
Journal of Clinical Monitoring and Computing 14: 421^424, 1998.
ß 1998 KluwerAcademic Publishers. Printed in the Netherlands.

AN EVOLUTIONARY SOLUTION TO ANESTHESIA
AUTOMATED RECORD KEEPING
Alvin A. Bicker, PhD, John S. Gage, MD, and
Paul J. Poppers, MD

From the Department of Anesthesiology, State University of New
York at Stony Brook, Stony Brook, NY 11794, U.S.A.

Received Mar 25, 1997; and in revised form May 29, 1998. Accepted
for publication 9 Jun, 1998.

Address correspondence to Dr Alvin Bicker, State University of
New York at Stony Brook, Stony Brook, New York 11794-8480,
U.S.A.

Bicker AA, Gage JS, Poppers PJ. An evolutionary solution to anes-
thesia automated record keeping.

J Clin Monit 1998; 14: 421^424

ABSTRACT. In the course of ¢ve years the development of an
automated anesthesia record keeper has evolved through
nearly a dozen stages, each marked by new features and
sophistication. Commodity PC hardware and software mini-
mized development costs. Object oriented analysis, program-
ming and design supported the process of change. In addition,
we developed an evolutionary strategy that optimized moti-
vation, risk management, and maximized return on invest-
ment. Besides providing record keeping services, the system
supports educational and research activities and through a
£exible plotting paradigm, supports each anesthesiologist's
focus on physiological data during and after anesthesia.

KEY WORDS. Automated record keeper, evolution, manage-
ment of risk, object-oriented.

PARADIGM OF FIXED MODEL ANALYSIS

In Science and Engineering it has been felt that ¢xed
models of analysis and solution are the proper approach
to problem solving. As larger and more complicated
projects were attempted, conventional wisdom still
held the ¢xed model as gospel: everything becoming
known if studied long enough with adequate resources.
In anesthesiology, the introduction of technology

coincided with the arrival of engineers, and the para-
digm of ¢xed problem analysis and solution has domi-
nated most applications of technology therein. Yet in
anesthesia information systems, the lack of success of
a system has usually been attributed to improper study
of the problem, improper design of the solution, or
improper implementation of the design.Virtually never
have the underlying beliefs about the ¢xed-problem-
solving approach been questioned.

Evolution of requirements

Engineers believe that a changing problem description
denotes an inadequate understanding of the problem
and thus change is to be avoided. An engineer encoun-
tering this evolution phenomenon looks for ways to
keep the problem from changing. Eventually most
development projects impose a deadline past which
changes are not considered. But the problem has not
stopped changing; the engineer has simply enforced an
arti¢cial steady state in its description.



EXPERIENCES OF THE PROJECT

Information system problem solving is constrained by
the model of the system and the model for analysis
and programming. To construct an automated record
keeper the ¢rst model is how anesthesia is conducted.
Yet professional discussions about issues in anesthesia
indicate that there are di¡erences of opinion and areas
of unknowns in this model.
The second model, the practice of analysis and pro-

gramming, is less clear; yet many medical, computing,
and management professionals assert the model is well
known. It is complicated by rapid evolution of technol-
ogy as well as the scarcity of information professionals
who are experienced in the medical domain.
Fortunately this rapid evolution of technology has

provided motivation and opportunity to see how tech-
nology can be used to support change [1]. A generation
in computing is about 3 to 4 years, much shorter than
that in other disciplines. The search for methods and
principles to cope with this problem has produced new
concepts as well as improved tools and strategies. No
doubt more will arise in the future.

Automated record keeping project

We began our automated record keeping project ¢ve
years ago with the agreement that the problem was too
big to be tackled in its entirety, and that regulatory and
information system forces external to our environment
would impose unpredictable requirements. We knew
that the very process of design and programming
would always provide new insights into problem and
solution. Rather than arti¢cially suppress these factors,
we decided to incorporate and exploit them.
We adopted a partial-problem solving strategy: we

would design a general architectural plan, and then
build the solution step by step. Each step should thus ¢t
into the architectural framework with minimal disrup-
tion of previously developed solutions. Object oriented
analysis and programming tools were selected because
they support complexity and change [2].We also devel-
oped a risk management strategy that quickly and at
minimal cost identi¢ed impractical concepts.We avoided
modeling objects as ¢xed quantities. We further ana-
lyzed the essence of every component in a generic and
abstract way to achieve general solutions.

Series of stages

In constructing an anesthesia record keeper for our
operating room with its particular anesthetic and mon-
itoring equipment, we utilized commodity PC clone
hardware and a relatively uncomplicated operating sys-
tem (DOS). To support our programming, we chose
the C++ object oriented language (Borland C++ com-
piler). Development proceeded in a series of stages, each
with a de¢nable set of goals that advanced the system to
a higher level of functionality (Table 1).

PRELIMINARY FINDINGS

Results show that an evolutionary problem solving
approach can produce an information system of in-
creasing complexity that keeps pace with, or exceeds
those available from commercial sources. It has met
new demands not conceptualized originally. It provides
a medical record printout that can replace a manual
record. Through its £exible multivariable plot para-
digm it o¡ers new perceptions of data to support
decision making in complex situations. Because evolu-
tion is under local control, new concepts can be added.
Unexpected di¤culties were experienced. The DOS

640 k memory limit became a problem.We were able to
raise this limit by using the Virtual Object Overlay
Manager (part of Borland C++), which oversees the
swapping of currently inactive objects out of RAM
memory so that others can be swapped in and run on
demand. Our monitoring program exceeds 900 k in
size and runs with no apparent speed handicap.
In addition, the system's overall architecture under-

went numerous minor changes and several major ones
as requirements evolved. The object orientation of
the design facilitated this evolution. Because data and
processes are bundled into classes and not scattered
randomly, much functionality is protected during de-
sign changes. Objects evolved substantially and they
continue to evolve. New properties are added; old ones
get rede¢ned.When we identify common functionality
in several classes we move this into a single base class
and then re-integrate it via inheritance. This is a power-
ful tool to eliminate code redundancy.
We have also realized the e¤ciencies of code reuse

with the object model. The data storage/retrieval and
graphics display subsystem is incorporated without
alteration in the monitoring system, the review and
analysis system, and the computer-assisted instruction
system. This has allowed us to achieve a common user
interface across the three vital domains of research,
education, and clinical activity. Commercial designs

422 Journal of Clinical Monitoring and Computing Vol 14 No 6 August 1998



generally do not incorporate support for research and
teaching.

SUPPORTING EVOLUTION

Because the expense of building computerized medical
information systems has been high and the ability to
manage such projects is low, the trend has been to
purchase ready-made systems. When one includes the
requirement for responsive evolution to the user's
needs, it is doubtful that this approach is cost e¡ective.
The key question is ``What should be bought from

vendors? '' It is generally agreed that hardware, operating
systems, network operating systems, relational databases,
word processors, and spreadsheets are fairly sophisticated
and mature entities, available at commodity prices. But
for medical applications, it is di¤cult to obtain mature
components at commodity prices, especially ones that

support evolution. It seems wiser to buy the tools of
analysis, design and programming that empower us to
construct the evolutionary components, reserving the
maximum potential for evolution within the organiza-
tion.

Development methods that support evolution

Object-oriented analysis, design, and programming
tools have produced a fundamental change in the ap-
proach to building a system. In the pre-object era
(a.k.a. procedural programming) there were no boun-
daries within a computer program's memory space. All
variables were in a collective pot along with the pro-
gram instructions; unwanted, unplanned interaction
easily occurred through addressing and naming errors.
Various naming methods and partitioning schemes were
attempted, but success depended too much on human

Table 1. The stages of evolution encountered during the development of the record keeper

Stage Activity

I Construction of the communication interface to the anesthesia machines (N.A. Drager Narkomed 3, 4, & 2C). Added
data storage and tabular printout features.

II Addition of an interface to the physiological monitor (Siemens 404), followed by graphical display of data and capture
of notes, and discrete variable information, a general case review facility utilizing the same graphics system, and
interfaces to an infusion pump (IMED Gemini) and the EMGmonitor (Datex).

III Adaptation of the review capabilities into a computer assisted instruction (CAI) paradigm that supports the formulation
of multiple choice question and answer rationales at selected time points of an anesthetic procedure, allowing clinical
data to be utilized for teaching [3].

VI Adaptation of the monitor to study a new anesthetic (Sevo£urane). Interfaces for four new monitors (Ohmeda 7800
ventilator, Datex Capnomac, Nelcor 2000 pulse-oximeter, and Omega 1400 NIBP), a custom tabular printout and an
event marker facility were added.

V Extension of the CAI system to construct a didactic program from a collection of short segments (snippets) of clinical
cases. This program is able to focus on a particular physiological management issue.

VI Expansion of the system to capture all data needed for a printout of an o¤cial medical record. Demographics, physician
data, medical history and diagnoses, anesthetic management, and £uid replacement are entered by keyboard.

VII Adaptation of the communications front end to work with the Medical Information Bus (IEEE standard 1073)
prototype hardware and software (ILC Data Device Corporation) to replace RS232 communication links to monitors
[4]. Demonstration of the Plug and Play and theVirtual Medical Device features of MIB.

VIII Adaptation of the system to a laptop computer with a single serial port by moving the communications front end to an
outboard DOS-based communications concentrator.

IX Addition of con¢gurable customization options to support anesthesia delivery during electro-convulsive shock therapy
[5], including multiple variables per plot.

X Addition of control features to the plot subsystem so as to save the current graphics setup along with the data set for a
given case. The ability to de¢ne graphic templates by name for automatic setup of the plots for di¡erent patients was
also incorporated.

XI Incorporation of an anesthesia-event-knowledge base viewable simultaneously with monitor data by means of a split
screen format [6].

Bicker et al: An Evolutionary Solution toAnesthesia Automated Record Keeping 423



discipline. E¡orts to isolate components from one an-
other eventually led to the concept of encapsulation.
Today's object languages provide a logical encapsula-

tion of the inner working of an object and rigorous
control of the interface with the rest of the system, very
similar to what the biological membrane provides for
the cell. Just as nature uses cellular constructs to support
complexity, object programming can signi¢cantly im-
prove the result of investments in information technol-
ogy. The most important fundamental object concepts
are the following:

Data abstraction, through the collection of varia-
bles and processes associated with individual objects,
supports the modeling of real world objects into struc-
tural design units, called classes.
Encapsulation creates tight logical boundaries

around each of the objects created from a given class,
and it eliminates undesireable interaction between ob-
jects. Communication between objects occurs through
tightly de¢ned interfaces across these boundaries.
Inheritance allows one object to inherit character-

istics from another, rather than recreate that function and
incur the evolutionary overhead of redundant design.

Even well designed objects evolve over time, acquiring
additional features; sometimes they break into several
sub-objects as new understanding is achieved. Pro-
grammers sense a continued investment in the objects
of a system, which is lacking in the develop-and-leave
experience of traditional procedural methods.
Programming languages are themselves evolving at a

rapid rate. Object orientation in the strict C++ sense is
powerful and very detailed. Recently, Java has emerged
as a ``safer'' evolution of C++, designed to support
Internet and intranet information paradigms. Compo-
nent software programming systems, such as Visual
C++ & JBuilder, have attracted interest because many
of the modules one needs are already available as soft-
ware components. In addition, much programming can
be done with the built-in visual drag and drop para-
digm. These systems include interfaces to data model-
ing tools, data access to most relational databases, and a
visual programming paradigm for GUI applications.
A number of conclusions and suggestions support

evolutionary program development.

1. A team of creative users and creative engineers utiliz-
ing rapid prototyping methods can achieve a highly
e¤cient process in minimal time.

2. Success in evolution bene¢ts from a strategic ap-
proach to managing risk. A new feature that is
strictly additive o¡ers minimal risk since it can be

detached during development and testing, leaving
the prior system intact. One that requires redesign
of an existing module is riskier since the system re-
quires modi¢cation. When several existing modules
are involved, the risk is even greater.

3. Exploit the object paradigm to achieve clarity in
architecture and operation. Objects and architecture
evolve as work progresses. Objects and interfaces
must be carefully de¢ned to restrict subsequent im-
pact of change and enhance testing.

4. Everything programmers build will one day have
to be modi¢ed. When redesigning or extending the
features of an object, programmers can either read
the earlier imbedded notes or re-derive the logic by
reading the code. In the evolutionary model, undocu-
mented programming quickly becomes expensive.

In conclusion, by adopting an evolutionary problem/
solution model, we have achieved considerable success
in building an automated record keeper for the anes-
thesiologist. In addition we have gained valuable insight
into the anesthesia information domain that will allow
us to further enhance and expand the system.

REFERENCES

1. Hammer M, Champy J. Reengineering the corporation.
Harper Business, 1993

2. Booch G. Object oriented design. Redwood City (CA):
Benjamin Cummings, 1991

3. Gage JS, Bicker A, Poppers PJ. Computer assisted instruc-
tion: From the clinic to the classroom. Proc. 14th Internat.
Symp. Anesth. Intensive Care. Rotterdam: Erasmus Uni-
versity, 1994: 49^50

4. Kennelly RJ, Wittenber J. New IEEE standard enables
data collection for medical applications. Proceedings ^ the
Annual Symposium on Computer Applications in Medi-
cal Care, 1994: 531^535

5. Gage JS, Litman SJ, Bicker A, Poppers PJ. Automated
record keeping for electroconvulsive therapy. Br J Anaesth
1995; 74; 24

6. Gage JS, Bicker A, Poppers PJ. Automated record keeping
to advance anesthesia education. Proc. 16th Internat.
Symp. Anesth. Intensive Care. Rotterdam: Erasmus Uni-
versity, 1996: 128^129

424 Journal of Clinical Monitoring and Computing Vol 14 No 6 August 1998


