
Information Retrieval, 3, 357–377, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Hierarchical Document Retrieval Language

RONALD R. YAGER
Machine Intelligence Institute, Iona College, New Rochelle, NY 10801, USA

Received May 27, 1999; Revised March 28, 2000; Accepted May 1, 2000

Abstract. The focus of this work is on the development of a document retrieval language which attempts to en-
able users to better represent their requirements with respect to retrieved documents. We describe a framework for
evaluating documents which allows, in the spirit of computing with words, a linguistic specification of the interre-
lationship between the desired attributes. This framework, which makes considerable use of the Ordered Weighted
Averaging (OWA) operator, also supports a hierarchical structure which allows for an increased expressiveness of
queries.

Keywords: concept formation, information retrieval, aggregation methods, hierarchical concepts

1. Introduction

The need to effectively retrieve documents satisfying user requirements has emerged as one
of the most important technological problems we are now facing. While this interest is clearly
driven by the explosive use of the internet, non-internet based document storage systems are
also rapidly increasing. Within the current level of our capabilities, the desire for both recall
and precision (Salton 1989), i.e. that we want all relevant and only relevant documents,
is proving to be a very onerous burden. While future generations will almost surely have
available computers with the ability to do natural language processing, a technology that
will definitively solve this retrieval problem, this is not presently a viable alternative, see
Grossman and Frieder (1998) for a comprehensive overview of the different approaches to
information retrieval.

At the heart of the current problem with retrieval systems is the need to effectively express
search requirements within a language that can be “understood” by the computer. For the
most part the current paradigm involves a situation in which a document is “represented.”
This representation consists of adecompositionof a document into attributes, for each of
which the document can be scored. These attributes can be as simple as the appearance of
a word or phase or can be based upon a processing of the document and involve things like
frequency of term occurrence or linguistic analysis. When searching, users must express
their requirements in terms of these attributes. A document’s conformity to the individual
attributes specified by a user forms the basis of the documents overall evaluation to the user’s
request. Another component in the evaluation of a document is the process used to aggregate
the scores of the specified attributes. The method of aggregation used reflects some aspect
of the desired interrelationship between the specified attributes and as such it can be seen as
a kind of recompositionof the document. Typical examples of aggregation are the simple
average and those based upon logical connections,AndingandOring. A considerable body
of work has been devoted to the aggregation issue (Lee et al. 1992, 1993).

358 YAGER

One way to develop more efficient retrieval systems is to provide a wide class of aggre-
gation techniques which could enable the system to implement sophisticated interactions
among attributes and thereby allow the users increased expressiveness in specifying their
desires. This extension of aggregation options would be even more beneficial if, as in logic,
a strong correspondence existed between formal methods of aggregation and natural lan-
guage specification, a kind of computing with words (Zadeh 1996). It is our purpose here
to provide such a capability.

The approach we describe here can be see to be an extension of the fuzzy set methods
of information retrieval. A particularly useful resource on fuzzy methods in information
retrieval is a recent survey by Kraft et al. (1999). We assume our system has a collection of
basic primitive concepts. This set of primitives is similar to the term space used in the vector
space model. These primitives provide a set of attributes which can be used to describe any
document. IfAj is a primitive concept we can associate with any documentd a valueAj (d)
indicating the degree to which documentd is aboutAj . Thus in this model a document is
represented as the set of values corresponding to its score for each of the primitive concepts.
In addition to providing the description of the documents the primitives are used to construct
the queries to the system. For example, a user interested in documents pertaining to bothA1

andA2 would simply pose the Boolean query (A1 and A2). The satisfaction of a document
to this query is then based upon its score for these two concepts. In this work we provide
tools to enable the evaluation of more sophisticated queries. For example we provide a
methodology for evaluating weighted Boolean queries, ((A1, α1) and (A2, α2)), whereα1

andα2 are the respective importances. In addition we describe a method for evaluating
queries such as

I want a document that has information about mostof the following topics.......

In addition the expressive capability of the query language will be enhanced by the use of
a hierarchical structure to represent queries.

2. A general approach to aggregation

Central to any document retrieval system is the need for the aggregation of scores (Kraft
et al. 1999). In order to provide a very general framework to implement aggregations,
we shall use the Ordered Weighted Averaging (OWA) operator (Yager 1988, Yager and
Kacprzyk 1997). In the following, we briefly review the basic ideas associated with this
class of aggregation operators.

Definition. An Ordered Weighted Averaging (OWA) operator of dimensionn is a mapping
F which has an associated weighting vector

W =

w1

w2

.

.

wn

A HIERARCHICAL DOCUMENT 359

in which

1. w j ∈ [0, 1]
2.
∑n

j=1w j = 1

and where

F(a1,a2, . . . ,an) =
n∑

j=1

w j bi

with bj being thej th largest of theai .

A key feature of this operator is the ordering of the arguments by value, a process that
introduces a nonlinearity into the operation. Formally, we can represent this aggregation
operator in vector notation asF(a1,a2, . . . ,an) = WTB, whereW is the weighting vector
andB is a vector, called the ordered argument vector, whose components are thebj . Here
we see the nonlinearity is restricted to the process of generatingB. It can be shown that this
operator is in the class of mean operators (Yager 1988) as it is commutative, monotonic, and
bounded, Min[ai] ≤ F(a1,a2, . . . ,an) ≤ Max[ai]. It can also be seen to be idempotent,
F(a,a, . . . ,a) = a.

The great generality of the operator lies in the fact that by selecting thew j , we can imple-
ment different aggregation operators. Specifically, by appropriately selecting the weights
in W, we can emphasize different arguments based upon their position in the ordering. If
we place most of the weights near the top ofW, we can emphasize the higher scores, while
placing the weights near bottom ofW emphasizes the lower scores in the aggregation.

A number of special cases of these operators have been pointed out in the literature (Yager
1993). Each of these special cases is distinguished by the structure of the weighting vectorW.
Consider the situation where the weights are such thatw1= 1 andw j = 0 for all j 6= 1. This
weighting vector is denoted asW∗ and in this case we getF(a1,a2, . . . ,an) = Max j [aj].
Thus the Max operator is a special case of the OWA operator. If the weights are such that
wn = 1 andw j = 0 for j 6= n, denotedW∗, we getF(a1,a2, . . . ,an) = Min j [aj]. Thus
the Min operator is a special case of the OWA operator. As we noted above, the Min and
the Max provide the extremes of this operator. If the weights are such thatw j = 1

n for all
j , denotedWave, thenF(a1,a2, . . . ,an) = 1

n

∑n
j=1 aj . Thus we see that the simple average

is also a special case of these operators.
If W = W[k] is such thatwk = 1 andw j = 0 for j 6= k, thenF(a1,a2, . . . ,an) = bk,

thekth largest of theai . The median is also a special case of this family of operators. Ifn is
odd, we obtain the median by selectingw(n+1)/2 = 1 and by lettingw j = 0, for j 6= n+1

2 .
If n is even, we get the median by selectingwn/2 = w(n/2)+1 = 1

2 and lettingw j = 0 for all
other terms.

An interesting class of these operators is the so-called olympic aggregators. The simplest
example of this case is where we selectw1 = wn = 0 and letw j = 1

n−2 for j 6= 1 or n. In
this case, we have eliminated the highest and lowest scores and we’ve taken the average of
the rest. We note that this process is often used in obtaining aggregated scores from judges
in olympic events such as gymnastics and diving.

360 YAGER

In Yager (1988), we introduced two measures useful for characterizing OWA operators.
The first of these measures, called the alpha value of the weighting vector, is defined as

α = 1

n− 1

n∑
j=1

(n− j)w j .

It can be shown,α ∈ [0, 1]. Furthermore, it can also be shown that:

α = 1 if W = W∗

α = 0.5 if W = Wave

α = 0 if W∗.

Essentiallyα provides some indication of the inclination of the OWA operators for giving
more weight to the higher scores or lower scores. The closerα is to one, greater preference
is given to the higher scores’, the closerα to zero, the greater preference is given to lower
scores, and a value close to 0.5 indicates no preference. The actual semantics associated
with α depends upon the application at hand. For example, in using the OWA operators
to model logical connectives between theandandor, α can be associated with a measure
of the degree ofornessassociated with an aggregation. We note that if we useW[k] , then
α = n−k

n−1 and we see that ask moves from one (Max) ton (Min) α gets smaller.
It can be shown that whileα = 1 only if W = W∗ andα = 0 only if W = W∗, other

values ofα can be obtained for many different cases ofW. A particularly interesting case
is α = 0.5. It can be shown that for any OWA operator having aW with wn− j+1 = w j for
all j , we getα = 0.5. Thus we see any symmetric OWA operator hasα = 0.5. Essentially
these operators are in the same spirit as the simple average.

The second measure introduced in Yager (1988) was

Disp(W) = −
n∑

j=1

w j ln(w j).

In Yager (1988) it was suggested that this measure can be used to measure the degree to
which we use all the information in the argument. It can be shown that for allW

0≤ Disp(w) ≤ ln(n).

We note Disp(w) = 0 iff W = W(k) and Disp(w) = ln(n) iff W = Wave. It can be shown
that of all the symmetric implementations ofW, those havingα = 0.5 (Wave) has the largest
measure of Disp.

3. Linguistic expressions to obtain the OWA weighting vector

Let us now consider a basic application of the OWA operator in document retrieval systems.
AssumeA1, A2, . . . , An is a collection of attributes of interest to a searcher using a document
retrieval system. For any given documentd, let Ai (d) ∈ [0, 1] indicate the degree to which

A HIERARCHICAL DOCUMENT 361

documentd satisfies the property associated with attributeAi . Using the OWA operator, we
can obtain an overall valuation of documentd as

Val(d) = Fw(Ai (d), A2(d), . . . , An(d)).

Since the value obtained as a result of using OWA aggregation is dependent upon the
weighting vector, the issue of deciding upon the weighting vector appropriate for a particular
aggregation is of great importance. A number of different approaches have been suggested
for obtaining the weighting vector to use in any given application (Yager 1997). For our
purpose, that of developing a user friendly document retrieval system, we shall describe an
approach based upon the idea of linguistic quantifiers.

The concept of linguistic quantifiers was originally introduced by Zadeh (1983). A lin-
guistic quantifier, more specifically a proportional linguistic quantifier, is a term correspond-
ing to a proportion of objects. While most formal systems, such as logic, allow just two
quantifiers,for all andthere exists, as noted by Zadeh, human discourse is replete with a
vast array of terms, fuzzy and crisp, that are used to express information about proportions.
Examples of this aremost, at least half, all, about1/3. Motivated by this Zadeh (1983) sug-
gested a method for formally representing these linguistic quantifiers. LetQ be a linguistic
expression corresponding to a quantifier such asmost; then, Zadeh suggested, represent this
as a fuzzy subsetQ over I = [0, 1] in which for any proportionr ∈ I , Q(r) indicates the
degree to whichr satisfies the concept indicated by the quantifierQ.

In Yager (1996) Yager showed how we can use a linguistic quantifier to obtain a weighting
vectorW associated with an OWA aggregation. For our purposes we shall restrict ourselves
to regularly increasing monotonic (RIM) quantifiers. A fuzzy subsetQ : I → I is said to
represent a RIM linguistic quantifier if

1) Q(0) = 0
2) Q(1) = 1
3) if r1 > r2 thenQ(r1) ≥ Q(r2) (monotonic)

These RIM quantifiers model the class in which an increase in proportion results in an
increase in compatibility to the linguistic expression being modeled. Examples of these
types of quantifiers areat least one, all, at leastα%, most, more than a few, some.

AssumeQ is a RIM quantifier. Then we can associate withQ an OWA weighting vector
W such that forj = 1 ton

w j = Q

(
j

n

)
− Q

(
j − 1

n

)
Thus using this approach we obtain the weighting vector directly from the linguistic ex-
pression of the quantifier. The properties of RIMness guarantee that the properties ofW are
satisfied:

1. SinceQ is monotonic,Q(j
n) ≥ Q(j−1

n), and sow j ≥ 0

2.
∑n

j=1w j =
∑n

j=1 Q(j
n)− Q(j−1

n) = Q(1)− Q(0) = 1

362 YAGER

Figure 1. Linguistic quantifier “for all”.

Figure 2. Linguistic quantifier “not none”.

Let us look at the situation for some prototypical quantifiers. The quantifierfor all is shown
in figure 1. In this case we get thatw j = 0 for j 6= n, andwn = 1, W = W∗. In this case
we get as our aggregation the minimum of the aggregates. We also recall that the quantifier
for all corresponds to the logical “anding” of all the arguments.

In figure 2 we see the existential quantifier,at least one, this the same asnot none. In this
casew1 = 1 andw j = 0 for j > 1, W = W∗. This can be seen as inducing the maximum
aggregation. It is recalled this quantifier corresponds to a logicaloring of the arguments.

Figure 3 is seen as corresponding to the quantifierat leastα. For this quantifierw j = 1
for j such thatj−1

n < α ≤ j
n andw j = 0 for all other.

Figure 3. Linguistic quantifier “at leastα”.

A HIERARCHICAL DOCUMENT 363

Another quantifier is one in whichQ(r)= r for r ∈ [0, 1]. For this quantifier we get
w j = j

n − j−1
n = 1

n for all j . This gives us the simple average. We shall denote this quanti-
fier assome.

As discussed by Yager (1993) one can consider parameterized families of quantifiers. For
example consider the parameterized familyQ(r) = r ρ , whereρ ∈ [1,∞]. Here if ρ = 0,
we get the existential quantifier; whenρ = ∞, we get the quantifierfor all and whenρ = 1,
we are get the quantifiersome. In addition for the case in whichρ = 2, Q(r) = r 2, we get
one possible interpretation of the quantifiermost.

We are now in a position to address the issue of obtaining the OWA weighting vector to
be used in a search in a user friendly document retrieval system. In constructing such a user
friendly system we shall make available to the user a vocabulary,Q = {Q1,Q2, . . . ,Qq},
of linguist expressions, each corresponding to a linguistic quantifier. When posing a query,
the user, after specifying a collection of attributes of interest(A1, A2, . . . , An), will be
prompted to also specify one of the linguistic quantifiers inQas guiding the query formation.
Transparent to the user is the association of each of the linguistic terms inQ, with a
representative fuzzy subset,Qi ⇔ Qi , and the process of converting this fuzzy subset into
an OWA weighting vector based on the formulation

w j = Qi

(
j

n

)
− Qi

(
j − 1

n

)
.

One of the elements inQ should be designated as the default quantifier, this is the one that
is to be used when no selection is specified by the user. Perhaps the most appropriate choice
for this is the average quantifierw j = 1

n , which corresponds to the linguistic expression
some.

The process of actually selecting the setQ is beyond our scope here and clearly will
benefit from some empirical research.

As a result of the ideas so far presented here we can introduce the idea of a query module:
〈A1, A2, . . . , An : Q〉, consisting of a collection of attributes required of the document and
a linguistic quantifier indicating the proportion of the attributes we desire. Implicit in this
querymodule is the fact the the linguistic expressionQ is essentially defining a weighting
vectorW for an OWA aggregation.

4. Including attribute importance in queries

In the preceding we have indicated a query object to be a module consisting of a collection
of attributes of interest and a quantifierQ indicating a mode of interaction between the
attributes. As noted the quantifier is to be selected from a collection of quantifiers, among
which are the logical “anding” of the attribute scores, the logical “oring” of the attribute
scores, and the simple averaging of attribute scores. Due to this generality we can accom-
modate in our framework both logical type of retrieval systems (Negoita and Flonder 1976,
Kraft and Buell 1983, Meadow 1992) and as well the vector space type described by Salton
(1989).

Implicit in the preceding is the equal treatment of all desired attributes. Often a user may
desire to ascribe different weights or importances to the different attributes (Kraft and Buell

364 YAGER

1983, Yager 1987, Dubois et al. 1988, Sanchez 1989). In the following we shall consider
the introduction of importance weights into our procedure.

Letαi ∈ [0, 1] be a value associated with an attribute indicating the importance associated
with the attribute. We shall assume the largerαi the more important attributei is to the user
and letαi = 0 stipulate zero importance. With the introduction of these weights we can
now consider a more general query object:

〈A1, A2, . . . , An : M : Q〉.
Here as before, theAi are a collection of attributes andQ is a linguistic quantifier, however,
hereM is ann vector whose componentmj = α j , the importance associated withAj .

Our goal now is to calculate the overall score Val(d) associated with a documentd, we
shall denote this

Val(d) = FQ/M(A1(d), A2(d), . . . , An(d))

HereFQ/M indicates an OWA operator. Our agenda here will be to first find an associated
OWA weighting vector,W(d), based upon bothQ andM . Once having obtained this vector
we calculate Val(d) by the usual OWA process

Val(d) = W(d)T B(d) =
n∑

j=1

w j (d)bj (d)

Herebj (d) is denoting thej th largest of theAi (d) andw j (d) is the j th component of the
associated OWA vectorW(d).

What is important to point out here is that, as we shall subsequently see, as opposed to
the original case, where no importances are considered, the associated OWA vector will be
different for eachd. This situation accounts for our denotationW(d). Actually the weighting
vector will be influenced by the ordering of theAi (d).

We now describe the procedure (Yager 1996, 1997) that shall be used to calculate the
weighting vector,w j (d). The first step is to calculate the ordered argument vectorB(d)
such thatbj (d) is the j th largest of theAj (d). Furthermore, we shall letµ j denote the
importance weight associated with the attribute that has thej th largest value. Thus ifA5(d)
is the largest of theAi (d), thenb1(d) = A5(d) andu1 = α5. Our next step is to calculate
the OWA weighting vectorW(d). We obtain the associated weights as

w j (d) = Q

(
Sj

T

)
− Q

(
Sj − 1

T

)
whereSj =

∑ j
k=1 uk andT = Sn =

∑n
k=1 uk. ThusT is the sum of all the importances and

Sj is the sum of the importances of thej th most satisfied attributes. Once having obtained
these weights we can then obtain the aggregated value by the usual method,BTW. The
following example will illustrate the use of this technique.

Example. We shall assume there are four criteria of interest to the user:A1, A2, A3, A4. The
importances associated with these criteria areX1 = 1, X2 = 0.6, X3 = 0.5 andX4 = 0.9.

A HIERARCHICAL DOCUMENT 365

From this we getT =∑4
k=1 Xk = 3. We shall assume the quantifier guiding this aggregation

is most, which is defined byQ(r) = r 2. Assume we have two documentsx andy and the
satisfactions to each of the attributes by the documents is given by the following:

A1(x) = 0.7 A2(x) = 1 A3(x) = 0.5 A4(x) = 0.6

A1(y) = 0.6 A2(y) = 0.3 A3(y) = 0.9 A4(y) = 1

Our objective here is to obtain the valuations of each of the documents with respect to this
query structure. We first consider the valuation forx. In this case the ordering of the criteria
satisfactions gives us:

bj u j

A2 1 0.6

A1 0.7 1

A4 0.6 0.9

A3 0.5 0.5

Calculating the weights associated withx, which we denotedwi (x), we get

w1(x) = Q

(
0.6

3

)
− Q

(
0

3

)
= 0.04

w2(x) = Q

(
1.6

3

)
− Q

(
0.6

3

)
= 0.24

w3(x) = Q

(
2.5

3

)
− Q

(
1.6

3

)
= 0.41

w4(x) = Q

(
3

3

)
− Q

(
1.6

3

)
= 0.31

Using this we calculate Val(x)

Val(x) =
4∑

j=1

w j (x) bj = (.04)(1)+ (.24)(.7)+ (.41)(.6)+ (.31)(.5) = 0.609

To calculate the score for documenty we proceed as follows. In this case the ordering of
the criteria satisfaction is

bj u j

A4 1 0.9

A3 0.9 0.5

A1 0.6 1

A2 0.3 0.6

366 YAGER

The weights associated with the aggregation are

w1(y) = Q

(
0.9

3

)
− Q

(
0

3

)
= 0.09

w2(y) = Q

(
1.4

3

)
− Q

(
0.9

3

)
= 0.13

w3(y) = Q

(
2.4

3

)
− Q

(
1.4

3

)
= 0.42

w4(y) = Q

(
3

3

)
− Q

(
2.4

3

)
= 0.36

Using this we calculate

Val(y) =
4∑

j=1

w j (y) bj = (.09)(1)+ (.13)(.9)+ (.42)(.6)+ (.36)(.3) = 0.567

Hence in this examplex is the better scoring document.

It is important to observe that the weights are different for the two aggregations. This
is due to the fact that the ordering of the satisfactions to theAi ’s are different forx andy
which leads to a different ordering of theu j ’s resulting in a different weighting vector.

More details with respect to the properties of this methodology can be found in Yager
(1996, 1997), however here we shall point out some properties associated with this approach.

Any attribute that has importance weight zero has no affect on the result. Without loss of
generality, we shall assume the indexing of theAi have been such thatAi (d) ≥ Aj (d) if
i < j . In this casew j (d) = Q(1

T

∑ j
k=1 αk)− Q(1

T

∑ j−1
k=1 αk). If α j = 0 thenw j = 0 and

wi Ai (d) = 0 no matter what valueAi (d). It can be easily seen that if we eliminateAj , we
get the same result as that obtained withα j = 0.

Consider the situation when all the attributes have the same importance,α j = α. In this
case

w j (d) = Q

(
1

nα

j∑
k=1

α

)
− Q

(
1

nα

j−1∑
k=1

α

)
= Q

(
j

n

)
− Q

(
j − 1

n

)
.

This is the same set of weights we obtained when we didn’t include any information with
respect to importance.

We shall call a quantifier a binary quantifier if there exists somer ∗ ∈ [0, 1] such that

Q(r) = 0 for r < r ∗

Q(r) = 1 for r ≥ r ∗

We note the universal and existential quantifiers are binary. Consider the weights obtained
from this type of quantifier,w j (d) = Q(1

T

∑ j
k=1 αk) − Q(1

T

∑ j−1
k=1 αk). What is clear is

A HIERARCHICAL DOCUMENT 367

that the weights will always be binary—that is there will exist some valuej ∗ for which
w∗j = 1 andw j = 0 for all j 6= j ∗. While the value ofj ∗ will depend upon the objects
being aggregated it will still only have all weights equal zero except one. Because of this
the aggregated value will always be equal to one of the attribute values. It can be shown
that these quantifiers always have weights in which the dispersion is zero.

Let us now look at the form of aggregation function obtained for some special cases
of linguistic quantifiers. In the following we shall assume, without loss of generality, that
the indexing is such thatAi (d)≥ Aj (d) if i < j . Furthermore we shall suppress thed and
denoteAi (d) = ai . Using this notational convention

Val(d) = FQ/α(a1,a2, . . . ,an) =
n∑

j=1

ajw j

wherew j = Q(1
T

∑ j
k=1 αk)− Q(1

T

∑ j−1
k=1 αk).

Consider first the case of the quantifiersome, Q(r) = r . For this quantifierw j = α j /T
and hence

Val(d) = 1

T

n∑
j=1

α j aj

This is simply the weighted average of the attributes.
Consider now the case of the quantifierfor all, Q(1) = 1 andQ(r) = 0 for r 6= 1. In

this casew j = 0 unless
∑ j

k=1 αk = T and
∑ j

k=1 αk < T . From this we seew j = 1 for the
attribute having the smallest satisfaction and non-zero importance. Thus here,

Val(d) = Min
α j 6=0

[aj]

For the case of theexistentialquantifier,Q(0)= 0 andQ(r)= 1 for all r 6= 0, we can easily
show that

Val(d) = Max
α j 6=0

[aj]

These two quantifiers are, of course, examples of what we call binary quantifiers, the first
being one in whichr ∗ = 1 and the second,r ∗ = 0.

Another interesting example of a binary quantifier is the median quantifier. HereQ(r)= 0
for r < 0.5 andQ(r)= 1 for r ≥ 0.5. In this case it can be shown that Val(d) can be obtained
by the following simple process. First we normalize the weights,α̂ j = α j

T . Next we order
the attribute scores in descending order and associate with each its normalized weight. We
then, starting from the top, the highest score, add the normalized weights until we first reach
a total of 0.5, the score of that attribute at which this total is reached is the aggregated value.
The following example illustrates this procedure.

Example. In our preceding example, we have forx

368 YAGER

b α α̂ Sumα̂

A2 1 0.6 0.2 0.2

A1 0.7 1 0.33 0.55 ←−
A4 0.6 0.9 0.3

A3 0.5 0.5 0.167

Since the total goes over 0.5 whenbj = 0.7, we get Val(x) = 0.7. Fory in our preceding
example:

b α α̂ Sumα̂

A4 1 0.9 0.3 0.3

A3 0.9 0.5 0.167 0.467

A1 0.6 1 0.333 0.8 ←−
A2 0.3 0.6 0.2

Here the total goes over 0.5 whenbj = 0.6.

An interesting example of an OWA aggregation is the so called olympic aggregation.
Herew1=wn= 0 andw j = 1

n−2 for j 6= 1 or n. Using this aggregation we eliminate the
highest and lowest scores and then take the average of the remaining scores. We can provide
a generalization of this type of aggregation using a quantifier shown in figure 4. For this
case

Q(r) = 0 r < ρ

Q(r) = r − ρ
1− 2ρ

ρ ≤ r ≤ 1− ρ
Q(r) = 1 r > 1− ρ

For this quantifierw j = 0 for all j for which
∑ j

k=1
αk
T < ρ. Similarly,w j = 0 for all j

for which
∑n

k= j
αk
T < ρ. In the range in betweenw j = α j

1−2ρ .
Another interesting example of OWA aggregation, one that is in some sense a dual of

the olympic aggregation, is the so called Arrow-Hurwicz aggregation (Arrow and Hurwicz

Figure 4. Generalized olympic quantifier.

A HIERARCHICAL DOCUMENT 369

Figure 5. Generalized Arrow-Hurwicz.

1972). Herew1 = α andwn = 1−α, andw j = 0 for all other. In this case we just consider
the extreme values and eliminate the middle values. We can provide a generalization of
this type of aggregation, one that can be used with importance weighted attributes, by
introducing the quantifier shown in figure 5. For this quantifier

Q(r) = α

ρ
r r < ρ

Q(r) = α ρ ≤ r < 1− ρ
Q(r) = 1− 1− α

ρ
(1− r) r ≥ 1− ρ

it is assumedρ ≤ 0.5. For this quantifier the weights used in the OWA aggregation are such
that for the highest scoring attributes, those accounting forρ portion of the importance,
w j = α

ρ
, for the least satisfied attributes, those accounting forρ portion of the importance,

w j = 1−α
ρ

and the middle scoring attributesw j = 0. In this quantifierα can be seen as
a degree of optimism and 1− ρ as an indication of the extremism of the aggregation. A
number special cases of this quantifier are worth noting. Ifρ = 0 then we havew1 = α
andwn = 1− α, the basic Arrow-Hurwicz aggregation. Ifα = ρ = 0.5 then we get the
quantifierQ(r) = r . If α = 1 then we get the quantifierat leastρ and ifα = 0 then we get
the quantifierat least1− ρ.

5. Including priorities between attributes

In the preceding we have described a method for evaluating the overall score of documents
based upon a query object:

〈A1, A2, . . . , An : M : Q〉

In this object the componentα j of the vectorM indicates the weight associated with
the attributeAj . Implicit in our formulation was the idea that the weightα j was explicitly
provided by the user. This is not necessarily required. It is possible for the weight associated
with attributeAj to be determined by some property of the document itself. Thus letBj

370 YAGER

be some measurable attribute associated with the document, and letBj (d) be the degree
to which documentd satisfies this attribute. Then without any additional complexity we
can allowα j (d) = Bj (d). Thus here the weight associated with attributeAj depends upon
the document itself via the valueBj (d). Thus within this framework we have the option of
specifying the importance weights conditionally or non-conditionally or not at all. It should
be noted we could of course letα j (d) = α j Bj (d), that is some proportion ofBj (d).

Typically the association of importance weights with attributes indicates some measure of
trade-off between the worth of the attributes. For example, consider the averaging quantifier
where Val(d) = ∑n

j=1 Aj α j . Here we see that a gain of1 in Aj results in an increase in
overall evaluation ofα j1, while a gain of1 in Ai is worth an increase ofαi1. This of
course manifests itself in the ordering of the documents. In particular, ifα j = 2 andαi = 1,
then we are willing to trade a gain of1 in Aj for a loss of less than 21 in Ai . In some
cases where we desire two attributes, we may not be willing to trade-off of for the other.
For example, in designing a car, while we would like both safety and low-cost, we are not
willing to give up safety for low cost. Such a situation is characterized as one in which a
priority exists between the attributes, safety has priority over cost.

In document retrieval systems, it may be possible that we might also desire to include a
priority relationship between attributes. In the following we shall suggest a mechanism that
allows for the inclusion of a priority type effects.

AssumeA1 andA2 are two attributes for which there exists a priority relationship:A1 has
priority over A2. In order to manifest this relationship, we allow the importance associated
with A2 to be dependent upon the satisfaction of attributeA1. Here thenα2(d) = A1(d).
Let us investigate this first for the simple weighted average. Assumingα1 is fixed, we get

Val(d) = α1A1(d)+ A1(d)A2(d) = A1(d)(α1+ A2(d))

Here we see that ifA1(d) is low, the contribution ofA2(d) becomes small and hence it is
not possible for a high value ofA2 to compensate.

More generally, consider the quantifierQ and assumeAi has priority overAj . To imple-
ment this priority we make the importance associated withAj related to the satisfaction of
Ai . In particular, we letα j = αAi , whereα ∈ [0, 1]. Using this we get for the weightw j

associated withAj that

w j = Q

(
Sk−1+ αAi (d)

T

)
− Q(Sk−1)

whereSk−1 =
∑ j−1

k=1 αk

T . We see that asAi (d) gets smaller, the valuew j will decrease.

6. Concepts and hierarchies

In the preceding we have considered the problem of document retrieval within the following
framework. We have assumed a set of documentsD, called the document base, from which
we are interested in retrieving. We have associated with this document base a collection of
attributesAi , i = 1 to n. These attributes are characterized by the fact that for anyd ∈ D,

A HIERARCHICAL DOCUMENT 371

we have availableAi (d) ∈ [0, 1]. More specifically, we assume no calculation is necessary
to obtain Ai , we shall say that the value of attributeAj is directly accessible. We shall
now associate with a document base a slightly more general idea which we shall call a
concept. We define a concept associated withD as an object whose measure of satisfaction,
as a number in the unit interval, can be obtained for any document inD. It is clear that
the attributes are examples of concepts, they are special concepts in that their values are
directly accessible from the document base.

Consider now a query object of the type we have previously introduced. This is an object
of the form〈A1, A2, . . . , Aq : M : Q〉. As we have indicated, the measure of satisfaction of
this object for anyd ∈ D can be obtained by our aggregation process. In the light of this
observation, we can consider this query object to be a concept, with

Con=〈A1, A2, . . . , Aq : M : Q〉

then

Con(d) = FQ/M(A1(d), A2(d), . . . , Aq(d)).

Thus a query object is a concept. A special concept is an individual attribute,

Con= 〈Aj : M : Q〉 = Aj ,

we shall call these atomic concepts. These atomic concepts require noQ or M , but just
need anAj specification.

Let us look at the query object type concept in more detail. The basic components in
these objects are the attributes, theAj . However, from a formal point of view, the ability to
evaluate the query objects-concept is based upon the fact that for eachAj , we have a value
for anyd, Aj (d). As we have just indicated, a concept also has this property, for anyd we
can obtain a measure of its satisfaction. This observation allows us to extend our idea of
query object-concept to allow for concepts whose evaluation depends upon other concepts.
Thus we can consider concepts of the form

Con= 〈Con1,Con2, . . . ,Conn : M : Q〉.

Here each of the Conj are concepts used to determine the satisfaction of Con by an aggre-
gation process whereM determines the weight of each of the participating concepts andQ
is the quantifier guiding the aggregation of the component concepts.

The introduction of concepts into the query objects results in a hierarchical structure
for query formation. Essentially, we unfold until we end up with queries made up of just
attributes which we can directly evaluate. The following simple examples illustrate the
structure.

Example. Consider here the query

(A1 andA2 andA3) or (A3 andA4).

372 YAGER

We can consider this as a concept

〈Con1,Con2 : M : Q〉.

HereQ is the existential quantifier andM =
[

1

1

]
. In addition

Con1 = 〈A1, A2, A3 : M1 : Q1〉
Con2 = 〈A3, A4 : M2 : Q2〉

HereQ1 = Q2 = all and

M1 =

1

1

1

 and M2 =
[

1

1

]
.

This query can be expressed in a hierarchical fashion as shown in figure 6.

Figure 6. Hierarchical formulation of query.

7. Hierarchical querying in information retrieval

Using these ideas, we describe a hierarchical querying framework that can be used for
document retrieval, we shall call this the Hierarchical Document Retrieval Language and

A HIERARCHICAL DOCUMENT 373

use the acronym HI-RET. This language can be used to retrieve documents from the Internet,
or an intranet, or any other computer based environment.

Associated with any implementation of this language is a setA = {A1, A2, . . . , An} of
atomic attributes, words or concepts. These atomic concepts are such that for any document
d in D and any conceptAj in A we have directly available the valueAj (d) ∈ [0, 1], the
satisfaction of attributeAj by documentd. This information can be stored in a database
such that each record is a tuple consisting of the valuesAj (d) for j = 1 ton and the address
of documentd. Essentially each document can be viewed as an vector whose components
are theAj (d).

In addition to the attributes, we also assume associated with any implementation of
HI-RET a vocabulary of linguistic quantifiers,Q = {Q1,Q2, . . . ,Qq} available to the
searcher. Within this set of quantifiers we should surely have the quantifiersall, any and
some. One quantifier should be designated as the default quantifier. Perhaps a best choice
for this is the quantifiersome. Transparent to the user is a fuzzy subsetQi on the unit
interval associated with each linguistic quantifierQi . This fuzzy subset is used to generate
the associated weights used in the aggregation.

A query to the document retrieval system is indicated by the specification of a “concept”
that the user desires satisfied. The user is asked to “define” this concept by expressing it
in terms of a query object,〈C1,C2, . . . ,Cn : M :Q〉, consisting of a group of components
Cj , an importance weight associated with each of the components,M , and a quantifier,
Q expressing the imperative for aggregating the components. The specification of the im-
portance weights as well as quantifier are optional. If weights are not expressed, then by
default they are assumed to have an importance value of one. If the quantifier is not ex-
pressed, then the designated default quantifier is assumed.

For each of the components of the query that are not an atomic object the searcher is asked
to provide a definition. This process is continued until the complete hierarchy defining the
query is formulated. It is noted that this hierarchy is a tree like structure in which the leaves
are atomic components. Figure 7 shows a prototypical example of such a query.

Once having obtained the HI-RET expansion of a query as in figure 7, we can then use
our aggregation methods to evaluate the query for each document. For example, in the case
of query described in figure 7 for documentd we have

Con4(d) = FM4/Q4(A6(d), A3(d))

Con3(d) = FM3/Q3(A2(d), A5(d), A9(d))

Con2(d) = FM2/Q2(Con4(d), A8(d))

Con1(d) = FM1/Q1(A7(d),Con2(d),Con3(d))

Depending upon the skill of the user, we can capture very sophisticated queries within this
framework.

An often used construct in query formulation is the logicalif . . . thenspecification ex-
pressing the desire for some attribute if some other attribute is present. In a the following
we describe a method for modeling this type of structure within our HI-RET language.

374 YAGER

Figure 7. Prototypical query in HI-RET.

Consider the query

(A1 andA2) or (if A3 thenA4).

Figure 8 provides the hierarchical expansion of this query within the framework of HI-RET
In constructing this hierarchical implementation, we used the fact that ifA3 then A4 is

logically equivalent to not(A3) or A4. Thus in this proposed framework we shall interpret
the concept “ifA then B” as the concept̄A or B. We note thatĀ(d) = 1− A(d). More
generally, the expression

if A1 andA2 andA3 thenB

is seen as equivalent to the expressionĀ1 or Ā2 or Ā3 or B. This is represented as a query
object of the form〈Ā1, Ā2, Ā3, B : -:Or〉. We note the importances have not been specified
and hence by default are all assumed to be one.

A HIERARCHICAL DOCUMENT 375

Figure 8. Implementation of query with if. . . then.

8. Thesaurus

Many document retrieval systems have a thesaurus over the set of atomic attributes (or vo-
cabulary), a thesaurus being information about similarity between words (Larsen and Yager
1993). The function of a thesaurus is to allow for the consideration of satisfaction to syn-
onyms when trying to evaluate the satisfaction of an attribute by a document. This function of
a thesaurus can be represented within the framework presented. LetA = {A1, A2, . . . , An}
be a collection of concepts corresponding to our atomic or primary attributes (vocabulary).
A thesaurus can be represented as a relationshipT on A × A such that for each pair
Ai , Aj ∈ A, T(Ai , Aj) ∈ [0, 1] indicates the degree of similarity thatAj has toAi . The
basic properties of a thesaurus are:

1. Identity:T(Ai , Ai) = 1 for all Ai ,
2. Symmetry:T(Ai , Aj) = T(Aj , Ai).

If Aj is an atomic attribute we shall let̂Aj indicate the concept corresponding to an
extended definition of the original attributeAj . We defineÂ j as follows

Â j = 〈EX[Aj | A1],EX[Aj | A2], . . . ,EX[Aj | An] : -: “Or” 〉,

where EX[Aj | Ai], the extension ofAj by Ai , is a concept defined as

EX[Aj | Ai] = 〈T(Aj , Ai), Ai : -:“And” 〉.

376 YAGER

We see that the concept EX[Aj | Ai] has two components,Ai andT(Aj , Ai), it uses equal
importances and uses the quantifierand. The componentT(Aj , Ai) is directly accessible
from the definition of the thesaurus and as such can be viewed as an atomic component. We
further note thatÂ j , a concept whose components are then concepts EX[Aj | Ai], uses the
default importance and uses the quantifieror.

Let us look at the form of̂Aj (d) resulting from this structure. First we see that

EX[Aj | Ai](d) = FQ[T(Aj , Ai), Ai (d)]

whereQ = “and.” The importances are assumed to be equal. This gives that

EX[Aj | Ai](d) = Min[T(Aj , Ai), Ai (d)] = T(Aj , Ai) ∧ Ai (d)

Next we see that

Â j (d) = F“any”(EX[Aj | A1](d),EX[Aj | A2](d), . . . ,EX[Aj | An](d))

this gives us

Â j (d) =
n

Max
i=1

(EX[Aj | Ai](d))

Â j (d) =
n

Max
i=1

(T(Aj , Ai) ∧ Ai (d)]).

We note sinceT(Aj , Ai) = 1, then

Â j (d) = Aj (d) ∨Max
i 6= j

[T(Aj , Ai) ∧ Ai (d)]

When using the HI-RET language to specify a query the user can indicate whether they
want to use the thesaurus or not.

9. Conclusion

The focus of this work has been on the development of a document retrieval language which
enables the user to better represent their requirements with respect to retrieved documents
by using appropriate aggregation operators. We have described a method, based on the
OWA operators, for evaluating documents which allowed a linguistic specification of the
interrelationship between the desired attributes. This framework developed here has also
been shown to support aggregation in a hierarchical structure, which allows for an increased
expressiveness of queries.

References

Arrow KJ and Hurwicz L (1972) An optimality criterion for decision making under ignorance. In: Carter CF and
Ford JL, Eds., Uncertainty and Expectations in Economics. Kelley, New Jersey.

A HIERARCHICAL DOCUMENT 377

Dubois D, Prade H and Testemale C (1988) Weighted fuzzy pattern matching. Fuzzy Sets and Systems, 28:313–331.
Grossman DA and Frieder O (1998) Information Retrieval. Kluwer Academic Publishers, Boston.
Kraft DH, Bordogna G and Pasi G (1999) Fuzzy set techniques in information retrieval. In: Bezdek JC, Dubois

D and Prade H, Eds., Fuzzy Sets in Approximate Reasoning and Information Systems. Kluwer Academic
Publishers, Norwell, MA, pp. 469–510.

Kraft DH and Buell DA (1983) Fuzzy sets and generalized Boolean retrieval systems. International Journal of
Man-Machine Studies, 19:45–56.

Larsen HL and Yager RR (1993) The use of fuzzy relational thesauri for classifactory problem solving in infor-
mation retrieval and expert systems. IEEE Transactions on Systems, Man and Cybernetics, 23:31–41.

Lee JH, Kim WY, Kim MH and Lee YJ (1993) On the evaluation of Boolean operators in the extended Boolean
retrieval framework. In: Proceedings of SIGIR, pp. 291–297.

Lee JH, Kim MH and Lee YJ (1992) Enhancing the fuzzy set model for high quality document rankings. Micro-
processing and Microcomputing, 35:337–344.

Meadow CT (1992) Text Information Retrieval System. Academic Press, New York.
Negoita C and Flonder P (1976) On fuzziness in information retrieval. International Journal of Man-Machine

Studies, 8:711–716.
Salton G (1989) Automatic Text Processing. Addison-Wesley, Reading, MA.
Sanchez E (1989) Important in knowledge systems. Information Systems, 14:455–464.
Yager RR (1987) A note on weighted queries in information retrieval systems. J. of the American Society of

Information Sciences, 38:23–24.
Yager RR (1988) On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE

Transactions on Systems, Man and Cybernetics, 18:183–190.
Yager RR (1993) Families of OWA operators. Fuzzy Sets and Systems, 59:125–148.
Yager RR (1996) Quantifier guided aggregation using OWA operators. International Journal of Intelligent Systems,

11:49–73.
Yager RR (1997) On the inclusion of importances in OWA aggregations. In: Yager RR and Kacprzyk J, Eds.,

The Ordered Weighted Averaging Operators: Theory and Applications. Kluwer Academic Publishers, Norwell,
MA, pp. 41–59.

Yager RR and Kacprzyk J (1997) The Ordered Weighted Averaging Operators: Theory and Applications. Kluwer,
Norwell, MA.

Zadeh LA (1983) A computational approach to fuzzy quantifiers in natural languages. Computing and Mathematics
with Applications, 9:149–184.

Zadeh LA (1996) Fuzzy logic= computing with words. IEEE Transactions on Fuzzy Systems, 4:103–111.

