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Abstract. Let G be awell coveredgraph, that is, all maximal independent sets ofG have the same cardinality,
and leti k denote the number of independent sets of cardinalityk in G. We investigate the roots of theindependence
polynomial i(G, x)= ∑ i kxk. In particular, we show that ifG is a well covered graph with independence number
β, then all the roots ofi (G, x) lie in in the disk|z| ≤β (this is far from true if the condition of being well covered is
omitted). Moreover, there is a family of well covered graphs (for eachβ) for which the independence polynomials
have a root arbitrarily close to−β.

Keywords: graph, independence, polynomial, root, well covered

1. Introduction

For a graphG with independence numberβ and nonnegative integerk, let i k denote the
number of independent sets of cardinalityk in G (k = 0, 1, . . . , β). Several papers exist
(c.f. [2, 10, 11, 19] exploring such problems on general graphs (or their complements).
In fact in [2] it was shown that for any permutationσ of {1, . . . , β}, there is a graph with
independence numberβ such thatiσ(1) < iσ(2) < · · · < iσ(k). That is, there are graphs for
which i1, . . . , i k is as ‘shuffled’ as we like.

One highly structured class of graphs with respect to independence are those in which all
maximal independent sets have the same cardinality; these are calledwell coveredgraphs.
Well covered graphs have attracted considerable attention (c.f. [27, 28]).

It appears that the independence vectors(i0, i1, . . . , iβ) for well covered graphs are not
as badly behaved as those for general graphs, and we propose the following:

Conjecture 1.1 The independence vector(i0, i1, . . . , iβ) of a well covered graphG is
unimodal, i.e., there is ak ∈ {0, . . . , β} such thati0 ≤ i1 ≤ · · · ≤ i k ≥ i k+1 ≥ · · · ≥ iβ .

Unimodality conjectures permeate combinatorics in such diverse areas as matroids
[25, 31], ordered sets [8, 30], chromatic theory [29], network reliability [6] and Gaussian
polynomials [23].

∗Research partially supported by grants from NSERC.
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One approach to unimodality of combinatorial sequences has been via the roots of the
associated generating polynomials. Newton (c.f. [9]) showed that if a polynomialf (x) =∑d

i=0 ai xi with positive coefficients has all real roots, then the sequencea0,a1, . . . ,ad is
unimodal (and in fact has a stronger property of beinglog concave). More generally, it is
not hard to see that if the roots of such anf lie in the sector 2π/3≤ arg(z)≤ 4π/3, then
the sequence of coefficients is still unimodal.

These approaches have led us to investigate the nature and location of the roots of the
independence polynomial

i (G, k) =
∑

i kxk

of G, particularly whenG is well covered (some results on independence polynomials can
be found in [15–18, 21]). The roots of other graph polynomials, such as chromatic polyno-
mials [29], matching polynomials [13, 14], characteristic polynomials [13] and reliability
polynomials [5, 6], to mention a few, have attracted considerable attention in their own right.
Indeed, the roots of this polynomial shed light on how independence vectors of well covered
graphs differ from those for all graphs. In the next section, we shall explore real roots of
independence polynomials of well covered graphs, and in particular show that every well
covered graph can be embedded as an induced subgraph in another well covered graph (with
the same independence number) whose polynomial has all its roots simple and real. The
following section shows that for any noncomplete well covered graphG with independence
numberβ, its roots lie in the disc|z| < β, and that this upper bound is essentially the best
possible.

Throughout, all graphs are assumed to be simple, that is, without loops or multiple
edges. The order of a graph (usually denoted byn) is its number of vertices. We denote
the complement of graphG by Ḡ. The independence number of graphG, β(G) (or often
simply β), is the cardinality of the largest independent set inG. Given a vertexv of G,
N[v] denotes the closed neighbourhood ofv, i.e.,{x : vx is an edge ofG} ∪ {v}. For other
standard graph theoretic terminology, we follow [7].

2. Real roots of independence polynomials

We start by considering the real roots of independence polynomials. Of course, such roots
must necessarily be negative as independence polynomials have positive coefficients.

Let’s begin by considering well covered graphs with small independence number. For
β = 1, the only (well covered) graph of ordern is K n, andi (Kn, x) = 1+ nx. Clearly this
independence polynomial has−1/n as its only root.

Forβ = 2, the situation is a bit more complex. In general, a graphH with independence
numberβ(H) is well covered if and only ifH̄ is Kβ(H)+1-free and every clique of cardinality
less thanβ(H) is contained in a clique of orderβ(H). The complement of a graphG with
independence number 2 is of course triangle-free. Thus ifḠ hasn vertices andm edges,
then i (G, x) = 1+ nx+mx2. The roots of this are of course(−n±√n2− 4m)/2m,
which lie in [(−n−√n2− 4m)/2, 0] since Turan’s Theorem implies for the triangle-free
graphḠ that m ≤ n2/4, and so that all the roots are real. This argument holds for any
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graph with independence number 2. Now for general graphs withβ = 2,m can be as small
as 1, and hencei (G, x) can have a root at−n−√n2−4

2 ∼−n. However, if the graph is well
covered, then there are no isolated vertices in the complement, so thatm≥ n/2. It follows
that the roots in fact all lie in(−2, 0).

Forβ ≥ 3, the roots of the independence polynomial of a well covered graph need not
be real. For example, consider thek-partite graphKβ,β,...,β . It is a well covered graph with
independence numberβ and has independence polynomial

i (Kβ,β,...,β , x) = 1+
β−1∑
i=0

k

(
β

i

)
xi

= k(x + 1)β − (k− 1)

= k((x + 1)β − (1− 1/k))

which clearly has at leastβ − 2 nonreal roots fork ≥ 2.
Note in the example above that the independence polynomial does have a real root. In

fact, such is always the case.

Theorem 2.1 For any graph G(not necessarily well covered), a root of the independence
polynomial of G of smallest modulus is real.

Proof: In [12], it was shown that if

fG(x) =
∑
i≥0

(−1)i ci x
i ,

whereci is the number of complete subgraphs ofG of cardinalityi , then f has a root of
smallest modulus that is real. Clearlyi (G, x) = fḠ(−x), so the result follows. 2

In fact, it follows from Theorem 3 of [12] that the largest real root ofi (G, x) lies in
[− β

n , 0). On the other hand, we’ll see in the next section that this root is less than or equal
to−1/n.

Now while there are many well covered graphs (forβ ≥ 3) with nonreal roots, we can
embed every well covered graph in another well covered graph (with the same independence
number) such that the independence polynomial of the latter has all real roots. We shall first
need an easy recursive formula for calculating independence polynomials.

Proposition 2.2[17, 18, 21, 26] For any vertexv of graph G,

i (G, x) = x · i (G− N[v], x)+ i (G− v, x). 2

We now prove our main result of this section.

Theorem 2.3 For any well covered graph G, there is a well covered graph H with
β(H) = β(G) such that G is an induced subgraph of H and the independence polynomial
of H has all its roots simple and real.
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Proof: We define anexpansionof a graphG to be a graph formed fromG by replacing
each vertex by a complete graph; that is, for each vertexu of G, we replaceu by a new
complete graphKu, and add in edges between all vertices inKu and Kv wheneveruv
is an edge ofG. It is easy to see that the result of such an operation does not change
the independence number, and moreover, if the original graph is well covered, so is any
expansion. We induct onβ = β(G), and show that any well covered graphG has an
expansion whose independence polynomial has all simple, real roots.

If β = 1 then the result follows trivially, as the unique root ofi (Kn, x) is real, so we may
assume thatβ ≥ 2 (and hencen ≥ 2).

Letv be a vertex in a maximal independent set and setK = G− N[v]; note thatK is a well
covered graph with independence numberβ−1. By induction,K has an expansionL whose
independence polynomial has all its roots simple and real, sayad < ad−1 < · · · < a1 < 0
(d = β(L) = β(K ) = β(G)− 1). Choose a set ofd+ 1 real numbersbd, bd−1, . . . ,b0 < 0
such thatbd < ad < bd−1 < ad−1 < · · · < b1 < a1 < b0 (that is, thebi ’s interlace the
ai ’s). Now as the roots are simple andi (L , x) has positive constant term,i (L , bi ) has sign
(−1)i . Let Hr be the graph formed fromG − v by replacingG − N[v] by L, N(v) is
untouched andv is replaced byKr (with vertex setS). Now, by applying Proposition 2.2
r times we obtain

i (Hr , x)= r · xi(L , x)+ i (Hr − S, x).

Consequently, we can chooser large enough (sayr = R) so that

sign(i (HR, bi ))=−sign(i (L , bi )) = (−1)i+1

and soi (HR, x) has a root in each interval(bi+1, bi ). In addition, since sign(i (HR, b0)) =
−1 andi (HR, 0) > 0, there is another root in(b0, 0). That is, we have foundd+ 1= β(HR)

many distinct real roots ofi (HR, x), a polynomial of degreed + 1, and we are done. 2

We mentioned earlier a result of Newton’s that stated that if a polynomial with positive
coefficients has all its roots real, then its coefficients form a unimodal sequence.

Corollary 2.4 For any well covered graph G, there is a well covered graph H with
β(H) = β(G) and G being an induced subgraph of H such that the independence vector
(i0(H), i1(H), . . . , iβ(H)) of H is unimodal. 2

Now we have seen that the real roots of the independence polynomials of well covered
graphs can be arbitrarily close to 0, so the question remains how large can they be in
absolute value? For general graphs with independence numberβ, there can be real roots of
fairly large absolute value. For example, consider the complete(l − β + 1)-partite graph
Gβ = Kβ,β−1,β−1,...,β−1 (for β ≥ 2). It is not hard to see that the independence polynomial
of Gβ is given by

i (Gβ, x) = xβ + lxβ−1+ S (1)
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where

S=
(
β−2∑
i=1

[(
β

i

)
+ (l − β)

(
β − 1

i

)]
xi

)
+ 1. (2)

Let’s fix ε ∈ (0, 1). Providedl is large enough, one can see from (1) and (2) that

signi (G,−l ) = (−1)β−2

and

signi (G,−εl ) = (−1)β−1.

Thus i (Gβ) has a root in(−l ,−εl ). Now let n be the order ofGβ , as usual. Thenn =
(l − β)(β − 1)+ β, so thatl ∼ n

β−1 (for fixedβ ≥ 2). It follows that there are graphs with
independence numberβ with real roots close to− n

β−1.
We shall show in the next section that the situation is quite different for well covered

graphs, in that all the real roots must be greater than−β.

3. Location of the roots in the complex plane

It is natural to ask for regions of the complex plane that contain all the roots of families
of polynomials (similar questions have been investigated for matching polynomial [13],
chromatic polynomials [29] and network reliability [5], to name but a couple). We have
seen that the independence polynomials of arbitrary graphs can have a real root∼− n

β−1. In
this section we provide a much tighter bound on the modulus of all the roots of independence
polynomials of well covered graphs.

We begin with a lemma relating independence numbers of well covered graphs.

Lemma 3.1 For a well covered graph G, and for1≤ k ≤ β(G)

i k−1 ≤ kik

(where ij is the number of independent sets of size j in G).

Proof: Consider all independent setsI of sizek in G. For anyx ∈ I , the setI −{x} is an
independent set of sizek− 1 of G. Moreover, we count each independent set of sizek− 1
at least once in this way, as all maximal independent sets have the same size, namelyβ. It
follows thati k−1 ≤ kik. 2

We now present our general bound on the roots of independence polynomials of well
covered graphs.



202 BROWN, DILCHER AND NOWAKOWSKI

Theorem 3.2 For a well-covered graph G the roots of i(G, x) lie in the annulus

1

n
≤ |z| ≤ β(G).

Furthermore, there is a root on the boundary if and only if G is complete.

Proof: We shall utilize the well knownEnestr̈om-Kakeya Theorem(c.f. [4]), which states
that if f (x) = a0+ a1x+ · · · + adxd has positive coefficients then the roots off lie in the
annulus

r ≤ |z| ≤ R,

where

r =
{

min

{∣∣∣∣ ai

ai+1

∣∣∣∣ : 0≤ i ≤ d − 1

}
,

and

R=
{

max

{∣∣∣∣ ai

ai+1

∣∣∣∣ : 0≤ i ≤ d − 1

}
.

We first calculate that fori (G, x) =∑ i kxk, we have from the previous lemma thati k−1 ≤
kik, so thati k−1

i k
≤ k ≤ β. Ask is arbitrary, we see that (with the notation above)R≤ β. On

the other hand,(n− (k − 1))i k−1 ≥ i k, since any independent set of sizek can be formed
by taking some independent set of sizek − 1 and adding a vertex to it (there are at most
n−(k−1) choices for the latter). Thusi k−1

i k
≥ 1

n−(k−1) ≥ 1
n , so thatr ≥ 1

n (in fact,r = 1
n , as

one gets equality whenk = 1). It follows immediately from the Enestr¨om-Kakeya Theorem
that all the roots lie in the annulus1n ≤ |z| ≤ β.

All that remains to be shown is that no roots lie on the boundary of the annulus. Let’s
consider first the circle|z| = β. If β = 1, thenG = Kn andi (G, x) = 1+ nx, soi (G, x)
has a root on|z| = 1 if and only ifG = K1. Thus we can assume thatβ ≥ 2. It was shown
in [3] that (with the notation above) a polynomialf (x) = a0+a1x+· · ·adxd with positive
coefficients has some of its roots on

|z| = R=
{

max

{∣∣∣∣ aj

aj+1

∣∣∣∣ : 0≤ j ≤ d − 1

}
only if gcd({ j = 1, 2, . . . ,d + 1 : ad− j < Rad+1− j }) > 1, wherea−1 ≡ 0. Now we
have seen thati k−1 ≤ kik, and ask ≤ β, we see that equality can hold only ifk = β.
Thus {k = 1, 2, . . . ,d + 1 : iβ−k < Riβ+1−k} ⊇ {2, 3, . . . , β + 1}, so that we have
gcd({k = 1, 2, . . . ,d + 1 : iβ−k < Riβ+1−k}) = 1, and we conclude that there is no root
|z| = β.

Finally, let’s consider the inside boundary,|z| = 1/n. For β = 1, the independence
polynomial has a root at−1/n. Forβ ≥ 2, again from [3], we see that a root can exist on
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|z| = 1/n only if gcd({k = 1, 2, . . . , β + 1 : i k−1 > r i k}) > 1, whereiβ+1 ≡ 0. However,
we have seen that(n − (k − 1))i k−1 ≥ i k and hencenik−1 > i k unlessk = 1 (in which
case equality holds asi0 = 1 andi1 = n). Thus gcd({k = 1, 2, . . . , β + 1 : i k−1 > r i k}) =
gcd({2, 3, . . . , β + 1}) = 1, so there is no root on|z| = 1/n. 2

A tantalizing question is whether the bound|z| ≤ β is best possible. The rest of this
section will show that indeed one cannot improve upon the upper bound.

Fix β ≥ 1 and let [1, β] denote the set{1, . . . , β}. Form the graphLk
β on vertex set [1, β]k

with two k-tuples forming an edge if and only if they agree in at least one coordinate. The
graphLk

β is a well covered graph with independence numberβ. Consider an independent
set I of size j in Lk

β . If we project down each of its coordinates, we have a subset of [1, β]
of size j , and for any such choice, if we order the first coordinates as the beginning of our
k-tuples, we can arrive at all independent sets with these projections by assigning each of
the other j symbols in each of the coordinates to one of thek-tuples. It follows that the
independence polynomiali (Lk

β, x) is given by

i
(
Lk
β, x

) = β∑
j=0

(
β

j

)k

( j !)k−1x j , (3)

for k ≥ 1, β ≥ 1.
First we show the following.

Proposition 3.3 The zeros of i(Lk
β, x) are all real and negative for any k≥ 1, β ≥ 1.

Proof: We rewrite (3) as

i
(
Lk
β, x

) = (β!)k−1
β∑

j=0

(
β

j

)
x j

[(β − j )!] k−1

= (β!)k−1
β∑

j=0

(
β

β − j

)
xβ− j

( j !)k−1

or

i
(
Lk
β, x

) = (β!)k−1xβ
β∑

j=0

(
β

j

)
(1/x) j

0( j + 1)k−1
. (4)

According to a theorem of Hurwitz [22] the sum in this last expression has only real
zeros as a polynomial inz = 1/x; hencei (Lk

β, x) has only real zeros. It is clear that they
can only be negative. 2

With (4) in mind, we now consider the normalized polynomials

g(k)β (x) = (β!)1−k

(
x

β

)β
i

(
Lk
β,
β

x

)
, (5)
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that is,

g(k)β (x) =
β∑

j=0

β(β − 1) · · · (β − j + 1)

β j

x j

( j !)k
. (6)

Lemma 3.4 Let2k−1 ≥ β ≥ 1. Then the largest zero x(k)β of g(k)β (x) lies in the interval

−1− 2−k < x(k)β < −1. (7)

Proof: From Theorem 3.2 and Proposition 3.3 it follows that all zeroes ofg(k)β (x) are real
and less than−1. Fixβ andk, and letaj be the absolute value of the coefficient ofx j in

g(k)β (−x) = 1− x +
(

1− 1

β

)
x2

(2!)k
−
(

1− 1

β

)(
1− 2

β

)
x3

(3!)k
+ · · · (8)

+ (−1)β
β!

ββ

xβ

(β!)k
. (9)

It is easy to see that for 0≤ j ≤ β − 1 andx > 0 we have

aj x
j > aj+1x j+1

if and only if

x <
β

β − j
( j + 1)k,

or, for j ≥ 1, when

x <
β

β − 1
2k.

Hence, by a basic fact on alternating sums we have

g(k)β (−x) > 1− x ≥ 0

when 0< x ≤ 1, while

g(k)β (−1− 2−k) < 1− (1+ 2−k)+
(

1− 1

β

)
2−k(1+ 2−k)2

= 2−k

(
− 1

β
+ 2−k+1+ 2−k+1

(
− 1

β
+ 2−k−1

)
− 1

β
2−2k

)
< 0

for β ≤ 2k−1, and this proves the lemma. 2

The following result is now an immediate consequence of the previous lemma, together
with (5).
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Theorem 3.5 For β, k ≥ 2 let Lk
β denote the well covered graph on[1, β]k in which two

k-tuples are joined by an edge if and only if they agree in a coordinate(Lk
β has independence

numberβ). If 2k−1 ≥ β ≥ 1 then the smallest zero y(k)β of i(Lk
β, x) lies in the interval

−β < y(k)β < −β(1− 2−k). (10)

Proof: The Lemma and (5) show thaty(k)β lies in the interval

−β < y(k)β <
−β

1+ 2−k
. (11)

The second inequality in (10) now follows from the inequality 1/(1+ 2−k) > 1− 2−k.
2

It follows that for anyε > 0 (by choosingk large enough) there are well covered graphs
(for eachβ ≥ 2) with a real root in(−β,−β + ε), so indeed the bound of|z| < β is (in
terms of a constant bound) best possible.

We conclude with a few remarks:

• A qualitative version of Lemma 3.4 and of Theorem 3.5 follows easily from (6) (or (9)).
It is clear that

g(k)n (z)→ 1+ z (12)

ask → ∞, uniformly on any compact subset ofC. Hence by another (better known)
theorem of Hurwitz (see, e.g., [24, p. 3]), one zero ofg(k)n (z) converges to the zero
z= −1, ask→∞.
• The i (Lk

β, x), for k = 1, 2, 3, are related to well-known classes of polynomials. It is
obvious from (3) that

i
(
L1
β, x

) = (1+ x)β . (13)

Next, from (4) we see that

i
(
L2
β, x

) = β!xβLβ

(−1

x

)
, (14)

whereLk(x) is thekth Legendre polynomial, one of the “classical orthogonal polyno-
mials”, which has the explicit expansion

Lk(x) =
k∑

j=0

(−1) j

(
k

j

)
x j

j !
(15)
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(see, e.g., [1, p. 775]). Finally, it follows from (4) and from identity (10.37.4) in [20,
p. 199] that

i
(
L3
β, x

) = (β!)2xβ J [0,−1/2]
β

(
i√
x

)
, (16)

where J [α,ρ]
n (x) are the “Bateman polynomials”. Through the connection with these

special functions one could easily deduce differential equations, recurrence relations and
other properties satisfied by the appropriate polynomialsi (Lk

β, x).
• More generally, thei (Lk

β, x), for arbitrary positive integersk andβ, can be written
in terms of hypergeometric functions. Using this machinery, one could derive further
properties, such as ODEs satisfied by the polynomialsi (Lk

β, x).
• As the polynomiali (Lk

β, x) has all real roots, its coefficients are unimodal. In fact, we
can show that ifθ is the unique root off (x) = (β − x)k − x − 1 on [0, β − 1], then a
peak occurs atdθe, which tends toβ − 1 ask→∞.

4. Concluding remarks

We point out that while the disc|z| ≤ β holds the roots of all well covered graphs with
independence numberβ, the expansion operation can push the roots into the unit disc.

Theorem 4.1 Every graph G is an induced subgraph of a graph H whose roots lie in
|z| ≤ 1.

Proof: This follows by expandingG to H by replacing every vertex ofG by the same,
suitably large, complete graphKr . Then i (H, x) = i (G, r x) = ∑d

k=0 r kikxd. If r is
large enough then the coefficients ofi (H, x) can be made to be increasing, and by the
Eneström-Kakeya Theorem, all the roots will lie in|z| ≤ 1. 2

Now as independence polynomials have positive coefficients, of course all real roots are
negative. We do not know of a single well covered graph whose independence polynomial
has a root with a positive real part. In fact, we pose the following.

Conjecture 4.2 For any well covered graphG with independence numberβ, all the roots
of i (G, β) lie in the disc|z+ β

2 | < β

2 .

This conjecture is clearly true if all the roots are real, as the roots, as noted above, are
negative and by Theorem 3.2, they are greater than−β. Thus the conjecture holds for
β = 1 and 2. We finish by showing that indeed it holds forβ = 3.

Theorem 4.3 If G is a well covered graph withβ = 3, then all of the roots of i(G, x) lie
in the disc|z+ 3/2| < 3/2.
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Proof: We shall make use of theSchur-Cohn Criterion(c.f. [4, p. 181]) that the monic
polynomialx3+ bx2+ cx+ d has all its roots within the unit disc if and only if

|bd− c| < 1− d2 and |b+ d| < |1+ c|.

Let the independence polynomial ofG be

f (x) = t x3+mx2+ nx+ 1.

Here,n,mandt denote respectively the number of vertices, edges and triangles inḠ (which
is a K4-free graph, asG has independence number 3); note thatt ≥ 1 asβ = 3. If we
setg(x) = 1

t f ((3/2)(x − 1)), then f has all its roots in the disc of radius 3/2 centered at
z = −3/2 if and only if g has all its roots in the unit disc. Now a simple calculation will
show that

g(x) = 27

8
x3+

(
9m

4t
− 81

8

)
x2+

(
−9m

2t
+ 81

8
+ 3n

2t

)
+ 1

t
+ 9m

4t
− 3n

2t
− 27

8

so that

k(x) = 8

27
g(x)

= x3+ 8

27

(
9m

4t
− 81

8

)
x2++ 8

27

(
−9m

2t
+ 81

8
+ 3n

2t

)
+ 8

27t

+ 2m

3t
− 4n

9t
− 1.

Hence it remains to show thatk has all it roots in the unit disc. We setb, c andd to be
respectively the coefficients ofx2, x and 1 ink(x). Then

bd− c = 16

81

m

t2
+ 4

9

m2

t2
− 8

27

m n

t2
− 4

3

m

t
− 8

9

1

t
+ 8

9

n

t
(17)

and

1− d2 = − 64

729

1

t2
− 32

81

m

t2
+ 64

243

n

t2
+ 16

27

1

t
− 4

9

m2

t2
+ (18)

16

27

m n

t2
+ 4

3

m

t
− 16

81

n2

t2
− 8

9

n

t
. (19)

To simplify these, we multiply through by the positive constant729
4 t2, and name themk1

andk2 respectively:

k1 = 729

4
t2 (bd− c)

= 36m+ 81m2− 54mn− 243mt− 162t + 162nt

= 36(m− 3t)+ (81m− 54n)(m− 3t)− 54t
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and

k2 = 729

4
t2
(
1− d2

)
= −16− 72m+ 48n+ 108t − 81m2+ 108mn+ 243mt− 36n2− 162nt.

Now for a well covered graphG with β = 3, m ≤ 3t (as inḠ, every edge is in some
triangle), andm ≥ n (as inḠ, every vertex is in some triangle, and hence has degree at
least 2 inḠ). Hence we see thatk1 < 0. Thus the first condition of the Schur-Cohn
Criterion,|bd− c| < 1− d2, is equivalent tok1+ k2 > 0. Now

k1+ k2 = −36m+ 54mn− 54t − 16+ 48n− 36n2

≥ −36m+ 18mn− 54t − 16+ 48n (20)

asm≥ n.
To show thatk1 + k2 > 0, we need to show that the inequalitymn ≥ 3t + 2m holds.

Consider counting ordered pairs(ei , v j ), whereei andv j are respectively an edge and vertex
of Ḡ such that the subgraph induced byv j andei is a triangle inḠ. In Ḡ, there are at most
n − 2 choices of vertices for each choice of edge, and each triangle is counted 3t times.
Hencem(n− 2) ≥ 3t , which is equivalent tomn≥ 3t + 2m, and in particular

18mn≥ 54t + 36m.

From this and (20) we see that

k1+ k2 ≥ 48n− 16> 0

(asn ≥ 3). This shows that the first condition of the Schur-Cohn Criterion holds.
For the second condition,|b+ d| < |1+ c|, a calculation will show that

l1 = 27

4
t (b+ d) = 9m− 27t − 3n+ 2

and

l2 = 27

4
t (1+ c) = 27t − 9m+ 3n.

Fromm≤ 3t , we see thatl1 < 0 (and henceb+ d < 0) andl2 > 0 (and hence 1+ c > 0).
Thus we need to show that−l1 < l2, that isl1+ l2 > 0. However,

l1+ l2 = 2> 0
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so it follows that the second condition of the Schur-Cohn Criterion is also satisfied. We
conclude that all the roots ofg(x) lie in the unit disc, and hence the independence polynomial
of G lies in the disc of radius 3/2 centered at−3/2. 2
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