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Abstract. The protein C anticoagulant pathway provides an

“on demand” anticoagulant response whenever thrombin is

generated. Activated protein C appears to possess both

anticoagulant and anti-in_ammatory properties. The func-

tion of the pathway is impaired in sepsis, including the

consumption of protein C and protein S, two plasma compo-

nents of the pathway. Supplementation with protein C or

activated protein C has been shown to inhibit the dissemi-

nated intravascular coagulation (DIC) response in experi-

mental animals and patients. Preliminary clinical results

suggest that supplementation with components of the path-

way may be useful in some patients with sepsis or septic

shock.
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Introduction

The protein C anticoagulant pathway has several com-
ponents within it that could, based on both experimen-
tal results and theoretical considerations, be candi-
dates for the treatment of certain forms of septic shock.
The basis for  this  assertion lies  upon  three  central
observations that will be developed further in this
manuscript: (1) the protein C pathway can be down-
regulated or components of the pathway can be con-
sumed by acute in_ammatory responses; (2) the path-
way plays a major role in regulating blood clotting,
especially in the microcirculation; and (3) supplementa-
tion with protein C (APC) and some other components
of the pathway have been shown to block the coagula-
tion and some of the in_ammatory responses that re-
sult from bacterial/endotoxin challenge. Thus it follows
that supplementation with components of the pathway
that could help regulate microvascular coagulation and
some of the in_ammatory responses might be
bene~cial in the treatment of at least some forms of
sepsis. Before dealing with the biology of this system,
it is useful to review brie_y the special properties of
the system that make it a candidate for therapeutic
intervention. For those desiring more information
about the clinical or basic aspects of the pathway, there
have been a number of reviews written by this author
[1–3] or others [4–20].

Biochemical Description of the
Protein C Anticoagulant Pathway

The protein C anticoagulant pathway is represented in
a highly simpli~ed fashion in Fig. 1. The unique feature
of the protein C pathway is its ability to generate an
anticoagulant response that is proportional to the
thrombotic stimulus [21]. This feature of the pathway
is due to the mechanism of protein C activation. Pro-
tein C circulates as an inactive precursor. It is con-
verted rapidly to the serine protease, APC, by a com-
plex between thrombin and thrombomodulin (TM).
Thus, the anticoagulant response occurs whenever
thrombin generation occurs and remains until throm-
bin generation is controlled. TM is present primarily on
the surface of endothelial cells [22,23] and to a lesser
extent on several other cell types including monocytes
[24,25]. An endothelial cell protein C receptor, EPCR
[26], binds both protein C and APC. Binding protein C
augments activation by the thrombin-TM complex by
increasing the af~nity of the complex for protein C
[27–29]. Unlike TM, EPCR expression is restricted pri-
marily to endothelium of the larger vessels [22,29]. In
addition to accelerating protein C activation, thrombin
interaction with TM blocks most of thrombin’s proco-
agulant functions [30] and results in more rapid inhibi-
tion of thrombin by antithrombin [15] and by the pro-
tein C inhibitor [31]. Thus, thrombin binding to TM not
only accelerates protein C activation, but aids in the
inhibition of thrombin. Once APC is generated, it binds
to protein S and this complex inactivates factors Va
and VIIIa. Curiously, factor V, but not factor Va, can
serve as a cofactor to enhance the inactivation of factor
VIIIa by protein S and APC [32]. A common dimorphin
exists in human factor V of Caucasians that results in
a substitution of Arg with Gln at one of the APC cleav-
age sites [9,33,34]. This form of factor V is often called
Factor V Leiden for the city in which the mutation was
characterized [35]. This mutation causes APC resis-
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tance (i.e., a reduced anticoagulant response to APC).
In addition, the factor V Leiden does not possess the
APC cofactor activity in factor VIII inactivation that
is characteristic of normal factor V.

Unlike most serine proteases which are inactivated
very rapidly in the circulation with half-lives less than
one minute, APC has a relatively long half-life, esti-
mated at approximately 15 minutes [36–40]. Inactiva-
tion is mediated by a1-antitrypsin, protein C inhibitor
and a2-macroglobulin [41–43]. Since a1-antitrypsin is an
acute phase protein and one of the major inhibitors of
APC function, the increases in this inhibitor’s concen-
tration in response to in_ammation would have the
effect of dampening the protein C pathway and hence
favoring the coagulation response.

Almost all of the coagulation related activities of
the protein C anticoagulant pathway are antithrom-
botic in nature. Three apparent exceptions exist. TM
has recently been shown to augment substantially the
activation of a procarboxypeptidase B [44]. This en-
zyme, sometimes referred to as thrombin activatable
~brinolysis inhibitor (TAFI), inhibits ~brinolysis by

removing terminal lysine residues on ~brin. Given,
however, that this enzyme removes terminal Arg resi-
dues, it is possible, or even likely, that one of its key
functions is to inactivate vasoactive substances like
C5a which require their terminal Arg to function. If
the latter hypothesis is correct, then the TM-thrombin
activation of TAFI would be entirely consistent with
the anticoagulant/anti-in_ammatory functions of  the
protein C pathway.

TM-thrombin complexes can also stimulate the ac-
tivation of factor XI somewhat (about 20 fold). This
simulation requires the presence of a covalently at-
tached chondroitin sulfate on TM [15]. TM has also
been shown to accelerate the inhibition of prouroki-
nase by thrombin [45,46]. This would not only impair
~brinolysis to some extent, but would decrease the
ability of the cellular urokinase receptor to activate
plasminogen that results in degradation of matrix
proteins and thereby decreases cell-cell contacts. In
vivo studies have demonstrated that the in_uence of
infusion of soluble TM favors a antithrombotic/anti-
in_ammatory effect very strongly [47–53] indicating

Fig. 1. The function of membranes and cofactors in blood coagulation. The enzymes associate with cofactors on membrane surfaces.
Factor VIIa (VIIa) associates with tissue factor (TF) to activate either factor X (X) or factor IX (IX). Factor IXa (IXa) associates
with factor VIIIa (VIIa) to activate factor X. Factor Va (Va) associates with factor Xa (Xa) to activate prothrombin (pro). Thrombin
associates with TM to activate protein C, a process which is enhanced on some blood vessels by the presence of the endothelial cell pro-
tein C receptor, EPCR. Once activated protein C is formed it dissociates relatively slowly from EPCR to interact with protein S (S) to
inactivate factors Va and VIIIa, thereby blocking the coagulation cascade. Factor V (V) serves as a cofactor for the inactivation of fac-
tor VIII. See the text for discussions of mechanism. Prothrombin activation probably occurs primarily on platelet surfaces, factor X
and IX activation on monocytes and protein C activation on endothelium. (Modi~ed from Esmon, CT: Cell mediated events that con-
trol blood coagulation and vascular injury: Annu Rev Cell Biol 1993; 9:1. Copyright © 1993 Annual Review Inc.)
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that the dominant function of TM is to suppress these
responses.

Congenital and Experimentally
Induced De~ciencies of Components
of the Protein C Pathway Provide
Insights into its Potential Function
in Sepsis

Total congenital de~ciency of protein C and protein S
are associated with neonatal purpura fulminans
[54–58]. Visually, these lesions appear similar to the
petichiae that form in some cases of severe septic
shock. In the case of congenital protein C de~ciency
[59], these lesions are completely reversed by infusion
of protein C indicating that the de~ciency is responsi-
ble for formation of the lesions and suggesting that
acquired protein C de~ciency as well as congenital de-
~ciency might predispose to microvascular thrombosis.
An example where this seems to be the case is in War-
farin induced skin necrosis. Patients heterozygous for
protein C de~ciency appear to be at greater risk of skin
necrosis [60,61]. As was the case with the homozygous
protein C de~cient patients, these Warfarin induced
skin necrosis patients appear to be treated effectively
by protein C supplementation [62,63]. These clinical
observations suggest that the acquired de~ciency of
protein C and the decreased levels of protein S [64–66]
observed in many patients with septic shock could con-
tribute to the disseminated intravascular coagulation
(DIC) and possibly endothelial cell dysfunction that
contributes to the disease morbidity and mortality.
This concept is supported further by the observation
that a combination of in_ammatory cytokines with pro-
coagulant lipids only induces DIC and thrombosis ef-
fectively in otherwise healthy animals if the protein C
pathway is impaired [67].

A critical role for TM is suggested by gene deletion
in the mouse which results in early embryonic lethality
[68]. Functional mutations of TM in mice increase
thrombotic risk especially when the animals are chal-
lenged, for instance with hypoxia [69]. Furthermore,
TM mutations have been identi~ed in patients with
thrombosis [70], and mutations in the TM gene appear
to co-segregate with thrombotic disease in families
[71]. Defects in TM have been associated with in-
creased risk of heart attack [71–73]. In experimental
settings,  inhibition  of  TM with  antibodies  increases
thrombin induced pulmonary embolism in mice and in-
fusion of soluble TM is protective [74].

At present, there are no published reports of EPCR
de~ciencies or the in_uence of blocking EPCR on the
pathogenesis of sepsis or thrombosis. Given its impor-
tant role in regulating protein C activation and func-
tion, it is likely that defects in EPCR, whether congeni-
tal or acquired, would contribute to a hypercoaguable
state.

The Impact of In_ammation on the
Protein C Pathway

Several lines of evidence suggest that the protein C
anticoagulant pathway function may be down-regu-
lated in disease states. Our current view of the protein
C system in normal (Fig. 2A) and in_ammatory situ-
ations (Fig. 2B) is depicted in these ~gures. In addition
to free protein S depicted in Fig. 1, about half of plasma
protein S is complexed with high af~nity to C4 binding
protein, a regulatory protein of the complement sys-
tem [75]. Only the free form of protein S has APC
cofactor activity [76,77]. In_ammation can reduce free
protein S levels as well as reducing TM expression on
the endothelium and recruiting leukocytes to the ves-
sel wall where they can inhibit the system by releasing
proteases that cleave TM or by releasing in_ammatory
cytokines that can down-regulate TM and possibly
EPCR expression. On the coagulation side, comple-
ment activation, particularly generation of comple-
ment C5b9 generation, can promote ampli~cation of
coagulation by releasing cellular microparticles that
provide a procoagulant membrane surface that can am-
plify the clotting response [78]. Finally, endotoxin and
in_ammatory cytokines can lead to expression of
monocyte tissue factor [79–82]. The vascular damage,
increase in procoagulant substances, and decrease in
anticoagulant pathway function probably provide in-
sights into the basis for the association between in_am-
mation and thrombosis.

Many of the disease processes associated with
thrombotic disease have in_ammatory components.
Based on in vitro data, endotoxin [83] and the in_am-
matory cytokines (tumor necrosis factor a (TNF) or
interleukin-1) can down-regulate TM [84,85] and
EPCR [26] expression on endothelial cells in culture.
TM levels have been observed to decrease in vivo in
some instances, such as allograft rejection [86], certain
autoimmune diseases like Wegener’s granulomatosis
[87], and villitis [88]. These may be more complex situ-
ations than acute in_ammatory injury caused by endo-
toxin shock. In rat kidney, TM antigen and activity was
not altered in kidneys infarcted with thrombi [89].
Based on qualitative immunohistochemical analysis,
baboon endothelial cell TM did not appear to be re-
duced in response to E. coli infusion [90]. TM down
regulation can be prevented by many factors including
interleukin-4 [91] and retinoic acid [92,93] making very
incomplete our understanding of the pathophysiologic
conditions under which this potentially important phe-
nomenon may occur.

Systemic assays for the presence of TM degradation
products would favor the concept that TM is down-
regulated by in_ammatory processes. Speci~cally,
many in_ammatory human diseases, including septic
shock, result in large increases in circulating plasma
TM levels [87,94–99]. This increase probably results
from neutrophil elastase mediated proteolytic cleavage
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of endothelial cell-associated TM [100]. TM activity can
be inhibited by eosinophil release products, major ba-
sic protein in particular [101], thereby providing an
additional mechanism by which in_ammation can in-
hibit the anticoagulant function of the pathway.

Protein S levels decrease in DIC and autoimmune
disease. This decrease may be due to changes in syn-
thesis  rate, increased binding to  C4bBP, or to  pro-
teolytic degradation of protein S [66,86,102–113]. In
some forms of septic shock, meningococcemia in par-
ticular, protein C consumption correlates well with the
onset of necrotic skin lesions (purpura fulminans) and
a negative clinical outcome [64,114].

Taken together, the clinical manifestations of severe
microvascular thrombosis prominent in de~ciencies in

the protein C pathway, the ability to correct this mi-
crovascular thrombosis promptly by replacement ther-
apy and the observation that the pathway is down-
regulated by in_ammatory mediators, proteolytic
inactivation or consumption of components of the path-
way in acute in_ammatory situations provide a ration-
ale for the use of protein C, protein S and perhaps TM
in the treatment of acute systemic in_ammatory dis-
eases including sepsis.

APC Resistance and Factor V Leiden

A potential complication in application of this system
to the treatment of sepsis is that there is a common

Fig. 2. Control of coagulation under normal vs in_ammatory stituations. A: The protein C anticoagulant pathway under normal
conditions. A wound initiates prothrombin (Pro) activation that results in thrombin (T) formation. Prothrombin activation occurs
when factor Va (Va) and factor Xa (Xa) bind on membrane surfaces. Thrombin then binds to thrombomodulin (TM) on the lumen of
the endothelium, illustrated by the heavy line, and the thrombin- TM complex converts protein C (PC) to activated protein C (APC).
Thrombin bound to TM can be inactivated very rapidly by antithrombin III (ATIII) after which the thrombin-antithrombin III com-
plex rapidly dissociates from TM. Activated protein C (APC) then binds to protein S (S) on cellular surfaces. The activated protein C-
protein S complex then converts factor Va to an inactive complex (Vi), illustrated by the slash through the larger part of the two-
subunit factor Va molecule. Protein C and activated protein C (APC) interact with an endothelial cell protein C receptor (EPCR).
This facilitates protein C activation and will concentrate APC on the endothelial surface. Protein S circulates in complex with
C4bBP, which may in turn bind serum amyloid P (SAP). APC is inhibited by forming complexes with either the protein C inhibitor
(PCI), a1-antitrypsin (a1AT) or a2-macroglobulin (not shown). See text for a more complete discussion. (Modi~ed from Esmon CT: The
protein C anticoagulant pathway. Arterioscl Thromb 19922(2):135. Copyright © 1992 American Heart Association.) B: The protein C
pathway after in_ammation. In_ammatory mediators lead to the disappearance of thrombomodulin from the endothelial cell surface.
Endothelial cell leukocyte adhesion molecules, P-selectin or E-selectin are synthesized or expressed on endothelial or platelet sur-
faces. Tissue factor (TF) is expressed on monocytes and binds factor VIIa (VIIa), and this complex converts factor X(X) to factor
Xa(Xa), which forms complexes with factor Va(Va) to generate thrombin (T) from prothrombin (Pro). Because little activated protein
C (APC) is formed and the little that forms does not function well because of low protein S (S), factor Va is not inactivated and
prothrombin activation complexes are more stable. Elevation in circulating C4bBP concentration and/or decreased in free protein S
results in little free protein S. See text for discussion., SAP, serum amyloid P. (Modi~ed from Esmon CT: The protein C anticoagulant
pathway. Arterioscl Thromb 1992; 12(2):135. Copyright © 1992 American Heart Association.)
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factor V variant (Factor V Leiden) that is resistant to
proteolytic inactivation by APC [4–10]. This variant
results in a complication commonly referred to as APC
resistance and is caused by a substitution of Gln at
residue 506 in factor V. This corresponds to the ~rst
cleavage site in factor Va [115–117]. Applications of the
protein C system to the treatment of sepsis may be
complicated by this variant that is common in Cauca-
sians (<5%) [118]. The variant is rare in Black and
Oriental populations. Patients with the variant could
theoretically be less responsive to APC therapy. This
is particularly true since inactivation of factor V
Leiden is much more dependent on protein S than nor-
mal factor V [117].

Thrombomodulin as an Agent in the
Treatment of Sepsis

The ability of TM to block ~brinogen clotting and cell
activation, activate protein C, and promote thrombin
inhibition suggests that TM could be useful as a thera-
peutic agent in sepsis and DIC. The most likely candi-
dates are forms truncated above the membrane span-
ning region [30] which are very soluble proteins. TM
exists in two forms, with and without a covalently at-
tached chondroitin sulfate. Soluble TM performs all of
the above functions if it contains the chondroitin sul-
fate moiety, but is less effective in blocking ~brinogen
and platelet activation and in promoting thrombin inhi-

bition by plasma proteinase inhibitors when it lacks
this moiety.

In addition to its multiple anticoagulant effects, the
potential utility of TM as a soluble antithrombotic is
suggested by the observation that TM activity is likely
reduced in many in_ammatory diseases associated
with DIC/sepsis (see above), and hence, replacement
therapy would target the acquired de~ciency state po-
tentially offering optimal response with minimal risk.
The author is unaware of published data with TM in
humans at this time, but several reports from animal
model studies of DIC/sepsis have been published. For
instance, in rats soluble TM can block tissue factor- [49]
or endotoxin- [48] induced DIC and can block the pul-
monary vascular injury that results from endotoxin
exposure [50]. These properties appear to be selective
for the protein C pathway since the potent and speci~c
antithrombotic agent, active site- blocked factor Xa
[119] blocks the coagulation response without protect-
ing from lung injury [50]. APC can also block lung
injury in this model [120], suggesting that the TM ef-
fect is the result of increased APC formation.

TM with or without the chondroitin sulfate was
shown to be effective in the tissue factor mediated DIC
model [49]. The TM containing chondroitin sulfate was
more effective on a mass basis, but was also cleared
from the circulation faster, T1/2 5 20 min vs 1 h. TM
appeared  to have  less effect on bleeding time  than
heparin, a feature that is likely to be bene~cial in sep-
sis/DIC cases. When expressed as the concentration
required to double the bleeding time vs the concentra-

Fig. 2 continued.
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tion required to block the decrease in platelet count
50%, TM with and without chondroitin sulfate were
respectively about 3 and 2 fold better than standard
heparin.

Protein C as an Agent in the
Treatment of DIC/Sepsis

The initial clinical information about the use of protein
C in the treatment of thrombotic disease in humans
came from the treatment of congenital de~ciencies
which are often manifested by microvascular thrombo-
sis of the skin capillaries (purpura fulminans)
[55,59,121,122]. Replacement therapy with protein C
has been shown to prevent further progression of these
lesions which subsequently healed rapidly [123,124]
but these lesions are not prevented by heparinization
[56].

DIC and septic shock are additional situations in
which microvascular thrombosis can occur. This is par-
ticularly common in meningococcemia [64,125]. Protein
C consumption in humans with meningococcemia cor-
relates better with the formation of the purpura like
lesions and death than other markers examined
[64,114]. Of course, this correlation between protein C
levels and disease progression or outcome does not
prove that the decrease in protein C levels is causally
related to the clinical progression of the disease. The
earliest observations that suggested a causal relation-
ship came for the observation that thrombin infusion
into dogs that were subsequently challenged with le-
thal concentration of E. coli resulted in survival and
prevention of DIC [126]. Thrombin infusion under
these conditions leads to systemic protein C activation
in vivo [36]. Therefore, to test whether the APC so
generated could protect from sepsis, lethal E. coli con-
centrations were injected in baboons with or without
APC. The animals infused with APC were protected
from death, DIC and organ dysfunction [127]. Blocking
the protein C pathway made these primates hyper-re-
sponsive to sublethal concentrations of E. coli
[127,128]. Blocking the pathway increased the DIC re-
sponse to the sublethal E. coli as expected, but it also
increased the circulating TNF a levels compared to
control animals given the same dose of E. coli. Resto-
ration of the protein C system prevented the DIC,
organ damage, and elaboration of elevated cytokine
levels. Taken together, these results suggest that pro-
tein C is a major regulator of microvascular thrombosis
and that the system modulates the in_ammatory re-
sponse by as yet unknown mechanisms. The links pre-
sented above between protein C de~ciency and mi-
crovascular thrombosis provided a rationale for the use
of protein C in the prevention of some complications of
septic shock. Treatment with protein C of severely ill
patients with relatively advanced septic shock, usually
due to meningococcemia, have been reported
[1,129,130]. In general, protein C infusion has been as-

sociated with  normalization of circulating protein C
levels and reversal of organ dysfunction including a
rapid regain of consciousness and kidney function
[129,130] and reviewed in [1]. In addition to meningo-
coccemia, one patient with a group A b-hemolytic
streptococcal infection and varicella developed septic
shock (DIC) had undetectable protein C levels prob-
ably due to consumption, and purpura [131]. His condi-
tion improved rapidly following protein C supplemen-
tation. Most recently, the results of phase 2 studies of
severe septic patients were reported using APC
[132,133]. At the highest dosages used (24 or 30
lg/kg/hr), a 40% reduction in 30 day mortality was
observed (21% vs 35% and a trend toward decreased
time on the ventilator, in the ICU and in the hospital).
The low numbers of patients studied (131 total, 41 con-
trol, 51 low dose and 39 high dose) resulted in a P value
for signi~cance of only 0.21. Consistent with reported
anti-in_ammatory events, circulating IL-6 levels in
these patients were decreased compared to placebo (P
5 0.05) [132]. Thus, although the rationale and prelimi-
nary anecdotal clinical results appear promising, a
larger clinical trial will be needed to verify the validity
of this approach.

Several mechanisms, in addition to inhibition of
thrombin formation, have been identi~ed that might
contribute to useful effects of protein C in the treat-
ment of sepsis. APC has been reported to inhibit tumor
necrosis factor elaboration by monocytes in vitro [134],
to prevent interferon gamma mediated Ca21 transients
and cellular proliferation [135], and to bind to the
monocyte cell surface apparently through an as yet
uncharacterized cell surface receptor. In addition, pro-
tein C has also been reported to inhibit leukocyte ad-
hesion to selectins [136]. EPCR on the endothelium is
structurally related to the major histocompatibility
(MHC) class 1 molecules, a class of molecules involved
in in_ammation. EPCR is regulated by in_ammatory
cytokines suggesting the possible, but unproven, role
of this receptor in control of in_ammatory processes
[26]. It remains unclear what the relative contribution
of the anti-in_ammatory activities vs anticoagulant ac-
tivities of this system are to the host response against
sepsis.

Protein S as an Agent in the
Treatment of DIC/Sepsis

Protein S has not been studied extensively as a thera-
peutic agent. Protein S de~ciency has been described
in patients with Warfarin induced skin necrosis [137]
and patients with homozygous protein S de~ciency
may develop purpura fulminans [58] indicating that the
protein plays a critical role in preventing microvascu-
lar  thrombosis. Free and total  protein S levels are
often low is septic shock or following thrombosis
[66,110,138]. Therefore, it is reasonable to infer that
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protein S supplementation might be helpful in patients
with acquired de~ciencies of protein S.

In one study of sepsis, a baboon model of E. coli
induced septic shock was employed. Protein S cofactor
activity for APC was inhibited by infusion of excess
human C4BP to complex the free protein S. This exac-
erbated the response to sublethal levels of E. coli re-
sulting in death. In this model, when protein S levels
are normal, infusion of 10% of the lethal concentration
of E. coli results only in an acute phase response. How-
ever, when free protein S is reduced by infusion of
C4bBP or an antibody to protein S, the same dose of
bacteria leads to death, organ failure, and either DIC
or microvascular thrombosis [128]. Protein S supple-
mentation protects the latter group of animals from
death and DIC. While protein S levels have been ob-
served  to  decrease in septic shock, the preliminary
clinical experience with protein C infusion in septic
shock patients suggests that it is effective without si-
multaneous protein S supplementation. Whether pro-
tein S supplementation would improve the ef~cacy of
protein C or whether it may be required in some pa-
tients for protein C to be effective may be clari~ed
during the clinical trials in progress.

Conclusion

The protein C system has all of the hallmarks of being
at an interface between in_ammation and coagulation
apparently serving a negative regulatory process in
both systems. Especially because this key regulatory
system often becomes impaired in severe systemic
in_ammatory situations like sepsis, it follows that a
return of the system to normal status might be
bene~cial. This concept appears to be borne out in ex-
perimental sepsis models which have shown protective
effects by supplementation of components of the sys-
tem and deleterious effects by inhibition of the system.
The preliminary clinical results appear promising with
several clinical reports of rapid improvement in
gravely ill patients following protein C or APC infu-
sion. Whether this potential clinical bene~t will be
con~rmed in larger trials remains to be determined.

With respect to protein C therapy, there are a
number of important issues that remain unresolved.
For instance, it is unclear whether there are patients
who would bene~t more from protein C than APC in-
fusion. In those patients with ongoing coagulopathies,
protein C is rapidly activated in vivo. The potential
advantages of protein C over APC is that the highest
levels of APC would be generated at the sites of great-
est thrombin generation and in the microcirculation
where it might be most ef~cacious. In addition, protein
C has the theoretical advantage of being self regulated.
Once thrombin formation is halted, protein C activa-
tion ceases and the anticoagulant response slowly dis-
appears unless another wave of thrombin generation
begins. These features might help prevent excess anti-

coagulation and provide a safety margin not present
with APC. From the available data, protein C may
have been more effective clinically than APC, but it is
important to note that protein C has been used most
often with meningococcemia patients whereas APC
has been used in “severe sepsis” patients in general. If
one assumes that APC has protective anti-in_amma-
tory activities as suggested from the in vitro studies,
APC might prove effective in patients even without
overt DIC. In these patients, it is unlikely that protein
C supplementation would be bene~cial since little of
the added protein C would be activated. Hopefully the
clinical trials now in progress will provide answers to
these unresolved questions. Ultimately, it will be im-
portant to know which, if any, therapeutic agents work
effectively in combination with components of the pro-
tein C anticoagulant pathway.

Support provided in part by grants from the National Heart,
Lung and Blood Institute, grant nos. P01 HL54804 and P50
HL54502. CTE is an investigator for the Howard Hughes Medical
Institute.
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