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Abstract. Let G be awell coveredyraph, that is, all maximal independent set&ahave the same cardinality,
and letiy denote the number of independent sets of cardinlalityG. We investigate the roots of tiredependence
polynomial (G, x) = Y ikxX. In particular, we show that {5 is a well covered graph with independence number
B, then all the roots df(G, x) lie in in the disk|z| < g (this is far from true if the condition of being well covered is

omitted). Moreover, there is a family of well covered graphs (for ggdior which the independence polynomials
have a root arbitrarily close te S.
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1. Introduction

For a graphG with independence numbgrand nonnegative integde let iy denote the

number of independent sets of cardinalkityn G (k = 0, 1, ..., B). Several papers exist
(c.f. [2, 10, 11, 19] exploring such problems on general graphs (or their complements).
In fact in [2] it was shown that for any permutatienof {1, ..., 8}, there is a graph with

independence numbg@grsuch thai, ) < i, < -+ <isk. Thatis, there are graphs for
whichiq, ..., ik is as ‘shuffled’ as we like.

One highly structured class of graphs with respect to independence are those in which all
maximal independent sets have the same cardinality; these arewallesbveredgraphs.
Well covered graphs have attracted considerable attention (c.f. [27, 28]).

It appears that the independence vectaysis, . . ., ig) for well covered graphs are not
as badly behaved as those for general graphs, and we propose the following:

Conjecture 1.1 The independence vect@i, i1, ..., ig) of a well covered grapl@ is
unimodal i.e., thereis & € {0, ..., B} suchthaip <iy <--- <ix > i1 > -+ > ip.

Unimodality conjectures permeate combinatorics in such diverse areas as matroids
[25, 31], ordered sets [8, 30], chromatic theory [29], network reliability [6] and Gaussian
polynomials [23].

*Research partially supported by grants from NSERC.
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One approach to unimodality of combinatorial sequences has been via the roots of the
associated generating polynomials. Newton (c.f. [9]) showed that if a polyndrtwal=
Zid=o a;x with positive coefficients has all real roots, then the sequepgcay, .. ., a4 is
unimodal (and in fact has a stronger property of béaggconcavg More generally, it is
not hard to see that if the roots of such &tie in the sector 2/3 < arg(z) < 4x/3, then
the sequence of coefficients is still unimodal.

These approaches have led us to investigate the nature and location of the roots of the
independence polynomial

i (G, k) = Zikxk

of G, particularly wherG is well covered (some results on independence polynomials can
be found in [15-18, 21]). The roots of other graph polynomials, such as chromatic polyno-
mials [29], matching polynomials [13, 14], characteristic polynomials [13] and reliability
polynomials [5, 6], to mention a few, have attracted considerable attention in their own right.
Indeed, the roots of this polynomial shed light on how independence vectors of well covered
graphs differ from those for all graphs. In the next section, we shall explore real roots of
independence polynomials of well covered graphs, and in particular show that every well
covered graph can be embedded as an induced subgraph in another well covered graph (with
the same independence number) whose polynomial has all its roots simple and real. The
following section shows that for any noncomplete well covered gplith independence
numberg, its roots lie in the dis¢z| < 8, and that this upper bound is essentially the best
possible.

Throughout, all graphs are assumed to be simple, that is, without loops or multiple
edges. The order of a graph (usually denoteahpis its number of vertices. We denote
the complement of grapB by G. The independence number of gra@hp(G) (or often
simply ), is the cardinality of the largest independent seGinGiven a vertexv of G,
N[v] denotes the closed neighbourhoodvof.e.,{x: vx is an edge of5} U {v}. For other
standard graph theoretic terminology, we follow [7].

2. Realroots of independence polynomials

We start by considering the real roots of independence polynomials. Of course, such roots
must necessarily be negative as independence polynomials have positive coefficients.

Let’s begin by considering well covered graphs with small independence number. For
B = 1, the only (well covered) graph of ordeiis K,, andi (K,,, X) = 1+ nx. Clearly this
independence polynomial hasl/n as its only root.

For 8 = 2, the situation is a bit more complex. In general, a grelphith independence
numberg(H) is well covered if and only i is Ksn)+1-free and every clique of cardinality
less tharB(H) is contained in a clique of ordg(H). The complement of a gragh with
independence number 2 is of course triangle-free. Th@Gshifisn vertices andn edges,
theni (G, x) = 14+nx+mx2. The roots of this are of course-n++/n2 — 4m)/2m,
which lie in [(=n —+/nZ — 4m)/2, 0] since Turan’s Theorem implies for the triangle-free
graphG thatm < n?/4, and so that all the roots are real. This argument holds for any
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graph with independence number 2. Now fo&@eral graphsfAnith2, m can be as small
as 1, and hencgG, x) can have a root azt‘”‘zﬁ‘ ~ —n. However, if the graph is well
covered, then there are no isolated vertices in the complement, so that/2. It follows
that the roots in fact all lie ii—2, 0).
For 8 > 3, the roots of the independence polynomial of a well covered graph need not

.....

independence numbgrand has independence polynomial

61\
i(Kgp,..p.X) =1+ iZ(;k(i >x'

=k(x+1f — (k-1
=k((x+1f - (1-1/k)

which clearly has at leagt — 2 nonreal roots fok > 2.
Note in the example above that the independence polynomial does have a real root. In
fact, such is always the case.

Theorem 2.1 For any graph G(not necessarily well coverggda root of the independence
polynomial of G of smallest modulus is real.

Proof: In[12], it was shown that if

fo(x) =) (-D'cx,

i~0

wherec; is the number of complete subgraphs®bf cardinalityi, then f has a root of
smallest modulus that is real. Cleail{G, x) = fg(—X), so the result follows. O

In fact, it follows from Theorem 3 of [12] that the largest real rooti @&, x) lies in
[—ﬁ, 0). On the other hand, we’ll see in the next section that this root is less than or equal
to—-1/n.

Now while there are many well covered graphs (for 3) with nonreal roots, we can
embed every well covered graph in another well covered graph (with the same independence
number) such that the independence polynomial of the latter has all real roots. We shall first
need an easy recursive formula for calculating independence polynomials.

Proposition 2.2[17, 18, 21, 26] For any vertex of graph G
i(G,X) =X-i1(G— N[v],x) +i(G — v, X). O
We now prove our main result of this section.

Theorem 2.3 For any well covered graph Gthere is a well covered graph H with
B(H) = B(G) such that G is an induced subgraph of H and the independence polynomial
of H has all its roots simple and real.
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Proof: We define arexpansiorof a graphG to be a graph formed fror® by replacing

each vertex by a complete graph; that is, for each vartek G, we replaceu by a new
complete graptK,, and add in edges between all verticeskin and K, wheneveruv

is an edge ofG. It is easy to see that the result of such an operation does not change
the independence number, and moreover, if the original graph is well covered, so is any
expansion. We induct o = B(G), and show that any well covered graghhas an
expansion whose independence polynomial has all simple, real roots.

If 8 = 1then the result follows trivially, as the unique root 0K, x) is real, so we may
assume thag > 2 (and hence > 2).

Letv be avertexinamaximalindependent setandset G — N[v]; note thatK is awell
covered graph with independence numperl. By induction K has an expansidnwhose
independence polynomial has all its roots simple and realagayag 1 < --- <a; <0
(d=B(L) = B(K) = B(G) — 1). Choose asetaf+ 1real numberby, by_1,...,bg <0
suchthaty < ag < bg_1 < ag-1 < --- < by < & < by (that is, theb;’s interlace the
a's). Now as the roots are simple and., x) has positive constant teriniL, b;) has sign
(—1)". Let H, be the graph formed fror® — v by replacingG — N[v] by L, N(v) is
untouched and is replaced byK, (with vertex setS). Now, by applying Proposition 2.2
r times we obtain

i(H,xX)=r -xi(L,x)+i(H — S, x).

Consequently, we can chooséarge enough (say = R) so that
sign(i (Hg, b)) = —sign(i (L, b)) = (=1'**

and sad (Hg, X) has a root in each intervéh; , 1, b). In addition, since sigf(Hg, bg)) =
—1and (Hg, 0) > 0, thereis anotherrootitg, 0). Thatis, we have foundi+ 1 = B(HR)
many distinct real roots 6f(Hg, x), a polynomial of degred + 1, and we are done. O

We mentioned earlier a result of Newton’s that stated that if a polynomial with positive
coefficients has all its roots real, then its coefficients form a unimodal sequence.

Corollary 2.4 For any well covered graph Gthere is a well covered graph H with
B(H) = B(G) and G being an induced subgraph of H such that the independence vector
(io(H),i1(H), ..., ig(H)) of H is unimodal. O

Now we have seen that the real roots of the independence polynomials of well covered
graphs can be arbitrarily close to 0, so the question remains how large can they be in
absolute value? For general graphs with independence nygntiesre can be real roots of
fairly large absolute value. For example, consider the comgleteg + 1)-partite graph
Gg = Kg g_1p-1...p-1 (for B > 2). Itis not hard to see that the independence polynomial
of G is given by

i[(Gp,x) =xP +IxP 14+ 8 (1)
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where

s (E[) 00 )

Let's fix ¢ € (0, 1). Provided is large enough, one can see from (1) and (2) that
signi (G, —1) = (=1)#2
and
signi (G, —el) = (=1L,

Thusi(Gp) has a root in(—I, —el). Now letn be the order oG, as usual. Them =
(-8B -1+ 8,sothal ~ ﬁ (for fixed 8 > 2). It follows that there are graphs with
independence numbgrwith real roots close t&ﬁ.

We shall show in the next section that the situation is quite different for well covered
graphs, in that all the real roots must be greater thAn

3. Location of the roots in the complex plane

It is natural to ask for regions of the complex plane that contain all the roots of families
of polynomials (similar questions have been investigated for matching polynomial [13],
chromatic polynomials [29] and network reliability [5], to name but a couple). We have
seen that the independence polynomials of arbitrary graphs can have a realrgat. In
this section we provide a much tighter bound on the modulus of all the roots of independence
polynomials of well covered graphs.

We begin with a lemma relating independence numbers of well covered graphs.

Lemma 3.1 For a well covered graph Gand forl < k < 8(G)
ik—1 < Kig
(where jj is the number of independent sets of size j in G

Proof: Consider all independent sdt®f sizek in G. Foranyx € |, the sel — {x} isan
independent set of side— 1 of G. Moreover, we count each independent set of kizel
at least once in this way, as all maximal independent sets have the same size, falhely
follows thatix_1 < Ki. O

We now present our general bound on the roots of independence polynomials of well
covered graphs.
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Theorem 3.2 For a well-covered graph G the roots ofG®, x) lie in the annulus

Sl

<|z| < B(G).
Furthermore there is a root on the boundary if and only if G is complete.
Proof: We shall utilize the well knowEnestdm-Kakeya Theorefe.f. [4]), which states

that if f(x) = ap+ a1x + - - - + agx¥ has positive coefficients then the rootsfolie in the
annulus

r<lzl <R,
where
rz{min{i :Ogigd—l},
a1
and
R:{max{ & :0<i §d—1}.
Qi1

We first calculate that farn(G, x) = Zlkxk we have from the previous lemma that; <

Kik, sO that'k L <k < B.Askis arbitrary, we see that (with the notation aboRex 8. On
the other handcn — (k — 1))ix_1 > ik, since any independent set of skzean be formed
by taking some independent set of skee- 1 and adding a vertex to it (there are at most

n— (k— 1) choices for the latter). ThLJ$— > iicq = §.s0thar > 2 (infactr = 1, as
one gets equality whdn= 1). Itfollows |mmed|ately fromthe Eneslm Kakeya Theorem
that all the roots lie in the annulys < |z| < B.

All that remains to be shown is that no roots lie on the boundary of the annulus. Let's
consider first the circléz| = 8. If B8 = 1, thenG = K,, andi (G, x) = 1+ nx, soi (G, x)
has aroot oriz| = 1 if and only if G = K;. Thus we can assume that> 2. It was shown
in [3] that (with the notation above) a polynomifi{x) = ag+a;x + - - - agx? with positive
coefficients has some of its roots on

7= R—{ maxf| 2

Aj+1

:0§j§d—l}

onlyifged({j =1,2,...,d+1 :a4-; < Ray1-j}) > 1, wherea_; = 0. Now we
have seen thdk_; < Kix, and ask < B, we see that equality can hold onlykf= g.
Thus{k = 1,2,...,d+1 :igk < Rigrik} 2 {2,3,..., 8 + 1}, so that we have
gedik =1,2,...,d+ 1 :ig_« < Rigs1-«}) = 1, and we conclude that there is no root
1zl = B.

Finally, let's consider the inside boundaty] = 1/n. For 8 = 1, the independence
polynomial has a root at1/n. Forg > 2, again from [3], we see that a root can exist on
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|zl = 1/nonlyifged(fk =1,2,..., 8+ 1 ix_1 > rix}) > 1, whereigy, = 0. However,
we have seen thah — (k — 1))ix_; > ix and henceaix_1 > ik unlessk = 1 (in which
case equality holds ag = 1 andi; = n). Thusgecdik =1,2,..., 8+ 1:ix_1 >riy}) =
ged{2,3,...,8+1}) =1, sothereis norootojz| = 1/n. O

A tantalizing question is whether the bouta < B is best possible. The rest of this
section will show that indeed one cannot improve upon the upper bound.

Fix 8 > 1andlet[1 8]denotethesdtl, ..., 8}. Formthe graplllg onvertex set [18]%
with two k-tuples forming an edge if and only if they agree in at least one coordinate. The
graph Lg is a well covered graph with independence numpeConsider an independent
setl of sizej in L/‘g. If we project down each of its coordinates, we have a subset @ [1
of size j, and for any such choice, if we order the first coordinates as the beginning of our
k-tuples, we can arrive at all independent sets with these projections by assigning each of
the otherj symbols in each of the coordinates to one of kkiples. It follows that the
independence polynomiglL¥, x) is given by

B /B\K ,
e 0
j=0

fork >1, 8> 1.
First we show the following.

Proposition 3.3 The zeros ofiLX, x) are all real and negative foranyk 1, 8 > 1.
Proof: We rewrite (3) as

) |
. _ B X1
(L5, %) = (BY' 2, (J)[(ﬂ el

j=0

B B—i
_ (g1k1 B )X_
Y ,-:o<ﬁ—1 Gt

or

B 1 j
(50 = B0ty (’j‘)% @)
J:

According to a theorem of Hurwitz [22] the sum in this last expression has only real
zeros as a polynomial in = 1/x; hencei (LK, x) has only real zeros. It is clear that they
can only be negative. O

With (4) in mind, we now consider the normalized polynomials

B
g5’ (x) = (BH* K (%) i <L;, g) , ®)
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that is,

p 1) (B — i '
ggk)(x)zzﬂ(ﬁ H---B-j+1 X

- — . 6
<y B (1K ©

Lemma 3.4 Let2“1> g > 1. Then the largest zeroéQ of gfgk)(x) lies in the interval
—1-2% < x < -1 7

Proof: From Theorem 3.2 and Proposition 3.3 it follows that all zeroeg%ké(x) are real
and less thar-1. Fix g8 andk, and leta; be the absolute value of the coefficientofin

g(k)(_x)zl_x_‘_(l_E)X_z_<1_£)(1_3))(_3_,_... (8)
! B) (DK 2 B/ 3Dk
Bl xP
+(—1)ﬂﬂ—ﬂw~ 9)

Itis easy to see thatfor@ j < 8 — 1 andx > 0 we have
anj > aj+1Xj+l

if and only if
B . K
X< —(+DF
p—i"

or, for j > 1, when

B

X < ——2%,

B—1
Hence, by a basic fact on alternating sums we have
gfgk)(—x) >1-x>0

when 0< x < 1, while

1
g (-1-29 <1-1+2799+ (1 - E) 2741+ 272
= 2*k (_1 + 2*k+l + 27k+l (_1 + 2kl) _ E 22k>
<0
for B < 251, and this proves the lemma. i

The following result is now an immediate consequence of the previous lemma, together
with (5).
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Theorem 3.5 For B,k > 2let L‘;, denote the well covered graph §h g]¥ in which two
k-tuples are joined by an edge if and only if they agree in a coordiﬂdgﬁas independence
numberg). If 2<-1 > g > 1then the smallest ze@"ﬁ/ of i (LK, x) lies in the interval

—B <y <-pA-27". (10)

Proof: The Lemma and (5) show thyg‘) lies in the interval

—B
-8 < y/(gk) < e (11)

The second inequality in (10) now follows from the inequalifyll+ 2%) > 1 — 27K,
O

It follows that for anys > 0 (by choosingk large enough) there are well covered graphs
(for eachp > 2) with a real root in(—3, —B + ¢), so indeed the bound of| < g is (in
terms of a constant bound) best possible.

We conclude with a few remarks:

e A gqualitative version of Lemma 3.4 and of Theorem 3.5 follows easily from (6) (or (9)).
Itis clear that

o @ > 1+z (12)
ask — oo, uniformly on any compact subset @ Hence by another (better known)
theorem of Hurwitz (see, e.g., [24, p. 3]), one zerogff (z) converges to the zero
z= -1, ask - oo.

° Thei(Lg, X), fork = 1, 2, 3, are related to well-known classes of polynomials. It is
obvious from (3) that

i(LEx) = (L+x°. (13)
Next, from (4) we see that

i(L3.x) = ﬂ!xﬁL5<_7:L), (14)

wherelL(x) is thekth Legendre polynomial, one of the “classical orthogonal polyno-
mials”, which has the explicit expansion

j
!

K K
L0 = (=)} (J)’J‘— (15)
j=0 :
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(see, e.g., [1, p. 775]). Finally, it follows from (4) and from identity (10.37.4) in [20,
p. 199] that

i(L3,x) = (ﬁ!)zxﬂJgo’_l/zl(%) (16)

where Ji*7] (x) are the “Bateman polynomials”. Through the connection with these
special functions one could easily deduce differential equations, recurrence relations and
other properties satisfied by the appropriate polynonh'(al‘g, X).

e More generally, thé(Ll'g, x), for arbitrary positive integerk and g, can be written
in terms of hypergeometric functions. Using this machinery, one could derive further
properties, such as ODEs satisfied by the polynonh'(adg, X).

e As the polynomiali (L'g, x) has all real roots, its coefficients are unimodal. In fact, we
can show that i is the unique root off (x) = (B — x)k = x —1on[0 8 — 1], then a
peak occurs afv], which tends tg8 — 1 ask — oo.

4. Concluding remarks

We point out that while the disjz| < 8 holds the roots of all well covered graphs with
independence numbgr, the expansion operation can push the roots into the unit disc.

Theorem 4.1 Every graph G is an induced subgraph of a graph H whose roots lie in
lz| < 1.

Proof: This follows by expandings to H by replacing every vertex d& by the same,
suitably large, complete graph,. Theni(H,x) = i(G,rx) = Y0 rkixd. If r is
large enough then the coefficientsigH, x) can be made to be increasing, and by the
Enestom-Kakeya Theorem, all the roots will lie jg| < 1. O

Now as independence polynomials have positive coefficients, of course all real roots are
negative. We do not know of a single well covered graph whose independence polynomial
has a root with a positive real part. In fact, we pose the following.

Conjecture 4.2 For any well covered grapB with independence numbgr all the roots
of i (G, B) lieinthe disclz+ &| < £.

This conjecture is clearly true if all the roots are real, as the roots, as noted above, are
negative and by Theorem 3.2, they are greater th@n Thus the conjecture holds for
B =1 and 2. We finish by showing that indeed it holds fo& 3.

Theorem 4.3 If G is a well covered graph witg = 3, then all of the roots of(iG, x) lie
in the disc|z+ 3/2| < 3/2.
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Proof: We shall make use of th&chur-Cohn Criterior(c.f. [4, p. 181]) that the monic
polynomialx® + bx? + cx + d has all its roots within the unit disc if and only if

lbd—c/<1—d?and|b+d| <|1+c|
Let the independence polynomial Gfbe
f(x) =tx®+mx+nx+1.

Here,n, mandt denote respectively the number of vertices, edges and triangBe@vhich

is a K4-free graph, a& has independence number 3); note that 1 asg = 3. If we
setg(x) = % f((3/2)(x — 1)), thenf has all its roots in the disc of radiug3centered at

z = —3/2 if and only if g has all its roots in the unit disc. Now a simple calculation will
show that

(X)—27X3+ 9m 81 2+ 9m+81+3n +1+9m 3n 27
9= g &8 28 T x) Tt T T

so that

8
K(x) = 559(x)

; 8 (9m 81\ , 8/ 9m 8L 3n\ 8
=X+ (o — = | ¥+ 455 =+ )+ 0=

27\ 4 8 27\ 2t T8 " 2 2Tt
2m  4n
3t o

Hence it remains to show thkthas all it roots in the unit disc. We setc andd to be
respectively the coefficients af, x and 1 ink(x). Then

16m 4m 8 mn 4m 81 8n
bd—C=— b2 — e S =2 17
C=8ir o 271 31 919t (7
and
641 32m 64 n 161 4m?
1-d?=——— o - o — + (18)

72007 Bl T2 Tl 9

16mn 4m 16n?2 8n
b 4 . 19
27 t2+3t 81 t2 9t (19)

To simplify these, we multiply through by the positive const@@ttz, and name therk,
andk; respectively:

729
ki = — t?(bd — c)
4
= 36m + 81m? — 54mn — 243nt — 162 + 16t

— 36(M — 3t) + (81m — 54n)(m — 3t) — 54t
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and

o="20- )

= —16— 72m + 480 + 108 — 81m? + 108nn+ 243nt — 36n? — 16nt.

Now for a well covered grapts with 8 = 3, m < 3t (as inG, every edge is in some
triangle), andm > n (as inG, every vertex is in some triangle, and hence has degree at
least 2 inG). Hence we see tha; < 0. Thus the first condition of the Schur-Cohn
Criterion, |bd — ¢| < 1 — d?, is equivalent tkk; + ko > 0. Now

—36m + 54mn — 54t — 16+ 48n — 36n°
> —36m+ 18mn— 54t — 16+ 48n (20)

ki + kz

asm > n.

To show thatk; + k, > 0, we need to show that the inequalityn > 3t 4+ 2m holds.
Consider counting ordered paie, vj), whereg andv; are respectively an edge and vertex
of G such that the subgraph induceddgyande, is a triangle inG. In G, there are at most
n — 2 choices of vertices for each choice of edge, and each triangle is countieaes.
Hencem(n — 2) > 3t, which is equivalent tonn > 3t + 2m, and in particular

18mn > 54t + 36m.
From this and (20) we see that
ki+k,>48n—16>0

(asn > 3). This shows that the first condition of the Schur-Cohn Criterion holds.
For the second conditiof) + d| < |1+ c|, a calculation will show that

27
Ilzzt(b+d)=9m—27t—3n+2
and
27
Izzzt(1+c)=27t—9m+3n.

Fromm < 3t, we see thdf; < 0 (and hencé +d < 0) andl, > 0 (and hence % ¢ > 0).
Thus we need to show thatl; < |5, thatisl; + 1> > 0. However,

li+1,=2>0
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so it follows that the second condition of the Schur-Cohn Criterion is also satisfied. We
conclude that all the roots g x) lie in the unit disc, and hence the independence polynomial
of G lies in the disc of radius/2 centered at-3/2. O
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