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Abstract. In many modern information retrieval applications, a common problem which arises is the existence
of multiple documents covering similar information, as in the case of multiple news stories about an event or a
sequence of events. A particular challenge for text summarization is to be able to summarize the similarities and
differences in informationcontentamong these documents. The approach described here exploits the results of
recent progress in information extraction to represent salient units of text and their relationships. By exploiting
meaningfulrelationsbetween units based on an analysis of text cohesion and thecontextin which the comparison
is desired, the summarizer can pinpoint similarities and differences, and align text segments. In evaluation
experiments, these techniques for exploiting cohesion relations result in summaries which (i) help users more
quickly complete a retrieval task (ii) result in improved alignment accuracy over baselines, and (iii) improve
identification of topic-relevant similarities and differences.
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1. Introduction

With the mushrooming of the quantity of on-line text information, triggered in part by the
growth of the World Wide Web, it is especially useful to have tools which can help users
digest information content. Text summarization attempts to address this problem by taking
a partially-structured source text, extracting information content from it, and presenting
the most important content to the user in a manner sensitive to the user’s needs. Clearly,
some sort of summarization is indispensible for dealing with these massive and unprece-
dented amounts of information. Now, in many modern information retrieval applications,
a common problem which arises is the existence of multiple documents covering similar
information, as in the case of multiple news stories about an event or a sequence of events.
A particular challenge for text summarization is to be able to summarize the similarities
and differences in informationcontentamong these documents.

A variety of approaches exist for extracting content for multi-document summarization,
which vary in the extent of domain dependence. In constrained domains, e.g., articles on
terrorist events, natural language message understanding systems can extract relationships
between entities, such as the location and target of a terrorist event. Such relationships can
be used to identify areas of agreement and disagreement across texts [34]. For arbitrary
text, such techniques do not apply, and instead, word-based content representations have
traditionally been exploited (e.g., [49]). However, as recent progress in information extrac-
tion reveals (e.g., [39]), it is possible to extract not just salient words but also phrases and



36 MANI AND BLOEDORN

proper names from unrestricted text in a highly scalable manner. As a result, such extrac-
tion techniques are now being exploited in general purpose information retrieval tools (e.g.,
[10], [16], [18], [42], [56]).

The focus of the work described here is to provide a tool for analyzing document col-
lections such as multiple news stories about an event or a sequence of events. Given a
collection of such documents, the tool can be used to detect and align similar regions of
text among members of the collection, and to detect relevant differences among members.
It is worth noting here that the context-sensitive aspect of summarization is particularly
important in this task. Depending on the users’ interest, there may be many different sets of
similarities and differences. Our summarization approach represents context in terms of a
topic, which is a set of words which can be drawn from a user query or profile. Given a topic
and a pair of related news stories, our method identifies salient regions of each story related
to the topic, and then compares them, summarizing similarities and differences. Until now,
only portions of this approach have been described [29], [30]. In this more detailed paper,
we present our approach in more general terms, and include additional experimental data
and techniques.

2. Overall Approach to Summarization

We will first clarify the variety of summarization being considered here. In general, there
are many varieties of automatic summarization. A classical distinction (e.g., [40]) is that
a summary can be “indicative”, used to alert the user as to what the source is about (thus
helping her decide whether the source might be worth reading) or it can be “informative”,
attempting, within the constraints of the particular compression desired, to stand in place
of the source. A summary can also be “evaluative” [55] offering a critique of the source,
as in a book review. In some situations (e.g., a scientific abstracting service), a high degree
of fluency and connectedness of the summary text may be called for; in contrast, when a
summary is used merely as a gist, more fragmentary or less connected text may suffice.
A summary can be in the form of an extract, or an abstract; it can stand by itself, or it
can be linked to the source or to more detailed summaries. A summary can cover a single
source, or multiple sources. Finally, the audience for a summary can vary. Traditionally,
abstracts were written by authors or by professional abstractors with the goal of dissemina-
tion to a particular - usually broad - readership community. These “generic” abstracts were
traditionally used as surrogates for full-text. As our computing environments continue to
accommodate increased full-text searching, browsing, and personalized information filter-
ing, “user-focused” abstracts, which are customized to the user’s interests, have assumed
increased importance. As will be made clear, we report here on techniques for generating
user-focused, indicative, moderately fluent, extract-based summaries for multiple sources.

Automatic text summarization can be characterized as involving three phases of process-
ing: analysis, refinement, and synthesis1. The analysis phase builds a representation of the
source text. The refinement phase transforms this representation into a summary representa-
tion, condensing text content by selecting salient information. The synthesis phase takes the
summary representation and renders it in natural language using appropriate presentation
techniques.
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Figure 1. Multi-document Summarization Approach

In our approach, the analysis phase builds a representation based on domain-independent
information extraction techniques. Text items such as words, phrases, and proper names
are extracted and represented in a graph. In particular, nodes in the graph represent word
instances at different positions, with phrases and names being formed out of words. The
refinement phase exploits cohesion relationships (to be discussed below) between term
instances to determine what is salient. Finally, the synthesis phase takes the set of salient
items discovered by the refinement phase, and uses that set to extract text from the source
to present a summary.

Of course, if we are able to discover, given a topic and a pair of related documents,
salient items of text in each document which are related to the topic, then these salient
items can be compared to establish similarities and differences between the document pair.
This forms the basis for a general scheme for multi-document summarization. As shown in
Figure 1, given a pair of documents, the Analysis phase builds a graph for each document.
In the Refinement phase, salient nodes in each graph related to the topic are discovered,
using a spreading activation search of the graph. The set of activated (i.e., reweighted)
nodes for each graph are then compared; comparing just these salient items results in fewer
comparisons than comparing the entire body of the two texts. Finally, the result of this
comparison is used in a synthesis phase to extract sentences. Thus, given a pair of related
news stories about an event or a sequence of events, the problem of finding similarities and
differences becomes one of comparing text items which have been activated by a common
topic. This allows different comparisons to be generated, based on the choice of common
topic.

The overall approach in Figure 1 extends easily to comparing sets of documents rather
than pairs, with some restrictions on the presentation strategies in the synthesis stage. In this
paper, we explore several different synthesis techniques in multi-document summarization,
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including identifying similarities and differences, and aligning text across multiple docu-
ments. While the former method applies to sets of documents, the latter (as will be explained
in Section 7.2.3) is more suited to pairwise comparison.

Although our interest here is in user-focused summaries, the overall approach can be
extended to deal with “generic” summaries. In that case, in Figure 1, instead of reweighting
based on a query (using spreading activation), we weight the nodes based on a conventional
weighting metric, such as tf.idf. The comparison and presentation steps in Figure 1 (after
applying a segment finding operation on these graphs, described in Section 6.2) remains as
in the user-focused case, allowing for generic summaries to be produced.

These summarization techniques yield useful summaries when applied to large quantities
of unrestricted text, of the kind found on the World Wide Web. To investigate the degree
of scalability of the approach, we investigate measures of algorithmic time and space
complexity, timing results, and evaluation metrics for effectiveness. The approach has been
embedded in an information retrieval tool which allows the user to issue queries to Internet
search engines running queries against the World Wide Web. The user can choose any set
of hits to summarize. The system offers a set of common terms, which the user can select
one or more from, to constitute the common topic. For such applications, summarization
needs to be able to help users minimize reading time on longer documents, to enable them to
quickly select relevant information, and discard irrelevant information. In such situations,
the summaries need not be highly polished, but must be intelligible enough to stand on their
own to be archived or linked in for later perusal.

3. Distinguishing Features of Our Approach

Our summarization approach in Figure 1 has three main distinguishing features:

1. We explicitly identify commonalities and differences across documents. This may be
contrasted with approaches such as [43], where (queries and) documents are matched
for similarity, with statistically prominent terms in each document being highlighted.
Among the advantages of identifying commonalities and differences is that in addition
to the commonalities telling us what information is salient with respect to the topic in
the entire set, the differences tell us what’s unique about each document. Thus, if the
set of documents is ordered, say, in chronological order, the differences for the latest
document tells us what’snovelin it (with respect to the current topic). Novelty, in turn,
is rather fundamental to summarization, and the ability to distinguish what’s new from
a sequence of similar documents retrieved for a query is of practical value.

2. We are able to identify the salience of differentregionsof text in a document with respect
to a query. This is in keeping with the assumption underlying much summarization
research that location and linear order of text items are important (e.g., [15], [26], [41]) in
determining what’s salient. This might be achieved by a passage-level relevance ranking
approach [5]. However, choosing the best window size for identifying passages is a
problem, whether one uses fixed-length overlapping windows, or “discourse” windows
(e.g., sentences, paragraphs, sections). If the window size is too small, one may end up
with a set of adjacent windows which individually contribute little relevance information
but which as a whole are highly relevant. If the window size is too large, it may
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include too much irrelevant information2. Instead of using a fixed window size, or
paying the increased time complexity of varying the window size dynamically, we
use a text representation which assigns weights to different positions of a term (these
term occurrences correspond to nodes in the graph representation). Further, identifying
regions in each document relevant to the query allows us to compare just those regions,
reducing the set of items to be compared for commonalities and differences.

3. Finally, we explore a model of text which takes into account how connected items in
the text are. This therefore explores a similar model of connectivity to the approach of
[49] and [51], where the strength of links (in their case based on similarity) between
different text units is used to identify salient text units in one or more documents.
However, instead of just using a cosine-similarity measure between word-based vectors
for fixed-size text units, we assign weights to different word occurrences based on
“cohesion” links between these occurrences, discovered in part based on information
extraction techniques.

The cohesion relations considered here include synonym/hypernymy relations, repeti-
tion, adjacency, and coreference. Cohesion itself is an abstract notion, expressing the
intuition that certain relations help make the text “hang together”, and in some sense
cause portions of the text to “be about the same thing” [37]3. While it is as a result a
rather imprecisely defined concept, the linguistic devices grouped under text cohesion
are directly observable. (Cohesion is often contrasted withcoherence, which is a rela-
tion between larger units of text, typically sentences and clauses, which has to do with
macro-level, deliberative structuring of the text, e.g., represented by text schemas and
rhetorical structures [27], [31], [32], [35], [57]). In keeping with trends of improved
information extraction capabilities, cohesion also appears to be a renewed focus of
interest among researchers in the text summarization field, e.g., [4], [8], [6]. Various
cohesion relations are also of considerable interest in identifying topic shifts, e.g., [6],
[24].

This cohesion approach is one way to allow term occurrences which are indirectly
related to the topic to emerge as salient; in turn this allows them to be candidates for
comparison across documents. As these cohesion relations are represented as edges in
the document’s graph, the topology of the graph can be used to compute salience, using
a spreading activation search algorithm. While spreading activation has been used in
information retrieval [50], [12] and text summarization [46], [3] to search hand-created
semantic nets or networks derived from thesauri, the focus here is on directly activating
the richly structured graph for the text. In contrast to summarization approaches such as
[46], which use information extraction techniques to build graphs for text about specific
events such as corporate takeovers, the graphs built here apply to unrestricted text.

To conclude this section, our summarization approach is distinguished from others as
follows. We use a graph representation which explicitly represents position and linear
order of text items. The connectivity of text based on robustly-extracted linguistic relations
between word occurrences is used to compute a salience function for the text as a whole
with respect to a particular topic. Text regions deemed salient by this method are then used
to address summarization of sets of documents with respect to a topic.
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Figure 2. Graph Representation

4. Representing Meaningful Text Content

As shown in Figure 2, each node is a wordinstance, and has a distinct input position.
Associated with each such node is a record characterizing the various features of the word
in that position (e.g., absolute word position, position in sentence, weight). As shown in part
1 of the figure, a node can have adjacency links (ADJ) to textually adjacent nodes, SAME
links to other instances of the same word, and other semantic links (represented byalpha).
PHRASE links tie together strings of adjacent nodes which belong to a phrase (part 2).
In part 3, we show a NAME link, as well as the COREF link between subgraphs, relating
positions of name instances which are coreferential. NAME links can be specialized to
different types, e.g., person, province, etc. In our work, thealpha links are restricted to
synonymy and hypernymy among words.

This representation is highly flexible, and general enough to encompass more fleshed-
out linguistic representations; new relationships can be threaded easily into the graph. This
results in a level of sentential analysis where words are grouped, where possible, into names
and phrases, which in turn can make up a sentence. This representation allows for a degree
of graceful degradation; in the worst case a sentence is just made up of a sequence of words.

Using this graph representation, the weights of nodes in the graph can be represented
as anactivation vector, as follows. A textDi can be represented as a vector of weights
(wpi1, .., wpik, .., wpin) wherewpik is the weight of word positionk in texti. In the initial
activation vector, a given term has the same weight for all occurrences (positions). Given
a topic T, the activation vector forDi can be reweighted favoring term occurrences related
to the topic, using the spreading activation techniques described in Section 6. Further
reweighting is achieved by clipping the activation vector, as described in Section 6.2. A
graph is implemented as an adjacency list, which requiresB.N storage, whereN is the
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Figure 3. Graph Example. Names and phrases are grouped together. Dark edges: COREF; Light edges: ADJ;
dotted edges: hypernym.

number of nodes in the graph andB is the maximum branching factor of a node. In practice
B is observed to be small (maximum observed = 7, average = 3.5), so the graph requires
O(N) storage.

A sample graph is shown in Figure 34. We also introduce here Figure A.1 (Appendix),
which serves as an example used throughout this paper to illustrate some of our observations
about multi-document summarization. It shows the text (some of which is elided for reasons
of space) of two related articles. The article in the left column is from the Associated Press
(AP), the one in the right is from Reuters. Relevant subgraphs discussed in the paper are
sketched. Some alignments between the two texts are shown boxed.

5. Tools for Building Meaningful Content Representations

The construction of text graphs for use in summarization requires at minimum a component
for associating words with sentence and paragraph positions. We use a sentence and para-
graph tagger which contains a very extensive regular-expression-based sentence boundary
disambiguator [1]. Next, weights are computed for the words in the text. We use tf.idf [54]
weighting, though any sensible weighting scheme could be substituted; here use is made of
a reference corpus derived from the TREC [23] corpus. The weighttf.idfik of termk in
documenti is given by:

tf.idfik = tfik ∗ (ln(N)− ln(dfk) + 1) (1)

wheretfik = frequency of termk in documenti, dfk = number of documents in the
reference corpus in which termk occurs,N = total number of documents in the reference
corpus.

It should be mentioned that the weights here are used for two purposes: first, as a
filtering mechanism in extracting phrases (as described next), and second, to provide initial
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weights for occurrences of query terms in the text, for use by the spreading activation search
for query-related text regions (described in Section 6). Before beginning the spreading
activation phase, the weights of all terms other than query terms are zeroed out; it is the
spreading activation itself which determines the final weights based on the initial weights
of query term occurrences. As a result, the main overall impact of the initial weighting
scheme is in determining the heights of the “peaks” (i.e., occurrences of query terms) in the
eventual distribution of weights of terms across text positions in the document. As a result,
the summarization is not particularly sensitive to the particular weighting scheme; other
weighting schemes have also been used effectively in our approach, includingG2 statistics
[13]. Nor is the summarization particularly sensitive to different scaling factors used to
normalize thetfik frequency; among the scaling factors we have used is the maximum
frequency of any term in the document.

The remaining component tools include phrase extraction, name extraction, and synonym
and hypernym extraction. The summarization algorithms described in this paper can work
without all of these, but the use of these tools provides more structure to the graph, allowing
use of these content-based features in summarization. To support phrase finding, MITRE’s
Alembic part-of-speech tagger [1] is invoked on the text. This tagger uses the rule-sequence
learning approach of [9]5. Names and relationships between names are extracted from the
document using SRA’s NameTag [25], a MUC6-fielded system. Phrases are extracted
from the text using the word weights and part-of-speech and punctuation features. Finally,
synonyms and hypernyms are extracted for the words using WordNet [38]. “Function”
words, it should be noted, are stripped out using a stop-list, except where they occur within
extracted names and phrases.

The name extraction techniques are now quite standard; for more details see [1], [25].
In what follows, we discuss the phrase and synonym/hypernym extraction analysis tools in
more detail.

5.1. Phrase Extraction

Phrases are useful in summarization as they often denote significant concepts. In our
application, phrases are of interest as summary descriptors rather than as index terms. Thus,
we are not interested in extracting components of phrases, or syntactic variants of phrases;
we require only a single phrase to describe a phrase-denoted concept. In general, one would
prefer phrases which are as specific as possible; this is approximated by preferring longer
phrases. Finally, we prefer phrases to be different from one another, to represent more
of the conceptual content of the document. Our phrase extraction method finds candidate
phrases using robust finite-state parsing techniques. We use several patterns defined over
part-of-speech tags. One pattern, for example, uses the maximal sequence of one or more
adjectives followed by one or more nouns. The weight of a candidate phrase is the average
of the tf.idf weights of non-function (or content) words in the phrase, plus a factorβ which
adds a small bonus in proportion to the length of the phrase. We use a contextual parameter
θ to avoid redundancy among phrases, by selecting each term in a phrase at most once in a
window w. The size of the window is application dependent; our typical setting for news
stories is the whole document. The weight of a phrase W of length n content words in
document i is:
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Table 1.Precision of 510 synonym links using two
different techniques

Guessing “noun” Part-of-speech tagging
.51 (264 links) .67 (342 links)

wt(W, i) = β(n) +

∑n

k=1
θ(ik) ∗ tf.idfik

n
(2)

whereθ(ik) is 0 if the word has been seen before in the window, and 1 otherwise.

5.2. Synonym and Hypernym Extraction

We now discuss the extraction of synonym and hypernym links. These are extracted using
WordNet 1.5 [38]. Our algorithm takes every distinct word in the graph which is identified as
a noun by the part-of-speech tagger, and looks up its synonyms and immediate hypernyms.
First, if the word has an entry in a lookup table, that is used; otherwise, WordNet lookup is
performed, with any hits being cached in the lookup table. Whenever a pair of words has a
synonym or immediate hypernym link, an edge is drawn between all its instances. Although
words tend to be highly polysemous in WordNet, no sense-disambiguation is carried out.
Thus, even if a pair was linked by a very rare noun sense, the edge would be present on
the graph. The reasoning is that automatic word sense disambiguation (e.g., distinguishing
among different noun senses) within a text is quite hard. Further, an experiment described
below suggests that investing in such an algorithm may not be worthwhile, as most of the
synonyms found (using the part-of-speech method) are “correct”.

For the texts in Figure A.1, we have good links likecaptive ⇔ prisoner, head ⇔
chief ⇒ leader, ambassador ⇒ diplomat, assault ⇔ attack, residence ⇒ house,
reception ⇒ party6. Examples of bad links due to lack of sense disambiguation are
sister ⇒ member, head⇔ question.

To get a better handle on the performance of this method, we conducted a small experiment
to examine precision of synonym linking over 17 articles (11986 words) with 510 synonym
links in all. The articles were drawn from a collection of Internet news articles (where each
article was on a different topic). (More details of the collection are described in Section 9.2.)
A synonym link was judged correct if the linked pair of words appeared to have the same
sense, given the context in which they each appeared in the article. As mentioned earlier,
our algorithm takes every distinct word in the graph which is identified as a noun by the
part-of-speech tagger, and looks up its synonyms and immediate hypernyms in WordNet.
To compare with what would happen without part-of-speech tagging, we used a “dumb”
baseline of treating every word to be looked up as a noun, leaving WordNet to do the rest.
Table 1 shows the results under these two conditions. It can be seen from Table 1 that
over two-thirds of the synonym links were correct using noun lookup in WordNet based
on part-of-speech tagging, whereas guessing noun every time resulted in only about half
the synonym links being correct. (In this experiment, the part-of-speech tags were correct
in 78/87 = 89.65% of the cases involving synonyms.) This shows a substantial positive
impact due to part-of-speech tagging. It is also worth noting that of the correct guesses
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found, 20.17% (69/342) were simply morphological variants (noun inflections) found by
WordNet (e.g.,protest⇔ protests).

However, synonyms by themselves may sometimes be misleading in terms of establishing
cohesion. That’s because a synonym link between a pair of nouns does not imply that their
containing noun phrases are coreferential. For example, for the AP text in Figure A.1, we
havehostage ⇒ captive ⇔ prisoner; however, in that text, “the remaining captives”
refers to people taken hostage by the rebels, whereas, “the prisoners” refers to rebels
imprisoned by the government. In the above experiment, only 32 of the correct synonym
links (6.27% of the total) were cases where referring NPs containing the nouns were not
coreferential. To exclude these would require extremely robust techniques for recognition
and resolution of pronominal and definite noun phrase anaphora (i.e., not just proper-name
coreference), e.g., as are beginning to be explored in the MUC-6 coreference task [39].
These figures suggest that even if one succeeded in doing so, it would not be a big win in
terms of accuracy improvement.

While these accuracy figures are suggestive, more statistically interesting inferences can
only be drawn from a much larger-scale experiment. Also, judgments of synonymy can be
quite delicate; studies of agreement in judgments across subjects is clearly needed. Finally,
the evaluation of a synonym component by itself does not tell us that much about its impact
on the overall task of summarization. Clearly, one might expect spurious synonym links to
lead the spreading activation search of the graph (to be discussed next) astray, but the size
of such a possible effect is unclear.

In the course of working with synonyms, we also explored a more general semantic
distance measure between words, based on the relative height of the most specific common
ancestor class of the two words, i.e., the most specific common hypernym synset (synonym
set) in Wordnet, subject to a context-dependent class-weighting parameter. This approach
proved not to give good results, as the technique turned out to be oversensitive to the structure
of the thesaurus. The approach of Resnick [47] gets around this by using information content
rather than height of the class, where the information content of a synset is related to the
probability of the synset and all its subordinates (hyponyms) occurring in a large reference
corpus. This approach, when implemented by us, turned out to be very expensive to compute
at run-time. Smeaton [53] has addressed this issue, by compiling out, based on Resnick’s
statistic, a very large table (150,000,000 word pairs) of semantic distances. While Smeaton
[53] reports interesting results in image caption retrieval using this table (in combination
with a particular query-caption matching metric), the scale of the compilation effort required
and the uncertainty of whether it would meet our needs kept us from pursuing it further.

6. Discovering Topic-Related Text Regions

6.1. Finding Topic-Related Text Regions Using Spreading Activation

Given a topic that expresses the user’s interest, the refinement phase of processing begins
by computing a salience function for text items based on their relation to the topic. A
spreading activation algorithm (derived from [12]) is used to find nodes in the graph related
to topic nodes.

Algorithm Spread(Graph, Topic):
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Input := words(Topic);

sort(Input);

while (Continue?(Output))

[Node := first(Input);

insert(Output, Node);

Succs := ActivateSuccs(Node, Graph);

while (Succs)

[insert(Input, pop(Succs));]]

Algorithm ActivateSuccs(Node, Graph):

while (<Node1, Edge> := edges(Node, Graph))

[Node1.wt

= max(Node1.wt, (Node.wt * Edge.wt));

if (type(Edge) = ADJ)

[Node1.wt

= ScaleDist(Node1, Node, Node1.wt).]]

The method, which corresponds to a strict best-first search of the graph, begins by adding
the nodes matching the given query terms onto an input priority queue, which is kept sorted
by decreasing weight7. The method then iterates until a terminating condition is reached,
taking the first node off the input priority queue and placing it on the output, and then finding
successor nodes linked to the current node in the graph and inserting them into the input
priority queue. The weight of a successor node is a function of the source node weight and
the link type weight. Each different link type has a dampening effect on the source node
weight. Since the graph may have cycles, the weight of a successor node is determined by
the strongest path to the node. Thus, the successor node weight is the maximum of its new
weight and its old weight. ScaleDist returns an exponential function of the text distance
between the input nodes. In the termination condition,Spreadhalts if either the number of
output nodes is greater than a thresholdt1, or if a slope-based test succeeds.

The slope-based test is as follows. At each iteration of the outer while loop inSpread, we
maintain the total activation weight of the nodes taken off the input priority queue so far.
We compute, for that iteration, the change in activation weight compared to 40 iterations
ago, which, divided by the window size of 40, gives us the slope for the change between
this iteration and the 40-iterations-previous one. If the standard deviation of the last 40
slopes is less than 0.1, the test succeeds.

The spreading activation is constrained so that the activation decays by link type and text
distance. We use the following ordering of different link types, with earlier links in the
ordering being heavier (and thus having less dampening effect) than later links:

SAME > COREFERENCE > NAME

> PHRASE > ALPHA > ADJ (3)

For ADJ links, successor node weight is an exponentially decaying function of current
node weight and the distance between nodes. Here distances are scaled so that travelling
across sentence boundaries is more expensive than travelling within a sentence, but less
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than travelling across paragraph boundaries. For the other link types, the successor weight
is the product of link weight and current node weight.

As an example, the sentence-level plot of the activation weights for a Reuters article,
where the weight at a given sentence position is calculated as the average of its constituent
word weights, is shown in Figure 4. The results after spreading, given the topicTupac
Amaru, are shown in Figure 5. The spreading has changed the activation weight surface, so
that some new related peaks (i.e., local maxima) have emerged (e.g., sentence 4), and old
peaks have been reduced (e.g., sentence 2, which had a high tf.idf score, but was not related
to Tupac Amaru). The exponential decay function is also evident in the neighborhoods of
the peaks.

The worst-case algorithmic time complexity of AlgorithmSpreadcan be calculated as
follows. Assume there areN nodes in the graph and the maximum branching factor of a
node isB. The initial sort of the Input priority queue takes at mostNlog(N) time. The test
for the termination condition is bounded by some constantk1. The code in the while loop
in Spreadruns for at mostN iterations. In each iteration, we sum the constant costk2 of
picking the first element and putting it on the output, the costlog(N) of insertion into the
priority queue, and the cost ofActivateSuccs. The code in the while loop inActivateSuccs
runs at mostB times; each time the operations are bounded by some constantk3. Spread’s
while loop thus takes(k1 + k2 +Bk3 + logN) time. Thus the worst case time complexity
of SpreadisNlogN +N(k1 + k2 +Bk3 + logN) = O(NlogN).

The space complexity is as follows.Spreadallocates an Input priority queue of sizeN ,
whereN is the number of nodes in the graph, and an output list. At each step ofSpread’s
while loop, no more thanB nodes (whereB is the maximum branching factor) are added
to Input, with one node being removed. So, the Input requiresB(N − 1) storage, with
the Output requiring no more than the output thresholdt1 storage. The registerSuccsin
ActivateSuccsreusesB elements of storage at each call. So the total worst case space
allocation isB(N − 1) + t1 +B = O(N), assuming, as above, thatB is a constant.

6.2. Filtering Activated Regions by Segment Finding

As defined by [51], a text segment is “a contiguous piece of text that is linked internally
but largely disconnected from the adjacent text”. While the goal of the spreading activation
is to reweight the nodes of the graph based on a topic, the goal of the segment finder is to
select segments from the reweighted graph. This reduction of the search space is useful in
increasing the speed of the system to find similarities and differences and align text segments.
The segment finder uses the words of the topic to locate specific nodes in the graph which
has first been reweighted by spreading activation. Depending on the parameters given it
will define a segment as either all nodes with a weight within a user-defined delta of each
peak value (the depth parameter), or it will output all nodes within a user-defined distance
in the text from each peak (the width parameter). In the former case, which corresponds
to a horizontal clipping of the activation signal, one or more text segments, each of whose
words has values within the particular delta of the peak value, will be generated. In the
latter case, which corresponds to sampling of the signal, the number of segments is less than
(in case the width encompasses a neighboring peak) or equal to the number of peaks. The
clipping involves sorting the nodes by weight and then filtering the nodes above a threshold;
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Figure 4. Sentence-level Activation Weights from Raw Graph (Reuters news)

Figure 5. Sentence-level Activation Weights from Spread Graph (Reuters news; topic:Tupac Amaru)

the clipping thus has an algorithmic time complexity of orderO(NlogN) for a graph of
sizeN nodes, and a space cost of orderO(N) (assuming non-destructive sorting).

Figure 6 and Figure 7 shows the results of segment finding on the activation weights in
the Reuters and AP articles, using the default depth of 90. The segment-finder has removed
163 word-nodes from the Reuters graph (43% reduction) and 88 words (21% reduction)
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Figure 6. Sentence-level Activation Weights after Segment Finding (Reuters news; topic:Tupac Amaru)

Figure 7. Sentence-level Activation Weights after Segment Finding (AP news; topic:Tupac Amaru)

from the AP news article. Note that the amount of reduction varies with the topology of
the surface generated by the activation function. Where highly active nodes are uniformly
distributed in the text, clipping will result in much less reduction than in cases where there
are only a few distinct peaks. The result of this is that some of the sentences are eliminated
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(sentences 1, 2, 12, 19 and 21) and the weight of the remaining sentences is increased. The
important aspect of this reduction is that although it significantly reduced the number of
words being compared, it left nodes with strong associations toTupac Amaru(where the
group is mentioned by name, e.g., sentence 4), and also those with less obvious associations
(e.g., nodes in sentence 26 - a sentence about a past U.S. collaborator of the MRTA).

It is worth noting that this segment-finding approach differs substantially from previous
approaches. For example, in contrast to [51], [24], these text segments are not generated
by directly comparing blocks of text (problems with block sizes were discussed earlier). In
addition, the segments correspond to potentially variable-sized neighborhoods around the
peaks. Finally, unlike approaches such as [24] which use segments to discover topic shifts
in text, the segments here are simply used to further restrict the set of salient terms.

6.3. Examples

We will now discuss an example, to illustrate the kinds of links discovered by the spreading
activation. Of course, this does not tell us much about aggregate behavior over texts in
general. See Section 8 for performance data on arbitrary newswire culled from the World
Wide Web, and Section 9 for evaluation. Algorithmic complexity measures forSpreadand
and segment finding have been discussed; corresponding measures for remaining algorithms
will also be offered.

Our use of spreading activation allows us to find word occurrences which are indirectly
related to the query. Unlike traditional information retrieval approaches [50], [12], however,
the final link weights are determined by the number and type of links in the graph. For
example, the Reuters sentence 4 plotted in Figure 5 and shown in Figure A.1 might have
been found via an information retrieval method which matched on the queryTupac Amaru
(allowing for MRTAas an abbreviated alias for the name). However, it would have not
found other information related to theTupac Amaru: In the Reuters article, the spreading
method follows an ADJ link fromTupac Amaruto releasein sentence 4, to other instances
of releasevia the SAME link, eventually reaching sentence 13 wherereleaseis ADJ to the
nameVictor Polay(the group’s leader). In an Associated Press (AP) article describing the
same event, a thesaurus link becomes more useful in establishing a similar connection: it is
able to find a direct link fromTupac Amaruto leaders(via ADJ) in sentence 28, and from
there to its synonymchief in sentence 29 (via ALPHA), which is ADJ toVictor Polay.

Of course, this cohesive relation could also be found more directly if the system could
correctly interpret the expressionsits chiefin the AP article andtheir leaderin the Reuters
article. This raises the question of finding stronger evidence as to how effective the spreading
activation is in finding salient topic-related items. In Section 9, we report on experiments
which each confirm that the spreading activation is effective in summarization.

7. Summarizing Multiple Documents

7.1. Finding Commonalities and Differences

We now describe our algorithm for finding similarities and differences. Given a set of
documents, the goal is to find their relevant shared and distinguishing terms with respect
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to a topic. Once text segments are found, only nodes belonging to such segments are
considered in building Commonalities and Differences; all other nodes are zeroed out. The
set of common words given activated, clipped graphsG′1 . . . G

′
n is computed by Algorithm

Compute-Common:

Algorithm Compute-Common(G′1 . . . G
′
n):

for k = 1..n

[Words[k] = sort-alpha(nodes(G′k));]

# sort-alpha removes duplicates

# remembering only the best weighted occurrences

# and their weights

# Words[k] =< t1, w1 > . . . < tm, wm >

# where ti ≺α ti+1, 1 ≤ i ≤ m
# where m is the number of distinct words in G′k.

Row-indices = intersection(Words[1] . . .Words[n]);

# Contains terms from intersection, remembering weights

# Row-indices preserves the alphabetic sorting

# from Words

Column-indices = 1 . . . k;

# Common.Words = Row-indices

#Common.Docs = Column-indices;

Common = build-matrix(Row-indices, Column-indices);

Note that Common contains only distinct terms, not term occurrences. Common is
represented as a term-document matrix, where the weight of each distinct term in a document
is the highest weight of any of its occurrences in that document, normalized by the maximum
weight of any term in that document.

Differences, which are computed at the same time as Common, are defined as follows:

Differences = (G′1... ∪G′n)− Common.Words (4)

These Differences are differences in query-related information.
Algorithm Compute-Commoncarries outK sorting operations to buildWords, whereK

is the number of graphs being compared. If the graph with the most nodes hasN nodes, the
building ofWords costsO(KNlogN). The intersection operation involves intersection of
K lists each of lengthN in the worst case, which costsK.N2. This gives usO(KN2logN)
worst case time complexity forCompute-Common. The algorithm usesO(N) space for the
sorting andO(KN) space for the Common matrix.

7.2. Presentation Strategies

7.2.1. Overview The kinds of presentation strategies used in the synthesis stage of
summarization will vary with the application. However, since very little attention has been
paid to this in discussions of multi-document summarization, we illustrate here a range of
presentation strategies.
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1. A very simple strategy for synthesis of multi-document summaries is to avoid computing
commonalities and differences, and instead to simply rank sentences in each document
based on weights of contained words, and then to merge the rankings to get multi-
document extracts. However, such an approach will not guarantee that higher-ranked
sentences in the merged ranking reflect common information among the documents.
The presentation strategies we discuss here, therefore, rely on identification of terms in
Common and Differences.

2. In cross-document sentence extraction, discussed in Section 7.2.2, the best sentences
containing words in Common are selected from the set of documents based on the total
weight of such words. Likewise, the best sentences containing words in Differences are
selected from the set of documents based on the total weight of such words. The two
are presented separately, as similarities and differences. When there is a chronological
ordering in the set of documents, the differences are presented in terms of what’s new
in the latest document (with respect to the current topic).

3. In cross-document sentence alignment, discussed in Section 7.2.3, pairs of sentences,
one from each document (the alignment algorithm is restricted to document pairs), are
ranked for coverage of common words.

4. Finally, in Section 7.2.4, we discuss techniques where fragments are extracted instead of
sentences. These include “bag-of-terms” presentation strategies, as well as generation
of well-formed sentence fragments.

5. Of course, other presentation methods are also possible, e.g., “graphical” displays where
we plot documents in a collection so that documents closer together in the plot have
more terms in Common. We have not implemented these graphical strategies, but
suggest them to indicate the wide space of possible presentation strategies.

7.2.2. Cross-Document Sentence ExtractionThe presentation strategy used to cover
similarities and differences then simply outputs the set of sentences covering the terms in
Common and the set of sentences covering the terms in Differences, highlighting the relevant
terms in each, and indicating which document the sentence came from. This technique is
what we call FSD (for Find Similarities and Differences):

Algorithm FSD(Common):

For each doc k in Common.Docs

[for each sentence p in doc k

[score(p,k);]]

Sentence selection is based on the coverage of nodes in Common and Differences. Sen-
tences are selected based on the average activated weight of the covered words: The score
score(p, k) for sentencep in documentk (i.e., sentencespk) in terms of coverage of Com-
mon is:

score(p, k) =
1

|c(p, k)|

|c(p,k)|∑
i=1

weight(wik) (5)
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wherec(p, k) = {w|wε(Common.Words ∩ spk)} andweight(wik) is the weight of
termi in documentk in (the term-document matrix) Common.

The score for Differences is similar. The user may specify the maximal number of non-
zero-weighted sentences in a particular category (common or different) to control which
sentences are output.

The worst case time complexity of FSD is as follows. LetN be the most number ofdistinct
wordsin any of the input graphs. The cost of the intersection operation to buildc(p, k) is
bounded byk1logN , wherek1 is the maximum sentence length, since theCommon.Words
is sorted alphabetically. The summation in Equation 5 iterates fork1 times at most, with
each iteration having unit cost. The computation ofscore(p, k) is invoked, in the worst
case, for all the sentences in all the documents i.e.,KN/k2 times, wherek2 is the minimum
sentence length, andK is the number of graphs. The worst case time complexity of FSD is
thereforeK(N/k2)(k1 + k1logN) = O(KNlogN). Holding the sentence scores requires
(N/k2) storage, withc(s) usingk1 storage; this gives usk1 + (N/k2) = O(N) storage
cost for the algorithm.

It is possible to enhance FSD to ensure that all the commonalities in Common are rep-
resented in the summary. This could of course be done by outputting all sentences which
contain common words, but this might yield many sentences which each cover the same
subset of common words. Instead, it is possible to find smaller subsets of the sentences
containing common words, which would reduce the redundancy of information content.
We try to find such a subset in the enhanced version, called AlgorithmGreedy-FSD:

Algorithm Greedy-FSD(Common):

while (not-empty(Common.Words))

[FSD(Common);

top-s = pop(Sentences);

Common.Words = rest(Common.Words, top-s);

output(top-s);]

Here, we score all the sentences using Equation 5, then pick the best-scored one, remove
the terms covered in Common by that sentence (therest operator in the algorithm), then
rescore all remaining sentences using the new Common, and repeat until Common or the
set of remaining sentences is empty.

The while loop inGreedy-FSDruns as many times as|Common.Words| = N in the
worst case, whereN is the most number ofdistinct wordsin any of the input graphs. The
first step is given by the complexity of FSD. The “removal” of the current sentence’s words
from Common is bounded byk1, the maximum sentence length, and the popping of the set
of sentences has some small constant costk4. So, the worst case time complexity ofGreedy-
FSDisN(k4+k1+K(N/k2)(k1+k1logN)) = O(KN2logN), wherek2 is the minimum
sentence length andK is the number of graphs. TheGreedy-FSDenhancement is thus
relatively expensive compared to AlgorithmFSD in terms of worst case time complexity,
and as a presentation strategy, is useful when maximum compression is desired at the
expense of (potentially) increased time. The space cost ofGreedy-FSDis given by the cost
of FSDplus the length of the output, which is no longer than|Common|, i.e., the space
cost isO(N).

To illustrate the behavior of FSD, consider the application of FSD to the extracted segments
in Figure 6 (the Reuters article) and the extracted segments in Figure 7 (an AP article of
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the same date describing the same hostage crisis). The extracted segments had 42 words
in Common, out of 180 words for the first article’s segments and 326 for the latter article’s
segments. The algorithm extracts 24 commonalities, with the commonalities with the
strongest associations being on top. Among the high scoring commonalities and differences
are the ones shown in Figure A.1, where the words in Common are in bold face. The
algorithm discovers that both articles talk aboutVictor Polay(e.g., the Reuters sentence 13
mentioned earlier, and the AP sentence 29 shown in Figure A.1). A similar point could be
made about theFujimori sentences. Notice that the system is able to extract commonalities
withoutTupac Amarubeing directly present. Regarding differences, the algorithm discovers
that the AP article is the only one to explain how the rebels posed as waiters (sentence 12)
and the Reuters article is the only one which told how the rebels once had public sympathy
(sentence 27).

7.2.3. Cross-Document Sentence AlignmentIn aligning news stories, we directly
compare text units from one text with text units from the other. Here, we have in general a
choice between aligning segments or sentences, in the former case outputting sentences by
completing (say) to the nearest sentence boundary. In this method, rather than comparing
one unit and outputting another, we chose to consistently align sentences, where the weights
of words which are not part of a text segment are zeroed out.

Algorithm Align(Common):

For each sentence p in Common.doc1

[for each sentence q in Common.doc2

[score = score-overlap(p, q);

if (best-match-row[p] < score)

[best-match-row[p] = q;]

if (best-match-col[q] < score)

[best-match-col[q] = p;]]]

For each sentence p in Common.doc1

[q = best-match-row[p];

if (best-match-col[q] = p)

[then output(<p, q>);]]

The algorithm ranks pairs of sentences, one member from each document, for coverage
of common words. First, as before, once a pair of graphs has been spread and clipped, terms
in Common are computed. Only sentences containing terms in Common are considered.
The basic one-to-one algorithm matches pairs of sentences based on their degree of overlap,
where the overlap between a sentence pair is the total activation weight of terms common
to both. Thus, given a pair of sentencess1 ands2, s1 is scored for overlap withs2 using
Equation 5 withS = Common ∩ s1 ∩ s2 being used instead ofCommon. Once all
the pairs are scored for overlap, the algorithm imposes a “symmetry check”, picking the
sentence pairs< si, sj > such thatsi’s best overlapping alignment is withsj , andsj ’s best
overlapping alignment is withsi.

This overlap measure is somewhat insensitive to relative differences in weights, making
it somewhat less precise than one that is more sensitive to the relative weights, such as
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cosine similarity [48]. Section 9.2 explores the use of cosine similarity further, offering
some experimental results using cosine similarity as the sentence matching metric. Our
experience indicates a tradeoff exists between higher recall of common terms (emphasized
by the word overlap measure) and higher precision (emphasized in this case by cosine
similarity).

The worst case time complexity of this algorithm is as follows. LetS1 be the number
of sentences in the first document, andS2 be the number of sentences in the other. To
perform the one-to-one sentence alignment of the two documents, in the worst case the
algorithm considersS1.S2 pairs. Each pair is measured for the degree of overlap by
computing an intersection costing no more thank1, wherek1 = the maximum sentence
length. The symmetry check takesmin(S1, S2) time. So, the worst case time complexity
of the algorithm isS1S2k1 +min(S1, S2). Now,S1 = N1/k2 andS2 = N2/k2, whereN1

is the number of distinct words in the first graph,N2 is the number of distinct words in the
second graph, andk2 is the minimum sentence length. Thus we have the worst case time
complexity as((N1/k2)(N2/k2)k1) +min(N1/k2, N2/k2). LettingN = max(N1, N2),
this givesO(N2) time complexity. The space complexity is given by the space required
to store each maximum value for each row and column in a matrix of sizeS1.S2, which
requiresS1 + S2 = O(N) storage.

GivenAlign’s quadratic worst case time complexity on document pairs, it is not partic-
ularly scalable, and it becomes even more computationally expensive to extend it to align
sentences for every pair of documents in a set. Further, it is hard to for the user to interpret
alignments between more than one pair at a time. Therefore, we have restricted its use to
a document pair at a time. However, our experience shows that the algorithm is surpris-
ingly useful in various applications, e.g., on static collections of news articles about related
events. It is able to discover both obvious cases where the two articles use very similar
sentences to describe a common event, as well as, in a large number of cases, ones where
the sentences are rather different.

Figure A.1 shows the top two one-to-one alignments from the AP-Reuters pair. Here
the alignments are shown boxed, with overlap terms in bold font. The first alignment’s
sentences, which do not mention the topicTupac Amaru, are near the top in both documents.
The algorithm often aligns initial texts, because the initial texts often use similar terms to
encapsulate a story. A comparison of alignment methods is described in Section 9.2.

7.2.4. Extracting Fragments instead of SentencesIn the above presentation strategies,
the presentation unit is the sentence. However, while a sentence may have a certain degree
of coverage of terms in Common (or Differences) (and therefore of terms related to the
topic by cohesion relations) there will be other words in the presented sentence which
aren’t related to the topic. Some of these words may be function words, but others may
not. Presenting units smaller than a sentence is thus often useful. One “bag-of-terms”
presentation strategy is to present lists of words, phrases, and proper names relevant to the
multi-document summary. These can be straightforward presentations of terms in Common
and Differences, or they can be presentations of sentences extracted by other presentation
modes . For example, terms in Common in the documents can be highlighted, much as
salient terms are highlighted in [43]. There are also certain applications which call for
well-formed, more connected extracts, but where, given a particular target compression
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Topic: arrest
Doc1: (AP)Man Held by N. Korea Found Dead; 12/19/96
Doc2: (New York Times)Man Held as Spy in NorthKorea Is a Suicide; 12/19/96
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
(13)... Hunziker had said he entered communistNorth Korea from China “out of curiosity and topreach theGospel
.” ...
(17)... American said he was inNorth Korea because he wanted topreach theGospel. ...
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
(27)... Evan refused totalk about histime in North Korea ...
(46)... interviews, preferring not totalk about histime in North Korea . ...
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
(20)... Hunziker had fouroutstanding arrest warrants for failing to comply with earlier court orders, such as
getting evaluated foralcohol anddrug abuse and attending ...
(7)... pursuit of him on threeoutstanding arrest warrants , or personal demons of drugs andalcohol . ...
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
(3)... (AP)Evan C. Hunziker would never say much about the threemonths he washeld in North Korea as aspy
suspect before diplomatic negotiations won hisrelease just in time forThanksgiving . ...
(4)... month after basking in theThanksgiving Eve glow ofrelease from North Korea , where he washeld as a
spy and threatened with execution,Evan Hunziker was found Wednesday ...
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
(5)... office ruled thedeath asuicide. ...
(53)... police said they considered thedeath asuicide. ...

Figure 8. Alignment Examples using Fragment Extraction

rate, we would like to pack the available space more efficiently. We will now illustrate its
use in multi-document alignment, although it is applicable to FSD and other presentation
modes.

Once we have aligned pairs of sentences, the synthesis component can choose to extract
fragments rather than full-sentences. Given a (soft) reduction factor (e.g., 25% of full-text),
the system picks off terms from Common from the reweighted positional term vector, and
then extracts a context window around each selected term occurrence. The context window
extraction is based on taking a minimal window (2-3 words) around each selected term
occurrence (by itself not likely to yield well-formed fragments) and extending the context
towards a boundary. The tests for a boundary uses patterns involving part-of-speech and
punctuation features. Overlapping contexts are then merged by merging their context
windows. The patterns are rather trivial at this point (e.g., extend to the right until the last
noun in a noun group, or punctuation characters) but with more data analysis we expect to
come up with a more definitive set of such patterns. This “middle-out” method allows for
fine-grained control in summary output, cuts out potentially irrelevant sentence material and
therefore packs the summary rather better with salient terms. This becomes useful in fitting
a larger number of alignments (each of which can be rendered in fewer words than two
full sentences) within the length limits required by the reduction factor for the summaries.
Figure 8 illustrates this. The sentence number from which each fragment is drawn is shown
alongside the fragment; the pairs are presented in decreasing order of degree of overlap.
Terms in Common are boldfaced. This particular summary shows a reduction of 28% over
the corresponding full-sentence summary.
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Figure 9. Number of nodes in graph as function of document size

8. Performance

We now measure the timing performance of the algorithms on Internet news sources. All
results are cpu time on a sparc10 with a 55 MHz clock speed. In Figure 9, we show the
number of nodes in the graph as a function of document size. Figures 10-13 show the times
to compute the graph, spread, segment-finding using clipping, and total time. The times are
plotted against document size. As can be seen, the time performance of these algorithms
appears to be approximately linear in document size.

Next, we measure the timing performance of the algorithm to find common nodes between
two graphs, described earlier in Section 7.1. This is shown in Figure 14. As can be seen
from these figures, the time to find common nodes is approximately linear in the size
of the documents. Finally, in Figures 15,16 and 17, we show the performance ofFSD,
Greedy-FSD, andAlign, respectively.
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Figure 10.Time to build graph as a function of document size

Figure 11.Spread Time as a function of document size

9. Evaluation

9.1. Overview

Text summarization is still an emerging field, and serious questions remain concerning the
appropriate methods and types of evaluation. There is little consensus as to what basis
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Figure 12.Clip Time as a function of document size

is best for comparison, e.g., summary to source, machine to human-generated, system to
system. In comparing against human summaries, reports of low inter-annotator agreement
over what should be included in a summary (e.g., [45], [36]) raise questions about the
appropriateness of a “gold standard” for sentence extraction.

In general, methods for evaluating text summarization approaches can broadly classified
into two categories. The first is an extrinsic evaluation in which the quality of the summary
is judged based on how it affects the completion of some other task. The second approach,
an intrinsic evaluation, judges the quality of the summarization directly based on user
judgements of informativeness, coverage, etc. In our evaluation we performed both type
of experiments. Evaluation experiments based on the intrinsic method are discussed in
Section 9.2.

We believe the objective evaluation measures we introduce in Section 9.3 represents a
significant step forward in terms of empirically demonstrating the utility of summarization
in a practical information retrieval task. This method has since been adopted as a standard
method for summarization evaluation in the U.S. government’s TIPSTER program [22].
However, it is important to stress that our evaluations, while obtaining statistically significant
results, are on small datasets.
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Figure 13.Total time (graph+spread+clip) as a function of document size

Figure 14.Time to find common nodes as a function of combined document pair size

9.2. Comparison of Weighting Methods in Cross-Document Alignment

In this experiment, six different schemes for reweighting words within the sentence were
compared: 1) tf.idf (RAW), 2) tf.idf with weights increased for proper names by a constant
factor (RAWPOL), 3) spreading
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Figure 15.Time for FSD as function of combined document pair size

Figure 16.Time for Greedy-FSD as function of combined document pair size

(SPREAD), 4) raw tf.idf after removal of low-weight terms (RAW-CLIP), 5) clipping after
RAWPOL (RAWPOL-CLIP) and 6) clipping after spreading
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Figure 17.Time for Align as function of combined document pair size

Table 2.Information about Sources Being Aligned

Table 3.Alignment Comparison Results

(SPREAD-CLIP). In all these schemes, we used cosine similarity instead of the overlap
measure, as it allows for more standard baselines. Three different document pairs were
used here for evaluation, as shown in Table 2. These pairs were selected from a larger
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Table 4.Summaries versus Full-Text: Task Accuracy, Time, and User Feedback

Metric Full-Text Summary
Accuracy (Precision, Recall) 30.25, 41.25 25.75, 48.75

Time (mins) 24.65 21.65
Usefulness of text in deciding relevance (0 to 1) .7 .8

Usefulness of text in deciding irrelevance (0 to 1) .7 .6
Preference for more or less text “Too Much Text.” “Just Right.”

collection of pairs of articles on international events culled from searches on the World
Wide Web, including articles from Reuters, Associated Press, the Washington Post, and the
New York Times. Pairs were selected such that each member of a pair was closely related
to the other, but by no means identical; the pairs were drawn from different geopolitical
regions so that no pair was similar to another. In the Peru pair only the precision of the top
ten sentence pairs is calculated. For the other pairs precision is calculated for all output
sentence pairs (on average 50 sentence pairs for Evangelist and 60 for Chechnya). For each
document pair the assigned weighting method was applied to each text and the single best
match for each sentence was output. The goal of this experiment was to measure the ability
of the alignment method to find correct alignments (those that are both correctly aligned
and relevant to the user’s given topic). Alignment correctness was determined by a human
judge.

In Table 3, we see that all of the reweighting schemes outperform the baseline tf.idf
measure for these tasks and that the highest average results are obtained with the method
which uses spreading and clipping. The results with spreading alone (SPREAD) were also
better on average than tf.idf (RAW) with the greatest difference on the Evangelist pair,
but small differences on the other pairs. The removal of words using clipping resulting
in improvements (on average) for the RAW and SPREAD based methods, but not for the
RAWPOL. Clipping results in the most reduction when the differences between minimum
and maximum word weights is greatest. This suggests that the proper name weight incre-
ment in RAWPOL may have been too large, causing more words, and sometimes useful
words, to be removed. These results are only suggestive; conclusive results would require
experimenting with a much larger data sample.

9.3. Effectiveness of Spreading Activation

In addition to the intrinsic evaluation of alignments, we also carried out an extrinsic eval-
uation, where we evaluated the usefulness of spreading in the context of an information
retrieval task. In this experiment, subjects were informed only that they were involved in a
timed information retrieval research experiment. In each run, a subject was presented with
a pair of query and document, and asked to determine whether the document was relevant
or irrelevant to the query. In one experimental condition the document shown was the full
text, in the other the document shown was a summary generated with the top 5 weighted
sentences. Subjects (four altogether) were rotated across experimental conditions, but no
subject was in both conditions for the same query-document pair. We hypothesized that if
the summarization was useful, it would result in savings in time, without significant loss in
accuracy.
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Four queries (204, 207, 210, and 215) were preselected from the TREC [23] collection of
topics, with the idea of exploiting their associated (binary) relevance judgments. A subset
of the TREC collection of documents was indexed using the SMART retrieval system
from Cornell [11]. Using SMART, the top 75 hits from each query were reserved for the
experiment. Overall, each subject was presented with four batches of 75 query-document
pairs (i.e., 300 documents were presented to each subject), with a questionnaire after each
batch. Accuracy metrics include precision (percentage of retrieved documents that are
relevant, i.e., number retrieved which were relevant/total number retrieved) and recall
(percentage of relevant documents that are retrieved, i.e., number retrieved which were
relevant/total number known to be relevant).

In Table 4, we show the average precision and average recall over all queries (1200
relevance decisions altogether). The table shows that when the summaries were used, the
performance was faster than with full-text (F=32.36, p< 0.05, using analysis of variance
F-test), without significant loss of accuracy. While we would expect shorter texts to take
less time to read, it is striking that these extracts are effective enough to support accurate
retrieval. In addition, the subjects’ feedback from the questionnaire (shown in the last three
rows of the table) indicate that the spreading-based summaries were found to be useful.

10. Conclusion

This summarization approach exploits the results of recent progress in information extrac-
tion to represent salient units of text and their relationships. By exploiting meaningful
relationsbetween units based on text cohesion and theperspectivefrom which the com-
parison is desired, the summarizer can pinpoint similarities and differences and align text
extracts across articles. In evaluations, these techniques for exploiting cohesion relations
result in summaries which helped users more quickly complete a retrieval task, which re-
sulted in improved alignment accuracy, and which improved identification of topic-relevant
similarities and differences. Our approach is highly domain-independent, even though we
have illustrated its power mainly for news articles. However, despite these encouraging
outcomes, we are also painfully aware that the field of summarization has still a long way
to go, and that these methods only touch the surface of the problem. It is our hope that
this paper will spur discussion and future work in this area. In the future, we expect to
investigate incorporation of co-occurrence statistics, e.g., [14], [17], [19], [20], [52], and
also to further investigate temporal sequences of stories, to summarize changes over time.
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Appendix

Reuters

1.39: Aoki, the Japanese ambassador, said in telephone calls to

Fujimori.

Japanesebroadcaster NHK that the rebels wanted to talk directly to

1.38:Fujimori whose sister was among the
an emergency cabinet meeting today.

hostages released, called

1.43:According to some estimates, only a couple hundred armed
followers remain.

Associated Press

1.6:As police ringed the building early
threatened to start killing the hostages .

, an excited rebelWednesday

1.12:Police said they slipped through security
driving into the compound with champagne and

by posing as waiters,
hors d’oeuvres.

...

2.27:Although the MRTA gained support in its

early days in the mid-1980s as a Robin

give to the poor, it lost public sympathy after

turning increasingly to kidnapping, bombing

billion in damage to the country’s infrastructure

since 1980.

and drug activities. 2.28:Guerilla conflicts in

Peru have cost at least 30,000 lives and $25

2.26:The MRTA called Tuesday’s
"Breaking The Silence."

operation

Hood-style movement that robbed the rich to

2.1: Peru rebels hold 200 in Japanese
ambassador’s home

...

2.22:The attack was a major blow to

Fujimori’s government, which had claimed

virtual victory in a 16-year war on communist

rebels belonging to the MRTA and the larger

and better-known Maoist Shining Path.

1.2: Copyright Nando.net Copyright The Associated Press

1.4:*Peru embassy attackers thought defeated in 1992

that they are

Topic: Tupac Amaru

1.1:Rebels in Peru hold hundreds of hostages inside Japanese diplomatic
residence

many of them high-ranking officials, held at the
Japanese ambassador’s residence unless the
Peruvian government freed imprisoned fellow
rebels.

from within the embassy residence.

with Japan’s Prime Minister Ryutaro Hashimoto.
of hostages at 200 in a telephone conversation
2.9:President Alberto Fujimoro put the number
...

...

COREF

dawn on Wednesday.
negotiations with the government beginning at
for a review of Peru’s judicial system and direct

2.13:The rebels said they had 400 to 500
comrades in jail and said their highest priority
was release of Victor Polay, their leader who
was imprisoned in 1992. 2:14 They also called

2.19 They are freeing us to show
not doing us any harm," said one woman.

...

...

...

...
Germany, Austria and Venezuela.
the ambassadors of Brazil, Bolivia, Cuba, Canada, South Korea,

...

...

...
1.28:Many leaders of the Tupac Amaru which is smaller than Peru’s

was captured in June 1992 and is serving a life sentence, as is his

soon after her release that she had been eating and drinking in an elegant

us: ‘Don’t lift your heads up or you will be shot."
1.19:

hostages," a rebel who did not give his name told  a local radio station in
a telephone call from inside the compound.

"The guerillas stalked around the residence grounds threatening

lieutenant, Peter Cardenas. 

1.17:Another guest, BBC correspondant Sally Bowen said in a report

marquee on the lawn when the explosions occurred.
...

1.25: "We are clear: the liberation of all our comrades, or we die with all the

1.30:Other July 1993.and surrendered in

Maoist Shining Path movement are in jail. 1.29:Its chief, Victor Polay,

ADJ

ALPHA

ADJ

, the rebels threatened to kill the remaining 1.24:Early Wednesday

top commanders conceded defeat

compound at the start of the reception, which was in honor of Japanese
Emperor Akihito’s birthday.

1.11:The group of 23 rebels, including three women entered the

1.3:*U.S. ambassador not among hostages in Peru

...

captives.

1.32: President Alberto Fujimori, who is of Japanese ancestry, has had
close ties with Japan.

1.33: Among the hostages were Japanese Ambassador Morihisa Aoki and

Movement (MRTA) told a local radio station

2.4:"If they do not release our prisoners, we

Cuban-inspired Tupac Amaru Revolutionary
will all die in here," a guerrilla from the

ADJ

COREF

on Wednesday to kill at least 200

1.5:LIMA, Peru(Dec 18, 1996 05:54 a.m. EST) Well-armed guerillas
posing as waiters and carrying bottles of champagne sneaked into a
glittering reception and seized hundreds of diplomats and other guests.

threatened

SAME

1.9:They demanded the release of their jailed comrades in the Tupac Amaru
rebel movement.

ADJ

...

ADJ

COREF

2.2:By Andrew Cawthorne

2.3:LIMA-Heavily armed guerrillas
hostages ,

Figure A.1. Texts of two related articles. The top 5 salient sentences containing words in Common have these
common words in bold face; likewise, the top 5 salient sentences containing words in Differences have these
words in italics. Alignments are shown boxed.
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Notes

1. There is some degree of consensus on this, though it is not entirely standard. [55] characterizes summarization
in terms of a three-phase model, but chooses the term ‘transformation’ rather than ‘refinement’. [33] assumes
a four-phase model, where what we are calling ‘refinement’ is split into ’selection’ and ’condensation’.

2. As [28] shows, in applying the TextTiling work of [24] to closed-captioned news broadcasts, it is hard to make
do with a single block size; the block size must be small enough to catch relatively small topics, and yet large
enough for the similarity metric to be useful.

3. In general, the relations grouped under ‘text cohesion’ as used by [21] include linguistic devices such as
anaphora, ellipsis, conjunction and lexical relations such as reiteration, synonymy, hypernymy, and conjunction.

4. Repetition links are not evidenced in the example.

5. In terms of accuracy, when trained on about 950,000 words of Wall Street Journal text, the tagger obtained
96% accuracy on a separate test set of 150,000 words of WSJ [1].

6. Here the symbol⇒ stands for a hypernym link,⇔ for a synonym link.

7. The matching uses stemming based on [44].
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