Ad . .
"“ Information Retrieval, 3, 127-163, 2000

(© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Automating the Construction of Internet Portals
with Machine Learning

ANDREW KACHITES McCALLUM mccallum@cs.cmu.edu
Just Research and Carnegie Mellon University

KAMAL NIGAM knigam@cs.cmu.edu
Carnegie Mellon University

JASON RENNIE jrennie@ai.mit.edu
Massachusetts Institute of Technology

KRISTIE SEYMORE kseymore@ri.cmu.edu
Carnegie Mellon University

Received July 27, 1999; Revised February 18, 2000

Abstract. Domain-specific internet portals are growing in popularity because they gather content from the Web
and organize it for easy access, retrieval and search. For exammplecampsearch.coallows complex queries

by age, location, cost and specialty over summer camps. This functionality is not possible with general, Web-wide
search engines. Unfortunately these portals are difficult and time-consuming to maintain. This paper advocates the
use of machine learning technigues to greatly automate the creation and maintenance of domain-specific Internet
portals. We describe new research in reinforcement learning, information extraction and text classification that
enables efficient spidering, the identification of informative text segments, and the population of topic hierarchies.
Using these techniques, we have built a demonstration system: a portal for computer science research papers. It
already contains over 50,000 papers and is publicly availablerat.cora.justresearch.canirhese techniques

are widely applicable to portal creation in other domains.

Keywords: spidering, crawling, reinforcement learning, information extraction, hidden Markov models, text
classification, naive Bayes, expectation-maximization, unlabeled data

1. Introduction

As the amount of information on the World Wide Web grows, it becomes increasingly
difficult to find just what we want. While general-purpose search engines such as AltaVista
and Google offer quite useful coverage, it is often difficult to get high precision, even for
detailed queries. When we know that we want information of a certain type, or on a certain
topic, a domain-specific Internet portal can be a powerful togho&al is an information
gateway that often includes a search engine plus additional organization and content. Portals
are often, though not always, concentrated on a particular topic. They usually offer powerful
methods for finding domain-specific information. For example:

128 McCALLUM ET AL.

— Camp Searchaww.campsearch.cgnallows the user to search for summer camps for
children and adults. The user can query and browse the system based on geographic
location, cost, duration and other requirements.

— LinuxStart (www.linuxstart.comprovides a clearinghouse for Linux resources. It has a
hierarchy of topics and a search engine over Linux pages.

— Movie Review Query Enginenww.mrge.comallows the user to search for reviews of
movies. Type a movie title, and it provides links to relevant reviews from newspapers,
magazines, and individuals from all over the world.

— Crafts Searchwww.bella-decor.cojnlets the user search web pages about crafts. It
also provides search capabilities over classified ads and auctions of crafts, as well as a
browseable topic hierarchy.

— Travel-Finderwww.travel-finder.cofallows the user to search web pages about travel,
with special facilities for searching by activity, category and location.

Performing any of these searches with a traditional, general-purpose search engine would
be extremely tedious or impossible. For this reason, portals are becoming increasingly
popular. Unfortunately, however, building these portals is often a labor-intensive process,
typically requiring significant and ongoing human effort.

This article describes the use of machine learning techniques to automate several as-
pects of creating and maintaining portals. These techniques allow portals to be created
quickly with minimal effort and are suited for re-use across many domains. We present new
machine learning methods for spidering in an efficient topic-directed manner, extracting
topic-relevant information, and building a browseable topic hierarchy. These approaches
are briefly described in the following three paragraphs.

Every search engine or portal must begin with a collection of documents toindex. A spider
(or crawler) is an agent that traverses the Web, looking for documents to add to the collection.
When aiming to populate a domain-specific collection, the spider need not explore the Web
indiscriminantly, but should explore in a directed fashion in order to find domain-relevant
documents efficiently. We set up the spidering task in a reinforcement learning framework
(Kaelbling et al. 1996), which allows us to precisely and mathematically define optimal
behavior. This approach provides guidance for designing an intelligent spider that aims
to select hyperlinks optimally. It also indicates how the agent should learn from delayed
reward. Our experimental results show that a reinforcement learning spider is twice as
efficient in finding domain-relevant documents as a baseline topic-focused spider and three
times more efficient than a spider with a breadth-first search strategy.

Extracting characteristic pieces of information from the documents of a domain-specific
collection allows the user to search over these features in a way that general search engines
cannot. Information extraction, the process of automatically finding certain categories
of textual substrings in a document, is well suited to this task. We approach information
extraction with a technique from statistical language modeling and speech recognition,
namelyhidden Markov modelgRabiner 1989). We learn model structure and parameters
from a combination of labeled and distantly-labeled data. Our model extracts fifteen different
fields from spidered documents with 93% accuracy.

AUTOMATING THE CONSTRUCTION OF INTERNET PORTALS 129

Search engines often provide a hierarchical organization of materials into relevant topics;
Yahoo is the prototypical example. Automatically adding documents into a topic hierarchy
can be framed as a text classification task. We present extensions to a probabilistic text
classifier known asaive Bayeg¢lLewis 1998, McCallum and Nigam 1998). The extensions
reduce the need for human effort in training the classifier by using just a few keywords per
class, a class hierarchy and unlabeled documents in a bootstrapping process. Use of the
resulting classifier places documents into a 70-leaf topic hierarchy with 66% accuracy—
performance approaching human agreement levels.

The remainder of the paper is organized as follows. We describe the design of an Internet
portal built using these techniques in the next section. The following three sections describe
the machine learning research introduced above and present their experimental results. We
then discuss related work and present conclusions.

2. The Cora portal

We have brought all the above-described machine learning techniques together in a demon-
stration system: an Internet portal for computer science research papers, which we call
“Cora.” The system is publicly available atvw.cora.justresearch.caniNot only does it
provide keyword search facilities over 50,000 collected papers, it also places these papers
into a computer science topic hierarchy, maps the citation links between papers, provides
bibliographic information about each paper, and is growing daily. Our hope is that in addi-
tion to providing datasets and a platform for testing machine learning research, this search
engine will become a valuable tool for other computer scientists, and will complement
similar efforts, such as CiteSeemfw.scienceindex.conand the Computing Research
Repository xxx.lanl.gov/archive/gs

We provide three ways for a user to access papers in the repository. The first is through a
topic hierarchy, similar to that provided by Yahoo but customized specifically for computer
scienceresearch. Itis available on the homepage of Cora, as shown in figure 1. This hierarchy
was hand-constructed and contains 70 leaves, varying in depth from one to three. Using text
classification techniques, each research paper is automatically placed into a topic leaf. The
topic hierarchy may be traversed by following hyperlinks from the homepage. Each leaf in
the tree contains a list of papers in that research topic. The list can be sorted by the number
of references to each paper, or by the degree to which the paper is a strong “seminal” paper
or a good “survey” paper, as measure by the “authority” and “hub” score according to the
HITS algorithm (Kleinberg 1999, Chang et al. 1999).

All papers are indexed into a search engine available through a standard search inter-
face. It supports commonly-used searching syntax for queries, incladingand phrase
searching with'". It also allows searches restricted to extracted fields, such as authors and
titles, as inauthor : knuth. Query response time is usually less than a second. The results
of search queries are presented as in figure 2. While we present no experimental evidence
that the ability to restrict search to specific extracted fields improves search performance,
it is generally accepted that such capability increases the users’ ability to efficiently find
what they want (Bikel et al. 1997).

130 McCALLUM ET AL.

File Edit View Go Communicator Help !
. § " Bookmarks i Location: F_nttp://cora, justresearch. com/ /l I

About Give Adda Cora &
Cora Feedback (,] Paper ews
—ed
Yension02
Computer Science Research Paper Search Engine
Made possible by Just Research and Justsystem
T Heb
Artificial Intelligence = t teracti
Agents, Natural Language Processing, ... Multimedia, Cooperative, Intzxface Design, ...
Data Structures, Algorithms & Theory Information Retrieval
Logic, Hashing, Sorting, Parallel Algorithrs, ... Filtering, Retrieval, Extraction, Digital Libraxy,
Databases Networking
Misc, Temporal, Deductive, Relatioral, ... Routing, Internet, Wireless, Protocols
Encryption & Compression Operating Systems
Security, Encryption, Cornpression, Misc, Fault Tolerance, Real - ti ems, ...
Hardware & Architecture Programming
¥LSI, Logic Design, Microprogramaming, ... Functional, Java, Logic, Serantics, ...,
Created by Andrew McCaltum, Xamal Nigaw, Jason Rennie and Xristie Seymore
at Just Research.
Corawas inspired in part by Andvew Ng*s ML Papers.
Other related work
&ﬂ JUSTSYST=M uB Just Research ﬁ
& o | o 8 cle 02 2|

Figure L A screen shot of the Cora homepagemv.cora.justresearch.comit has a search interface and a
hierarchy interface.

From both the topic hierarchy and the search results pages, links are provided to “details”
pages for individual papers. Each of these pages shows all the relevant information for a
single paper, such as title and authors, links to the actual postscript paper, and a citation map
that can be traversed either forwards or backwards. One example of this is shown in figure 3.
The citation map allows a user to find details on cited papers, as well as papers that cite the
detailed paper. The context of each reference is also provided, giving a brief summary of
how the reference is used by the detailed paper. We also provide automatically constructed
BibTeX entries, a mechanism for submitting new papers and web sites for spidering, and
general Cora information links.

Our web logs show that 40% of the page requests are for searches, 27% for details pages
(which show a paper’s incoming and outgoing references), 30% are for the topic hierarchy
nodes and 3% are for BibTeX entries. The logs show that our visitors use the ability to
restrict search to specific extracted fields, but not often; about 3% of queries contain field

AUTOMATING THE CONSTRUCTION OF INTERNET PORTALS 131

File Edit View Go Communicator Help

-

: ..¢~ Bookmarks & Location: fj’pttp://cora. i{\;t;research com/cgi-bin/cora_quefy cgi?first=: /E m

—

A

g
=N
==
=3
Q2
=)
2
=3

About Give

Cora Feedback

el
3
:
B
.

PN
(LC
Version 02

Computer Science Research Paper Search Engine
Made possible by Just Research and Justsystem

{Iauthor:boyan "search engines" éSeaxch Help

Title, author, institution and abstract are automatically extracted, and are often, but not always correct.

Number of hits found: 64

1. A Machine Learning Architectwre for Optimizing Weh Search Engines
Justin Boyan, Dayne Freitag, and Thorsten Joachims
Abstract: Indexing systerns for the World Wide Web, such as Lycos and Alta Vista, play an essential yole in raking the Web useful and
usable. These systerns are based on Information Retrieval methods for indexing plain text documents, but also include heuristics fox
adjusting their docuraent rankings based on the special HTML structure of Web docuraents. In this paper, we describe a wide range of such
biewristicslincluding a novel one inspired by reinforcernent learning techniques fox propagating rewards through a graphywhich can be used to
affect a seaxch engine’s rankings. We then deraonstrate a system which learns to corabine these heuristics autoraatically, based on feedback
collected unintzusively from users, resulting in much inaproved rankings.

Postscript Referring Page Details BibTeX Entrr Word Matches: boyan, seazch engines Score: 1

2. Value Function Based Production Scheduling
Jeff G. Schneider Justin A. Boyan Andrewr W. Moore
Abstract: Production scheduling, the problern of sequentially configuring a factory to meet forecasted dernands, is a critical problera
throughout the manufacturing industey. The requirernent of maintaining product inventories in the face of unpredictable dernand and. ;
stochastic factory output rnakes standard scheduling models, such as job - shop, inadequate. Currently applied algorithms, suchas sicaulated]
annealing and constraint propagation, raust eraploy ad - hoc methods such as frequent replanning to cope with uncertainty. In this paper, we b
describe a Markowv Decision Process {MDF) forrulation of production scheduling which captures stochasticity inboth production and
decaands. The solution to this MDP is a value function which can be used to genexate optimal scheduling decisions online. & simple example
illustrates the theoretical superiority of this approach over replanning - based raethods. We then describe an industrial application and two
reinforcement learning rethods for generating an approxirnate value function on this dorain. Oux results decnonstrate that inboth
deterrninistic and noisy scenarios, value function approxiration is an effective technique.

Postscript Referring Page Details BibTeX Entry Word Matches: boyan Score: 0.6094

3. Least-Squares Temporal Difference Learning
Justn A. Boyan

Postscript Referring Page Details BibTeX Entrr Word Matches: boyan Score: 0.6094
R PRl
o | l

Figure 2 A screen shot of the query results page of the Cora search engine. Extracted paper titles, authors and
abstracts are provided at this level.

f
i i @2 2

specifiers; it might have been higher if the front page indicated that this feature were
available.

The collection and organization of the research papers for Cora is automated by drawing
upon the machine learning techniques described in this paper. The first step of building
any portal is the collection of relevant information from the Web. A spider crawls the Web,
starting from the home pages of computer science departments and laboratories and looks
for research papers. Using reinforcement learning, our spider efficiently explores the Web,
following links that are more likely to lead to research papers, and collects all postscript

132 McCALLUM ET AL.

File Edit View Go Communicator Help

] :“" Bookmarks & Location: thtp //cora. justresearch. con/cgi-bin/details. cqi?id=424373¢ /| m’

A Machine Learning Architecture for Optimizing Web Search Engines -

Justin Boyan, Dayne Freitag, and Thorsten Joachims
fjab,dayne,thorsteng@cs.cmu.edu

May 10, 1996

Abstract

Indexing systems for the World Wide Web, such as Lycos and Alta Vista, play an essential
role in making the Web useful and usable. These systems are based on Informaton Retrieval
methods for indexing plain text d s, but also include heuristics for adjusting their
document rankings based on the special HTML structure of Web documents. In this paper,
we describe a wide range of such heuristicslincluding a novel one inspired by reinforcement
learning techniques for propagating rewards through a graphlwhich can be used to affect a
search engine’s rankings. We then demonstrate a system which learns to combine these

heuristics automatically, based on feedback collected unintrusively from users, resulting in
much improved rankings.

Postscrpt] [Referring Page] [BibTeX Entry
hide text axound references | show text around references

We are in the process of improving our reference matching algorithm. At this time, duplicates may exist and some papers
may be matched incorrectly.

Referenced by:

Refs+P5 William W. Cohen, Robert E. Schapire, and Yoram Singer. Leaming ro order things. In Advances in Neural
Information Processing Systems 10, 1997.

Refs+ES William Cohen. Integrazion of heter dazab withour domains using queries based on
texzuad similarity. In Proc. of ACM SIGMOD Conf. on Management of Dats, Seattle, WA, 1998.

Refs+ 25 Andrew McCallum zy Kamal Nigam Jason Rennie Kristie Seymore Just . Building Domain-Specific Search
Engines with Machine Learning Technigues .

Refs+F3 Jason Rennie Andrew Kachites McCallum . Using Reinforcement Learning to Spider the Web Efficiently .

References:

Refs+FS Bartell, B,; Cotrell, G.; and Belew, R. 1994. Optimizing parameters in a ranked retrieval system using

multi-query relevance feedback. In Proceedings of Symposium on Document Analysis and Informaton
Retrieval (SDAIR).

“Othex researchers have focused on retrieval using hypertext structure mthoutmakmg use oi the internal structure of
docurnents (Savoy 1991; Croft & Tuxtle 1993). A proposed by {Fuhx etal.

1994) as well as (Bartell, Cottrell, & Belew1994) . Both approxhu dn'!u rxomLASER s mthnwyusc xeal xelevance
feedback data.”

Refs+PS Barto, A. G; Bradtke, S. J; and Singh, S. P. 1995. Leaming to act using real-time dynamic progrevuning.
Artificial Intelligence 72(1) 81-138.

“For retrieval it might be useful not only to look at a docuraent in isolation, but also to take its neighboring docuraents into
account. The approach we took is motivated by an analogy to reinfoxcernent learning as studied in artificial intelligence

@ [TTooe | i 5 e &P \all

Figure 3 A screen shot of a details page of the Cora search engine. At this level, all extracted information about
a paper is displayed, including the citation linking, which are hyperlinks to other details pages.

AUTOMATING THE CONSTRUCTION OF INTERNET PORTALS 133

documents it find$. The details of this spidering are described in Section 3. The postscript
documents are then converted into plain text by running them through our own modified
version of the publicly-available utilitgs2ascii If the document can be reliably determined

to have the format of a research paper (i.e. by matching regular expressions for the headers
of an Abstract or Introduction section and a Reference section), it is added to Cora. Using
this system, we have found 50,000 computer science research papers, and are continuing
to spider for even more.

The beginning of each paper is passed through a learned information extraction system
that automatically finds the title, authors, affiliations and other important header informa-
tion. Additionally, the bibliography section of each paper is located, individual references
identified, and each reference automatically broken down into the appropriate fields, such as
author, title, journal, and date. This information extraction process is described in Section 4.

Using the extracted information, reference and paper matches are made—grouping
citations to the same paper together, and matching citations to papers in Cora. Of course,
many papers that are cited do not appear in the repository. The matching algorithm places a
new citation into a group if it's best word-level match is to a citation already in that group,
and the match score is above a threshold; otherwise, that citation creates a new group.
The word-level match score is determined using the lengths of the citations, and the words
occurring in high-content fields (e.g. authors, titles, etc.). This matching procedure is very
similar to the Baseline Simple method described by Giles et. al. (1998). Finally, each paper
is placed into the computer science hierarchy using a text classification algorithm. This
process is described in Section 5.

The search engine is created from the results of the information extraction. Each research
paper is represented by the extracted title, author, institution, references, and abstract.
Contiguous alphanumeric characters of these segments are converted into word tokens. No
stoplists or stemming are used. At query time, result matches are ranked by the weighted
log of term frequency, summed over all query terms. The weight is the inverse of the word
frequency in the entire corpus. When a phrase is included, it is treated as a single term.
No query expansion is performed. Papers are added to the index incrementally, and the
indexing time for each document is negligible.

These steps complete the processing of the data necessary to build Cora. The creation of
other Internet portals also involves directed spidering, information extraction, and classi-
fication. The machine learning technigues described in the following sections are widely
applicable to the construction and maintenance of any Internet portal.

3. Efficient spidering

Spiders are agents that explore the hyperlink graph of the Web, often for the purpose
of finding documents with which to populate a portal. Extensive spidering is the key to
obtaining high coverage by the major Web search engines, such as AltaVista, Google
and Lycos. Since the goal of these general-purpose search engines is to provide search
capabilities over the Web as a whole, they aim to find as many distinct web pages as
possible. Such a goal lends itself to strategies like breadth-first search. If, on the other hand,
the task is to populate a domain-specific portal, then an intelligent spider should try to avoid

134 McCALLUM ET AL.

hyperlinks that lead to off-topic areas, and concentrate on links that lead to documents of
interest.

In Cora, efficient spidering is a major concern. The majority of the pages in computer
science department web sites do not contain links to research papers, but instead are about
courses, homework, schedules and admissions information. Avoiding whole branches and
neighborhoods of departmental web graphs can significantly improve efficiency and in-
crease the number of research papers found given a finite amount of crawling time. We use
reinforcement learning as the setting for efficient spidering in order to provide a formal
framework. As in much other work in reinforcement learning, we believe that the best ap-
proach to this problem is to formally define the optimal solution that a spider should follow
and then to approximate that policy as best as possible. This allows us to understand (1)
exactly what has been compromised, and (2) directions for further work that should improve
performance.

Several other systems have also studied spidering, but without a framework defining
optimal behavior. RACHNID (Menczer 1997) maintains a collection of competitive, repro-
ducing and mutating agents for finding information on the Web. Cho et al. (1998) suggest a
number of heuristic ordering metrics for choosing which link to crawl next when searching
for certain categories of web pages. Chakrabarti et al. (1999) produce a spider to locate
documents that are textually similar to a set of training documents. This is called a focused
crawler. This spider requires only a handful of relevant example pages, whereas we also
require example Web graphs where such relevant pages are likely to be found. However,
with this additional training data, our framework explicitly captures knowledge of future
reward—the fact that pages leading toward a topic page may have text that is drastically
different from the text in topic pages.

Additionally, there are other systems that use reinforcement learning for non-spidering
Web tasks. WebWatcher (Joachims et al. 1997) is a browsing assistant that acts much like a
focused crawler, recommending links that direct the user toward a “goal.” WebWatcher also
uses aspects of reinforcement learning to decide which links to select. However, instead
of approximating & function for each URL, WebWatcher approximate® éunction for
each word and then, for each URL, adds@#&inctions that correspond to the URL and the
user’s interests. In contrast, we approximat® &unction for each URL using regression
by classification. LASER (Boyan et al. 1996) is a search engine that uses a reinforcement
learning framework to take advantage of the interconnectivity of the Web. It propagates
reward values back through the hyperlink graph in order to tune its search engine parameters.
In Cora, similar techniques are used to achieve more efficient spidering.

The spidering algorithm we present here is unique in that it represents and takes advantage
of future reward—Iearning features that predict an on-topic document several hyperlink hops
away from the current hyperlink. This is particularly important when reward is sparse, or in
other words, when on-topic documents are few and far between. Our experimental results
bear this out. In a domain wittut sparse rewards, our reinforcement learning spider that
represents future reward performs about the same as a focused spider (both out-perform
a breadth-first search spider by three-fold). However, in another domain where reward is
more sparse, explicitly representing future reward increases efficiency over a focused spider
by a factor of two.

AUTOMATING THE CONSTRUCTION OF INTERNET PORTALS 135

3.1. Reinforcement learning

The term “reinforcement learning” refers to a framework for learning optimal decision
making from rewards or punishment (Kaelbling et al. 1996). It differs from supervised
learning in that the learner is never told the correct action for a particular state, but is simply
told how good or bad the selected action was, expressed in the form of a scalar “reward.”
We describe this framework, and define optimal behavior in this context.

Atask is defined by a set of states; S, a set of actionsa € A, a state-action transition
function (mapping state/action pairs to the resulting stdte)S x A — S, and a reward
function (mapping state/action pairs to a scalar rewdd)S x A — NR. At each time step,
the learner (also called tlagen) selects an action, and then as a resultis given a reward and
transitions to a new state. The goal of reinforcement learning is to lqaolicy, a mapping
from states to actionsg, : S — A, that maximizes the sum of its reward over time. The most
common formulation of “reward over time” is a discounted sum of rewards into an infinite
future. We use the infinite-horizon discounted model where reward over time is a geomet-
rically discounted sum in which the discount<@ < 1, devalues rewards received in the
future. Accordingly, when following policyr, we can define thealueof each state to be:

Vi) =) y'n, €Y
t=0

wherer; is the reward receivetitime steps after starting in stase The optimal policy,
writtenr*, is the one that maximizes the vallé€? (s), over all states.

In order to learn the optimal policy, we learn its value functidgn, and its more specific
correlate, calledQ. Let Q*(s,a) be the value of selecting actian from states, and
thereafter following the optimal policy. This is expressed as:

Q*(s,a) = R(s,a) + yV*(T (s, a)). (2)

We can now define the optimal policy in terms@f by selecting from each state the action
with the highest expected future rewart.(s) = arg max Q*(s, a). The seminal work by
Bellman (1957) shows that the optimal policy can be found straightforwardly by dynamic
programming.

3.2. Spidering as reinforcement learning

As an aid to understanding how reinforcement learning relates to spidering, consider the
common reinforcement learning task of a mouse exploring a maze to find several pieces of
cheese. The mouse can perform actions for moving among the grid squares of the maze.
The mouse receives a reward for finding each piece of cheese. The state is both the position
of the mouse and the locations of the cheese pieces remaining to be consumed (since the
cheese can only be consumed and provide reward once). Note that the mouse only receives
immediate reward for finding a maze square containing cheese, but that in order to act
optimally it must choose actions based on future rewards as well.

136 McCALLUM ET AL.

In the spidering task, the on-topic documents are immediate rewards, like the pieces of
cheese. The actions are following a particular hyperlink. The state is the set of on-topic
documents that remain to be consumed, and the set of URLs that have been encduntered.
The state does not include the current “position” of the agent since a crawler can go next
to any URL it has previously encountered. The number of actions is large and dynamic, in
that it depends on which pages the spider has visited so far.

The most important features of topic-specific spidering that make reinforcement learning
an especially good framework for defining the optimal solution are: (1) performance is
measured in terms of reward over time because it is better to locate on-topic documents
sooner, given time limitations, and (2) the environment presents situations with delayed
reward, in that on-topic documents may be several hyperlink traversals away from the
current choice point.

3.3. Practical approximations

The problem now is how to apply reinforcement learning to spidering in such a way that it
can be practically solved. Unfortunately, the state space is huge: exponential in the number
of on-topic documents on the Web. The action space is also large: the number of unique
hyperlinks that the spider could possibly visit.

In order to make learning feasible we use value function approximation. Thatis, we train
a learning algorithm that generalizes across states and is able to predigivdlee of a
previously unseen state/action pair. The spider that emerges from this training procedure
efficiently explores new web graphs by estimating the expected future reward associated
with new hyperlinks using this function approximator. The state space is so unusually large,
however, that function approximation cannot support dynamic programming. Thus, like
in work by Kearns et al. (2000), we sample from the state space, and calculate a sum of
expected future reward with an expliaitl-out solution using a model. The use of roll outs
for policy evaluation is also used in TD-1 (Sutton 1988).

We gather training data and build a model consisting of all the pages and hyperlinks
found by exhaustively spidering a few web siteBy knowing the complete web graph of
the training data, we can easily define a near-optimal policy by automatic inspection of the
web graph. We then execute that policy for a finite number of steps from state/action pairs
for some subset of the states; these executions result in a sequence of immediate rewards.
We then assign to these state/action pairsQhealue calculated as the discounted sum of
the reward sequence. These triplets of state, actionfardlue become the training data
for our value function approximation.

In the next two sub-sections we describe the near-optimal policy on known web graphs,
and the value function approximation.

3.4. Near-optimal policy on known hyperlink graphs

Given full knowledge of a hyperlink graph built by exhaustively spidering a web site, it
is straightforward to specify a near-optimal policy. The policy must choose to follow one
hyperlink from among all the unfollowed hyperlinks that it knows about so far, the “fringe.”

AUTOMATING THE CONSTRUCTION OF INTERNET PORTALS 137

Figure 4 A representation of spidering space where arrows are hyperlinks and nodes are web documents. The
hexagonal node represents an already-explored node; the circular nodes are unexplored. Filled-in circles denote the
presence of immediate reward (target pages). When a spider is given the choice between an action that provides
immediate reward and one that provides future reward, the spider always achieves the maximum discounted
reward by choosing the immediate reward first. By first followghe spider achieves rewards in the sequence
10111... Following B first only delays the first reward: 01111 .

At each time step, our near-optimal policy selects from the fringe the action that follows the
hyperlink on the path to the closest immediate reward. For example, in figure 4, the policy
would choose actio at time 0 because it provides a reward at time 1, where choosing
action B would delay the first immediate reward until time 2.

This policy closely approximates the optimal policy in cases where all non-zero immedi-
ate rewards have the same value. Figure 4 gives an example of a common spidering situation
where our near-optimal policy makes the optimal decision. Here, the spider is given the
option of taking actionsA and B. SinceA yields reward sooner, the near-optimal policy
chooses this action. This near-optimal policy often makes the right decision. In fact, in the
case thay < 0.5, the only case where the policy may make a mistake is when two or more
actions provide the firstimmediate reward equidistantly from the fringe. The heuristic pol-
icy arbitrarily selects one of these; in contrast, the optimal policy would select the hyperlink
leading to the most additional reward, beyond just the first one.

We choose to begin with a near-optimal policy because sirapécifyingthe optimal
policy on a Web graph is a non-trivial optimization problem. We also believe that directly
approximating the optimal policy would provide little practical benefit, since our near-
optimal policy captures the optimal policy in many of the situations that a spider encounters.

3.5. Value function approximation

Using the above policy, the training procedure generates state/>i@ile triples. Asin
most reinforcement learning solutions to problems with large state spaces, these triples then

138 McCALLUM ET AL.

act as training data for supervised training of an approximation to the value fun¢tisn,

or aQ function. To make this approximation we must specify which subset of states we
use for training, the feature representation of a state and action, and the underlying learning
algorithm to map features tQ-values. We choose a simple but intuitive set of states to
use as training, map a state and hyperlink action to a set of words occurring around the
hyperlink, and use naive Bayes to map words into a prediQedlue.

For the experiments in this paper, we calculate the value of our near-optimal policy for
all states where the fringe contains exactly one hyperlink. Thus, for each known hyperlink
a, we estimateQ({a}, a) by roll-out to generate training data. Considering a larger set of
state/action pairs might make our spidering framework impractical—taking advantage of
a larger set would necessitate recalculatipgalues for every hyperlink that the spider
follows.

The features of a state/action pair are a set of words. Given a hyperlink acttbe
features are the neighboring wordsabbn all previously visited pages in stasevhere
hyperlinka occurs? The precise definition of neighboring text is given for each data set is
Section 3.6, but approximately it means words occurring near to the hyperlink on the page
where it occurs. In many cases a unique hyperlink occurs on only one page. However, it
is not uncommon that multiple pages contain the same hyperlink; in these cases we use the
words on each of these multiple pages as our features.

Our value function approximator takes as inputs these words and gives an estimate of
the Q-value. We perform this mapping by casting this regression problem as classification
(Torgo and Gama 1997). We discretize the discounted sum of future reward values of our
training data into bins and treat each bin as a class. For each state/action pair we calculate
the probabilistic class membership of each bin using naive Bayes (which is described
in Section 5.2.1). Then th@®-value of a new, unseen hyperlink is estimated by taking
a weighted average of each bin9-value, using the probabilistic class memberships as
weights.

All of the approximations that we have made are focused on ensuring that our framework
is practical. The training phase has computational compl€xit)), whereas the spidering
phasei®O(N log N) (N is the number of hyperlinks). The Idgterm accounts for the need
to sort theQ values of those hyperlinks on the fringe. This term could be eliminated through
an approximation such as discretizing fBevalue space. Hence, our framework does not
significantly add to the computational complexity of spidering. An efficientimplementation
should find Web page downloads to be the main bottleneck.

3.6. Experimental results

In this section we provide empirical evidence that using reinforcement learning to guide the
search of a spider increases its efficiency. We use two datasets, the Research Paper dataset,
which is used in the Cora portal, and also the Corporate Officers dataset, where the goal is
to locate specific company information.

3.6.1. Datasets and protocolln August 1998 we completely mapped the documents
and hyperlinks of the web sites of computer science departments at Brown University,

AUTOMATING THE CONSTRUCTION OF INTERNET PORTALS 139

Cornell University, University of Pittsburgh and University of Texas. They include 53,012
documents and 592,216 hyperlinks. These web pages make up the Research Paper dataset.
The target pages (for which a reward of 1 is given) are the 2,263 computer science research
papers. They are identified with 95% precision by a simple hand-coded algorithm that
locates abstracts and reference sections in postscript files with regular expressions. We
perform a series of four test/train splits, in which the data from three universities is used to
train a spider that is then tested on the fourth. The training data is used for value function
approximation, as described in Section 3.5. In this dataset, the neighboring text for a URL
is defined as the full text of the page where the URL is found with the anchor and nearby
text marked specially. Each spidering run begins at the homepage of the test department.
We report average performance across the four test sets.

In December 1998, we collected the Corporate Officers dataset, consisting of the complete
web sites of 26 companies, totaling 6,643 web pages. The targets in this dataset are the web
pages that include information about officers and directors of the company. One such page
was located by hand for each company, giving a total of 26 target pages. We perform 26
test/train splits where each company’s web site forms a test set, while the others are used for
training. Inthis dataset, value function approximation proceeds by defining the neighboring
text to be header and title words, the anchor text, portions of the URL itself (e.g. directory
and file names) and a small set of words immediately before and after the hyperlink. Each
spidering run begins at the homepage of the corresponding test company.

We present results of two different reinforcement learning spiders and compare them
to a breadth-first-search spider. The fifsécused usesy =0, and closely mimics what
is known as a “focused crawler.” (Chakrabarti et al. 1999) This spider employs a binary
classifier that distinguishes between immediately relevant text and otheFiexie uses
y = 0.5 and makes use of future reward, representingQHenction with a more finely-
discriminating multi-bin classifier. Here, training data is partitioned into bins based on
the Q-value of each hyperlink. We found that a 3-bin classifier performed best on the
Research Paper data while a 4-bin classifier yielded the best results on the Corporate Officers
data.

3.6.2. Finding research papers.Results for the Research Paper dataset are depicted in
figures 5 and 6, comparing the three-birnture spider against the two baselines. The number
of research papers found is plotted against the number of pages visited, averaged over all
four universities.

At all times during their search, both ti@&ture andFocused spiders find significantly
more research papers than breadth-first search. One measure of performance is the number
of hyperlinks followed before 75% of the research papers are found. Both reinforcement
learners are significantly more efficient, requiring exploration of less than 16% of the
hyperlinks; in comparisorBreadth-first requires 48%. This represents a factor of three
increase in spidering efficiency.

However,Future does not always perform as well as or better thatused. In figure 5,
after the first 50% of the papers are found ffexused spider performs slightly better
thanFuture. This is because the system has uncovered many links that will give immediate
reward if followed, and th€ocused spider recognizes them more accurately. In future work

140

100
90
80
70
60
50
40
30
20

McCALLUM ET AL.

Future
Focused
Breadth-First

Percent Research Papers Found

20 30 40 50 60 70 80 90 100
Percent Hyperlinks Followed

Figure5 The performance of different spidering strategies, averaged over four test/train splits. The reinforcement
learning spiders find target documents significantly faster than traditional breadth-first search.

35 T T T T T T T T T

30 1
Future A
Focused
Breadth-First - E

251
20]
15 | .

10 | 1

Percent Research Papers Found

[v] 0.5 1 1.5 2 25 3 35 4 45 5
Percent Hyperlinks Followed

Figure 6 The performance of different spidering strategies during the initial stages of each spidering run. Here,
the Future spider performs best, because identifying future rewards are crucial.

we are investigating techniques for improving classification to recognize these immediate
rewards when the spider uses the larger number of bins required for regression with future
reward.

We hypothesize that modeling future reward is more important when immediate reward
is more sparse. While there is not significant separation betWweemsed and Future
through most of the run, the early stages of the run provide a special environment; reward
is very sparse, as most research papers lie several hyperlinks away from areas the spider
has explored; subsequently, few immediate reward actions are available. Figure 6 shows
the average performance of the spiders during the initial stages of spidering. We indeed
see thaFuture, a spider which takes advantage of future rewards knowledge, does better

AUTOMATING THE CONSTRUCTION OF INTERNET PORTALS 141

Table 1 A comparison of spidering performance on the Corporate Officers dataset. Each result shows the
average percentage of each company’s web site traversed before finding the goal page. Here, Haeudebin
spider performs twice as well & cused, and nearly three times as well Beeadth-First.

Spidering method Links followed (%)

Optimal 3%

Future (4 bins) 13%
Future (3 bins) 22%
Future (5 bins) 27%
Focused 27%
Breadth-First 38%

thanFocused. On average th€ocused spider takes nearly three times as lond-asure

to find the first 28 (5%) of the papers. While this result may seem insignificant at first, its
importance becomes more clear in the Corporate Officer experiments described in the next
section.

Through our Research Papers experiments, we have shown that our reinforcement learn-
ing framework has promise: it significantly outperforms breadth-first search, performs
much like a focused crawler overall and outperforms a focused spider in the important early
stages. The Corporate Officers dataset is more extreme in its reward sparsity, and shows
this improved performance more dramatically.

3.6.3. Finding corporate officers. Table 1 shows spidering results on the Corporate Offi-
cers dataset. The calculated figure is the average percent of each company’s web site the
spider traversed before finding the single goal. On average, the fotfuhine spider is

able to locate the goal page after traversing only 13% of the hyperlinks. This is twice as
efficient asocused, which follows an average of 27% of the hyperlinks before locating the
target page. In further contragiyture performs three-times as efficient as Breadth-First

spider, which follows an average of 38% of the hyperlinks before finding the goal page.

Each spidering run entails locating a single Web page within a corporate web site. In our
experiments, the sites ranged from 20 to alImost 1000 web pages. In contrast to the Research
Paper dataset, where the number of Web pages per goal page is 23, the Corporate Officers
dataset contains 256 web pages per goal page, a significant increase in sparsity. As a result,
two instantiations of th€uture spider perform significantly better than thecused spider.
SinceFuture andFocused are otherwise identical, this added efficiency must come from
Future’s knowledge of future reward.

While the three- and four-bikuture spiders outperfornfocused, there is a tradeoff
between the flexibility of the classifier-regressor and classification accuracy. Experiments
with a five-bin classifier result in worse performance—roughly equivalent t&dhesed
spider, following an average of 27% of available hyperlinks before locating the target page.
While additional bins can provide a stronger basisQevalue prediction, they also create a
more complicated classification task; more bins generally decrease classification accuracy.
Hence, we reason that our naive Bayes classifier cannot take advantage of the additional

142 McCALLUM ET AL.

bin in the 5 binFuture spider. Better features and other methods for improving classifier
accuracy (such as shrinkage (McCallum et al. (1998)) should allow the more sensitive
multi-bin classifier to perform better.

These results indicate that when there are many more non-target pages than target pages,
(i.e. reward is sparse), thaiture spider’s explicit modeling of future reward significantly
increases its efficiency over tlh@cused spider. By tuning the tradeoffs appropriately, we
should be able to achieve increased performance, even when reward is less sparse.

The construction of a topic-specific portal, such as Cora, requires the location of large
quantities of relevant documents. However, such documents are often sparsely distributed
throughout the Web. As the Internet continues to grow and domain-specific search services
become more popular, it will become increasingly important that spiders be able to gather
on-topic documents efficiently. The spidering work presented here is an initial step towards
creating such efficient spidering. We believe that further understanding of the reinforcement
learning framework and the relaxation of the simplifying assumptions used here will lead
to additional improvements in the future.

4. Information extraction

Information extraction is concerned with identifying phrases of interest in textual data. For
many applications, extracting items such as names, places, events, dates, and prices is a
powerful way to summarize the information relevant to a user’s needs. In the case of a
domain-specific portal, the automatic identification of important information can increase
the accuracy and efficiency of a directed query.

In Cora we use hidden Markov models (HMMs) to extract the fields relevant to computer
science research papers, such as titles, authors, affiliations and dates. One HMM extracts
information from each paper’s header (the words preceding the main body of the paper).
A second HMM processes the individual references in each paper’s reference section. The
extracted text segments are used (1) to allow searches over specific fields, (2) to provide
useful, effective presentation of search results (e.g. showing title in bold), and (3) to match
references to papers during citation grouping.

Our research interest in HMMs for information extraction is particularly focused on
learning the appropriate state and transition structure of the models from training data, and
estimating model parameters with labeled and unlabeled data. We show that models with
structures learned from data outperform models built with one state per extraction class.
We also demonstrate that using distantly-labeled data for parameter estimation improves
extraction accuracy, but that Baum-Welch estimation of model parameters with unlabeled
data degrades performance.

4.1. Hidden Markov models

Hidden Markov modeling is a powerful statistical machine learning technique that is just
beginning to gain use in information extraction tasks (e.g. Leek 1997, Bikel et al. 1997,
Freitag and McCallum 1999). HMMs offer the advantages of having strong statistical foun-
dations that are well-suited to natural language domains and robust handling of new data.

AUTOMATING THE CONSTRUCTION OF INTERNET PORTALS 143

They are also computationally efficient to develop and evaluate due to the existence of es-
tablished training algorithms. The disadvantages of using HMMs are the needsfprian
notion of the model topology and, as with any statistical technique, a sufficient amount of
training data to reliably estimate model parameters.

Discrete output, first-order HMMs are composed of a set of st@ewith specified
initial and final states), andgg, a set of transitions between statgs— q’), and a dis-
crete vocabulary of output symbols= {0y, 02, ..., om}. The model generates a string
w=wwsz...w by beginning in the initial state, transitioning to a new state, emitting an
output symbol, transitioning to another state, emitting another symbol, and so on, until a
transition is made into the final state. The parameters of the model are the transition prob-
abilities P(q — ') that one state follows another and the emission probabiRigst o)
that a state emits a particular output symbol. The probability of a stvibging emitted
by an HMM M is computed as a sum over all possible paths by:

I+1

PwIM) = Y []P@k1— agoPkt w, €)

whereqy and g1 are restricted to be, andqr respectively, andu, 1 is an end-of-
string token. The Forward algorithm can be used to calculate this probability efficiently
(Rabiner 1989).

The observable output of the system is the sequence of symbols that the states emit, but
the underlying state sequence itself is hidden. One common goal of learning problems that
use HMM s is to recover the state sequeNaa | M) that has the highest probability of
having produced an observation sequence:

1+1
V(w | M) =arg max [[P(Gk-1 — a)P(ak 1 w). @
Q.-.0eQ 37

44444

Fortunately, the Viterbi algorithm (Viterbi 1967) efficiently recovers this state sequence.

4.2. HMMs for information extraction

Hidden Markov models provide a natural framework for modeling the production of the
headers and references of research papers. They explicitly represent extraction classes as
states, efficiently model the frequencies of word occurrences for each class, and take class
sequence into account. We want to label each word of a header or reference as belonging to
a class such as title, author, journal, or keyword. We do this by modeling the entire header
or reference (and all of the classes to extract) with one HMM. This task varies from the
more classic extraction task of identifying a small set of target words from a large document
containing mostly uninformative text.

HMMs may be used for information extraction by formulating a model in the following
way: each state is associated with a class that we want to extract, such as title, author or
affiliation. Each state emits words from a class-specific multinomial (unigram) distribution.
We can learn the class-specific multinomial distributions and the state transition probabilities

144 McCALLUM ET AL.

Figure 7. Example HMM for the header of a research paper. Each state emits words from a class-specific
multinomial distribution.

fromtraining data. Inorderto label anew header or reference with classes, we treat the words
from the header or reference as observations and recover the most-likely state sequence with
the Viterbi algorithm. The state that produces each word is the class tag for that word. An
example HMM for headers, annotated with class labels and transition probabilities, is shown
in figure 7.

Hidden Markov models, while relatively new to information extraction, have enjoyed
success in related natural language tasks. They have been widely used for part-of-speech
tagging (Kupiec 1992), and have more recently been applied to topic detection and tracking
(Yamron et al. 1998) and dialog act modeling (Stolcke et al. 1998). Other systems using
HMMs for information extraction include those by Leek (1997), who extracts gene names
and locations from scientific abstracts, and the Nymble system (Bikel et al. 1997) for
named-entity extraction. Unlike our work, these systems do not consider automatically
determining model structure from data; they either use one state per class, or use hand-
built models assembled by inspecting training examples. Freitag and McCallum (1999)
hand-build multiple HMMs, one for each field to be extracted, and focus on modeling
the immediate prefix, suffix, and internal structure of each field. In contrast, we focus on
learning the structure of one HMM to extract all the relevant fields, which incorporates the
observed sequences of extraction fields directly in the model.

4.2.1. Learning model structure from data.In order to build an HMM for information
extraction, we must first decide how many states the model should contain, and what
transitions between states should be allowed. A reasonable initial model is to use one state
per class, and to allow transitions from any state to any other state (a fully-connected model).
However, this model may not be optimal in all cases. When a specific hidden sequence
structure is expected in the extraction domain, we may do better by building a model with
multiple states per class, with only a few transitions out of each state. Such amodel can make
finer distinctions about the likelihood of encountering a class at a particular location in the
document, and can model specific local emission distribution differences between states of
the same class. For example, in figure 7, there are two states for the “publication number”
class, which allows the class to exhibit different transition behavior depending on where

AUTOMATING THE CONSTRUCTION OF INTERNET PORTALS 145

O-O-0-0-0-0

title title title author author

OO~ -O——n N\,
Q note note title O
O-O-0-0-0-07 =
start vee

title title author author author
O~O~-O~0O-O

title title title author

Figure 8 Example of a maximally specific HMM built from four training instances, which is used as the starting
point for state merging.

in the header the class is encountered; if a publication number is seen before the title, we
would expect transitions from and to a different set of states than if it is seen after the author
names. Likewise, the HMM has two states for the “note” class. These two states, although
from the same class, may benefit from different emission distributions, due to the different

types of copyright and publication notes that occur at the beginning and end of a header.

An alternative to simply assigning one state per class is to learn the model structure from
training data. Training data labeled with class information can be used to build a maximally-
specific model. An example of this model built from just four labeled examples is shown
in figure 8. Each word in the training data is assigned its own state, which transitions to
the state of the word that follows it. Each state is associated with the class label of its word
token. A transition is placed from the start state to the first state of each training instance,
as well as between the last state of each training instance and the end state.

This model can be used as the starting point for a variety of state merging techniques. We
propose two simple types of merges that can be used to generalize the maximally-specific
model. First, “neighbor-merging” combines all states that share a transition and have the
same class label. As multiple neighbor states with the same class label are merged into one,
a self-transition loop is introduced, whose probability represents the expected state duration
for that class. For example, in figure 8, the three adjacent title states from the first header
would be merged into a single title state, which would have a self-transition probability of
2/3.

Second, “V-merging” merges any two states that have the same label and share transitions
from orto acommon state. V-merging reduces the branching factor of the maximally-specific
model. We apply V-merging to models that have already undergone neighbor-merging. For
example, again in figure 8, instead of selecting from among three transitions from the start
state into title states, the V-merged model would merge the children title states into one, so
that only one transition from the start state to the title state would remain. The V-merged
model can be used for extraction directly, or more state merges can be made automatically
or by hand to generalize the model further.

146 McCALLUM ET AL.

4.2.2. Labeled, unlabeled, and distantly-labeled dat@nce a model structure has been
selected, the transition and emission parameters need to be estimated from training data.
While obtaining unlabeled training data is generally not too difficult, acquiring labeled
training data is more problematic. Labeled data is expensive and tedious to produce, since
manual effortis involved. Itis also valuable, since the counts of class transMians> ')

and the counts of a word occurring in a cldégy 1 o) can be used to derive maximum
likelihood estimates for the parameters of the HMM:

3 n o N(q - q/)
~ N
B to)=—Nata) ®)

Zpg): N(q 1t P

Smoothing of the distributions is often necessary to avoid probabilities of zero for the
transitions or emissions that do not occur in the training data. Absolute discounting and ad-
ditive smoothing are examples of possible smoothing strategies. Chen and Goodman (1998)
provide a thorough discussion and comparison of different smoothing techniques.

Unlabeled data, on the other hand, can be used with the Baum-Welch training algorithm
(Baum 1972) to train model parameters. The Baum-Welch algorithm is an iterative
Expectation-Maximization (EM) algorithm that, given an initial parameter configuration,
adjusts model parameters to locally maximize the likelihood of unlabeled data. Baum-Welch
training suffers from the fact that it finds local maxima, and is thus sensitive to initial para-
meter settings.

A third source of valuable training data is what we refer tae$antly-labeleddata.
Sometimes it is possible to find data that is labeled for another purpose, but which can be
partially applied to the domain at hand. In these cases, it may be that only a portion of
the labels are relevant, but the corresponding data can still be added into the model esti-
mation process in a helpful way. For example, BibTeX files are bibliography databases
that contain labeled citation information. Several of the labels that occur in citations,
such as title and author, also occur in the headers of papers, and this labeled data can
be used in training emission distributions for header extraction. However, other BibTeX
fields are not relevant to the header extraction task, and not all of the header fields oc-
cur in the BibTeX data. In addition, the data does not include any information about
sequences of classes in headers and therefore cannot be used for transition distribution
estimation.

Class emission distributions can be trained directly using either the labeled training data
(L), acombination of the labeled and distantly-labeled data D), or alinear interpolation
of the labeled and distantly-labeled datd D). In the L 4+ D case, the word counts of
the labeled and distantly-labeled data are pooled together before deriving the emission
distributions. In theL* D case, separate emission distributions are trained for the labeled
and distantly-labeled data, and then the two distributions are interpolated together using
a mixture weight derived from Expectation-Maximization of the labeled data, where each
word of the labeled data is left out of the maximum likelihood calculation in turn. These

AUTOMATING THE CONSTRUCTION OF INTERNET PORTALS 147

three cases are shown below:

f(NL(wi))

PL(wj) = —0——— 7
) >V N () "
A f (NL(wi) + Np(wy))
B) = 8
Lo) = S) £ No () ®)
PLeo(wi) = AP (wi) + (1 — 1) Pp(wi), 9)

whereN (wj) isthe count of word; in the class) is the mixture weight, andl() represents
a smoothing function, used to avoid probabilities of zero for the vocabulary words that are
not observed for a particular class.

4.3. Experimental results

We focus our information extraction experiments on extracting relevant information from
the headers of computer science research papers, though the techniques described here
apply equally well to reference extraction. We define the header of a research paper to be
all of the words from the beginning of the paper up to either the first section of the paper,
usually the introduction, or to the end of the first page, whichever occurs first. The abstractis
automatically located using regular expression matching and changed to a single ‘abstract’
token. Likewise, an ‘intro’ or ‘page’ token is added to the end of each header to indicate
whether a section or page break terminated the header. A few special classes of words
are identified using simple regular expressions and converted to special identifying tokens:
email addresses, web addresses, year numbers, zip codes, technical report numbers, and all
other numbers. All punctuation, case and newline information is removed from the text.

The target classes we wish to identify include the following fifteen categories: title,
author, affiliation, address, note, emalil, date, abstract, introduction (intro), phone, keywords,
URL, degree, publication number (pubnum), and page. The abstract, intro and page classes
are each represented by a state that outputs only the token of that class. The degree class
captures the language associated with Ph.D. or Master’s theses, such as “submitted in partial
fulfillment of. . . ” and “a thesis by. . ”. The note field commonly accounts for phrases from
acknowledgements, copyright notices, and citations.

A set of research papers were selected at random from the Cora repository. The header
of each paper was identified, and a 500-header, 23,557 word token training set and a 407-
header, 18,863 word token test setwere formed. Distantly-labeled training datawas acquired
from 176 BibTeX files that were collected from the Web. These files consist of 2.4 million
words, which contribute to the following nine header classes: address, affiliation, author,
date, email, keywords, note, title, and URL.

For each emission distribution training case [+ D, L* D), a fixed vocabulary is
derived from all of the words in the training data used. The labeled data results in a 4,914-
word vocabulary, and the labeled and distantly-labeled data together contain 92,426 distinct
words. Absolute discounting (Ney et al. 1994) is used as the smoothing function. An
unknown word token is added to the vocabularies to model out-of-vocabulary words. Any

148 McCALLUM ET AL.

Table 2 Mixture weights for the labeled.() and distantly-labeled) data for thelL* D emission distributions.
Mixture weights are derived from Expectation-Maximization of the labeled data, where each word of the labeled
data is left out of the maximum likelihood calculation in turn.

Class L D
Address 0.861 0.139
Affiliation 0.858 0.142
Author 0.446 0.554
Date 0.909 0.091
Email 0.657 0.343
Keyword 0.470 0.530
Note 0.808 0.192
Title 0.329 0.671
Web 0.629 0.371

words in the testing data that are not in the vocabulary are mapped to this token. The
probability of the unknown word is estimated separately for each class, and is assigned
a portion of the discount mass proportional to the fraction of singleton words observed
only in the current class. In tHe* D case, the mixture weight is derived from Expectation-
Maximization of the labeled data, and indicates the relative importance of each information
source to the predictive abilities of the combined distribution. Mixture weights for the nine
classes with distantly-labeled data are given in Table 2. Most classes give a higher weight
to the labeled data, with the exception of the author, keyword and title classes, which assign
more value to the distantly-labeled data.

We build several HMM models, varying model structures and training conditions, and
testthe models by finding the Viterbi paths for the test set headers. Performance is measured
by word classification error, which is the percentage of header words emitted by a state with
a different label than the words’ true label.

4.3.1. Model selection—One state per clas3.he first set of models each use one state per
class. Emission distributions are trained for each class on either the labeled. Jjatee(
combination of the labeled and distantly-labeled data-(D), or the interpolation of the
labeled and distantly-labeled data*(D). Extraction results for these models are reported
in Table 3.

The Full model is a fully-connected model where all transitions are assigned uniform
probabilities. It relies only on the emission distributions to choose the best path through
the model, and results in an error rate of 35.6%. $&6l@ model is similar, except that the
self-transition probability is set according to the maximum likelihood estimate from the la-
beled data, with all other transitions set uniformly. This model benefits from the additional
information of the expected number of words to be emitted by each state, and its error rate
drops to 10.7%. Th&IL model sets all transition parameters to their maximum likelihood
estimates, and achieves the lowest error of 7.9% among this set of modelSmbheh
model adds an additional smoothing count of one to each transition, so that all transitions

AUTOMATING THE CONSTRUCTION OF INTERNET PORTALS 149

Table 3 Word extraction error rate (%) for models with one state per class when the emission parameters are
estimated from labeled.(data, a combination of labeled and distantly-labeled-(D) and an interpolation

of labeled and distantly-labeled.{D) data. Using the interpolation of the two data sources provides the best
extraction performance.

Model # States # Transitions L L+D L*D
Full 17 255 37.3 42.7 35.6
Self 17 252 14.4 17.1 10.7
ML 17 149 9.9 10.8 7.9
Smooth 17 255 10.4 11.5 8.2

have non-zero probabilities, but smoothing the transition probabilities does not lower the
error rate. For all models, the combination of the labeled and distantly-labeled.dafa)
negatively affects performance relative to the labeled data results. However, the interpola-
tion of the distantly-labeled data with the labeled d&tal) consistently provides several
percentage points decrease in error over training on the labeled data alone. We will refer
back to the ML model results in the next comparisons, as the best representative of the
models with one state per class.

4.3.2. Model selection—Deriving structure from dataThe next set of models are learned

from data; both the number of states and the transitions between the states are derived by
state merging techniques. We first consider models built from a combination of automated
and manual techniques. Starting from a neighbor-merged model of 805 states built from 100
randomly selected labeled training headers, states with the same class label are manually
merged in an iterative manner. The manual merges are performed by a domain expert, and
only 100 of the 500 headers are used in order to keep the manual state selection process
manageable. Transition counts are preserved throughout the merges to estimate maximum
likelihood transition probabilities. Each state uses its smoothed class emission distribution
estimated from the interpolation of the labeled and distantly-labeledid&f2)(Extraction
performance, measured as the number of states decreases during the merging, is plotted
in figure 9. The dashed lines on the figure represent the baseline performances of the ML
model, trained on all 500 headers and on the same 100 headers as the multi-state models.
The models with multiple states per class outperform the ML model for both training
conditions, particularly when 30 to 40 states are present. In fact, when trained on the same
amount of data, the multi-state models outperform the ML model for any number of states
greater than one per class and less than 100. The best performance of 7.3% is obtained by
the model containing 36 states. We refer to this model abtineerged model. This result

shows that more complex model structure benefits extraction performance of HMMs on the
header task.

We compare this result to the performance of a 155-state V-merged model created entirely
automatically from all of the labeled training data. A summary of the results of the ML
model, the M-merged model, and the V-merged model is presented in Table 4. Once again,
the L* D results are superior to tHeandL + D results. In addition, both the M-merged

150 McCALLUM ET AL.

M-merged =—
ML (100) -+
9.5 - ML (500) ~-—- 7
g °r :
§ ///
5 85 | -
=4
kel
8 8 j/&\/]
%
]
o 75| }S\%ﬂ/
2
(53
= 7k p
6.5 E
6 L . . 1 . . ;
20 40 60 80 100 120 140 160

Number of states

Figure 9. Extraction error for multi-state models as states are merged. The dashed lines represent the baseline
performances of the ML model, trained on all 500 headers and on the same 100 headers as the multi-state models.

and V-merged models outperform the ML model by a statistically significant margin in the
L* D case, as determined with McNemar's tgst<(0.005 each).

Table 5 provides a closer look at the errors in each class for the ML, M-merged and V-
merged models when using emission distributions trained on labke)eah@d interpolated
(L* D) data. Classes for which there is distantly-labeled training data are indicated in bold.
For several of the classes, such as title and author, there is a noticeable decrease in error
when the distantly-labeled data is included. The poorest performing individual classes are
the degree, publication number, and URL classes. The URL class has a particularly high
error for the M-merged model, when limited URL class examples in the 100 training
headers probably kept the URL state from having transitions to and from as many states as
necessary.

4.3.3. Incorporating unlabeled data. Next, we demonstrate that using unlabeled data for
parameter estimation does not help classification accuracy for this extraction task. Baum-
Welch training, the standard technique for estimating HMM parameters from unlabeled
data, produces new transition and emission parameter values that locally maximize the
likelihood of the unlabeled data. Careful selection of the initial parameter values is thus
essential for finding a good local maximum.

Five thousand unlabeled headers, composed of 287,770 word tokens are used as training
data. Baum-Welch training is run on the ML and M-merged models. Model parameters
are initialized to the maximum likelihood transition probabilities from the labeled data and
the interpolatedl(* D) emission distributions. The models are tested under three different
conditions; the extraction results, as well as the model perplexities on the test set, are shown
in Table 6. Perplexity is a measure of how well the HMMs model the data; a lower value
indicates a model that assigns a higher likelihood to the observations from the test set.

AUTOMATING THE CONSTRUCTION OF INTERNET PORTALS 151

Table 4 Word extraction error rate (%) for models learned from data compared to the best model that uses one
state per class. Emission probabilities are estimated in three different ways.

Model # States # Transitions L L+D L*D
ML 17 149 9.9 10.8 7.9
M-merged 36 164 9.0 9.7 7.3
V-merged 155 402 9.7 10.5 7.6

Table 5 Individual word extraction error rates (%) for each class with the ML, M-merged and V-merged models.
Classes noted in bold occur in distantly-labeled data. The Abstract class can have a non-zero error due to emission
distribution smoothing for the other classes.

ML M-merged V-merged
Class # words L L*D L L*D L L*D
Abstract 349 0 0 1.7 14 0.3 0.3
Address 2058 4.3 4.6 4.9 5.0 4.3 45
Affiliation 3429 12.7 8.9 121 9.4 12.2 8.9
Author 2543 4.7 2.4 5.2 2.9 4.8 2.4
Date 265 2.6 34 3.4 3.0 2.6 3.8
Degree 462 24.2 29.2 19.7 26.8 22.9 27.5
Email 473 11.0 11.2 12.9 135 11.0 11.0
Keyword 895 8.4 2.0 29 1.2 59 11
Note 4489 15.7 154 12.3 11.3 15.5 14.3
Phone 160 6.3 6.9 10.6 13.1 6.9 8.1
Pubnum 131 35.1 35.1 38.9 39.7 35.1 35.1
Title 3177 6.4 1.6 6.6 2.1 7.0 1.8
URL 36 194 16.7 58.3 58.3 36.1 33.3
Overall 18863 9.9 7.9 9.0 7.3 9.7 7.6

Table 6 Word extraction error rate (%) and test set perplexity (PP) for the ML and M-merged models after
Baum-Welch training.

ML M-merged

Error Perplexity Error Perplexity

Initial (L* D) 7.9 475 7.3 486
BW-uniform 10.0 374 10.9 363
BW-varied 10.6 369 11.9 357

152 McCALLUM ET AL.

The “Initial” result is the performance of the models using the initial parameter estimates.
These results are the same as e case in Table 4. After Baum-Welch training, the
vocabulary words that do not occur in the unlabeled data are given a probability of zero in
the newly-estimated emission distributions. Thus, the new emission distributions need to be
smoothed; we choose to do this by interpolating them with the initial parameter estimates.
Each state’s newly-estimated emission distribution is linearly interpolated with its initial
distribution using a mixture weight of. The “BW-uniform” result shows performance
when Baum-Welch training has been run using all of the unlabeled training data, and the
mixture weights for the initial and newly-estimated emission distributions are set uniformly
to 0.5 each. In the “BW-varied” case, mixture weights are optimized separately for each
state. Ninety percent of the unlabeled data is used for Baum-Welch training. The newly-
estimated emission distributions are then interpolated with the initial emission distributions
using uniform mixture weights. One iteration of the Baum-Welch algorithm is run over the
remaining 10% of the unlabeled data to assign expected words counts to each state. These
expected word counts are used with the EM algorithm to set the mixture weights for each
state individually.

Baum-Welch training degrades classification performance for both the ML and M-merged
models. The lack of improvement in classification accuracy can be partly explained by the
fact that Baum-Welch training maximizes the likelihood of the unlabeled data, not the
classification accuracy. However, Baum-Welch training does result in improved predictive
modeling of the header domain. This improvement is pointed out through the decrease
in test set perplexity. The perplexity of the test set improves over the initial settings with
Baum-Welch re-estimation, and improves even further with careful selection of the emission
distribution mixture weights. Merialdo (1994) finds a similar effect on tagging accuracy
when training part-of-speech taggers using Baum-Welch training when starting from well-
estimated initial parameter estimates.

4.4. Discussion

Our experiments show that hidden Markov models do well at extracting important informa-
tion from the headers of research papers. We achieve a low error rate of 7.3% over all classes
of the headers, and class-specific error rates of 2.1% for titles and 2.9% for authors. We
have demonstrated that models that contain multiple states per class do provide increased
extraction accuracy over models that use only one state per class. This improvement is due
to more specific transition context modeling that is possible with more states. We expect that
it is also beneficial to have localized emission distributions, which can capture distribution
variations that are dependent on the position of the class in the header.

Distantly-labeled data has proven to be valuable in providing robust parameter estimates.
The interpolation of distantly-labeled data provides a consistent decrease in extraction error
for headers. In cases where little labeled training data is available, distantly-labeled data is
a helpful resource.

The high accuracy of our header extraction results allows Cora to process and present
search results effectively. The success of these extraction techniques is not limited to this
single application, however. For example, applying these techniques to reference extraction

AUTOMATING THE CONSTRUCTION OF INTERNET PORTALS 153

achieves a word extraction error rate of 6.6%. These techniques are also applicable beyond
the domain of research papers. We have shown how distantly-labeled data can improve
extraction accuracy; this data is available in electronic form for many other domains. For
example, lists of names (with relative frequencies) are provided by the U.S. Census Bureau,
street names and addresses can be found in online phone books, and discussion groups and
news sites provide focused, topic-specific collections of text. These sources of data can be
used to derive class-specific words and relative frequencies, which can then be applied to
HMM development for a vast array of domain-specific portals.

5. Classification into a topic hierarchy

Topic hierarchies are an efficient way to organize, view and explore large quantities of infor-
mation that would otherwise be cumbersome. The U.S. Patent database, Ya&nhoyi

and the Dewey Decimal system are all examples of topic hierarchies that exist to make
information more manageable.

As Yahoo has shown, a topic hierarchy can be a useful, integral part of a portal. Many
search engines (e.g. AltaVista, Google and Lycos) now display hierarchies on their front
page. This feature is equally or more valuable for domain-specific Internet portals. We have
created a 70-leaf hierarchy of computer science topic§€ e, part of which is shown in
figures 1 and 10.

A difficult and time-consuming part of creating a hierarchy is populating it with doc-
uments by placing them into the correct topic nodes. Yahoo has hired large numbers of
people to categorize web pages into their hierarchy. The U.S. patent office also employs
people to perform the job of categorizing patents. In contrast, we automate the process of
placing documents into leaf nodes of the hierarchy with learned text classifiers.

Traditional text classification algorithms learn representations from a set of labeled data.
Unfortunately, these algorithms typically require on the order of hundreds of examples per
class. Since labeled data is tedious and expensive to obtain, and our class hierarchy is large,
using the traditional supervised approach is not feasible. In this section we describe how
to create a text classifier by bootstrapping without any labeled documents, using only a
few keywords per class and a class hierarchy. Both of these information sources are easily
obtained. Keywords are quicker to generate than even a small number of labeled documents.
Many classification problems naturally come with hierarchically-organized classes.

Bootstrapping is a general framework for iteratively improving a learner using unlabeled
data. Bootstrapping isinitialized with a small amount of seed information that can take many
forms. Eachiteration has two steps: (1) labels are estimated for unlabeled data from the cur-
rently learned model, and (2) the unlabeled data and these estimated labels are incorporated
as training data into the learner. Bootstrapping approaches have been used for informa-
tion extraction (Riloff and Jones 1999), word sense disambiguation (Yarowsky 1995), and
hypertext classification (Blum and Mitchell 1998).

Our algorithm for text classification is initialized by using keywords to generate prelim-
inary labels for some documents by term-matching. The bootstrapping iterations are EM
steps that use unlabeled data and hierarchical shrinkage to estimate parameters of a naive
Bayes classifier. An outline of the entire algorithm is presented in Table 7. In experimental

154 McCALLUM ET AL.

Table 7 An outline of the bootstrapping algorithm described in Sections 5.1 and 5.2.

Inputs: A collection of unlabeled training documents, a class hierarchy, and a few keywords for each class.

Generate preliminary labels for as many of the unlabeled documents as possible by term-matching with the
keywords in a rule-list fashion.

Initialize all thex;’s to be uniform along each path from a leaf class to the root of the class hierarchy.
Iterate the EM algorithm:

(M-step) Build the maximum likelihood multinomial at each node in the hierarchy given the class probability
estimates for each document (Egs. 10 and 11). Normalize alljteealong each path from a leaf class to
the root of the class hierarchy so that they sum to 1.

(E-step) Calculate the expectation of the class labels of each document using the classifier created in the
M-step (Eg. 12). Increment the new’s by attributing each word of held-out data probabilistically to the
ancestors of each class.

Output: A naive Bayes classifier that takes an unlabeled test document and predicts a class label.

results, we show that the learned classifier has accuracy that approaches human agreement
levels for this domain.

5.1. Initializing bootstrapping with keywords

The initialization step in the bootstrapping process uses keywords to generate preliminary
labels for as many of the unlabeled documents as possible. For each class a few keywords
are generated by a human trainer. Figure 10 shows examples of the number and type of
keywords selected for our experimental domain.

We generate preliminary labels from the keywords by term-matching in a rule-list fashion:
for each document, we step through the keywords and place the document in the category
of the first keyword that matches. Since we provide only a few keywords for each class,
classification by keyword matching is both inaccurate and incomplete. Keywords tend to
provide high-precision and low-recall; this brittleness will leave many documents unlabeled.
Some documents will match keywords from the wrong class. In general we expect the low
recall of the keywords to be the dominating factor in overall error. In our experimental
domain, for example, 59% of the unlabeled documents do not contain any keywords.

5.2. The bootstrapping iterations

The goal of the bootstrapping iterations is to generate a naive Bayes classifier from seed
information and the inputs: the (inaccurate and incomplete) preliminary labels, the un-
labeled data and the class hierarchy. Many bootstrapping algorithms assign labels to the
unlabeled data, and then choose just a few of these to incorporate into training at each
step. In our algorithm, we take a different approach. At each bootstrapping step we assign
probabilistic labels toall the unlabeled data, and incorporate the entire set into training.
Expectation-Maximization is the bootstrapping process we use to iteratively estimate these
probabilistic labels and the parameters of the naive Bayes classifier. We begin a detailed

AUTOMATING THE CONSTRUCTION OF INTERNET PORTALS 155

Computer Science

Operating Artificial Hardware & Human-Computer Information

Systems Intelligence Architecture MKion Retrieval
/'%\A\ ﬂ\
NLP Machine Planning Robotics Retrieval Filtering Digital
natural Learning planning robot information document . Iflbm“es

language temporal robots retrieval filtering dlgllta]

processing reasoning robotics text library
NLP reasoning classification

time document

classification
document
categorization

Reinforcement Neural
Learning Networks

Figure 10 A subset ofCora’s computer science hierarchy with the complete keyword list for each of several
categories. These keywords are used to initialize bootstrapping.

description of the bootstrapping iteration with a short overview of supervised naive Bayes
text classification, then proceed to explain EM as a bootstrapping process, and conclude
by presenting hierarchical shrinkage, an augmentation to basic EM estimation that uses the
class hierarchy.

5.2.1. The naive Bayes frameworkWe build on the framework of multinomial naive
Bayes text classification (Lewis 1997, McCallum and Nigam 1998). It is useful to think
of naive Bayes as estimating the parameters of a probabilistic generative model for text
documents. In this model, first the class of the document is selected. The words of the
document are then generated based on the parameters of a class-specific multinomial (i.e.
unigram model). Thus, the classifier parameters consist of the class prior probabilities and
the class-conditioned word probabilities. Each clagshas a document frequency relative
to all other classes, writteR(c;). For every wordw; in the vocabulary/, P(w; | ¢;)
indicates the frequency that the classifier expects weitd occur in documents in clasg.

In the standard supervised setting, learning of the parameters is accomplished using
a set of labeled training document®, To estimate the word probability parameters,
P(w: | cj), we count the frequency with which worg, occurs among all word occur-
rences for documents in class We supplement this with Laplace smoothing that primes
each estimate with a count of one to avoid probabilities of zeroN¢et;, d;) be the count
of the number of times wordy; occurs in documerd;, and defineP(c; | di) € {0, 1}, as
given by the document’s class label. Then, the estimate of the probability of wyord
classc;j is:

1+ 4ep N(we, di)P(c; | di)
IVI+ ‘s\ill ZdieD N (ws, di)P(Cj | di)

P(w | ¢j) = (10)

156 McCALLUM ET AL.

The class prior probability parameters are set in the same way, heredicates the
number of classes:

1+ ZdiED P | d)
IC| + D]

P(cj) = (11)

Given an unlabeled document and a classifier, we determine the probability that the
document belongs in class using Bayes' rule and the naive Bayes assumption—that the
words in a document occur independently of each other given the class. If we dgpnote
to be thekth word in documend;, then classification becomes:

|d |
P(Cj | d|) e’ P(Cj)P(di | Cj) (06 P(Cj)l_[P(wd|,k | Cj). (12)
k=1

Empirically, when given a large number of training documents, naive Bayes does a good
job of classifying text documents (Lewis 1998). More complete presentations of naive Bayes
for text classification are provided by Mitchell (1997) and McCallum and Nigam (1998).

5.2.2. Parameter estimation from unlabeled data with EMIn a standard supervised
setting, each document comes with a label. In our bootstrapping scenario, the documents
are unlabeled, except for the preliminary labels from keyword matching that are incomplete
and not completely correct. In order to estimate the parameters of a naive Bayes classifier
using all the documents, we use EM to generate probabilistically-weighted class labels.
This results in classifier parameters that are more likely given all the data.

EM is a class of iterative algorithms for maximum likelihood or maximum a posteriori
parameter estimation in problems with incomplete data (Dempster et al. 1977). Given a
model of data generation, and data with some missing values, EM iteratively uses the
current model to estimate the missing values, and then uses the missing value estimates to
improve the model. Using all the available data, EM will locally maximize the likelihood
of the parameters and give estimates for the missing values. In our scenario, the class labels
of the documents are the missing values.

In implementation, using EM for bootstrapping is an iterative two-step process. Ini-
tially, the parameter estimates are set in the standard naive Bayes way from just the pre-
liminarily labeled documents. Then we iterate the E- and M-steps. The E-step calculates
probabilistically-weighted class labeBc; | d), for every document using the classifier
and Eq. 12. The M-step estimates new classifier parameters using all the documents, by
Egs. 10 and 11, wher(c; | d;) is now continuous, as given by the E-step. We iterate the
E- and M-steps until the classifier converges. The initialization step from the preliminary
labels identifies a starting point for EM to find a good local maxima for the classification
task.

In previous work (Nigam et al. 2000), we have shown this bootstrapping technique
significantly increases text classification accuracy when given limited amounts of labeled
data and large amounts of unlabeled data. Here, we use the preliminary labels to provide the
starting point for EM. The EM iterations both correct the preliminary labels and complete
the labeling for the remaining documents.

AUTOMATING THE CONSTRUCTION OF INTERNET PORTALS 157

5.2.3. Improving sparse data estimates with shrinkag&ven when provided with a large

pool of documents, naive Bayes parameter estimation during bootstrapping will suffer from
sparse data problems because there are so many parameters to etim@ter(|C|).
Fortunately we can further alleviate the sparse data problem by leveraging the class hierarchy
with a statistical technique callegthrinkage

Consider trying to estimate the probability of the word “intelligence” in the chisB.

This word should clearly have non-negligible probability there; however, with limited
training data we may be unlucky, and the observed frequency of “intelligen®d”Rrmay

be very far from its true expected value. One level up the hierarchy, howevéutifieial
Intelligence class contains many more documents (the union of all the children). There, the
probability of the word “intelligence” can be more reliably estimated.

Shrinkage calculates new word probability estimates for each leaf classveighted
averageof the estimates on the path from the leaf to the root. The technique balances a trade-
off between specificity and reliability. Estimates in the leaf are most specific but unreliable;
further up the hierarchy estimates are more reliable but unspecific. We can calculate mixture
weights for the averaging that are guaranteed to maximize the likelihood of held-out data
with the EM algorithm during bootstrapping.

One can think of hierarchical shrinkage as a generative model that is slightly augmented
from the one described in Section 5.2.1. As before, a class (leaf) is selected first. Then,
for each word occurrence in the document, an ancestor of the class (including itself) is
selected according to the shrinkage weights. Then, the word itself is chosen based on the
multinomial word distribution of that ancestor. If each word in the training data were labeled
with which ancestor was responsible for generating it, then estimating the mixture weights
would be a simple matter of maximum likelihood estimation from the ancestor emission
counts. But these ancestor labels are not provided in the training data, and hence we use
EM to fill in these missing values. During EM, we estimate these vertical mixture weights
concurrently with the class word probabilities.

More formally, let{ P*(w; | cj),..., PX(w | cj)} be word probability estimates, where
PL(wy | cj) is the maximum likelihood estimate using training data just in the RAfw: |
cj) is the maximum likelihood estimate in the parent using the training data from the union
of the parent's childrerP*~1(wy | ¢;) is the estimate at the root using all the training data,
and PX(wy | Cj) is the uniform estimateRK (wy | ¢j) =1/|V]). The interpolation weights
amongc;’s “ancestors” (which we define to includg itself) are written{Al, Af, ce,)Jj‘},
where Y ¥ _, A%=1. The new word probability estimate based on shrinkage, denoted

P(wy | ¢j), is then
P(wt | ¢)) = A]PMwy | ¢j) + -+ + A P*(w | ¢). (13)

Thex; vectors are calculated by the iterations of EM. In the E-step we calculate for each
classc; and each word of unlabeled held-out d&tathe probability that the word was
generated by thith ancestor. In the M-step, we normalize the sum of these expectations
to obtain new mixture weights;. The held-out documents are chosen randomly from the
training set. Without the use of held-out data, all the mixture weights would concentrate in
the leaves, since the most-specific model would best fit the training data. EM still converges

158 McCALLUM ET AL.

with this use of held-out data; in fact, the likelihood surface is convex, and hence it is
guaranteed to converge to the global maximum.

Specifically, we begin by initializing th& mixture weights along each path from a leaf
to a uniform distribution. Leﬁ}"‘(wdi‘k) denote the probability that theth ancestor of;
was used to generate word occurrengg,. The E-step consists of estimating th's:

a _)‘?Pa(wdi'k | Cj)
ﬂ] (wd\,k) — Zm)\'rj]’lpm(u)dLk | Cj) . (14)

In the M-step, we derive new and guaranteed improved weightsy summing and
normalizing theg’s:

)\'a _ dei.kEH ﬁja(wdik) P(CJ | dl)
L b Ty, en B (wa,) P(cy [d)

(15)

The E- and M-steps iterate until this converge. These weights are then used to calculate
new shrinkage-based word probability estimates, as in Eq. 13. Classification of new test
documents is performed just as before (Eq. 12), where the Laplace estimates of the word
probability estimates are replaced by shrinkage-based estimates.

A more complete description of hierarchical shrinkage for text classification is presented
by McCallum et al. (1998).

5.3. Experimental results

In this section, we provide empirical evidence that bootstrapping a text classifier from
unlabeled data can produce a high-accuracy text classifier. As atest domain, we use computer
science research papers. We have created a 70-leaf hierarchy of computer science topics,
part of which is shown in figure 10. Creating the hierarchy took about 60 minutes, during
which we examined conference proceedings, and explored computer science sites on the
Web. Selecting a few keywords associated with each node took about 90 minutes. A test
set was created by expert hand-labeling of a random sample of 625 research papers from
the 30,682 papers in théora archive at the time we began these experiments. Of these,
225 (about one-third) did not fit into any category, and were discarded—resulting in a 400
document test set. Labeling these documents took about six hours. Some of the discarded
papers were outside the area of computer science (e.g. astrophysics papers), but most of
these were papers that with a more complete hierarchy would be considered computer
science papers. The class frequencies of the data are skewed, but not drastically; on the test
set, the most populous class accounted for only 7% of the documents.

Each research paper is represented as the words of the title, author, institution, references,
and abstract. A detailed description of how these segments are automatically extracted is
provided in Section 4. Words occurring in fewer than five documents and words on a standard
stoplist were discarded. No stemming was used. Bootstrapping was performed using the
algorithm outlined in Table 7.

AUTOMATING THE CONSTRUCTION OF INTERNET PORTALS 159

Table 8 Classification results with different techniques: keyword matching, naive Bayes, Bootstrapping and
Human agreement. The classification accuracy, and the number of labeled, keyword-matched preliminarily-labeled
(P-Labeled), and unlabeled documents used by each variant are shown.

Method # Labeled # P-Labeled # Unlabeled Accuracy
Keyword matching — — — 46%
Naive Bayes 100 — — 30%
Naive Bayes 399 — — 47%
Naive Bayes — 12,657 — A47%
Bootstrapping — 12,657 — 63%
Bootstrapping — 12,657 18,025 66%
Human agreement — — — 72%

Table 8 shows results with different classification techniques used. The rule-list classifier
based on the keywords alone provides 46% accuyaiyan interesting time comparison,
about 100 documents could have been labeled in the time it took to generate the keyword
lists. Naive Bayes accuracy with 100 labeled documents is only 30%. It takes about four
times as much labeled training data to provide comparable accuracy to simple keyword
matching; with 399 labeled documents (using our test set in a leave-one-out-fashion), naive
Bayes reaches 47%. This result alone shows that hand-labeling sets of data for supervised
learning can be expensive in comparison to alternate techniques.

When running the bootstrapping algorithm, 12,657 documents are given preliminary la-
bels by keyword matching. EM and shrinkage incorporate the remaining 18,025 documents,
“fix” the preliminary labels and leverage the hierarchy; the resulting accuracy is 66%. As
an interesting comparison, agreement on the test set between two human experts was 72%.
These results show that our bootstrapping algorithm can generate competitive classifications
without the use of large hand-labeled sets of data.

A few further experiments reveal some of the inner-workings of bootstrapping. If we
build a naive Bayes classifier in the standard supervised way from the 12,657 preliminarily
labeled documents the classifier gets 47% accuracy. This corresponds to the performance
for the first iteration of bootstrapping. Note that this matches the accuracy of traditional
naive Bayes with 399 labeled training documents, but that it requires less than a quarter the
human labeling effort. If we run bootstrapping without the 18,025 documents left unlabeled
by keyword matching, accuracy reaches 63%. This indicates that shrinkage and EM on the
preliminarily labeled documents is providing substantially more benefit than the remaining
unlabeled documents.

5.4. Discussion

One explanation for the small impact of the 18,025 documents left unlabeled by keyword
matching is that many of these do not fall naturally into the hierarchy. Remember that about
one-third of the 30,000 documents fall outside the hierarchy. Most of these will not be given

160 McCALLUM ET AL.

preliminary labels by keyword matching. The presence of these outlier documents skews
EM parameter estimation. A more inclusive computer science hierarchy would allow the
unlabeled documents to benefit classification more.

However, even without a complete hierarchy, we could use these documents if we could
identify these outliers. Some techniques for robust estimation with EM are discussed by
McLachlan and Basford (1988). One specific technique for these text hierarchies is to
add extra leaf nodes containing uniform word distributions to each interior node of the
hierarchy in order to capture documents not belonging in any of the predefined topic leaves.
This should allow EM to perform well even when a large percentage of the documents
do not fall into the given classification hierarchy. A similar approach is also planned for
research in topic detection and tracking (TDT) (Baker et al. 1999). Experimentation with
these techniques is an area of ongoing research.

In other future work we will investigate different ways of initializing bootstrapping, with
keywords and otherwise. We plan to refine our probabilistic model to allow for documents
to be placed in interior hierarchy nodes, documents to have multiple class assignments,
and classes to be modeled with multiple mixture components. We are also investigating
principled methods of re-weighting the word features for “semi-supervised” clustering that
will provide better discriminative training with unlabeled data.

Here, we have shown the application of our bootstrapping process to populating a hier-
archy forCora. Topic hierarchies are often an integral part of most portals, although they
are typically hand-built and maintained. The techniques demonstrated here are generally
applicable to any topic hierarchy, and should become a powerful tool for populating topic
hierarchies with a minimum of human effort.

6. Related work

Several related research projects investigate the gathering and organization of specialized
information on the Internet. The WebKB project (Craven et al. 1998) focuses on the collec-
tion and organization of information from the Web into knowledge bases. This project also
has a strong emphasis on using machine learning techniques, including text classification
and information extraction, to promote easy re-use across domains. Two example domains,
computer science departments and companies, have been developed.

The CiteSeer project (Lawrence et al. 1999) has also developed a search engine for
computer science research papers. It provides similar functionality for searching and linking
of research papers. They locate papers by querying search engines with paper-indicative
words. Information is extracted from paper headers and references by using an invariants
first ordering of heuristics. They provide a hierarchy of computer science with hubs and
authorities rankings on the papers. They provide similarity rankings between research papers
based on words and citations. CiteSeer focuses on the domain of research papers, and has
particularly strong features for autonomous citation indexing and the viewing of the textual
context in which a citation was made.

The New Zealand Digital Library project (Witten et al. 1998) has created publicly-
available search engines for domains from computer science technical reports to song
melodies. The emphasis of this project is on the creation of full-text searchable digital

AUTOMATING THE CONSTRUCTION OF INTERNET PORTALS 161

libraries, and not on machine learning techniques that can be used to autonomously generate
such repositories. The web sources for their libraries are manually identified. No high-level
organization of the information is given. No information extraction is performed and, for
the paper repositories, no citation linking is provided.

The WHIRL project (Cohen 1998) is an effort to integrate a variety of topic-specific
sources into a single domain-specific search engine. Two demonstration domains of com-
puter games and North American birds integrate information from many sources. The
emphasis is on providing soft matching for information retrieval searching. Information
is extracted from web pages by hand-written extraction patterns that are customized for
each web source. Recent WHIRL research (Cohen and Fan 1999) learns general wrapper
extractors from examples.

7. Conclusions and future work

The amount of information available on the Internet continues to grow exponentially. As
this trend continues, we argue that not only will the public need powerful tools to help them
sort through this information, but tleeeatorsof these tools will need intelligent techniques

to help them build and maintain these services. This paper has shown that machine learning
techniques can significantly aid the creation and maintenance of domain-specific portals and
search engines. We have presented newresearchin reinforcementlearning, text classification
and information extraction towards this end.

In addition to the future work discussed above, we also see many other areas where
machine learning can further automate the construction and maintenance of portals such
as ours. For example, text classification can decide which documents on the Web are
relevant to the domain. Unsupervised clustering can automatically create a topic hierarchy
and generate keywords (Hofmann and Puzicha 1998, Baker et al. 1999). Citation graph
analysis can identify seminal papers (Kleinberg 1999, Chang et al. 1999). We anticipate
developing a suite of many machine learning techniques so that the creation of portals can
be accomplished quickly and easily.

Acknowledgments

Most of the work in this paper was performed while all the authors were at Just Research.
Kamal Nigam was supported in part by the DARPA HPKB program under contract F30602-
97-1-0215.

Notes

1. Most computer science papers are in postscript format, though we are adding more formats, such as PDF.

2. ltis as if the mouse can jump to any square, as long as it has already visited a bordering square. Thus the state
is not a single position, but the position and shape of the boundary.

3. This is the off-line version of our algorithm; the on-line version would be a form of policy improvement using
roll-outs, as in Tesauro and Galperin (1997).

162 McCALLUM ET AL.

4. Note that we are ignoring the part of the state that specifies which on-topic documents have already been
consumed.

5. The 43% of documents in the test set containing no keywords are not assigned a class by the rule-list classifier,
and are assigned the most populous class by default.

References

Baker D, Hofmann T, McCallum A and Yang Y (1999) A hierarchical probabilistic model for novelty detection
in text. Tech. Rep., Just Research. http://www.cs.cmu-gdecallum.

Baum LE (1972) An inequality and associated maximization technique in statistical estimation of probabilistic
functions of a Markov process. Inequalities, 3:1-8.

Bellman RE (1957) Dynamic Programming. Princeton University Press, Princeton, NJ.

Bikel DM, Miller S, Schwartz R and Weischedel R (1997) Nymble: A high-performance learning name-finder.
In: Procedings of the Fifth Conference on Applied Natural Language Processing (ANLP-97), pp. 194-201.
Blum A and Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Proceedings of the

11th Annual Conference on Computational Learning Theory (COLT '98), pp. 92—-100.

Boyan J, Freitag D and Joachims T (1996) A machine learning architecture for optimizing web search engines.
In: AAAI-96 Workshop on Internet-Based Information Systems.

Chakrabarti S, van der Berg M and Dom B (1999) Focused crawling: A new approach to topic-specific Web
resource discovery. In: Proceedings of 8th International World Wide Web Conference (WWWS8).

Chang H, Cohn D and McCallum A (1999) Creating customized authority lists. http://www.cs.cmu.edu/
~mccallum.

Chen SF and Goodman JT (1998) An empirical study of smoothing techniques for language modeling. Tech. Rep.
TR-10-98, Computer Science Group, Harvard University.

Cho J, Garcia-Molina H and Page L (1998) Efficient crawling through URL ordering. In: Proceedings of the
Seventh World-Wide Web Conference (WWW?7).

Cohen W (1998) A web-based information system that reasons with structured collections of text. In: Proceedings
of the Second International Conference on Autonomous Agents (Agents '98), pp. 400—407.

Cohen W and Fan W (1999) Learning page-independent heuristics for extracting data from web pages. In: AAAI
Spring Symposium on Intelligent Agents in Cyberspace.

Craven M, DiPasquo D, Freitag D, McCallum A, Mitchell T, Nigam K and Slattery S (1998) Learning to extract
symbolic knowledge from the World Wide Web. In: Proceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI-98), pp. 509-516.

Dempster AP, Laird NM and Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society, Series B, 39(1):1-38.

Freitag D and McCallum A (1999) Information extraction with HMMs and shrinkage. In: Proceedings of the
AAAI-99 Workshop on Machine Learning for Information Extraction.

Giles CL, Bollacker KD and Lawrence S (1998) CiteSeer: An autonomous citation indexing system. In: Digital
Libraries 98—Third ACM Conference on Digital Libraries, pp. 89-98.

Hofmann T and Puzicha J (1998) Statistical models for co-occurrence data. Tech. Rep. Al Memo 1625, Atrtificial
Intelligence Laboratory, MIT.

Joachims T, Freitag D and Mitchell T (1997) Webwatcher: A tour guide for the World Wide Web. In: Proceedings
of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI-97), pp. 770-777.

Kaelbling LP, Littman ML and Moore AW (1996) Reinforcement learning: A survey. Journal of Artificial Intel-
ligence Research, 4:237-285.

Kearns M, Mansour Y and Ng A (2000) Approximate planning in large POMDPs via reusable trajectories. In:
Advances in Neural Information Processing Systems 12. The MIT Press.

Kleinberg J (1999) Authoritative sources in a hyperlinked environment. Journal of the ACM, 46.

Kupiec J (1992) Robust part-of-speech tagging using a hidden Markov model. Computer Speech and Language,
6:225-242.

Lawrence S, Giles CL and Bollacker K. (1999) Digital libraries and autonomous citation indexing. IEEE Computer,
32(6), 67-71.

AUTOMATING THE CONSTRUCTION OF INTERNET PORTALS 163

Leek TR (1997) Information extraction using hidden Markov models. Master's Thesis, UC San Diego.

Lewis DD (1998) Naive (Bayes) at forty: The independence assumption in information retrieval. In: Machine
Learning: ECML-98, Tenth European Conference on Machine Learning, pp. 4-15.

McCallum A and Nigam K (1998) A comparison of event models for naive Bayes text classification. In: AAAI-98
Workshop on Learning for Text Categorization. http://www.cs.cmu.adatallum.

McCallum A, Rosenfeld R, Mitchell T and Ng A (1998) Improving text clasification by shrinkage in a hierarchy of
classes. In: Machine Learning: Proceedings of the Fifteenth International Conference (ICML '98), pp. 359-367.

McLachlan G and Basford K (1988) Mixture Models. Marcel Dekker, New York.

Menczer F (1997) ARACHNID: Adaptive retrieval agents choosing heuristic neighborhoods for information
discovery. In: Machine Learning: Proceedings of the Fourteenth International Conference (ICML '97), pp. 227—
235.

Merialdo B (1994) Tagging english text with a probabilistic model. Computational Linguistics, 20(2):155-171.

Mitchell TM (1997) Machine Learning. McGraw-Hill, New York.

Ney H, Essen U and Kneser R (1994) On structuring probabilistic dependencies in stochastic language modeling.
Computer Speech and Language, 8(1):1-38.

Nigam K, McCallum A, Thrun S and Mitchell T (2000) Text classification from labeled and unlabeled documents
using EM. Machine Learning, 39.

Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proceed-
ings of the IEEE, 77(2):257-286.

Riloff E and Jones R (1999) Learning dictionaries for information extraction using multi-level boot-strapping. In:
Proceedings of the Sixteenth National Conference on Atrtificial Intellligence (AAAI-99), pp.474-479.

Stolcke A, Shriberg E, Bates R, Coccaro N, Jurafsky D, Martin R, Meteer M, Ries K, Taylor P and Ess-Dykema
CV (1998) Dialog act modeling for conversational speech. In: AAAI Spring Symposium on Applying Machine
Learning to Discourse Processing, pp. 98-105.

Sutton RS (1988) Learning to predict by the methods of temporal differences. Machine Learning, 3:9-44.

Tesauro G and Galperin GR (1997) On-line policy improvement using monte-carlo search. In: Advances in Neural
Information Processing Systems 9, The MIT Press, pp. 1068-1074.

Torgo L and Gama J (1997) Regression using classification algorithms. Intelligent Data Analysis, 1(4):275-292.

Viterbi AJ (1967) Error bounds for convolutional codes and an asymtotically optimum decoding algorithm. IEEE
Transactions on Information Theory, IT-13, 260—269.

Witten IH, Nevill-Manning C, McNab R and Cunnningham SJ (1998) A public digital library based on full-text
retrieval: Collections and experience. Communications of the ACM, 41(4):71-75.

Yamron J, Carp |, Gillick L, Lowe S and van Mulbregt, P. (1998) A hidden Markov model approach to text
segmentation and event tracking. In: Procedings of International Conference on Acoustics, Speech and Signal
Processing (ICASSP-98), Seattle, Washington.

Yarowsky D (1995) Unsupervised word sense disambiguation rivaling supervised methods. In: Proceedings of
the 33rd Annual Meeting of the Association for Computational Linguistics (ACL-95), pp. 189-196.

