithm can be imple-
mented in this case in polynomial time for a constant number of classesn, and the algorithm
is provably best possible in a particular sense.

We note also that a simplified form of the AdaBoost algorithm (Freund & Schapire,
1997; Schapire & Singer, 1999) can be derived as an instance of the OS algorithm simply
by changing the loss functionL in Eq. (7) to an exponentialL(s)= exp(−ηs) for some
η>0. More details on this game are given in Section 7.2.

Besides boosting problems, the drifting game also generalizes the problem of learning
on-line with a set of “experts” (Cesa-Bianchi et al., 1997; Littlestone & Warmuth, 1994).
In particular, the BW algorithm of Cesa-Bianchi et al. (1996) and the weighted majority
algorithm of Littestone and Warmuth (1994) can be derived as special cases of our main
algorithm for a particular natural parameterization of the drifting game. Details are given
in Section 7.3.

4. The algorithm and its analysis

We next describe our algorithm for playing the general drifting game of Section 2. Like
Freund’s boost-by-majority algorithm (1995), the algorithm we present here uses a “poten-
tial function” which is central both to the workings of the algorithm and its analysis. This
function can be thought of as a “guess” of the loss that we expect to suffer for a chip at a
particular position and at a particular point in time.

We denote the potential of a chip at positionson roundt by φt (s). The final potential is
the actual loss so thatφT = L. The potential functionsφt for earlier time steps are defined
inductively:

φt−1(s)= min
w∈Rn

sup
z∈B
(φt (s+ z)+ w · z− δ‖w‖p). (12)

We will show later that, under natural conditions, the minimum above actually exists.
Moreover, the minimizing vectorw is the one used by the shepherd for the algorithm we
now present. We call our shepherd algorithm “OS” for “optimal shepherd.” The weight
vectorwt

i chosen by OS for chipi is any vectorw which minimizes

sup
z∈B

(
φt
(
st
i + z

)+ w · z− δ‖w‖p
)
.

Returning to the example at the end of Section 2, figure 2 shows the potential function
φt and the weights that would be selected by OS as a function of the position of each chip
for various choices oft . For this figure,T = 20.

We will need some natural assumptions to analyze this algorithm. The first assumption
states merely that the allowed drift vectors inB are bounded; for convenience, we assume
they have norm at most one.

Assumption1. supz∈B ‖z‖q ≤ 1.

We next assume that the loss functionL is bounded.

272 R. E. SCHAPIRE

Figure 2. Plots of the potential function (top curve in each figure) and the weights selected by OS (bottom curves)
as a function of the position of a chip in the example game at the end of Section 2 for various choices oft and
with T = 20. The vertical dotted lines show the boundary of the goal interval [2, 7]. Curves are only meaningful
at integer values.

DRIFTING GAMES 273

Assumption2. There exist finiteLmin andLmaxsuch thatLmin≤ L(s)≤ Lmaxfor all s∈ Rn.

In fact, this assumption need only hold for alls with ‖s‖q ≤ T since positions outside this
range are never reached, given Assumption 1.

Finally, we assume that, for any directionv, it is possible to choose a drift whose projec-
tion ontov is more thanδ by a constant amount.

Assumption3. There exists a numberµ>0 such that for allw∈Rn there existsz∈ B with
w · z≥ (δ + µ)‖w‖.

Lemma 1. Given Assumptions1, 2and3, for all t = 0, . . . ,T :
1. the minimum in Eq.(12)exists; and
2. Lmin ≤ φt (s) ≤ Lmax for all s∈ Rn.

Proof: By backwards induction ont . The base cases are trivial. Let us fixs and let
F(z) = φt (s+ z). Let

H(w) = sup
z∈B
(F(z)+ w · z− δ‖w‖).

Using Assumption 1, for anyw, w′:

|H(w′)− H(w)| ≤ sup
z∈B
|(F(z)+ w · z− δ‖w‖)− (F(z)+ w′ · z− δ‖w′‖)|

= sup
z∈B
|(w− w′) · z+ δ(‖w′‖ − ‖w‖)|

≤ (1+ δ)‖w′ − w‖.

Therefore,H is continuous. Moreover, forw ∈ Rn, by Assumptions 2 and 3 (as well as
our inductive hypothesis),

H(w) ≥ Lmin+ (δ + µ)‖w‖ − δ‖w‖ = Lmin+ µ‖w‖. (13)

Since

H(0) ≤ Lmax, (14)

it follows thatH(w) > H(0) if ‖w‖ > (Lmax−Lmin)/µ. Thus, for computing the minimum
of H ,we only need consider points in the compact set{

w : ‖w‖ ≤ Lmax− Lmin

µ

}
.

Since a continuous function over a compact set has a minimum, this proves Part 1.
Part 2 follows immediately from Eqs. (13) and (14). 2

274 R. E. SCHAPIRE

We next prove an upper bound on the loss suffered by a shepherd employing the OS
algorithm against any adversary. This is the main result of this section. We will shortly see
that this bound is essentially best possible for any algorithm. It is important to note that
these theorems tell us much more than the almost obvious point that the optimal thing to
do is whatever is best in a minmax sense. These theorems prove the nontrivial fact that
(nearly) minmax behavior can be obtained without the simultaneous consideration of all of
the chips at once. Rather, we can compute each weight vectorwt

i merely as a function of
the position of chipi , without consideration of the positions of any of the other chips.

Theorem 2. Under the condition of Assumptions1–3, the final loss suffered by the OS
algorithm against any adversary is at mostφ0(0) where the functionsφt are defined above.

Proof: Following Freund’s analysis (1995), we show that the total potential never in-
creases. That is, we prove by induction that∑

i

φt
(
st+1
i

) ≤∑
i

φt−1
(
st
i

)
. (15)

This implies, through repeated application of Eq. (15), that

1

m

∑
i

L
(
sT+1
i

) = 1

m

∑
i

φT
(
sT+1
i

) ≤ 1

m

∑
i

φ0
(
s1
i

) = φ0(0)

as claimed.
The definition ofφt−1 given in Eq. (12) implies that forwt

i chosen by the OS algorithm,
and for allz ∈ B and alls∈Rn:

φt (s+ z)+ wt
i · z− δ

∥∥wt
i

∥∥ ≤ φt−1(s).

Therefore,∑
i

φt
(
st+1
i

) =∑
i

φt
(
st
i + zt

i

)
≤
∑

i

(
φt−1

(
st
i

)− wt
i · zt

i + δ
∥∥wt

i

∥∥)
≤
∑

i

φt−1
(
st
i

)
where the last inequality follows from Eq. (1). 2

Returning again to the example at the end of Section 2, figure 3 shows a plot of the bound
φ0(0) as a function of the total number of roundsT . It is rather curious that the bound is not
monotonic inT (even discounting the jagged nature of the curve caused by the difference
between even and odd length games). Apparently, for this game, having more time to get
the chips into the goal region can actually hurt the shepherd.

DRIFTING GAMES 275

Figure 3. A plot of the loss boundφ0(0) as a function of the total number of roundsT for the example game at
the end of Section 2. The jagged nature of the curve is due to the difference between a game with an odd or an
even number of steps.

5. A lower bound

In this section, we prove that the OS algorithm is essentially optimal in the sense that, for
any shepherd algorithm, there exists an adversary capable of forcing a loss matching the
upper bound of Theorem 3 in the limit of a large number of chips. Specifically, we prove
the following theorem, the main result of this section:

Theorem 2. Let A be any shepherd algorithm for playing a drifting game satisfying
Assumptions1–3where all parameters of the game are fixed, except the number of chips m.
Letφt be as defined above. Then for anyε > 0, there exists an adversary such that for m
sufficiently large, the loss suffered by algorithm A is at leastφ0(0)− ε.

To prove the theorem, we will need two lemmas. The first gives an abstract result on
computing a minimax of the kind appearing in Eq. (12). The second lemma uses the first
to prove a characterization ofφt in a form amenable to use in the proof of Theorem 3.

276 R. E. SCHAPIRE

Lemma 4. Let S be any nonempty, bounded subset ofR2. Let C be the convex hull of S.
Then

inf
α∈R

sup{y+ αx : (x, y) ∈ S} = sup{y : (0, y) ∈ C}.

Proof: Let C̄ be the closure ofC. First, for anyα ∈ R,

sup{y+ αx : (x, y) ∈ S} = sup{y+ αx : (x, y) ∈ C}
= sup{y+ αx : (x, y) ∈ C̄}. (16)

The first equality follows from the fact that, if(x, y) ∈ C then

(x, y) =
N∑

i=1

pi (xi , yi)

for some positive integerN, pi ∈ [0, 1],
∑

i pi = 1, (xi , yi) ∈ S. But then

y+ αx =
N∑

i=1

pi (yi + αxi) ≤ max
i
(yi + αxi).

The second equality in Eq. (16) follows simply because the supremum of a continuous
function on any set is equal to its supremum over the closure of the set. For this same
reason,

sup{y : (0, y) ∈ C} = sup{y : (0, y) ∈ C̄}. (17)

BecausēC is closed, convex and bounded, and because the functiony+αx is continuous,
concave in(x, y)and convex inα, we can reverse the order of the “inf sup” (see, for instance,
Corollary 37.3.2 of Rockafellar (1970)). That is,

inf
α∈R

sup
(x,y)∈C̄

(y+ αx)= sup
(x,y)∈C̄

inf
α∈R
(y+ αx). (18)

Clearly, if x 6= 0 then

inf
α∈R
(y+ αx) = −∞.

Thus, the right hand side of Eq. (18) is equal to

sup{y : (0, y) ∈ C̄}.

Combining with Eqs. (16) and (17) immediately gives the result. 2

DRIFTING GAMES 277

Lemma 5. Under the condition of Assumptions1–3,and forφt as defined above,

φt−1(s) = inf
v : ‖v‖=1

sup
N∑

j=1

djφt (s+ z j)

where the supremum is taken over all positive integers N, all z1, . . . , zN ∈ B and all non-
negative d1, . . . ,dN satisfying

∑
j dj = 1 and∑

j

dj v · z j = δ.

Proof: To simplify notation, let us fixt ands. Let F andH be as defined in the proof of
Lemma 1. For‖v‖ = 1, let

G(v) = sup
N∑

j=1

dj F(z j) (19)

where again the supremum is taken overdj ’s andz j ’s as in the statement of the lemma.
Note that by Assumption 3, this supremum cannot be vacuous. Throughout this proof, we
usev to denote a vector of norm one, whilew is a vector of unrestricted norm. Our goal is
to show that

inf
v

G(v) = inf
w

H(w). (20)

Let us fixv momentarily. Let

S= {(v · z− δ, F(z)) : z ∈ B}.

ThenS is bounded by Assumptions 1–3 (and part 2 of Lemma 1), so we can apply Lemma 4
which gives

inf
α∈R

sup
z∈B
(F(z)+ α(v · z− δ)) = G(v). (21)

Note that

inf
α≥0

H(αv) = inf
α≥0

sup
z∈B
(F(z)+ αv · z− αδ)

≥ inf
α∈R

sup
z∈B
(F(z)+ αv · z− αδ)

≥ inf
α∈R

sup
z∈B
(F(z)+ αv · z− |α|δ) = inf

α∈R
H(αv)

(where the second inequality usesα ≤ |α|). Combining with Eq. (21) gives

inf
v

inf
α≥0

H(αv) ≥ inf
v

G(v) ≥ inf
v

inf
α∈R

H(αv).

278 R. E. SCHAPIRE

Since the left and right terms are both equal to infw H(w), this implies Eq. (20) and completes
the proof. 2

Proof of Theorem 3: We will show that, formsufficiently large, on roundt , the adversary
can choose thezt

i ’s so that

1

m

∑
i

φt
(
st+1
i

) ≥ 1

m

∑
i

φt−1
(
st
i

)− ε

T
. (22)

Repeatedly applying Eq. (22) implies that

1

m

∑
i

L
(
sT+1
i

) = 1

m

∑
i

φT
(
sT+1
i

) ≥ 1

m

∑
i

φ0
(
s1
i

)− ε = φ0(0)− ε

proving the theorem.
Fix t . We use a random construction to show that there existzt

i ’s with the desired
properties. For each weight vectorwt

i chosen by the shepherd, letdi1, . . . ,diN ∈ [0, 1] and
zi1, . . . , ziN ∈ B be such that

∑
j dij = 1,∑

j

dij wt
i · zij = δ

∥∥wt
i

∥∥
and ∑

j

dijφt
(
st
i + zij

) ≥ φt−1
(
st
i

)− ε

2T
.

Suchdij ’s andzij ’s must exist by Lemma 5. Using Assumption 3, letzi 0 be such that

wt
i · zi 0 ≥ (δ + µ)

∥∥wt
i

∥∥.
Finally, let Z i be a random variable that iszi 0 with probabilityα andzi j with probability
(1− α)di j (independent of the otherZ i ’s). Here,

α = ε

4T(Lmax− Lmin)
.

Let vi = wt
i /‖wt

i ‖, and letai = ‖wt
i ‖/

∑
i ‖wt

i ‖. By Assumption 1,|vi · Z i | ≤ 1. Also,

E[vi · Z i] ≥ (1− α)δ + α(δ + µ) = δ + αµ.

Thus, by Hoeffding’s inequality (1963),

Pr

[∑
i

ai vi · Z i < δ

]
≤ exp

(
− α2µ2

2
∑

i a2
i

)
≤ e−α

2µ2/2. (23)

DRIFTING GAMES 279

Let S= (1/m)
∑

i φt (st
i + Z i). Then

E[S] ≥ 1

m

∑
i

[(
φt−1

(
st
i

)− ε

2T

)
(1− α)+ αφt

(
st
i + zi 0

)]
= 1

m

∑
i

[
φt−1

(
st
i

)+ α(φt
(
st
i + zi 0

)− φt−1
(
st
i

))]− ε

2T
(1− α)

≥ 1

m

∑
i

φt−1
(
st
i

)− α(Lmax− Lmin)− ε

2T
. (24)

By Hoeffding’s inequality (1963), sinceLmin ≤ φt (st
i + Z i) ≤ Lmax,

Pr[S< E[S] − α(Lmax− Lmin)] ≤ e−2α2m. (25)

Now letm be so large that

e−2α2m + e−α
2µ2/2 < 1.

Then by Eqs. (23) and (25), there exists a choice ofzt
i ’s such that∑

i

wt
i · zt

i =
∑

i

ai vi · zt
i ≥ δ

and such that

1

m

∑
i

φt
(
st+1
i

) = 1

m

∑
i

φt
(
st
i + zt

i

)
≥ E[S] − α(Lmax− Lmin)

≥ 1

m

∑
i

φt−1
(
st
i

)− ε

T

by Eq. (24) and our choice ofα.

6. Computational methods

In this section, we discuss general computational methods for implementing the OS
algorithm.

6.1. Unate loss functions

We first note that, for loss functionsL with certain monotonicity properties, the quadrant in
which the minimizing weight vectors are to be found can be determined a priori. This often
simplifies the search for minima. To be more precise, forσ ∈ {−1,+1}n andx, y ∈ Rn,

280 R. E. SCHAPIRE

let us writex ≥σ y if σi xi ≥ σi yi for all 1≤ i ≤ n. We say that a functionf : Rn→ R is
unate with sign vectorσ ∈ {−1,+1}n if f (x) ≥ f (y) wheneverx ≥σ y.

Lemma 6. If the loss function L is unate with sign vectorσ ∈ {−1,+1}n, then so isφt

(as defined above) for t = 0, . . . , T .

Proof: By backwards induction ont . The base case is immediate. Letx ≥σ y. Then for
anyz ∈ B andw ∈ Rn, x+ z≥σ y+ z, and so

φt (x+ z)+ w · z− δ‖w‖ ≥ φt (y+ z)+ w · z− δ‖w‖

by inductive hypothesis. Therefore,φt−1(x) ≥ φt−1(y), and soφt−1 is also unate. 2

For the main theorem of this subsection, we need one more assumption:

Assumption4. If z ∈ B and ifz′ is such that|z′i | = |zi | for all i , thenz′ ∈ B.

Theorem 7. Under the condition of Assumptions1–4, if L is unate with sign vector
σ ∈ {−1,+1}n, then for anys∈ Rn, there is a vectorw which minimizes

sup
z∈B
(φt (s+ z)+ w · z− δ‖w‖)

and for whichw ≤σ 0.

Proof: Let F andH be as in the proof of Lemma 1. By Lemma 6,F is unate. Letw ∈ Rn

have some coordinatei for whichσiwi > 0 so thatw 6≤σ 0. Let w′ be such that

w′j =
{
w j if j 6= i

−wi if j = i .

We show thatH(w′) ≤ H(w). Let z ∈ B. If σi zi > 0 then

F(z)+ w · z− δ‖w‖ ≥ F(z)+ w′ · z− δ‖w′‖.

If σi zi ≤ 0 then letz′ be defined analogously tow′. By Assumption 4,z′ ∈ B. Thenz≤σ z′

and soF(z) ≤ F(z′). Thus,

F(z′)+ w · z′ − δ‖w‖ ≥ F(z)+ w′ · z− δ‖w′‖.

Hence,H(w′) ≤ H(w).
Applying this argument repeatedly, we can derive a vectorw̄ with w̄ ≤σ 0 and such that

H(w̄) ≤ H(w). This proves the theorem. 2

Note that the loss functions for all of the games in Section 3 are unate (and also satisfy
Assumptions 1–4). The same will be true of all of the games discussed in Section 7. Thus,

DRIFTING GAMES 281

for all of these games, we can determine a priori the signs of each of the coordinates of the
minimizing vectors used by the OS algorithm.

6.2. A general technique using linear programming

In many cases, we can use linear programming to implement OS. In particular, let us assume
that we measure weight vectorsw using thel1 norm (i.e.,p = 1). Also, let us assume that
|B| is finite. Then givenφt ands, computing

φt−1(s) = min
w∈Rn

max
z∈B

(φt (s+ z)+ w · z− δ‖w‖)

can be rewritten as an optimization problem:

variables: w ∈ Rn, b ∈ R
minimize: b
subject to: ∀z ∈ B : φt (s+ z)+ w · z− δ‖w‖ ≤ b.

The minimizing valueb is the desired value ofφt−1(s). Note that, with respect to the
variablesw andb, this problem is “almost” a linear program, if not for the norm operator.
However, whenL is unate with sign vectorσ, and when the other conditions of Theorem 7
hold, we can restrictw so thatw ≤σ 0. This allows us to write

‖w‖1 = −
n∑

i=1

σiwi .

Addingw ≤σ 0as a constraint (or rather, a set ofn constraints), we now have derived a linear
program withn + 1 variables and|B| + n constraints. This can be solved in polynomial
time.

Thus, for instance, this technique can be applied to the multiclass boosting problem
discussed in Section 3. In this case,B={−1,+1}n. So, for anys, φt−1(s) can be computed
fromφt in time polynomial in 2n which may be reasonable for smalln. In addition,φt must
be computed at each reachable positions in ann-dimensional integer grid of radiust , i.e.,
for all s∈ {−t,−t + 1, . . . , t − 1, t}n. This involves computation ofφt at (2t + 1)n points,
giving an overall running time for the algorithm which is polynomial in(2T + 1)n. Again,
this may be reasonable for very smalln. It is an open problem to find a way to implement
the algorithm more efficiently.

7. Deriving old and new algorithms

In this section, we show how a number of old and new boosting and on-line learning
algorithms can be derived and analyzed as instances of the OS algorithm for appropriately
chosen drifting games.

282 R. E. SCHAPIRE

7.1. Boost-by-majority and variants

We begin with the drifting game described in Section 3 corresponding to binary boosting
with B = {−1,+1}. For this game,

φt−1(s) = min
w≥0

max{φt (s− 1)− w − δw, φt (s+ 1)+ w − δw}

where we know from Theorem 7 that only nonnegative values ofw need to be considered.
It can be argued that the minimum must occur when

φt (s− 1)− w − δw = φt (s+ 1)+ w − δw,

i.e., when

w = φt (s− 1)− φt (s+ 1)

2
. (26)

This gives

φt−1(s) = 1+ δ
2

φt (s+ 1)+ 1− δ
2

φt (s− 1).

Solving gives

φt (s) = 2t−T
∑

0≤k≤(T−t−s)/2

(
T − t

k

)(
1+ δ
1− δ

)k

(where we follow the convention that(nk) = 0 if k < 0 or k > n). Weighting examples
using Eq. (26) gives exactly Freund’s (1995) boost-by-majority algorithm (the “boosting
by resampling” version).

WhenB = {−1, 0,+1}, a similar but more involved analysis gives

φt−1(s) =max

{
(1− δ)φt (s)+ δφt (s+ 1),

1+ δ
2

φt (s+ 1)+ 1− δ
2

φt (s− 1)

}
(27)

and the corresponding choice ofw is φt (s) − φt (s + 1) or (φt (s − 1) − φt (s + 1))/2,
depending on whether the maximum in Eq. (27) is realized by the first or second quantity.
We do not know how to solve the recurrence in Eq. (27) so that the boundφ0(0) given in
Theorem 2 can be put in explicit form. Nevertheless, this bound can easily be evaluated
numerically, and the algorithm can certainly be implemented efficiently in its present form.

We have thus far been unable to solve the recurrence for the case thatB = [−1,+1],
even to a point at which the algorithm can be implemented. However, this case can be
approximated by the case in whichB = {i /N : i = −N, . . . , N} for a moderate value

DRIFTING GAMES 283

Figure 4. A comparison of the boundφ0(0) for the drifting games associated with AdaBoost (Section 7.2)
and boost-by-majority (Sections 3 and 7.1). For AdaBoost,η is set as in Eq. (28). For boost-by-majority,
the bound is plotted whenB is {−1,+1}, {−1, 0,+1} and [−1,+1]. (The latter case is approximated by
B = {i /100 : i = −100, . . . ,100}.) The bound is plotted as a function of the number of roundsT . The
drift parameter is fixed toδ = 0.2. (The jagged nature of theB = {−1,+1} curve is due to the fact that games
with an even number of rounds—in which ties count as a loss for the shepherd so thatL(0) = 1—are harder than
games with an odd number of rounds.)

of N. In the latter case, the potential function and associated weights can be computed
numerically. For instance, linear programming can be used as discussed in Section 6.2.
Alternatively, it can be shown that Lemma 5 combined with Theorem 7 implies that

φt−1(s) = max{pφt (s+ z1)+ (1− p)φt (s+ z2) :

z1, z2 ∈ B, p ∈ [0, 1], pz1+ (1− p)z2 = δ}

which can be evaluated using a simple search over all pairsz1, z2 (sinceB is finite).
Figure 4 compares the boundφ0(0) for the drifting games associated with boost-by-

majority and variants in whichB is {−1,+1}, {−1, 0,+1} and [−1,+1] (using the ap-
proximation that was just mentioned), as well as AdaBoost (discussed in the next section).
These bounds are plotted as a function of the number of roundsT .

7.2. AdaBoost and variants

As mentioned in Section 3, a simplified, non-adaptive version of AdaBoost can be derived
as an instance of OS. To do this, we simply replace the loss function (Eq. (7)) in the binary
boosting game of Section 3 with an exponential loss functionL(s) = e−ηs whereη > 0 is
a parameter of the game. As a special case of the discussion below, it will follow that

φt (s) = κT−t e−ηs

284 R. E. SCHAPIRE

whereκ is the constant

κ = 1− δ
2

eη + 1+ δ
2

e−η.

Also, the weight given to a chip at positions on roundt is

κT−t

(
eη − e−η

2

)
e−ηs

which is proportional toe−ηs (in other words, the weighting function is effectively un-
changed from round to round). This weighting is the same as the one used by a non-adaptive
version of AdaBoost in which all weak hypotheses are given equal weight. Sincee−ηs is
an upper bound on the loss function of Eq. (7), Theorem 2 implies an upper bound on the
fraction of mistakes of the final hypothesis of

φ0(0) = κT .

When

η = 1

2
ln

(
1+ δ
1− δ

)
(28)

so thatκ is minimized, this gives an upper bound of

(1− δ2)T/2 = (1− 4γ 2)T/2

which is equivalent to a non-adaptive version of Freund and Schapire’s (1997) analysis.
We next consider a more general drifting game inn dimensions whose loss function is a

sum of exponentials

L(s) =
k∑

j=1

bj exp(−η j u j · s) (29)

where thebj ’s, η j ’s andu j ’s are parameters withbj > 0,η j > 0,‖u j ‖1= 1 andu j ≥σ 0 for
some sign vectorσ . For this game,B= [−1,+1]n andp= 1. Many (non-adaptive) variants
of AdaBoost correspond to special cases of this game. For instance, AdaBoost.M2 (Freund
& Schapire, 1997), a multiclass version of AdaBoost, essentially uses the loss function

L(s) =
n∑

j=2

e−(η/2)(s1−sj)

where we follow the multiclass setup of Section 3 so thatn is the number of classes, and
the first component in the drifting game is identified with the correct class. (As before, we

DRIFTING GAMES 285

only consider a non-adaptive game in whichη > 0 is a fixed, tunable parameter.) Likewise,
AdaBoost.MH (Schapire & Singer, 1999), another multiclass version of AdaBoost, uses
the loss function

L(s) = e−ηs1 +
n∑

j=2

eηsj .

Note that both loss functions upper bound the “true” loss for multiclass boosting given in
Eq. (11). Moreover, both functions clearly have the form given in Eq. (29).

We claim that, for the general game with loss function as in Eq. (29),

φt (s) =
∑

j

bj κ
T−t
j exp(−η j u j · s) (30)

where

κ j = 1− δ
2

eη j + 1+ δ
2

e−η j .

Proof of Eq. (30) is by backwards induction ont . For fixedt ands, let

w =
∑

j

bj κ
T−t
j

(
eη j − e−η j

2

)
u j exp(−η j u j · s).

We will show that this is the minimizing weight vector that gets used by OS for a chip at
positions at timet . Let

b′j = bj κ
T−t
j exp(−η j u j · s).

Note that

φt (s+ z)+ w · z =
∑

j

b′j

(
exp(−η j u j · z)+

(
eη j − e−η j

2

)
u j · z

)
≤
∑

j

b′j

(
eη j + e−η j

2

)
(31)

since

e−ηx ≤
(

eη + e−η

2

)
−
(

eη − e−η

2

)
x

for all η ∈ R andx ∈ [−1,+1] by convexity ofe−ηx. Also, by our assumptions onbj , u j

andη j , we can compute

‖w‖1 =
∑

j

b′j

(
eη j − e−η j

2

)
. (32)

286 R. E. SCHAPIRE

Thus, combining Eqs. (31) and (32) gives

φt−1(s) ≤ sup
z∈B
(φt (s+ z)+ w · z− δ‖w‖1)

≤
∑

j

b′j κ j

=
∑

j

bj κ
T−t+1
j exp(−η j u j · s).

This gives the needed upper bound onφt−1(s).
For the lower bound, using Theorem 7 (sinceL is unate with sign vector−σ), we have

φt−1(s) ≥ min
w≥σ0

max
z∈{− σ, σ}

(φt (s+ z)+ w · z− δ‖w‖1)

= min
c≥0

max

{∑
j

b′j e
−η j + c− δc,

∑
j

b′j e
η j − c− δc

}

where we have usedu j · σ = 1 andw · σ = ‖w‖1 (sinceu j ≥σ 0 andw ≥σ 0). We
also have identifiedc with ‖w‖1. Solving the min max expression gives the desired lower
bound. This completes the proof of Eq. (30).

7.3. On-line learning algorithms

In this section, we show how Cesa-Bianchi et al.’s (1996) BW algorithm for combining
expert advice can be derived as an instance of OS. We will also see how their algorithm can
be generalized, and how Littlestone and Warmuth’s (1994) weighted majority algorithm
can also be derived and analyzed.

Suppose that we have access tom “experts.” On each roundt , each experti provides a
predictionξ t

i ∈ {−1,+1}. A “master” algorithm combines their predictions into its own
predictionψt ∈ {−1,+1}. An outcomeyt ∈ {−1,+1} is then observed. The master makes
a mistake ifψt 6= yt , and similarly for experti if ξ t

i 6= yt . The goal of the master is to
minimize how many mistakes it makes relative to the best expert.

We will consider master algorithms which use a weighted majority vote to form their
predictions; that is,

ψt = sign

(
m∑

i=1

wt
i ξ

t
i

)
.

The problem is to derive a good choice of weightswt
i . We also assume that the master

algorithm is conservative in the sense that rounds on which the master’s predictions are
correct are effectively ignored (so that the weightswt

i only depend upon previous rounds
on which mistakes were made).

DRIFTING GAMES 287

Let us suppose that there is one expert that makes at mostk mistakes. We will (re)derive
an algorithm (namely, BW) and a bound on the number of mistakes made by the master,
given this assumption. Since we restrict our attention to conservative algorithms, we can
assume without loss of generality that a mistake occurs on every round and simply proceed
to bound the total number of rounds.

To set up the problem as a drifting game, we identify one chip with each of the experts.
The problem is one dimensional son = 1. The weightswt

i selected by the master are the
same as those chosen by the shepherd. Since we assume that the master makes a mistake
on each round, we have for allt that

yt

∑
i

wt
i ξ

t
i ≤ 0. (33)

Thus, if we define the driftzt
i to be−ytξ

t
i , then∑

i

wt
i z

t
i ≥ 0.

Settingδ = 0, we see that Eq. (33) is equivalent to Eq. (1). Also,B = {−1,+1}.
Let Mt

i be the number of mistakes made by experti on rounds 1, . . . , t − 1. Then by
definition ofzt

i ,

st
i = 2Mt

i − t + 1.

Let the loss functionL be

L(s) =
{

1 if s ≤ 2k− T

0 otherwise.
(34)

ThenL(sT+1
i) = 1 if and only if experti makes a total ofk or fewer mistakes inT rounds.

Thus, our assumption that the best expert makes at mostk mistakes implies that

1≤
∑

i

L
(
sT+1
i

)
. (35)

On the other hand, Theorem 2 implies that

1

m

∑
i

L
(
sT+1
i

) ≤ φ0(0). (36)

By an analysis similar to the one given in Section 7.1, it can be seen that

φt−1(s) = 1
2(φt (s+ 1)+ φt (s− 1)).

288 R. E. SCHAPIRE

Solving this recurrence gives

φt (s) = 2t−T

(
T − t

≤ k− t+s
2

)
where(

n

≤ k

)
=

k∑
i=0

(
n

k

)
.

In particular,

φ0(0) = 2−T

(
T

≤ k

)
. (37)

Combining Eqs. (35)–(37) gives

1

m
≤ 2−T

(
T
≤ k

)
. (38)

In other words, the number of mistakesT of the master algorithm must satisfy Eq. (38) and
so must be at most

max

{
q ∈ N : q≤ lg m+ lg

(
q

≤ k

)}
,

the same bound given by Cesa-Bianchi et al. (1996).
The weighting function obtained is also equivalent to theirs since, by a similar argument

to that used in Section 7.1, OS gives

wt
i =

1

2

(
φt
(
st
i − 1

)− φt
(
st
i + 1

))
= 2t−T−1

(
T − t

k− t+s−1
2

)

= 2t−T−1

(
T − t

k− Mt
i

)
.

Note that this argument can be generalized to the case in which the expert’s predictions
are not restricted to{−1,+1} but instead may be all of [−1,+1], or a subset of this interval,
such as{−1, 0,+1}. The performance of each expert then is measured on each round using
absolute loss12 |ξ t

i − yt | rather than whether or not it made a mistake. In this case, as in the
analogous extension of boost-by-majority given in Section 3, we only need to replaceB by
[−1,+1] or {−1, 0,+1}. The resulting bound on the number of mistakes of the master is

DRIFTING GAMES 289

then the largestT for which 1/m ≤ φ0(0) (note thatφ0(0) depends implicitly onT). The
resulting master algorithm simply uses the weights computed by OS for the appropriate
drifting game. It is an open problem to determine if this generalized algorithm enjoys strong
optimality properties similar to those of BW (Cesa-Bianchi et al., 1996).

Littlestone and Warmuth’s (1994) weighted majority algorithm can also be derived as an
instance of OS. To do this, we simply replace the loss functionL in the game above with

L(s) = exp(−η(s− 2k+ T))

for some parameterη > 0. This loss function upper bounds the one in Eq. (34). We assume
that experts are permitted to output predictions in [−1,+1] so thatB = [−1,+1]. From
the results of Section 7.2 applied to this drifting game,

φt (s) = κT−t exp(−η(s− 2k+ T))

where

κ = eη + e−η

2
.

Therefore, because one expert suffers loss at mostk,

1

m
≤ φ0(0) = κT eη(2k−T).

Equivalently, the number of mistakesT is at most

2ηk+ ln m

ln
(

2
1+e−2η

) ,
exactly the bound given by Littlestone and Warmuth (1994). The algorithm is also the same
as theirs since the weight given to an expert (chip) at positionst

i at timet is

wt
i =

(
eη − e−η

2

)
exp

(− η(st
i − 2k+ T

)) ∝ exp
(− 2ηMt

i

)
.

8. Open problems

This paper represents the first work on general drifting games. As such, there are many
open problems.

We have presented closed-form solutions of the potential function for just a few special
cases. Are there other cases in which such closed-form solutions are possible? In particular,
can the boosting games of Section 3 corresponding toB = {−1, 0,+1} andB = [−1,+1]
be put into closed-form?

290 R. E. SCHAPIRE

For games in which a closed form is not possible, is there nevertheless a general method
of characterizing the loss boundφ0(0), say, as the number of roundsT gets large?

Side products of our work include new versions of boost-by-majority for the multiclass
case, as well as binary cases in which the weak hypotheses have range{−1, 0,+1} or
[− 1,+1]. However, the optimality proof for the drifting game only carries over to the
boosting setting if the final hypothesis has the restricted forms given in Eqs. (4) and (10).
Are the resulting boosting algorithms also optimal (for instance, in the sense proved by
Freund (1995) for boost-by-majority) without these restrictions?

Likewise, can the extensions of the BW algorithm in Section 7.3 be shown to be optimal?
Can this algorithm be extended using drifting games to the multiclass case, or to the case
in which the master is allowed to output predictions in [−1,+1] (suffering absolute loss)?

The OS algorithm is non-adaptive in the sense thatδ must be known ahead of time. To
what extent can OS be made adaptive? For instance, can Freund’s (2001) recent technique
for making boost-by-majority adaptive be carried over to the general drifting-game setting?
Similarly, what happens if the number of roundsT is not known in advance?

Finally, are there other interesting drifting games for entirely different learning problems
such as regression or density estimation?

Acknowledgments

Many thanks to Yoav Freund for very helpful discussions which led to this research.

Notes

1. In an earlier version of this paper, the “shepherd” was called the “drifter,” a term that was found by some
readers to be confusing. The name of the main algorithm has also been changed from “Shepherd” to “OS.”

2. Of course, the real goal of a boosting algorithm is to find a hypothesis with low generalization error. In this
paper, we only focus on the simplified problem of minimizing error on the given training examples.

References

Blackwell, D. (1956). An analog of the minimax theorem for vector payoffs.Pacific Journal of Mathematics, 6:1,
1–8.

Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D. P., Schapire, R. E., & Warmuth, M. K. (1997). How to
use expert advice.Journal of the Association for Computing Machinery, 44:3, 427–485.

Cesa-Bianchi, N., Freund, Y., Helmbold, D. P., & Warmuth, M. K. (1996). On-line prediction and conversion
strategies.Machine Learning, 25, 71–110.

Freund, Y. (1995). Boosting a weak learning algorithm by majority.Information and Computation, 121:2, 256–285.
Freund, Y. (2001). An adaptive version of the boost by majority algorithm.Machine Learning, 43:3, 293–318.
Freund, Y. & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to

boosting.Journal of Computer and System Sciences, 55:1, 119–139.
Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.Journal of the American

Statistical Association, 58:301, 13–30.
Littlestone, N. & Warmuth, M. K. (1994). The weighted majority algorithm.Information and Computation, 108,

212–261.

DRIFTING GAMES 291

Rockafellar, R. T. (1970).Convex Analysis. Princeton, NJ: Princeton University Press.
Schapire, R. E. & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions.Machine

Learning, 37:3, 297–336.

Received October 28, 1999
Revised October 28, 1999
Accepted June 1, 2000
Final manuscript July 31, 2000

