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Abstract. Images and signals may be represented by forms invariant to time shifts, spatial shifts, frequency
shifts, and scale changes. Advances in time-frequency analysis and scale transform techniques have made this
possible. However, factors such as noise contamination and “style” differences complicate this. An example is
found in text, where letters and words may vary in size and position. Examples of complicating variations include
the font used, corruption during facsimile (fax) transmission, and printer characteristics. The solution advanced in
this paper is to cast the desired invariants into separate subspaces for each extraneous factor or group of factors.
The first goal is to have minimal overlap between these subspaces and the second goal is to be able to identify
each subspace accurately. Concepts borrowed from high-resolution spectral analysis, but adapted uniquely to this
problem have been found to be useful in this context. Once the pertinent subspace is identified, the recognition of a
particular invariant form within this subspace is relatively simple using well-known singular value decomposition
(SVD) techniques. The basic elements of the approach can be applied to a variety of pattern recognition problems.
The specific application covered in this paper is word spotting in bitmapped fax documents.
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1. Introduction

The recognition of specific signatures in images and signals has long been of interest.
Powerful techniques exist for their detection and classification, but these techniques are
often defeated by changes or variations in the signature. These variations often include
translation and scale changes. Methods exist for transforming the signal/image so that
the result is invariant to these disturbances. Translation and scaling are well understood
in a mathematical sense, so it is fairly straightforward to design methods which yield a
transformed form of the data wherein these effects are removed. There are other variations
which are not well described mathematically or are not mathematically tractable in terms
of reasonable transformations. This paper describes a combination of techniques which
allow scale and translation invariant transformations to be used as one step of the signature
recognition process. This is followed by an approach which separates the entities to be
classified into a number of subsets characterized by additional variations. A new method
is introduced to identify the subset to which the specific entity at hand belongs so that
classifiers specific to that subset can be used. A two dimensional image is the basic starting
point for the technique. This may be the actual image of an object or the two dimensional
form of a signal representation such as a time-frequency distribution. We have had some
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success in representing images in terms of two spatial dimensions and two spatial frequency
dimensions. It is clear that this representation captures some unique features of the image,
but computation times and memory presently make this approach impractical.

Classification of words appearing in different fonts and sizes serves to illustrate the
methods developed. The specific goal set by the sponsor of the research was to spot facsimile
corrupted words in bitmapped representations for a variety of fonts and font sizes. However,
the approach is quite general and may be applied to a variety of problems and signals.

A representation termed the Scale and Translation Invariant Representation (STIR) is
utilized here (Williams et al. 1998). It has desirable properties for pattern recognition under
certain conditions. The object to be recognized must have consistent shape and appear on
a constant intensity background. Using autocorrelation and the scale transform, one may
produce STIRs which are identical for examples that have been translated on the background
or scaled (compressed or dilated) along one or more axes.

Concepts borrowed from high-resolution spectral analysis, but adapted uniquely to the
problem of classifying these STIRs have been found to be useful in this context. In high res-
olution frequency estimation, the noise subspace eigenvectors of the autocorrelation matrix
are used. Pisarenko harmonic decomposition (Pisarenko 1973) employs the orthogonality
of the noise subspace to the signal vectors to estimate sinusoidal frequencies. This idea is
used in the classification of signals following STIR processing.

A standard approach is to use the training data to generate templates for each class.
A similarity measure, such as correlation coefficient, between the processed test data and
each template is calculated and the test data is declared to be in the class corresponding to
the largest similarity measure. In contrast, in the noise subspace approach, an orthogonal
subspace is created for each class of training data. A measure of the projection of the test
data onto each of these subspaces is calculated. Test data matching a given class should be
orthogonal to the noise subspace for that class and yield a small projection value.

The STIR and noise subspace classification method are applied to the example of word
spotting in bitmapped documents. For a bitmapped word input, the data are represented
invariantly to translation and size, then categorized by font, and finally classified by word.
This combination of methods is applicable to many pattern recognition problems of any
dimension.

2. Background

The approach presented in this paper appears to be quite novel for this area of application.
There is not a lot of previous work that needs to be cited in order to build up to the approach.
However, a few words on related approaches are appropriate. In addition, the time-frequency
motivations behind the present work reveal the progression of the concepts and how they
came to be applied to the word spotting problem.

2.1. Character and word spotting

Word and character spotting or recognition in documents have been a topic of interest for
many years. A comprehensive review by Mori, Suen and Yamamoto covers the field up
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to 1982 (Mori et al. 1982). More recently, Kahan et al. (1987) described a system that
recognizes text of various fonts and sizes for the Roman alphabet. Shape extraction was
performed on the graph of a run-length encoding of a binary image. A shape clustering
algorithm was used to map the results into binary features which were fed into a Baysian
classifier. Classification was better than 97% on mixtures of six dissimilar fonts and over
99% on single fonts over a range of font sizes.

2.2. Hidden Markov model approaches

The directions being taken now depart from historical approaches which depended on
template matching and edge tracing. Many of these approaches have historically involved
the “direct approach” wherein one tries to capture such obvious features. An approach based
on hidden Markov processes (HMM) is more in line with the statistical approaches that we
wish to employ, however. Recent reports (Agazzi and Kuo 1993, Chen et al. 1993, Ho et al.
1990, Kuo and Agazzi 1994) might be considered to reflect the present success using this
technique in word spotting in documents. The work of Chen et al. (1993) represents the use
of HMM techniques wherein the results were presented in the form of an ROC curve. They
achieved a 95% detection rate for a false alarm rate of 25% using text in eight fonts from
the table of contents of five journals and conference proceedings. This work is of particular
interest, since ROC results for our method will be presented later in this paper. Kuo and
Agazzi (1994) have carried out an ambitious evaluation of an HMM based system. The
system was evaluated on a synthetically created database that contains about 26 000 words.
They achieve a recognition accuracy using a 2-D HMM of 99% when words in testing and
training sets are of the same font size, and 96% when they are in different sizes. In the latter
case, the conventional 1-D HMM achieves only a 70% accuracy rate. The work of Ho et al.
(1990) specifically addresses degraded words which are also the subject of the present paper.

Word spotting in speech has also been accomplished using HMM techniques (Yen and
Kuo 1995). These studies were carried out using radio dialog. Both the HMM document
studies and the HMM radio speech studies form an appropriate benchmark for our research.
It seems that HMM techniques are widely regarded to be the best present approach available.

2.3. The scale transform

The scale transform has been described by Cohen (1993) to be:

D(c) = 1√
2π

∫ ∞
0

f (t)
e− jc ln t

√
t

dt (1)

The scale transform is of interest to this paper because it is able to remove the effect of
scale in the images. There is an analogy to the Fourier transform. The Fourier transform of
a signal,x(t) and the Fourier transform of a shifted version of that signal,x(t − to) differ
only by a phase factor.

F [x(t − to)] = Xo(ω) = X(ω) e− jωto (2)
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so that

|X(ω)| = |Xo(ω)| (3)

In a like manner, the scale transform ofx(at) differs from the scale transform ofx(t) only
by a phase factor, so that the magnitudes of the scale transform ofx(t) and

√
a x(at) are

identical. Thus the effect of size changes can be removed by using only the magnitude of
the scale transform.

|D(c)| = |Da(c)| (4)

We have developed a discrete form of the scale transform (Williams and Zalubas 1996,
Zalubas and Williams 1995) which can be computed efficiently. One might question the
use of the scale transform rather than the more well-known Mellin transform. One reason
is that the standard Mellin transform weights signal components in lower time more than
in higher time. A second reason is the relationship of scale to wavelet concepts and the
insights it brings in this light. We have adapted Mellin transform ideas from the paper by
Zwicke and Kiss (1983) for our scale transform applications.

2.4. Scale transform applications to speech

Cohen, in his theory of scale, treats scale as a physical variable just like frequency. The
kind of scale desribed by Cohen is related to the wavelet type of scale, but is not the same.
Marinovich et al. (1995), have shown that the concept of scale can be profitably used to
understand the nature of the speech signal. To illustrate the main issue that motivated the
work consider the example of a grown person and a child making the sound “ah”. The time-
frequency structure of these two sounds is different. The frequency bands, the formants, are
at different locations; the frequency spacings between the formants are different. However,
one interprets the sounds as the same. How is that possible? If the two sounds had spectra
that were scaled versions of each other and the auditory system unscaled them, they would
be perceived the same. Indeed, it has been experimentally shown for vowels that sounds
which one categorizes as the same, but produced by different size vocal tracts have spectra
that are scaled versions of each other, where the scaling occurs in the frequency domain.

It clear that we are able to cope with the various types of transformations performed
on the signals and images which occur in our environment—time shifts, frequency shifts,
translations in space and scale changes. In order to devise systems which will perform under
these conditions it is neccessary to cope with these changes in the design of the algorithms.

2.5. Tools for invariant image representation

Several tools have been developed for representation of the images we seek to classify. In
this section we will confine ourselves to 2-D images. These results were obtained when we
decided to “back-off” from the full 4-D representations mentioned previously for a time
due to their representational and computational complexities. The idea was to gain insight
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in a simpler setting and then return to the more complex representations as experience and
advances in computor technology dictate. The more complicated 4-D functions required for
the 4-D representations were thus temporarily replaced by 2-D autocorrelations. The steps
in the image processing algorithm are:

• Autocorrelation of the 2-D representations to remove translational effects.
• 2-D scale transformations of the the autocorrelation result to remove scaling effects.
• Partition of the results into subsets which reflect extraneous variations of the data.

Classification of the image involves two steps. These are:

• Determine the subset to which the unknown image belongs.
• Use the classifier designed for that specific subset to classify the image.

2.6. Computation of the 2-D autocorrelation

The autocorrelation function of the signal provides the stable origin needed by the scale
transform. Since the autocorrelation simultaneously sums over all points of a function,
shifting of a signal over the plane does not affect the values for each lag. It is well known that
autocorrelation removes translational effects in images and specifically in optical character
recognition (OCR) methods (Mori et al. 1982).

The 2-D discrete autocorrelation may be carried out as follows:1

A(k1, k2) =
∑
n1

∑
n2

a(n1, n2)a(n1− k1, n2− k2) (5)

wherea(n1, n2) is the image. The image need not be centered within the bitmap represen-
tation, which has finite support inn1, n2. The bitmap is assumed zero outside of the specific
bitmap support region chosen. Autocorrelations for characters ‘a’ and ‘b’ in three different
fonts are shown in figure 1.

The 0,0 lag point provides an origin from which the autocorrelation function scales. An-
other feature of the 2-D autocorrelation function is the symmetryA(k1, k2)= A(−k1,−k2).
Hence, the first and fourth quadrants together contain complete information about the entire
autocorrelation lag plane. This attribute will be used in applying the scale transform. For
pattern recognition purposes, one must be aware of the loss of information which results
from obtaining the autocorrelation of the signal. The goal here is to remove only translation
effects. Unfortunately, due to the symmetry of the autocorrelation function, an ambiguity
in the orientation of the original image is introduced. The autocorrelation of an image is
indistinguishable from the autocorrelation of a 180 degree rotated version of the image.
This is due to the masking of phase information when the autocorrelation is applied to a
signal.



212 WILLIAMS, ZALUBAS AND HERO

Figure 1. Typical 2-D autocorrelation result for a 63× 63 pixel bitmap of two lowercase letters. (a)‘a’ in
Courier (12pt), (b)‘b’ in Courier (12pt), (c)‘a’ in Helvetica (12pt), (d)‘b’ in Helvetica (12pt), (e)‘a’ in
Times (12pt), (f)‘b’ in Times (12pt).

2.7. 2-D direct scale transform

Since the scale transform is based on exponential sampling relative to the origin, the entire
autocorrelation plane cannot be dealt with at once. Since both lag values in the first quadrant
index from zero in the first quadrant, the scale transform may be directly applied. The lag
axes in the fourth quadrant, however, aren’t both positive, so reindexing is necessary. For
each quadrant the axes must be included, since the scale transform indexing is based relative
to the origin.

Hence, define two discrete quadrant functions of the Autocorrelation plane as follows:

Q1(k1, k2) = A(k1, k2) for k1, k2 ≥ 0 (6)

Q2(k1, k2) = A(k1,−k2) for k1, k2 ≥ 0 (7)

A 2-D scale transform approximation is implemented by applying the 1D scale transform
algorithm in Eq. (1) first to the rows then to the columns of a matrix of values. Applying such
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a 2-D scale transform toQ1 andQ2 and taking the magnitude of the result yields two 2-D
matrices of scale coefficients. We call this the Autocorrelation Function Scale Transform
(ACFSX). The size of these matrices is determined by the number of row and column scale
values selected.

Since the autocorrelation function input was not energy normalized, normalization of the
scale magnitudes is required for a scale invariant representation. Since the scale transform
is a linear transform, normalization may be done by a variety of methods to generate an
appropriate result.

The normalized scale transformed quadrant functions represent a STIR of the original 2-D
input. Since it is not possible to calculate the scale coefficientD(c) for everyc, a set of scales
is chosen for computation of the scale transform coefficients. Hence, the transform is not
invertible. In addition to providing a scale invariant representation, other signal information
is lost. The usefulness of the STIR is dependent on its implementation and application. For
the very common case of a 2-D function sampled into a matrix of discrete values, we have
developed a classification scheme which can be used with STIRs as the inputs.

The novel image classification approach involves two steps. These are:

• Determine the subset to which the unknown image belongs.
• Use the classifier designed for that specific subset to classify the image.

2.8. Designing the classifier

The next task is to design a classifier. Suppose that the invariant form is characterized by
a two dimensional representation1(p,q). This 2-D representation may be decomposed
using eigensystem techniques as

1(p,q) =
∑

j

ajβ j (p,q) (8)

where theβ j (p,q)are eigenimages and theaj are the eigenvalues of the decomposition. The
eigensystem decomposition is carried out on a collection of1(p,q) examples coming from
the classes of objects (signals or images) that are of interest. The eigensystem decompo-
sition then provides an ordered set of eigenimages ordered according to their eigenvalues.
Although the eventual goal is to use true two dimensional eigenimage analysis, suitable
algorithms to accomplish this have not been identified. One may utilize a simpler one
dimensional approach which lends itself to readily available algorithms.

2.9. Classification of patterns

Our technique for pattern classification uses STIR images decomposed into an orthonormal
set of descriptors, using a concept borrowed from Pisarenko’s harmonic decomposition
(Pisarenko 1973, Williams and Zalubas 1996). The Karhonen-Lo`eve transform is a means
of accomplishing this. The singular value decomposition (SVD) provides equivalent results.
The STIRs of each exemplar in a class are shaped into a row vector by concatenating rows
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Figure 2. Forming one of the components of the STIR vector from one of the ACFSX matrices.

of the two STIR matrices (See figure 2). These row vectors are stacked to form a matrix
representing the class. The SVD is then applied to extract essential features of the set
of vectors. Provided that a sufficient number of scale coefficients are calculated, singular
values of zero will result. Right singular vectors corresponding to zero singular value define
a subspace orthogonal to the class of STIR vector representations.

In classifying a test signal, generate its STIR vector. Compute for each class the sum of
inner product magnitudes of the STIR vector with the orthogonal subspace vectors. If the
sum is zero, then the test signal must be a member of the corresponding class. In practice,
one does not obtain a zero sum with the proper subspace class, but the sum resulting from
the proper class has the smallest magnitude relative to sums from calculation with other
class subspaces.

In addition to the invariances, STIRs have the desirable property that for a fixed set of
row and column scales the sizes of all STIR matrices are identical, regardless of the size
of the input matrices. Hence, inputs from different sources may be treated identically once
processed into STIR images.

2.10. Classification of characters

The initial approach which was taken was to decompose the STIR images via singular
value eigendecomposition (SVD) in order to provide an orthonormal set of descriptors. In
order to accomplish this, the STIR images of the characters were reshaped into a single
vector by concatonating the rows of the STIR matrix to form a STIR vector. A new matrix
consisting of all of the characters of interest for a range of sizes and the three fonts was
formed from these vectors. The SVD was applied to extract essential features of the of
the set of vectors. Several singular vectors with the largest singular values were chosen as
features. Unfortunately, classification results were not impressive. The font variations were
sufficient to reduce classification accuracy below acceptable levels. In order to combat this
problem, the results were separated into subsets, with one subset representing each font
type. Then, a novel orthogonal noise subspace method was used to identify the specific font
used to produce the unknown character.

Almost all of the undesired variation due to shift and scale may be squeezed out of
the final invariant form. There may still be some residual effects due to discretization and
computation.
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The N× N STIR matrices may be converted into vectors of lengthN× N by either
concatenating the rows or columns. There are two unique quadrants matrices as defined in
Eqs. (6) and (7). Each yields a vector. These vectors are then concatenated to form anN× 2N
or 2N2 elementSTIR vector. Then, readily available Singular Value Decomposition (SVD)
techniques may be applied to the vectorized set of images. If there are M exemplars each
with 2N2 elements, one could stack them to form anM(rows)× 2N2(columns) matrix.
The SVD would be applied to this matrix. Suppose there are several different extraneous
variations in the “invariant representations” caused by a variety of factors. Representation
by a variety of font types and pixelation errors as well as FAX noise are examples of these
extraneous variations. Conversion of the STIR matrices into STIR vectors is illustrated in
figure 2. The SVD has the property of isolating common features of such a set of vectors
and this property can be used very well in this application.

3. Noise subspace method details

Suppose that there areM bitmapped images of the training set of words. This would yield an
M(rows)× 2N2(columns)matrix of STIR vectors. The STIR vectors have a large number
of elements. Usually, for classification methods to work, one wishes to have a considerably
greater number of representations of the signal vectors than there are elements in those
representations. Here, we have exactly the opposite. There are many more elements in
the vectorized 2-D forms than there are vectorized 2-D forms. This is usually a statistical
nightmare. However, suppose there areM examples(M¿ 2N2). Then the SVD produces
2N2 orthogonal eigenvectors, the firstM of which form a complete orthonormal basis for
the set of STIR vectors. The remaining SVD eigenvectors (the noise eigenvectors) must be
orthogonal to all of the original STIR vectors. Suppose that we now obtain a new example.
Convert it into the STIR matrix form and then, vectorize it to form the STIR vector. If
it belongs to the set of STIR vectors used to produce the SVD results, then it should be
orthogonalto all of the noise eigenvectors produced by the SVD. Therefore, its projection
on any of the noise eigenvectors should be zero. If we have carried out the whole process
through the SVD for a number of different sets of signals, we should find the projection of
the STIR vector of the unknown signal on the noise eigenvectors of each set of signals. The
smallest result will be theoretically obtained when this is done using the noise eigenvectors
of the set to which the signal belongs. This idea may be expressed more formally. The SVD
is performed on the set of matrices formed by STIR vectors for each font. Denote this matrix
to beQk, wherek is thekth font. The variety of the STIR vectors which form the rows of
this matrix should cover a full range of variations of all of the characters represented by that
font. Suppose there areNc characters of interest. This could be all letters, special characters
and numbers. This number (Nc) would be multiplied by the number of font sizes of interest
to yield Ntot. Application of the SVD yields

UkSkV ′k = Qk (9)

The Ntot columns ofV form a basis for the rows ofQk. If there are columns left over
they will be orthogonal to all of the rows ofQk. This may be accomplished by designing
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the STIR representations such that the STIR vectors meet this condition by having more
elements than there are rows in theQk matrix. For illustration, suppose one picks a “noise
vector” Z from this set of orthogonal columns, call itZk. It is a column vector. Then,

Qk Zk = O (10)

Where “O” is a row vector of zeros. However, for another font representation,Qr ,

Qr Zk 6= 0 (11)

This provides a powerful means of determining whether or not a STIR vector belongs to
the subspace of interest. Find

su = STIRu Zk (12)

If the selection value,su, belongs to thekth subset, its projection will be zero. If not, its
projection will most likely be large. Thus, one may detect the font representation by this
means.

3.1. Partition into font subsets and detecting font

The difficulties due to font differences have been solved by first detecting the font in which
the unknown character is represented. Ideally, the subspaces represented by the different
fonts would be disjoint, so that one may discover which font the unknown is in and then
chose a font specific classifier to home in on the character. This is not quite true, but the
subspaces for the different fonts are sufficiently distinct to provide good font detection.

3.2. Font specific classification of characters and words

Suppose one has the bitmap of an unknown character. The STIR representation of the
character is projected onto the subspace of each font. We can thus find a selection value
that determines the font class membership of the unknown character. Next, the classifier
designed for the specific font subspace is used to classify the character. This subspace is
built from all of the characters in the search set represented over a number of sizes. We
have used a wide range of font sizes from 10 to 50 in building these font specific subspaces.
This method works very well using a number of classification methods. We use the most
important features extracted from the SVD decomposition of the STIR vector to determine
the font. Next, we use a font specific subspace method as described in Eqs. (9)–(12) to
identify the character. Typically, we obtain 100 percent correct character classification,
even with fax corrupted bitmaps (Williams and Zalubas 1996). On rare occasion, incorrect
font subspaces are selected. Nevertheless, the correct character classification still results.
This is the ultimate goal, after all. Also, on rare occasions, “b” is confused with “p” and
“u” is confused with “n” in some fonts represented by noisy bitmaps. This is due to strong
symmetry for such characters in the STIR representation. It should be easy to confirm the
correct result by other simple means in such cases.
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4. Application: Wordspotting

As mentioned in the Introduction, the specific goal of the project was to develop a new
method for wordspotting for use with bitmapped representations of faxed documents. Many
research techniques and commercially available techniques perform well when the docu-
ment is available as a clean bitmapped representation of text. Performance substantially
deteriorates when the bitmapped representation is from a faxed document, however. In fact,
the result is often useless due to the large number of errors.

An example which shows how STIR and the SVD noise subspace index are combined to
perform as a size independent word recognition classifier is given here. The method is also
robust under fax corruption. A complete document identification system incorporates much
more than the pattern classifier presented here. This application shows the viability of the
method for pattern classification under fax corruption. Performance on multiple fonts is a
straightforward extension of the single font wordspotter.

STIRs and noise subspace methodology are used to spot a word in text independent
of size or translation. Omitted is the task of segmentating an image into individual word
bitmaps. Given the additional white space between words in a document, the segmentation
task is much easier than character segmentation. For many documents, this may be simply
performed by breaking text at intervals of white space which exceed a given distance.

Each segmented bitmap is considered as an isolated recognition task. Contextual in-
formation such as positioning within a line, height/width ratio, and pixel density is not
used.

A preliminary data set was produced by faxing documents and subjecting the clean
bitmapped result and the bitmapped result after faxing to analysis. It was confirmed that
faxing produces a peculiar type of noise that is unlike additive noise. Broken and touching
characters are often seen (Chen et al. 1993, Ho et al. 1990). Examples of fax corruption can be
seen in some of the examples presented later in this paper. Preliminary experiments showed
that words consisting of letters with slanted parts such as v, w and x were more troublesome
than letters with horizontal or vertical parts. ‘van’ and ‘vax’ were found to be more difficult
to distinguish than other pairs examined. Therefore, the decision was made to concentrate
on these words, since other words would be considerably easier to spot in comparison.
Various words using combinations of v, a, n and x with other letters were constructed in
order to further concentrate this worst case scenario. Three letter words were chosen for
two reasons. First, it was possible to creat a reasonable set of three letter words that were
one or two characters different from ‘van’ and ‘vax’. Second, longer words create bitmaps
of increasing size with resulting increases in time to carry out test runs. This is a particular
concern for future plans which involve expanding the method to higher dimensions.

Obtaining good sets of fax corrupted words is not a trivial task. An undergraduate summer
student spent a number of weeks constructing, printing, faxing and bitmap converting the
word sets used in our studies.

The word set result to be presented consists of three letter words, all in lowercase. The
word to spot was ‘van’. Figure 3 shows the bitmapped image of ‘van’. Figure 4 shows its
autocorrelation. 75 words other than ‘van’ were generated by altering one letter of the three.
Helvetica was the font examined. Text in sizes 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20
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Figure 3. Bitmapped representation of van.

point was used for training. Bitmaps from faxed versions of clean printed copy were used
as the input signals. The training text consisted of five instances of the word to be spotted
in each size. An example of the bitmaps of the word ‘van’ in 10 point appear in figure 5.
These were dubbed the “Placebo Words” by the summer intern and she called the set of
words which differed from ‘van’ plus some instances of ‘van’ the “Waldo Words”. This
clever allusion to the cartoon character Waldo, where the task is to find Waldo in a complex
picture, was adopted to describe the word sets. The “Waldo Words” are shown in figure 6.

The classification methodology was tested on 10 point faxed ‘words’ in each of the fonts.
Hence, the recognition tool is being tested on a size of text different from any size used
in training. In this character recognizer, Font is determined first. For each font, exemplars
in the four training sizes are available for each of the 26 characters, a total of 104 training
characters.

Every STIR row vector is generated by the steps of autocorrelation, scale transform, and
reshaping to a vector. To illustrate, consider a 9 point bitmap of the desired word ‘van’.

The first and fourth quadrants are scale transformed using an interval distanceT = 1 with
row and column scale values of 0.1, 0.4, 0.7, 1.0, 1.3, 1.6, 1.9, 2.2, 2.5, 2.8. Figure 7 shows
the matrices of magnitudes of these scale transform coefficients, the STIR values. Note that
the difference in scale values between quadrants is very small. This similarity is exhibited
in the scale coefficient magnitudes for most data encountered. Another notable feature is
that the scale magnitudes generally show a roughly exponential drop off. These coefficient
magnitudes reformed as an STIR row vector give the appearance shown in figure 8.

Since, in this example, only one word is to be spotted, STIR training vectors formed
only one matrix. This implies an SVD on 55 STIR vectors since we are using 5 instances
of ‘van’ in each point size 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20. The length of each row
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Figure 4. 2-D Autocorrelation of ‘van’.

is determined by the number of row and column scales chosen for calculation. The STIR
row vectors each have 200 elements because, choice of row and column scales in the scale
transform dictates a 10 by 10 matrix output for each autocorrelation quadrant, regardless
of the size of each autocorrelation quadrant. Thus, the SVD for each font will yield noise
vectors corresponding to 200− 55= 145 singular values with zero magnitude. Calculating
the sum of inner product magnitudes between these orthogonal vectors and a test STIR
vector yields a selection value for each font. If the result is zero, then the unknown character
must be represented in that font. In practice, one does not obtain a zero inner product with
the correct font noise vectors. However, the correct font should correspond to the matrix
generating the smallest selection value.

The similar words in 10 point, an untrained size, were processed into STIR vectors and
selection value, (SV) were calculated. The SVs of the instances of ‘van’ character sequence
did indeed show low values as shown in figure 9. The ROC curve is shown in figure 10.

Two sets of words were used the “Waldo Words”, those that were close to ‘van’ and the
“Placebo Words”, those consisting of variations of ‘van’. These words are shown in figures
5 and 6. These words were constructed from faxed images. One can readily see the fax
corruption.
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Figure 5. Placebo Words in 10pt representation.
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Figure 6. Waldo words in 10pt representation.
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Figure 7. 2-D Scale Transforms from the two unique quadrants (a) and (b).

Figure 8. The STIR vector for ‘van’.
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Figure 9. Selection value results. The upper plot represents the Waldo word selection values. The circles represent
the Placebo word results. The horizontal line represents the threshold chosen.

Figure 10. ROC results.The word results are x’s. The dotted line represents chance performance.
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The 2-D autocorrelation of ‘van’ is shown in figure 4. The 2-D scale transforms of two
unique quadrants of the 2-D autocorrelation are shown in figure 7. The STIR vector produced
by concatenating the rows of the 2-D scale transforms is shown in figure 8.

It was assumed that an effective word segmentation algorithm had been applied to the
bitmapped page. This is not a trivial problem, but some fairly straightforward software was
developed to accomplish this task quite well. Sophisticated methods are available which
should be considered in a fully developed system (Etemad et al. 1994a, Etemad et al. 1994b,
Reed and Wechsler 1991). In order to increase the difficulty of classification the word set
used with ‘van’ and ‘vax’ was constructed such that the other words were very close to
‘van’ and ‘vax’, differing only by a single letter.

Results were quite good. ‘van’ appeared three times in a series of 78 words. The algorithm
found ‘van’ each time (3 Hits) and mistakenly identified another word as ‘van’ one time
(1 False Alarm) for the threshold shown. See figure 9. The word which was incorrectly
identified as ‘van’ was ‘ven’ with a corrupted ‘e’. This word can be found as the third word
in the middle column of the ‘Waldo Words’ in figure 6. In order to assess the method more
fully, the threshold was varied over a range of values to generate a Receiver Operating
Characteristic (ROC) shown in figure 10.

5. Discussion

The work statement for the project which generated these results was focussed on devel-
oping a new method for spotting words in faxed documents. The need for scanning such
documents for certain words has created a crisis situation in many areas. Recent declassifi-
cation legislation has provided a strong impetus for improved techniques. Some documents
are available after multiple faxing or multiple copying and are thus considerably degraded.
It was not the purpose of this project to provide a finished method which had been tested
for a very large number of words with a large number of types and levels of corruption.
The intent of the project was to provide promising concepts which could be brought into
governmental evaluation programs such that a number of techniques could be compared
using common data. Comparisons with other techniques are difficult to orchestrate due to
lack of details and the requisite expertise in “tweaking” the parameters of the method in
order to obtain the best result. Such comparisons are sorely needed, however and it is hoped
that ongoing governmental programs will provide these comparisons.

Generating the data sets for this project took quite a lot of time. In order to show the
efficacy of the method we decided to do an exploratory test to identify troublesome words
and then show that the method could do well even in these difficult situations. It is expected
that results may even be much better with a broad range of less troublesome words. However,
proof of this conjecture awaits a much longer term and more ambitious project effort than
our time and resources allowed.

The examples provided show the potential for application of the STIR and noise subspace
discrimination methods to character recognition. A selection value threshold could be added
to reject symbols which are not among the valid set of characters. In addition, the detection
method might be improved considerably. Some impressive results have been obtained by
Warke and Orsak (1996) in classifying faces using an information theoretic method.
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A perusal of such problems as face recognition suggests that the methods described in this
paper need not be confined to character and word spotting. Any bitmapped representation
may be brought into this methodology. Logos, Chinese characters, images of ships and
planes, faces, sounds (via time-frequency representations) (Williams et al. 1998) and many
other types of signals and images might be profitably identified using this approach. The
methods may also be readily extended to higher dimensional spatial-temporal-frequency-
wavenumber representions wherein complex objects may be identified. A major problem
in doing this is the size of the representations produced. However, with rapily increasing
RAM allocations in computers, this too may be possible.

The nature of some of the errors seen when using this method has prompted some of our
psychologist and neurologist colleagues to comment that the errors are similar to some of the
phenomena observed in human perception. Dyslexia, for example, is a condition wherein
words and letters are perceived as being reversed. We have observed exactly this type of
phenomenon with characters using the STIR method. This does not occur when the letters
are uncorrupted, but does begin to occur when small details of the character are altered by
faxing. Presumably, this could also occur with words as well. This is due to the symmetry
characteristics of the ACFSX matrix in both the horizontal and vertical directions. There
are several simple fixes for this which include a secondary check for right-left and up-down
orientation should it become a problem in large scale applications.

The algorithms for the method were written in Matlabc©which is an interpretive language.
Still, the example given in this paper runs quickly enough to quite satisfactorily demonstrate
on a laptop computer in a seminar setting. With increasing computer speeds and memory,
coupled with good C coded routines, the speed should be quite reasonable for larger scale
application.

5.1. Conclusions

The methods described in this paper provide a very robust means of identifying target
words in a bitmapped document. The various parts of the algorithm are not unique in and
of themselves. The scale transform (or Mellin transform) is an obvious way of removing
scale effects. Autocorrelation has been used in many applications to dispense with absolute
time or displacement. The noise subspace concept is used in many modern methods for
high resolution spectral analysis. However, taken together, in the form suggested in this
paper, they yield a powerful new method for character and word spotting in bitmapped
documents. There are many points of refinement which remain to be investigated. Each step
in the process offers considerable opportunity for refinement. Large scale testing needs to
be carried out to fully confirm the method and identify fixes to some of the problems which
may occur.
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Note

1. The reader will probably recognize that this computation can be done in the frequency domain by taking the
squared magnitude of the 2-D Fourier transform of the image with subsequent 2-D inverse Fourier transforming.
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