Skip to main content
Log in

A Weibull Regression Model with Gamma Frailties for Multivariate Survival Data

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Frequently in the analysis of survival data, survival times within the same group are correlated due to unobserved co-variates. One way these co-variates can be included in the model is as frailties. These frailty random block effects generate dependency between the survival times of the individuals which are conditionally independent given the frailty. Using a conditional proportional hazards model, in conjunction with the frailty, a whole new family of models is introduced. By considering a gamma frailty model, often the issue is to find an appropriate model for the baseline hazard function. In this paper a flexible baseline hazard model based on a correlated prior process is proposed and is compared with a standard Weibull model. Several model diagnostics methods are developed and model comparison is made using recently developed Bayesian model selection criteria. The above methodologies are applied to the McGilchrist and Aisbett (1991) kidney infection data and the analysis is performed using Markov Chain Monte Carlo methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, 1965.

  • E. Arjas and D. Gasbarra, “Nonparametric Bayesian inference for right-censored survival data, using the Gibbs sampler,” Statistica Sinica, vol.4, pp. 505–524, 1994.

    MATH  MathSciNet  Google Scholar 

  • N. E. Breslow, “Covariance analysis of censored survival data,” Biometrics, vol.30, pp. 89–99, 1974.

    Article  Google Scholar 

  • D. Clayton, “A model for association in bivariate life tables and its application in epidemiological studies of familiar tendency in chronic disease incidence,” Biometrika, vol.65, pp. 141–151, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Clayton and J. Cuzick, “Multivariate generalizations of the proportional hazards model (with discussion),” J. Roy. Statist. Soc., A vol.148, pp. 82–117, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  • D. R. Cox and D. Oakes, Analysis of Survival Data, London: Chapman & Hall, 1984.

    Google Scholar 

  • D. Gamerman, “Dynamic Bayesian models for survival data,” Appl. Statist., vol.40, pp. 63–79, 1991.

    Article  MATH  Google Scholar 

  • A. E. Gelfand, “Model determination using sampling based methods,” in Markov Chain Monte Carlo in Practice, (Eds. W. R. Gilks, S. Richardson and D. J. Spiegelhalter), London: Chapman and Hall, 1996, pp. 145–161.

    Google Scholar 

  • A. E. Gelfand and D. K. Dey, “Bayesian model choice: asymptotics and exact calculations,” J. Roy. Statist. Soc., B vol.56, pp. 501–514, 1994.

    MATH  MathSciNet  Google Scholar 

  • A. E. Gelfand, D. K. Dey and H. Chang, “Model determination using predictive distributions with implementation via sampling-based methods (with discussion),” in Bayesian Statistics 4, (Eds. J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith), Oxford: Oxford University Press, 1992, pp. 147–167.

    Google Scholar 

  • A. E. Gelfand and S. K. Ghosh, “Model Choice: A Minimum Posterior Predictive Loss Approach,” to appear in Biometrika, 1997.

  • A. E. Gelfand and A. F. M. Smith, “Sampling based approaches to calculating marginal densities,” J. Amer. Statist. Assoc.,vol.85, pp. 398–409, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Geweke, “Evaluating the accuracy of the sampling-based approaches to the calculation of the posterior moments,” in Bayesian Statistics 4, (Eds. J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith), Oxford: Oxford University Press, 1992, pp. 169–194.

    Google Scholar 

  • S. K. Ghosh, “Modeling and Analysis of Multiple Event Survival Data.” Ph. D. thesis, Department of Statistics, University of Connecticut, Storrs, Connecticut, 1996.

  • W. R. Gilks, S. Richardson and D. G. Spiegelhalter, Markov Chain Monte Carlo In Practice. London: Chapman and Hall 1996.

    MATH  Google Scholar 

  • W. R. Gilks and P. Wild, “Adaptive rejection sampling for Gibbs sampling,” Appl. Statist., vol.41, pp. 337–348, 1992.

    Article  MATH  Google Scholar 

  • P. J. Green, “Reversible jump Markov chain Monte Carlo computation and Bayesian model determination,” Biometrika,vol. 82, pp. 711–732, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Hougaard, “A class of multivariate failure time distributions,” Biometrika, vol.73, pp. 671–678, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  • J. D. Kalbfleisch and R. L. Prentice, “Marginal likelihoods based on Cox's regression and life model,” Biometrika, vol.60, pp. 267–278, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  • R. E. Kass and A. E. Raftery, “Bayes factors,” J. Amer. Statist. Assoc.,vol.90, pp. 773–795, 1995.

    Article  MATH  Google Scholar 

  • J. F. Lawless, Statistical Models and Methods for Life Time Data. New York: John Wiley, 1982.

    Google Scholar 

  • T. Leonard, “Density estimation, stochastic processes and prior information,” J. Roy. Statist. Soc.,B vol.40, pp. 113–146, 1978.

    MATH  MathSciNet  Google Scholar 

  • C. A. McGilchrist and C. W. Aisbett, “Regression with frailty in survival analysis,” Biometrics,vol.47, pp. 461–466, 1991.

    Article  Google Scholar 

  • D. Oakes, “A model for association in bivariate survival data,” J. Roy. Statist. Soc., B, vol.44, pp. 414–422, 1982.

    MATH  MathSciNet  Google Scholar 

  • A. E. Raftery, “Hypothesis testing and model selection,” in Markov Chain Monte Carlo in Practice, (Eds. W. R. Gilks, S. Richardson and D. J. Spiegelhalter), London: Chapman and Hall, 1996, pp. 163–187.

    Google Scholar 

  • A. E. Raftery and S. Lewis, “How many iterations in the Gibbs sampler?,” in Bayesian Statistics 4, (Eds. J. M. Bernado, J. O. Berger, A. P. Dawid and A. F. M. Smith), Oxford: Oxford University Press, 1992, pp. 765–776.

    Google Scholar 

  • D. Sinha and D. K. Dey, “Semiparametric Bayesian Analysis of Survival Data,” to appear in J. Amer. Statist. Assoc., 1997.

  • D. J. Spiegelhalter, A. Thomas, N. G. Best and W. R. Gilks, “BUGS: Bayesian Inference Using Gibbs Sampling, Version 0.50.” MRC Biostatistics Unit, Cambridge, England, 1995.

    Google Scholar 

  • M. Tanner and W. Wong, “The Calculation of Posterior Distributions by Data Augmentation (with discussion),” J. Amer. Statist. Assoc., vol.82, pp. 528–550, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  • G. A. Whitmore and M. L. T. Lee, “A multivariate survival distribution generated by an Inverse Gaussian mixture of exponentials,” Technometrics, vol.33, pp. 39–50, 1991.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahu, S.K., Dey, D.K., Aslanidou, H. et al. A Weibull Regression Model with Gamma Frailties for Multivariate Survival Data. Lifetime Data Anal 3, 123–137 (1997). https://doi.org/10.1023/A:1009605117713

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009605117713

Navigation