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Abstract. Frequently in the analysis of survival data, survival times within the same group are correlated due
to unobserved co-variates. One way these co-variates can be included in the model is as frailties. These frailty
random block effects generate dependency between the survival times of the individuals which are conditionally
independent given the frailty. Using a conditional proportional hazards model, in conjunction with the frailty, a
whole new family of models is introduced. By considering a gamma frailty model, often the issue is to find an
appropriate model for the baseline hazard function. In this paper a flexible baseline hazard model based on a
correlated prior process is proposed and is compared with a standard Weibull model. Several model diagnostics
methods are developed and model comparison is made using recently developed Bayesian model selection criteria.
The above methodologies are applied to the McGilchrist and Aisbett (1991) kidney infection data and the analysis
is performed using Markov Chain Monte Carlo methods.
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1. Introduction

Modeling dependence in multivariate survival data has received considerable attention in
recent literature. Such data sets may come from subjects of the same group who are related
to each other. For example, a typical group may consist of members from the same family,
e.g., brothers and sisters. In a different context, the data may come from multiple recurrence
times of a disease for the same patient. Straightforwardly, because of dependence in the
data Cox proportional hazard models can not be used.

A key development in modeling such data is to consider the frailty models. The idea builds
upon a familiar repeated measures trick. The event times are conditionally independent
given thefrailty, an individual random effect, see e.g., Clayton (1978), Oakes (1982) and
Clayton and Cuzick (1985). These models formulate the variability of life times, coming
from two distinct sources. The first source is natural variability and it is explained by the
hazard function and the second is variability common to individuals of the same group
or variability common to several events of an individual and it is explained by the frailty.
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The frailty term in a model represents the common co-variates that are not observed or are
neglected.

Many models compete for adoption as the baseline hazard function, see e.g., Sinha and
Dey (1997) (and references therein) for a review. They range from simple constant hazard
functions to Lévy processes, beta processes and so on. An attractive development here is
to use a correlated prior process, (see e.g., Leonard, 1978; Gamerman, 1991 and Arjas and
Gasbarra, 1994). Hazards in adjacent intervals are assumed to be correlated. A martingale
prior process emerges from such considerations. Though, in general these processes do not
produce monotonic hazard rate models, they impose smoothness on the hazard functions
in adjacent intervals.

The issues of model adequacy and model choice has received far less attention in the
survival analysis literature. In the frequentist analysis ad-hoc residual plots serve as model
checking criterion since the residuals for the censored individuals do not have the desired
distributions. Recent advances in Bayesian computations using Markov chain Monte Carlo
(MCMC) methods (see e.g., Gilkset al., 1996 for an excellent review) have enabled effective
deliberations to be made on such questions using predictive distributions. MCMC methods
enable the calculation of several features of the posterior distributions and help formulation
of model choice criterion based on posterior predictive loss (Gelfand and Ghosh, 1997).

In this article, we consider conditional proportional hazard models given the frailty. We
present many different parametric assumptions on the frailty models, considering both
multiplicative and additive frailty distributions. In particular, we develop models based on
multiplicative gamma frailty (Clayton and Cuzick, 1985 and also Sinha and Dey, 1997 for a
review). We model the survival times using conditional piecewise exponential distribution
(see, e.g., Breslow, 1974; Kalbfleisch and Prentice, 1973 and Gamerman, 1991). For the
piecewise exponential model, we use correlated prior processes (Gamerman, 1991 and
Arjas and Gasbarra, 1994) for the baseline hazard functions. We also consider the widely
used Weibull hazard functions. We compare the piecewise exponential models with models
built up using Weibull distributions. We illustrate our methodology for the kidney infection
data set of McGilchrist and Aisbett (1991).

The remainder of the paper is organized as follows. Section 2 introduces the conditional
proportional hazard model with frailty, the correlated prior process for the baseline hazard
and the Weibull baseline hazard model. In Section 3 we discuss the issues of model adequacy
and model choice using predictive distributions. In Section 4 we analyze a data set from
McGilchrist and Aisbett (1991). Some important mathematical steps in our calculation are
placed in the Appendix.

2. Frailty models

2.1. Hazard Functions Modeling

Clayton (1978) and Oakes (1982) considered first frailty models for multivariate survival
data, using gamma distribution for the frailty. Hougaard (1986) used the positive stable
model while Whitmore and Lee (1991) studied a model with inverse gamma frailties. We
consider the gamma distribution which is most common to model the frailty. Assuming
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that the survival time of thejth subject(j = 1, . . . ,m) in the ith group(i = 1, . . . , n)
is denoted byTij and given the unobserved frailty parameter denoted bywi (for the ith
group), the hazard function is as follows:

h(tij |zij , wi) = λo(tij) exp(βT zij) wi (1)

wherezij is the fixed co-variate vector,β is the regression parameter andλo(·) is the baseline
hazard function. As is often done in practice, for identifiability purposes the linear model
component in (1),log(θij) ≡ βT zij , does not include any intercept term. Components of
β are assigned independent normal priors with large variances. The co-variatezij can be
time dependent. The frailty parameterswi, i = 1, . . . , n are assumed to be independent
and identically distributed for every group. For identifiability reasons we need thewi’s to
have mean one. In this paper we considerwi to follow a gamma distribution, i.e.,

wi ∼ Gamma(η, η), i = 1, . . . , n (2)

whereη−1 is the unknown variance of thewi’s. That is, we sayX ∼ Gamma(a, b) if its
density is∝ xa−1 exp(−bx). Small values ofη signify closer positive relationship between
the subjects of the same group and greater heterogeneity among the groups. An appropriate
prior for η is a Gamma distribution with mean 1 and large variance,Gamma(φ, φ) say
with a small choice ofφ.

2.2. Piecewise Exponential Models

Piecewise exponential models and prior processes on the components provide a very flexible
framework for modeling univariate survival data. Modeling the baseline hazard using prior
processes is very common, see Sinha and Dey (1997) for a review. Often in real life
problems, not the actual baseline hazard, but the smoothness of it, is available as prior
information (see e.g., Leonard, 1978 and Gamerman, 1991). We divide time intog pre-
specified intervalsIk = (tk−1, tk] for k = 1, 2, . . . , g where0 = t0 < t1 < . . . < tg <∞,
tg being the last survival or censored time and assume the baseline hazard to be constant
within intervals. That is,

λo(tij) = λk, for tij ∈ Ik. (3)

The model was first introduced by Breslow (1974) who used distinct failure times as end
points of intervals. Kalbfleisch and Prentice (1973) suggested that the selection of the grid
{t1, t2, . . . , tg} should be made independent of the data. We will discuss the choice ofg
later in this section.

To correlate theλk ’s in adjacent intervals, a discrete-time martingale process is used, simi-
lar to that of Arjas and Gasbarra’s (1994) for univariate survival model. Given(λ1, . . . , λk−1)
we specify that

λk|λ1, . . . , λk−1 ∼ Gamma

(
αk,

αk
λk−1

)
, k = 1, . . . , g (4)
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whereλ0 = 1. Hence,E(λk|λ1, . . . , λk−1) = λk−1. The parameterαk in (4) controls the
amount of smoothness available, i.e., smallαk indicates less information on the smoothing
of λk ’s. If αk = 0 thenλk andλk−1 are independent. Whenαk → ∞ then the baseline
hazard is the same in the intervalsIk andIk−1 i.e., λk = λk−1. Though notice that if
prior information is available, the shape and scale of the marginal prior ofλk will change
accordingly and the prior will be more informative. A version of the above process which
can also be used, was given by e.g., Leonard (1978) and Gamerman (1991). They modeled
log(λk) = ck and

ck|ck−1 ∼ N(ck−1, τ
2), k = 1, . . . , g (5)

with c0 = 0. Taking this further, we can assume a second difference prior process forck,
i.e.,ck|ck−2, ck−1 ∼ N(2ck−1 − ck−2, τ

2), k = 3, . . . , g.
A few remarks are in order on the choice ofg. It is clear that a very large choice of

g will make the model non-parametric. However, in the parametric set-up of this paper,
too large ag will produce unstable estimators of theλ’s and too small a choice will lead
to poor model fitting. Hence, a robust choice ofg should be considered here. Note that,
the maximum likelihood estimate ofλk depend on the number of failures,dk, in thekth
interval Ik and is 0 ifdk is zero. One possible advantage of the Bayesian approach with
the correlated process prior described here is to smooth out such jumps to zero. However,
see the Appendix for further discussion on related computational issues. A random choice
of g will make the posterior distribution in variable dimensions and sampling techniques
other than the Gibbs sampler, e.g., reversible jump MCMC, Green (1995), can be used to
compute the posterior distribution.

The above models can be easily altered to accommodate monotone baseline hazard func-
tions. Suppose that one intends to model theλ’s with the constraintλ1 ≤ λ2 ≤ . . . ≤ λg.
Following Arjas and Gasbarra (1994) we can assume that

λk − λk−1 ∼ Gamma(αk, αk), k = 1, . . . , g

instead of (4) or (5). However we do not consider these here and instead turn to the Weibull
models which can accommodate monotonicity.

2.3. Weibull Models

To compare the performance of the above piecewise exponential models, we consider the
usual Weibull distribution for modeling. The Weibull baseline hazard function given by

λo(tij) = µαtα−1
ij , α, µ > 0, j = 1, . . . ,m, i = 1, . . . , n (6)

whereαandµare unknown hyper-parameters, has been used extensively due to its simplicity
and flexibility. We assume that a-prioriµ ∼ Gamma(ρ, ρ) andα ∼ Gamma(κ1, κ2).

The above is a multiplicative frailty model. We can formulate an additive frailty model
by assuming, instead of (1) and (6)

h(tij |zij , bi) = ξijαt
α−1
ij , where log(ξij) = ν + βT zij + bi. (7)
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Now bi’s are assumed i.i.dN
(
0, η−1

)
andη is given aGamma(φ, φ) prior. Prior forα

remains the same andν is given a flat normal prior. This is the modeling strategy used in
theBUGS, Spiegelhalteret al. (1995), software manual. However, it is expected that both
the Weibull model formulations draw similar inference. We will return to this in Section 4.

2.4. Likelihood Specifications

Let δij denote the indicator variable taking value 1 if thejth subject(j = 1, . . . ,m) of
the ith group(i = 1, . . . , n) fails and value 0 otherwise. Hencetij is a failure time if
δij = 1 and a censoring time otherwise. Letzij be the co-variate for each subject. Hence,
the triplet (tij , δij , zij) is observed for alli and j. Let (Y,Z) denote the collection of
all such triplets(tij , δij , zij). The vector of unobservedwi’s, denoted byW, is called
theaugmented dataand the triplet(W,Y,Z) is called thecomplete data. We only allow
right-censored survival data and assume that the censoring is non-informative.

For the piecewise exponential model, the likelihood can be derived as follows. Thejth
subject of theith group has a constant hazard ofhij = λkθijwi in thekth interval(k =
1, . . . , g) given the unobserved frailtywi. If the subject has survived beyond thekth interval,
i.e., tij > tk, the likelihood contribution isexp{−λk∆kθijwi} where∆k = tk − tk−1.
If the subject has failed or censored in thekth interval, i.e.,tk−1 < tij ≤ tk then the
likelihood contribution is(λkθijwi)

δij exp {−λk(tij − tk−1)θijwi} . Hence, we arrive at
the following complete data likelihood,L(β,λ, |W,Y,Z) say,

n∏
i=1

m∏
j=1

{
gij∏
k=1

exp(−λk∆kθijwi)

} (
λgij+1θijwi

)δij exp
{
−λgij+1(tij − tgij )θijwi

}
,

(8)

wheregij is such thattij ∈ (tgij , tgij+1] = Igij+1. The data likelihood of(β,λ) based
on the observed data(Y,Z) can be obtained by integrating out thewi’s from (8) with the
densityπ(wi|η) as given in (2).

Using a Weibull hazard with parametersα andµ as given in (6), thejth subject of the
ith group has a hazardhij = µαtα−1

ij θijwi. Given the unobserved frailtywi, tij ’s are
independent. Hence, the complete data likelihood,L(β, µ, α|W,Y,Z) say, is given by

n∏
i=1

m∏
j=1

(
µαtα−1

ij θijwi
)δij exp

{
−µtαijθijwi

}
. (9)

Once again the data likelihood of(β, µ, α) based on observed data(Y,Z) can be obtained
by integrating out thewi’s from (8) with the densityπ(wi|η) as given in (2).

The final forms of the data likelihoods after integration are too complicated to work with.
Thus, it is not easy to evaluate the marginal posterior distributions of(β, µ, α) and(β,λ)
analytically. To circumvent this problem, we use the Gibbs sampler, see e.g., Gelfand and
Smith (1990) and Gilkset al. (1996) with the data augmentation method (Tanner and Wong,
1987) to generate samples from the appropriate marginal posterior distributions.
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3. Model Determination

3.1. Model Adequacy

Model adequacy in survival analysis is an important issue. In the classical set up, there
are two approaches. One is to assume a parametric function for the baseline hazardλo,
assess an empirical estimatêλo say, plot it againstt or log(t) and compare the plot with
the theoretical one. The other approach uses ad-hoc theoretical or empirical Q-Q plots of
exponential residuals (Lawless, 1982 and Cox and Oakes, 1984 and the references therein).
In the Bayesian framework very few papers address the issue of model adequacy with some
notable exceptions, e.g., Ghosh (1996), Sinha and Dey (1997) and references therein.

Bayesian model examination for adequacy proceeds by calculating different predictive
distributions. We outline the concepts and calculations below mainly following Gelfand
et al. (1992); Gelfand and Dey (1994) and Gelfand (1996). In generic notation, letπ(·)
denotes the density of its argument andθ denotes all the parameters under the assumed
model. Letyobs denotes the observed data. The posterior predictive density,π(y|yobs),
is the predictive density of a new independent set of observable under the model, given
the actual set of observable, Gelfand (1996). By marginalizingπ(y|yobs) we obtain the
posterior predictive density of one observationyr, r = 1, . . . , N whereN is the total
number of observations, as follows,

π(yr|yobs) =
∫
π(yr|θ)π(θ|yobs)dθ. (10)

Equation (10) may be used for model checking in the Bayesian framework. Suppose that
we draw samples from the above density and form100× q% equal tailed credible intervals.
Then under a given model we would expect at least100× q% of actual observations to lie
in that interval. The model under consideration would be an adequate model for the data if
it supports the above. This is the strategy we will use for model checking in our example
in Section 4.

How do we sample from the predictive density in (10)? Suppose thatθ(1), . . . , θ(B)

denotesB samples fromπ(θ|y), possibly using one of the MCMC methods. Then, a

random sampley(j)
r drawn fromπ(yr|θ(j)), is a sample from the above predictive density,

see Gelfand (1996) for more details. Suppose thatµr andσ2
r denote the posterior predictive

mean and variance ofyr under the density (10). We can easily estimateµr andσ2
r by Monte

Carlo integration using the samplesy(j)
r , j = 1, . . . , B.

3.2. Model Selection

In this subsection we consider the problem of accounting for uncertainty about the model
form. We are faced with many models that involve different assumptions, distributional
forms, or sets of co-variates or other model parameters. Although we may wish to summa-
rize our findings with a single model, there are usually many choices to be made. The pure
Bayesian approach for model comparison, is to report the posterior probabilities of each
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model, by comparing Bayes factors (see, e.g., Kass and Raftery, 1995). Though there has
been recent advances in computing the Bayes factor, see e.g., Raftery (1996) for a review,
there are problems in calculating the Bayes factor for high dimensional models that we
work with. Also for improper priors the Bayes factor is not meaningful since it can not be
calibrated. In this section we use two alternative approaches for model selection.

The first one is based on cross-validation predictive density. Suppose thaty(r) denotes
the set of data points deleting therth observation. Cross-validation predictive density is
given by,

π(yr|y(r)) =
∫
π(yr|θ,y(r))π(θ|y(r))dθ. (11)

This is popularly known as the conditional predictive ordinate (CPO). We can compare more
than one models using the CPOs. The so called CPO plot, a plot which overlays the CPO’s
for different models in a single graph provides useful information for model examination.
We prefer a model for which the CPO values are higher than those for the other models under
consideration. Model comparison can also be done using summary measures. Suppose that
we have two modelsM1 andM2 under consideration. The pseudo-Bayes factor, a surrogate
for the Bayes factor, for comparing the two models is defined as

PSBF(M1,M2) =
∏N
r=1 π(yr|y(r)|M1)∏N
r=1 π(yr|y(r)|M2)

(12)

whereπ(yr|y(r)|Mi) is (11) under modeli = 1, 2.
It is straightforward to estimate the CPO given by (11) when samples from the posterior

distributionπ(θ|y) are available and givenθ the observations are conditionally indepen-
dent, i.e.,π(yr|θ,y(r)) = π(yr|θ). Note that given the frailty parameterwi, tij ’s are
independent. This fact is crucial in the development below. Suppose that we haveB sam-
plesθ(1), . . . , θ(B) drawn approximately fromπ(θ|y), possibly using one of the MCMC
methods. A Monte Carlo estimate ofπ(yr|y(r)) in (11) is then

π̂(yr|y(r)) = B

 B∑
j=1

{
π(yr|θ(j))

}−1

−1

, (13)

which is the harmonic mean of the conditional density ofyr evaluated at the posterior
sample values.

Though, the above model selection methods based on cross-validation predictive densities
have value, the summary measure (12) can not be calibrated because unlike the Bayes factor
it does not have a probability interpretation. In simple terms, we would not know how large
a pseudo-Bayes factor is large. Hence, we must look for alternative model selection criteria.

Recently Gelfand and Ghosh (1997) have proposed a model choice criterion by studying
utility functions. They consider loss functions which reward an action for its closeness to
the predictive value and penalizes the action if its too far from the observed value. The
criterion is then obtained by minimizing this posterior predictive loss. As they claim, the
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criterion emerges approximately as a form partitioned into a goodness-of-fit term and a
penalty term for a wide range of models. With squared error loss the criterion is:

D′ω =
N∑
r=1

σ2
r +

ω

ω + 1

N∑
r=1

(µr − yr,obs)2 (14)

whereµr andσ2
r are as defined in Section 3.1 andω > 0 is some constant. The first term is

a penalty term which penalizes both under-fitted and over-fitted models, since the predictive
variances in such cases will tend to be larger. The second term without the factor involving
ω is a goodness-of-fit measure. Model selection usingD′ω is usually not sensitive toω and
we will illustrate this in the example in Section 4. For censored data the criterion in (14)
must be modified becauseyr,obs is not available for censored cases. The modified criterion
(Gelfand and Ghosh, 1997) is

Dω =
N∑
r=1

σ2
r +

ω

ω + 1

N∑
r=1

(µr − vr)2 (15)

wherevr = yr,obs if the rth observation is a failure time andvr = max(µr, sr) if the
rth observation is censored atsr. We illustrate the performance of different models under
consideration using all of the above model choice criteria.

4. Kidney Infection Data Example

McGilchrist and Aisbett (1991) analyze time to first and second recurrence of infection in
38 kidney patients on dialysis using a Cox proportional hazard model with a multiplicative
frailty parameter for each patient. Two primary co-variates are age of the patients at the
time of each infection and sex of the patient. The data set has been reanalyzed byBUGS,
Spiegelhalteret al. (1995), using an additive frailty model as described in Section 2.3. We
consider the following four models for this data set.

1. Model I: Piecewise exponential model with gamma priors for theλk ’s as in (4).

2. Model II: Weibull model (6) with multiplicative gamma frailties.

3. Model III: Piecewise exponential model with normal priors for thelog(λk)’s as in (5).

4. Model IV: Weibull model (7) with additive frailties.

The proportional hazard component of each of the above models is

θij = exp(βT zij) = exp(βsexsexi + βageageij)

wheresexi = 1 if the ith patient is a female and 0 otherwise,ageij is the age at thejth
infection of theith patient.

Each of the above models was fitted using Gibbs sampling. In particular, we used the
BUGS software (Spiegelhalteret al., 1995) to fit Model IV. The adaptive rejection sampling
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of Gilks and Wild (1992) was used whenever the complete conditional distribution was non-
standard and log-concave, see Appendix for discussion on log-concavity. A Metropolis step
was implemented if the distribution was not log-concave. Many convergence diagnostics
measures were calculated, e.g., Geweke (1992) and Raftery and Lewis (1992) to monitor
convergence. The first 1000 iterates in each case were discarded and the subsequent 10000
iterates were used to make inference.

The following values of hyper-parameters were used in the simulation. For the prior on
inverse frailty variance,η, φ was taken to be 0.001. Each component ofβ was assumed
a-priori normal with 0 mean and variance103. The same prior was assumed forν in Model
IV. For Model I all theαk ’s were assumed to be 0.01. For Model IIIτ2 was taken as104 to
make it comparable with the corresponding prior precision forλk ’s in Model I. For models
III and IV we tookρ = 0.001, κ1 = 1 andκ2 = 0.001.

We first investigated different choices of the grid sizeg for Models I and III. We exper-
imented with three choices ofg = 5, 10 and 20. Theg = 5 case seemed to give worse
model fitting than theg = 10 case and the last choice ofg did not provide substantially
better results than theg = 10 case. Hence we decided to useg = 10 throughout. Model
fitting and/or model choice were not very much sensitive to small variations on the values
of the other hyper-parameters as given above. Widely differentαk ’s in Model I did change
the estimates a little bit. However, that did not alter the model choice ordering as reported
below.

Table 1 shows the posterior mean, standard deviation and 95% credible intervals for
βsex, βage, σ2

frailty = η−1. We show the estimates of andα andµ (for Model IV µ =
exp{ν}) in Table 2. Figure 1 shows the marginal posterior density estimates forβsex
under the four models. The estimates ofβsex show that the female patients have a slightly
lower risk for infection. The estimates ofσ2

frailty from different models show that there is
a strong posterior evidence of high degree of heterogeneity in the population of patients.
Some patients are expected to be very prone to infection compared to others with the same
co-variate value. This is not very surprising, as in the data set there is a male patient with
infection times 8 and 16, and there is also another male patient with infection times 152
and 562. The high posterior means ofσ2

frailty also provide evidence of strong positive
correlation between two infection times for the same patient.

Table 1. Parameter estimates from different Models. Posterior means are followed by (standard
deviations) in the first row. 95% credible intervals are shown in the second row.

Model I Model II Model III Model IV
βsex –1.493 (0.468) –1.888 (0.564) –1.5 (0.480) –1.69 (0.529)

(–2.43, –0.6) (–3.034, –0.846) (–2.467, –0.624) (–2.78, –0.699)
βage 0.0061 (0.013) 0.0074 (0.013) 0.0065 (0.013) 0.006 (0.014)

(–0.0184, 0.0321) (–0.0178, 0.0322) (–0.0179, 0.0356) (–0.0189, 0.0356)
σ2
frailty 0.499 (0.283) 0.585 (0.307) 0.523 (0.285) 0.816 (0.507)

(0.061, 1.160) (0.115, 1.317) (0.089, 1.195) (0.079, 2.05)

The above analysis suggests that Models I and III are very close to each other while
Models II and IV are also somewhat similar. Hence we proceed with only Models I and II
for further analysis based on predictive distributions. Under Model I, 44 and 75 out of 76
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Figure 1. Marginal Posterior density estimates ofβsex under four models. Solid line for Model I; dotted line for
Model II; dashed line for Model III and big dashed line for Model IV.

Table 2.Parameter estimates ofα andµ for the
Weibull Models II and IV. Posterior means are
followed by (standard deviations) in the first
row. 95% credible intervals are shown in the
second row.

Model II Model IV
α 1.278 (0.190) 1.22 (0.16)

(0.937, 1.692) (0.916, 1.54)
µ 0.0157 (0.015) 0.0129 (0.014)

(0.0012, 0.0575) (0.0011, 0.0525)

observations were contained in the 50% and 95% predictive intervals respectively, while
under Model II the number of observations were 39 and 74 respectively. This shows that
Model I is doing better than Model II, though both may seem to be adequate.

Another diagnostic is based on CPO values obtained from Model I and II. Figure 2 plots
the log(CPO, Model I) – log(CPO, Model II) against observation numbers. It shows ap-
proximately 50% of the observations are supporting Model I. The pseudo Bayes factor (12)
for comparing models I and II is very close to 2.5, indicating that it could not discriminate
between the two models effectively.

Finally, in Table 3 we show the values relating to the model choice criterionDk as given in
(15) for both the Models I and II. First two columns give the two parts of (15). As mentioned
previously, the first part is the penalty term(P ), the sum of the predictive variances and the
second part is the goodness-of-fit term(G). Note that the Weibull model II received much
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Figure 2. Log(CPO) difference between Model I and Model II. A point bigger than 0 supports Model I.2

represents a censored observation and◦ represents a failure time.

Table 3.Model selection criterion (15) (×10−6) for Models I and II.P is
the penalty (first) term in (15),G is the goodness-of-fit (second) term in (15)
without theω factor. Model I is favored by the criterion.

P G D1 D5 D10 D∞
Model I 1.31 0.643 1.63 1.84 1.89 1.95
Model II 103.06 0.499 103.31 103.48 103.51 103.56

higher penalty than the piecewise exponential model I, but in terms of goodness-of-fit the
Weibull model provided a slightly better fit. This is partially explained as follows. Note that
the Weibull distribution withα < 1 has larger variance than the exponential distribution
(α = 1). The posterior distribution ofα in Model II has substantial mass below the point
1, see Table 2. Also, censoring effects the conclusions. The predictive variances for the
censored observations are in general higher than those for the failed observations. If we
recalculate the quantities in Table 3 ignoring the censored observations then the penalty
for the Weibull Model II is only approximately twice. Hence, the Weibull model is much
worse in predicting a censored observation than the piecewise exponential model in this
situation. In conclusion, it is appropriate that Model I, i.e., a piecewise exponential model
with multiplicative gamma frailties is the best choice for this data set among all the models
we have considered here.
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Appendix

Conditional distributions for the piecewise exponential model

Using the data likelihoodL(β,λ, |W,Y,Z) from (8) and the priors we compute all the
complete conditional distributions (CCDs) needed for Gibbs sampling. Letπ(·) denote the
prior density of its argument and

Si =
m∑
j=1

θij

(
gij∑
k=1

λk∆k + λgij+1(tij − tgij )
)
. (A.1)

The CCD of eachwi is a gamma distribution as given below,

wi ∼ Gamma

η +
m∑
j=1

δij , η + Si

 , i = 1, . . . , n.

The CCD ofη is,

η ∝
n∏
i=1

wη−1
i ηnη

exp {−η
∑n
i=1 wi}

[Γ(η)]n
π(η).

The CCD ofβ is,

β ∝ exp

βT
n∑
i=1

m∑
j=1

δijzij −
n∑
i=1

wiSi

π(β).

Let
Vk =

∑
(i,j)∈Rk

∆kθijwi +
∑

(i,j)∈Dk

(tij − tk−1)θijwi,

whereRk = {(i, j); tij > tk} i.e., the risk set attk, andDk = Rk−1 − Rk. The CCD of
λk, k = 1, . . . , g is,

λk ∝ λdkk exp {−λkVk} τ(λk) (A.2)

wheredk is the number of failure times that occurred in the intervalIk and τ(λk), the
conditional prior, given as follows

τ(λ1|λ2) = λ−α0
1 exp

(
−α0

λ2

λ1

)
π(λ1),
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τ(λk|λk−1, λk+1) = λ−1
k exp

{
−α0(

λk
λk−1

+
λk+1

λk
)
}
, k = 2, . . . , g − 1 and

τ(λg|λg−1) = λα0−1
g exp

(
−α0

λg
λg−1

)
.

Conditional distributions for the Weibull model

Using the data likelihoodL(β, µ, α|W,Y,Z) from (9) and the priors the following are the
CCDs for all the parameters needed for Gibbs sampling. Letπ(·) denote the prior density
of its argument as before and

S =
n∑
i=1

m∑
j=1

tαijθijwi. (A.3)

The CCD of eachwi is a gamma distribution i.e.,

wi ∼ Gamma

η +
m∑
j=1

δij , η + µ
m∑
j=1

tαijθij

 , i = 1, . . . , n.

The CCD ofη is

η ∝
n∏
i=1

wη−1
i ηnη

exp {−η
∑n
i=1 wi}

[Γ(η)]n
π(η).

The CCD ofβ is

β ∝ exp

βT
n∑
i=1

m∑
j=1

zijδij − µS

π(β).

The CCD ofµ is a gamma distribution i.e.,

µ ∼ Gamma

ρ+
n∑
i=1

m∑
j=1

δij , ρ+ S

 .

Finally the CCD ofα is

α ∝

 n∏
i=1

m∏
j=1

t
δij
ij

α−1

α

∑n

i=1

∑m

j=1
δij exp {−µS}π(α).

Remark on Log-Concavity: It is easy to see that, except for the density ofλk in (A.2),
each of the above conditional densities islog-concave, i.e., the second derivative of the
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log-density is strictly decreasing. (Use a property ofdigamma function, Ψ(x) = Γ′(x)
Γ(x) , see

e.g., Abramowitz and Stegun (1965, p260), viz.,

Ψ′(x) =
∞∑
j=0

1
(x+ j)2

to prove log-concavity of the CCD ofη.) A sufficient condition for the density ofλk in
(A.2) to be log-concave isdk ≥ 1, that is, there is at least one failure in thekth interval.
Log-concavity of eachλk, will be ensured if there is at least one failure in each of the
intervals.
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