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Abstract. This paper is concerned with properties of the Mullineux map, which playaeaim”p-modular
representation theory of symmetric groups. We introduce the residue symbol for a p-regular partitions, a variation
of the Mullineux symbol, which makes the detection and removal of good nodes (as introduced by Kleshchev) in
the partition easy to describe. Applications of this idea include a short proof of the combinatorial conjecture to
which the Mullineux conjecture had been reduced by Kleshchev.
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1. Introduction

It is a well-known fact that for a given primp the p-modular irreducible representations
D”* of the symmetric grous, of degreen are labelled in a canonical way by tiperegular
partitionsA of n. When the modular irreducible representatidh of S, is tensored by
the sign representation we get a new modular irreducible represerﬁHtFi’ofrhe question
about the connection between thaegular partitions. andA” was answered in 1995 by
the proof of the so-called “Mullineux Conjecture”.

The importance of this result lies in the fact that it provides information about the decom-
position numbers of symmetric groups of a completely different kind than was previously
available. Also it is a starting point for investigations on the modular irreducible represen-
tations of the alternating groups. From a combinatorial point of view the Mullineux map
gives ap-analogue of the conjugation map on partitions. The analysis of its fixed points
has led to some interesting general partition identities [1, 2].

The origin of this conjecture was a paper by Mullineux [14], where he defined a bijective
involutory mapix — AM on the set ofp-regular partitions and conjectured that this map
coincides with the map — AP. The statement¥ = P” is the Mullineux conjecture. To
eachp-regular partition Mullineux associated a double array of integers, known now as the
Mullineux symbol and the Mullineux map is defined as an operation on these symbols. The
Mullineux symbol may be seen agmanalogue of the Frobenius symbol for partitions.

Before the proof of the Mullineux conjecture many pieces of evidence for it had
been found, both of a combinatorial as well as of representation-theoretical nature. The
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breakthrough was a series of papers by Kleshchev [7-9] on “modular branching”, i.e., on
the restrictions of modular irreducible representations f&o S,_;. Using these results
Kleshchev [9] reduced the Mullineux conjecture to a purely combinatorial statement about
the compatibility of the Mullineux map with the removal of “good nodes” (see below). A
long and complicated proof of this combinatorial statement was then given in a paper by
Ford and Kleshchev [4].

In his work on modular branching Kleshchev introduced two important notions, normal
and good nodes ip-regular partitions. Their importance has been stressed even further in
recent work of Kleshchev [10] on modular restriction. Also these notions occur in the work
of Lascoux et al. on Hecke Algebras at roots of unity and crystal bases of quantum affine
algebras [11]; it was discovered that Kleshchep-gjood branching graph op-regular
partitions is exactly the crystal graph of the basic module of the quantized affine Lie algebra
Uq(§I p) which had been studied by Misra and Miwa [12].

Fromthe above itis clear that a better understanding of the Mullineux symbols is desirable
including their relation to the existence of good and normal nodes in the corresponding
partition. In the present paper this relation will be explained explicitly. We introduce a
variation of the Mullineux symbol called the residue symbol feregular partitions. In
terms of these the detection of good nodes is easy and the removal of good nodes has ¢
very simple effect on the residue symbol. In particular this implies a shorter and much more
transparent proof of the combinatorial part of the Mullineux conjecture with additional
insights (Section 4). We also note that the good behaviour of the residue symbols with
respect to removal of good nodes allows one to give an alternative descriptionpmfjte
branching graph, and thus of the crystal graph mentioned above. Some further illustrations
of the usefulness of residue symbols are given in Section 3. This includes combinatorial
results on the fixed points of the Mullineux map.

2. Basic definitions and preliminaries

Let p be a natural number.

Let 1 be ap-regular partition ofh. The p-rim of 1 is a part of the rim of ([6], p. 56),
which is composed op-segments Each p-segment except possibly the last contams
points. The firstp-segment consists of the firptpoints of the rim ofz, starting with the
longest row. (If the rim contains at moptpoints it is the entire rim.) The next segment
is obtained by starting in the row next below the previgusegment. This process is
continued until the final row is reached. We &gtbe the number of nodes in thgerim of
A = A% and letr; be the number of rows ih. Removing thep-rim of A = 1Y we get
a new p-regular partitionx.® of n — a;. We letay, r» be the length of thep-rim and the
number of parts of @, respectively. Continuing this way we get a sequence of partitions
A =20 2@ AM wherex™ = 0 andA™D = 0, and a correspondingullineux
symbolof A

Gp(x)z(‘r‘11 %@ - a‘“).

1 2 -+ I'm
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The integem is called theengthof the symbol. Forp > n, the well-known Frobenius
symbolF () of X is obtained fronG (1) as above by

q—r a—rz -+ am—"Inm
FA) = .
@) <r1—1 r,—1 ... rm—1>

As usual, here the top and bottom line give the arm and leg lengths of the principal hooks.
It is easy to recover @-regular partitiort. from its Mullineux symbolG ,(&). Start with

the hookr™, given byan,, rm, and work backwards. In placing eapkrim it is convenient

to start from below, at row;. Moreover, by a slight reformulation of a result in [14], the

entries ofG (1) satisfy (see [1])

(1) s <ri—rja<p+se, l<i<m-1L1<ry<p+eén
@ ri—ripgtea<a—aii<p+r—ripg+sa l<i<m-Lrp<an<p+rn

) 2Xia=n

whereg; = 1if pfa ande; = 0if p|a. If p|a;, we call the corresponding colunmﬁi‘)
of the Mullineux symbol aingularcolumn, otherwise the column is callesbular.

If Gp(1) is as above then the Mullineux conjugafé of 1 is by definition thep-regular
partition satisfying

al a2 “ e am
G,(\M :< ) wheres =a —r;i +¢.
p(A™) S S - Sp S =g i i

In particular, forp > n, this is just the ordinary conjugation of partitions.

Example Letp=>5,1= (8, 6,5, then

4 4322111

4 3321 e — (0 6 53
33221 sM={4 232

2 1111

4 433322111
43322211

2 1 " 10 6 5 3
11 GS(’\)_<6322>
1

1

(In both cases the nodes of the successive 5-rims are numhezesl 4).
Thus(8, 6, 5)M = (10, 8, 22, 1?).
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Now let p be a prime number and consider the modular representatioggsiofchar-
acteristicp; note that for all purely combinatorial results the condition of primality is not
needed.

The modular irreducible representatiddsof S, may be labelled by-regularpartitions
A of n, a partition beingp-regular if no part is repeatgul(or more) times ([6], Section 6.1);
this is the labelling we will consider in the sequel.

Tensoring the modular representatibn of S, by the sign representation &, gives
another modular irreducible representation, labelled pyregular partitiorh.”. Mullineux
has then conjectured [14]:

Conjecture For any p-regular partitiom. of n we have.” = AM.
If A is a p-regular partition we let as before

a a -+ am
rl r2 rm

Gp()t) = (

denote its Mullineux symbol. We then define fResidue symbol 1) of A as

Ry(A) =
p(M) {yl Y2 - Ym

X1 Xo .- Xm}

wherex; is the residue 0fim;1—j — 'm+1—j Mmodulo p andyj; is the residue of & rm; 1
modulo p. Note that the Mullineux symbaG (1) can be recovered from the Residue
symbol Ry() because of the strong restrictions on the entries in the Mullineux symbol.
Also, it is very useful to keep in mind that for a residue symbol there are no restrictions
except that(xy, y1) # (0,1) (which would correspond to starting with th@singular

partition(1P)). We also note that a colum(@} ) in Rp(A) is a singular column it 5 (1) if
and only ifx; + 1 = y; (mod p).

Example p=5,1=(10,8,7,5,3,2%,then

) 15 12 7 and R()L)_1413
MW=l 7 6 3 2 714 3 0 4

Also for the residue symbol of @-regular partition we have a good description of the
residue symbol of its Mullineux conjugate; this is just obtained by translating the definition
of the Mullineux map on the Mullineux symbol to the residue symbol notation.

Lemma 2.1 Letthe residue symbol of the p-regular partitibrbe

Rp(}\,) = {Xl S Xm}.

Yi Y2 - Ym
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Then the residue symbol b¥ is

S1— R S
Rp(kM)z{l Y1 m Ym}

81 —X1 -+ 8m— Xm
where

"7 10 otherwise

Notation. We now fix ap-regular partitior. Theni denotes the partition obtained from
A by removing all those parts which are equal to 1. We will assumeithasd such parts,
0 <d =< p— 1. Moreover, we leju be the partition obtained frorh by subtracting 1
from all its parts. We say that is obtained by removing the first column fram Unless
otherwise specified we assume that the residue syRp@l) for 1 is as above.

For later induction arguments we formulate the connection between the residue sym-
bols of A and x. First we consider the process of first column removal; this is an easy
consequence of Proposition 1.3 in [3] and the definition of the residue symbol.

Lemma 2.2 Suppose that

Xp X2 -+ Xm
Ry(A) = .
p(M) {yl Yo oo ym}
Then
X/ X/ . X/
Rpf >={,1 2 ',“}
Piit Yi Y2 0 Ym

whereforl < j <m

/_ . .
Xi = Xj — vj

Yi = Yj-1—vj.
Here y is defined to bd and thev;’s are defined by

[0 ifXj+1l=yj
711 otherwise '

Moreover if x; = 0 then the first column in Ru) (consisting of kand ) is omitted.

Remark 2.3 In the notation of Lemma 2.2 the numberof parts equal to 1 in is
determined by the congruence

d=Yy,— Ymn=Ym-1— Ym — vm (modp)
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Moreover, since; is the number of parts of andy, = 1 — ry it is clear thatyy, is the
p-residue of the lowest node in the first colummof

Next we consider the relationship betweeandu from the point of adding a column
to u; this follows from Proposition 1.6 in [3].

Lemma 2.4 Suppose that

X/ X/ . X/
Rp(1) = { . i“} :
Yyi Y2 0 Ym
Then
Ro(1) = {xo X1 - xm} 7
Yo Y1 - Ym

whereforl < j <m
X__X/ / . _ / /
j = j+"j’ yJ—l—yj+Vj.

Here % =0, ym =y, —d and thevj 's are defined by

, {O ifx +1=y;
J

V. =
1 otherwise

Moreover if y; = O andv] = 1, then the first column in R2) (consisting of ¥ and y)
is omitted.

Remark 2.5 In the notation of Lemma 2.2 and Lemma 2.4 we have

ijv} forl<j<m

Indeed,
v =0 x;+1=y;_1 (bydefinition ofv;)
N fo + v} +1= yj + va (by Lemma 2.4)
S X +1=Y;
< vj =0 (by definition ofv})

3. Mullineux fixed-points in a p-block

The p-core A of a partition is obtained by removing-hooks as much as possible;
while the removal process is not unique the resulfiagegular partition is unique as can
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most easily be seen in the abacus framework introduced by James. The reader is referrec
to [6] or [17] for a more detailed introduction into this notion and its properties. We define
theweightw of X by w = (|A| — [Ap)])/ P.

The representation-theoretic significance of fheore is the fact that it determines the
p-block to which an ordinary or modular irreducible character labelledl bglongs. The
weightof a p-block is the common weight of the partitions labelling the characters in
the block.

LetA=(y>1,> ... > Ix > 0) be a partition oh. Then

YN ={(l,j)eZxZ|1<i<kl=<j=<lijcZxZ

is the Young diagram of, and(i, j) € Y()) is called anodeof 1. If A= (i, j) is a node
of A andY (M)\{(i, j)} is again a Young diagram of a partition, thars called aemovable
node andi\ A denotes the corresponding partitionmof 1.

Similarly, if A= (i, j) € IN x IN is such thaty (1) U {(i, j)} is the Young diagram of a
partition ofn + 1, thenA is called anndentnode ofA and the corresponding partition is
denoted\ U A.

The p-residueof a nodeA = (i, j) is defined to be the residue modylof j —i, denoted
resA = j —i (mod p). The p-residue diagram of is obtained by writing thep-residue
of each node of the Young diagramJofn the corresponding place.

Example p=5,1=(6%5,4)

0 0
4

w b~ O P
A O FLDN
O, N W
N W b

4
3
2

The p-content ¢A) = (Cp, ..., Cp_1) Of a partition is defined by counting the number
of nodes of a given residue in tigeresidue diagram ofy, i.e., ¢ is the number of nodes
of A of p-residuei. In the example above, the-content ofA is c(A) = (Cy, ..., Cq) =
(5,3,4,4,5).

It is important to note that thp-content determines thg-core of a partition. This can
be explained as follows. First, for given= (co, c1, ..., Cp—1) We define the associated
fA-vector byn = (Cg — €1, €1 — Cp, ..., Cp_2 — Cp_1., Cp—1 — Co). Now, for any vector

p

ne {(no,...,np_l) e zZP
i=0

there is a unique-core . with this ii-vectorii associated to itp-contentc(w) (for short,
we also say thaf is associated tp..) We refer the reader to [5] for the description of the
explicit bijection giving this relation. From [5] we also have the following
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Proposition 3.1 Letu be a p-core with associatgttvectorii. Then

withb=(0,1,..., p—1).

How do we obtain théi-vector associated tb from its Mullineux or residue symbol?
This is answered by the following

Proposition 3.2 Let A be a p-regular partition whose Mullineux symbol and residue
symbol are

a a - X1 Xo -0 X
Gp(x)z( o am) and Rp(x)z{ v m},
rn ra2 -+ fIn Yi Y2 -+ Ym
respectively. Then the associatediectorii = (no, ..., Np_1) is given by

nj=I{i |& —ri=jmodp}| —I|{i | —ri = j mod p}|
=Hilx=j-11y=]+1)

Proof: In the residue symbol, singular columns do not contribute totkiector as they
contain the same number of nodes for each residue. So let us consider a regular@olumn
respectively,(f), in the Mullineux symbol and the correspondipgim in the p-residue
diagram. In this case, the contribution only comes from the last section gfthn. The
final node is in rowr and column 1 so itp-residue is 1-r = y (mod p). What is the
p-residue of the top node of this rim section? The length of this sectiendagmod p),
hence we have to ge a — 1 steps from the final node of residyedo the top node of the
section, which hence hgsresidue=e y+a—1=1—-r4+a—1=a—r = x(going one
step northwards or eastwards always increasegtesidue by 1!). Thus going along the

residues in the last section we have a sftiy + 1, ..., X — 1, X. Now the contribution of
the intermediate residues to tfievector cancel out, and we only have a contribution 1 for
ny and—1 for ny_1, which proves the claim. O

First we use the preceding proposition to give a short proof of a relation already noticed
by Mullineux [15]:

Corollary 3.3 Letx be a p-regular partition. Then
M) = A(p-

. : (X1 X2 +++ Xm
Proof: Let the residue symbol of be Ry(A) = (i va o ym -
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So by Lemma 2.1 we hav@,(A\M) = {gizg STy with ) = 1if x; + 1 =y
and 0 otherwise.

Now we consider the contributions of the entries in the residue symbol fo-teetors.
If xi +1+# vy, % = j, ¥ = k+1, thenwe get a contribution 1 tg (1) and—1 tonk (1) on
the one hand, and a contribution Intoy.1,(A") and—1ton_j11)(*") on the other hand.
If xi +1 = y;, then from column in the residue symbol we get a contribution neither to
A(x) nor toA(AM). Hencenj(AM) = —n_(j;qy() for all j, i.e., if A(k) = (o, ..., Np_1),
theni(AM) = (—np_1, ..., —nNo).

Now letc(r) = (Co, ..., Cp_1) be thep-content ofx, thenc(A’) = (Co, Cp_1, ..., C1),
and hence

A(x) = (Co — Cp-1,Cp-1 — Cp_2, ..., Co — C1, C1 — C)
= (_np—lv _np—27 coey —Ny, _nO)
=AM
ThUS()\.M)(p) = ()\,)(p) = )\zp). O

Now we turn to Mullineux fixed-points.

Proposition 3.4 Let p be an odd prime and suppose thas a p-regular partition with
A = AM. Then the representation’belongs to a p-block of even weight

Proof: If » =AM, then its Mullineux symbol is of the form

a a am
Gp()\):Gp(kM): a;+¢e1 ar+éer Aam + Em
2 2 2

where as before; = 1if pfa ande; = 0if p|a, and wherey is even if and only if

pla.
Now by Proposition 3.1 we have

wherefi = A(A) = (no, . .., Np_1) is then-vector associated foandb = (0,1, ..., p—1).
By Proposition 3.2 we have

n; =‘{i'a;8i Ejmode—Hi ‘szmodp”

2
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any contribution tanp-:. Thus we have
2
ﬁ = (n07 nl’~-~anp_’3509 —Np-s, ..., _n0)~
2 2

Now we obtain for the weight modulo 2:

p-3 -3
7

wEZaj +Y M+ nii4+(p-1-1i)
f i i=0

o
N

o

-3

=|{jlaj£0mod3|+ ) n?
=0

o
N

-3

o
N
w
o
N

I
2
_|_

>
N

I
°1
o
-
o

Hence the weight is even, as claimed. O

For the following theorem we recall the definition of the numberss):

i
k(r,s) = H(Al, ..., A" | Al is a partition for alli, and Z A = s}

i=1

In view of the now proved Mullineux conjecture, the following combinatorial result implies
a representation-theoretical result in [16].

Theorem 3.5 Let p be an odd prime. Let be a symmetric p-core and a IN with
w = "= even. Then

p—1 w M
ki —, = )| =l{AFn|A=A" App =
( > ,2) I{ I s Ap) = 1}l
Proof: We set

F)y=Fnlr=M2xp =n)

For A € F(u) we consider its Mullineux symbol; asis a Mullineux fixed-point this has
the form

al a2 am
Cp) =Cp") = ay+e1 @m+ez  antem
2 2 2

withe; = 1if pfa ande; = 0if p| &, anda being evenifandonly ip | &.
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In this special situation the general restrictions on the entries in Mullineux symbols stated
at the beginning of Section 2 are now given by:

(i) 0<a —a,1 <2pforalli.

(i) If & = a1 theng is even.
(i) If & — a1 = 2ptheng is odd.
(iv) & isevenifandonlyifp | a.
(V) 2ia=n

We have already explained before how to read offgtesre of a partition from its Mullineux
symbol by calculating thi-vector. In the proof of the previous proposition we have already
noticed that entrieg; = 0 (mod p) do not contribute to thé-vector.

Now the partitiongay, ..., am) = nwith properties (i) to (iv) above are just the partitions
satisfying the special congruence and difference conditiond fer2p and the congruence
set

p—-3 p+1 }

=12j+1|j=0,...,—— — = ... p—-1
C {J+|J T L L

considered in [1, 2]. The bijection described there transforms the set of partitions above
into the set

D={b=(by,....0D)Fn|by>---> b, modyb € C}

where mog b denotes the smallest positive number congruerit iaod N. Computing
the i-vector from theb;’s instead of they;’s with the formula given in the previous proof
then gives the same answer since the congruence sequencebgs tisethe same as the
congruence sequence of thegular a’s. For a bar partitiorb € D as above we then
compute its so calletil-bar quotienf sinceb has no parts congruent to O prmoduloN,
the bar quotient is ﬂg—l-tuple of partitions. For the properties of these objects we refer the
reader to [13, 17]. It remains to check that theweight ofb equalsz, i.e., that theN-bar
corep = by, of b satisfiegp| = |u|.

We recall from above that we have for thevector ofi.:

.a—ei__ . .—&—Si:.
257 =] ] 25 o]
and
ﬁ:(no,nl,...,ina,O,—ina,...,—no).

Hence by Proposition 3.1 we obtain
-3

Al =Inl=) pré+) m@ —p+1.
i=0 i=0

-3

o
o

N‘
N‘
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As remarked before the bijection transformiag= (ay, ..., ay) into (by, ..., by) leaves
the sequence of congruences modile= 2p of the regular elements minvariant. Now
for determining theN-bar core ofb we have to pair ofb’s congruent to 2 + 1 modulo
N = 2p with bj’s congruent to p — (2] + 1), foreachj =0, ..., 97—3 and only have to
know for each such the number

{i |bj=2)+1mod2p} —|{i | by =2p— (2] +1) mod 2p}|.
But this is equal to

i biT_lzjmode—Hi ’#Ej modp}
which is same as

i @Ejmodp”—‘{i'_a‘;gi = j modp

which finally isnj.
Now the contribution to the@-bar core from the conjugate runnefjsZLand 20 — (2j + 1)
forj=0,..., ‘%3 is for any value oh; easily checked to be

Nj2j+ 1 +njnj—Hp=n;2j +1—p)+ pni.
Thus the total contribution to thep2bar core is exactly the same as the one calculated

above, i.e., we havig| = |p| as was to be proved. O

4. The combinatorial part of the Mullineux conjecture

We are now going to introduce the main combinatorial concepts for our investigations. The
concept of the node signature sequence and the definition of its good nodes have their origin
in Kleshchev’s definition of good nodes of a partition. First we recapitulate his original
definition [8].

We write the given patrtition in the form

A= (A A% A
whereir; > Ay > ---A¢ > 0,3 > Oforalli.
For1<i < j < kwe then define
. . J - - J
B, ) =Ai —Aj +Za{ and y(@i,j)=x —Aj+ Z a.
t=i t=i+1
Furthermore, for € {1, ..., k} let

Mi={j11=<]<i,B(j,i)=0(modp)}.
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We then cali normalif and only if for all j € M; there existgl(j) € {j +1,...,i — 1}
satisfyingB(j, d(j)) = 0 (modp), and such tha{d(j) | j € Mi}| = |M;].

We calli goodif it is normal and ify (i, i’) # 0 (mod p) for all normali’ > i.

Let us translate this into properties of the nodes of the Young diagram that can most
easily be read off th@-residue diagram of. One sees immediately thati, j) is just the
length of the path from the node at the beginning ofithélock ofA to the node at the end
of the jth block of A. The condition3(i, j) = 0 (mod p) is then equivalent to the equality
of the p-residue of the indent node in the outer corner ofithéblock and thep-residue of
the removable node at the inner corner of thieblock.

Similarly, ¥ (i, j) = 0 (mod p) is equivalent to the equality of thp-residues of the
removable nodes at the end of ik and jth block.

We will say that a nodeA = (i, j) is abovethe nodeB = (i’, j’) or B is below A if
i < i’, and write this relation a8 ” A. Then a removable nodA of A is normal if
for any B e M ={C | C indent node of aboveA with resC = resA} we can choose a
removable nod€g of A with A~ Cg ./ B and resCg = res A, such that{Cg | B €
M} =|Mal. AnodeA is goodif it is the lowest normal node of itp-residue.

Consider the example = (11, 9%, 6,42, 2, 1), p = 5. In the p-residue diagram below
we have included the indent node at the beginning of the second block, marked 3
we have also marked in boldface the removable node of residue 3 at the end of the fourth
block. The equality of these residues correspondé(®y4) = 0 (mod 5). We also see
immediately from the diagram below that4, 6) = 0 (mod 5).

340

2|3
1

0

N W

Wk O N W
—

1 2
01
4 0

0
4
3
2

N W s O =N

B O~ N W

a

O = N Wk O -

The setM; corresponds in this picture to taking the removable node Asat the end
of theith block and then collecting inth; (respectivelyM ) all the indent nodes above
this block of the sam@-residue asA. Fori (respectivelyA) being normal, we then have
to check whether for any such indent nod® say, at the end of th¢th block we can
find a removable nod€ = Cg betweenA and B of the samep-residue, and such that the
collection of all these removable nodes has the same sik& @sespectivelyM ). The
nodeA (respectively) is then good ifA is the lowest normal node of ifs-residue.

The critical condition for the normality af(respectivelyA) above is just a lattice condi-
tion: it says that in any section abo¥ethere are at least as many removable nodes of the
p-residue ofA as there are indent nodes of the same residue.

With these notions the Mullineux conjecture was reduced by Kleshchev to combinatorial
form as below:
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Conjecture Leta be a p-regular partition A a good node of. Then there exists a good
node B of the Mullineux image™ such that(x\ A)M = AM\B.

Now we define signature sequences.

A (p)-signatures a pairce wherec € {0, 1, ..., p—1}isaresidue modulp ande = +
is a sign. Thus 2 and 3- are examples of 5-signatures.

A (p)-signature sequence X a sequence

X :C1e1 Cogp - -+ Cr&t

where eacl;g; is a signature.
Given such a signature sequeriave defineforO<i < p—landl<j <t

ox(i,j)=0(,])= E &k-
k<j
Ge=i

We make the conventions that an empty sum is 0 andithatcounted as-1 and— as—1
in the sum.
Theith peak valuer; (X) for X is defined as
mi(X) =max0,0(, ) [1<j <t}
and theith end valuew; (X) for X is defined as
o (X) =0o(,1).
We calli agood residue for Xf 7; (X) > 0. In that case let
k=min{j [ o, j) = m (X)},
and we then say that the residyeat stepk is i-goodfor X, for short: ¢ is i-goodfor X.
Let us note that ity isi-good forX thenc, = i andex = +. Indeed, itk = 1 this is clear
since otherwiser; (X) <o (i,1) < 0. Assumek > 1. If ¢ # i theno (i,k) = o (i, k— 1),
contrary to the definition ofy. If ¢ =i andey = —1theno (i, k—1) > o (i, k) = 7; (X),
contrary to the definition of; (X).
The residue is calledi-normalif ¢ isi-good for the truncated sequence
X :1C181Coep -+ Q&
The following is quite obvious from the definitions.
Lemma4.1l Let X*:cye1Coer - -+ Ci_16t_1 be a signature sequence and let X be obtained

from X* by adding a signature;e; at the end. Fof < i < p — 1the following statements
are equivalent
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(1) m(X) =m (X*) + 1.

(2) i (X) # mi (X*).

(3) cier = i+ andw;i (X*) = i (X*).
(4) ¢ isi-good for X.

We are going to define two signature sequences based the node sequence ) and
the Mullineux sequence KA). Although they are defined in very different ways we will
show that they have the same peak and end value forieach

Thenode sequence M) consists of the residues of the indent and removable nodes of
read from right to left, top to bottom ik. For each indent residue the signisand for
each removable residue the sigrHs

Let us note that according to Remark 2.3 the final signatuié(®ix) is (yn, — 1)—.

Example Letp=5,1 = (10,8,7,5,3, 2%). Below, we have only indicated the remov-
able and indent nodes in the 5-residue diagram. of

N():0— 4+ 2— 1+ 0— 44 2— 14 4— 3+’ 2— O+ 3—

Residue 0 1 2 3 4
Endvalue -1 2 -3 0 1
Peak value 0 2 0 1 2
Good? N Y NYY

(The good signatures (peaks) are underlined and the normal signatures marked with a prime.)

In other words, in the node sequendé)) defined before, itmem corresponds to the
removable nodé\, thenc,, = resA, ¢ = +, and A is normal if and only if the sequence
of signs to the left ofA belonging toc;’s with ¢; = resA is latticed read from right to
left. Again, the nodeA (respectivelycy,) is good if it is the last normal node of its residue
respectively of its value. The peak value of the node sequiiiteis the number of normal
nodes ofi.
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Remark 4.2 Let, as before). denote the partition obtained frokrby removing all those
parts which are equal to 1, and jetbe the partition obtained frotnby subtracting 1 from
all its parts. From the definitions it is obvious that foriall

7 (N(R) = mi_1(N(w)).

Proposition 4.3 Let andu be as above, and let d be the number of parits ..
(1) Ifi # ymandi# yn— 1then

i (N(R)) = wi—1(N(p)).
(2) Ifi = ynthen
wi(N(Q)) = wi—1(N(n)) +1
and ifi = y,, — 1then
wi(N()) = wi—1(N(w) — 1.
(3) We have
Ti(NQ)) = mi—1(N(p))
unless the following conditions are all fulfilled
() i =Ym
(i) d>0
(ii)) wi—1(N(u)) = mi—1(N(w)).
In that case ¥ is i-good for N(x) and
7i(NR)) = mi—a(N(w)) + 1.
Proof: Assume thalN()) consists ofn’ signaturesrft is odd). Then

m’ signatures whed = 0

N consists of
) { m —2 signatures whed # 0

Suppose thad = 0.
If

N(A) =Cie1 Co62 -+ Cuém
then

N(w) =(€1—Der (2—Dex -+ (Cw—1— Dém—1 Cwém
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where in both sequences = ym —1, e = —. From this and the definition of end values,
(1) and (2) follow easily. Also since the final signiswe haver; (N(1)) = mi_1(N(w))
for alli, (by Lemma 4.1) proving (3) in this case.

Supposel = 0.
If again
N(A):Cie1 Coer -+ Cwém

thency_16m—1 = Ym+ andcyem = (Yym — 1)— and
N(u):(€a—Der (C2—Dez -+ (Cw—2—Dém—2

Again (1) and (2) follow easily. To prove (3) we consider the sequence
N*(A):Cie1 Cpéz -+ Cyy_26m—2

Obviously

. { i (N*(X)) = mi—1(N(w))
wi (N*(X)) = wi—1(N())

for all i. The final sighature oN (1) has no influence om; (N (1)), since the sign is-.
Therefore, in order forr; (N*(1)) to be different froms; (N(1)), we need = vy, and
i (N*(A)) = wj (N*(1)) by Lemma 4.1. Thus condition (i) of (3) is fulfilled and condition
(iii) follows from (x). Since by assumptiod # O (i) is also fulfilled. Thus (3) is proved
in this case also. a

We proceed to prove an analogue of Proposition 4.3 favihiéneux(signatureyequence
M (1), which is defined as follows:
Let the residue symbol of be

X1 -0 Xm
Y o+ Ym

Then

M@R)=0- x+ Xt+D— w1+ nm—D-—
X+ (Xe+D— Yot (Y2—D-—

Xm+ Xm+D— ¥Ym+ (Ym—D-

Starting with the signature-0corresponds to starting with an empty partition at the begin-
ning which just has the indent nodg, 1) of residue 0.
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Example p=5,1=(10,8,7,5,3, 2% as before. Then

1 4 1 3
R5(A):{ }

4 3 0 4

and

M(G)=0— 14+ 2— 44 3— 4+ 0- 3+ 2— 14 2-
0+ 4— 3+ 4— 4+ 3—

Residue 0 1 2 3 4
Endvalue -1 2 -3 0 1
Peak value 0 2 0 1 2
Good? NY NYY

(The good signatures ikl (1) are again underlined and the normal signatures marked with
a prime.)
The table above is identical with the one in the previous example.

Lemma4.4 Leti andu be as above. Let M) be the signature sequence obtained from
M (1) by removing the two final signatureg¥ and (y, — 1)—. Then for all i we have

wi (M*(V)) = wi—1(M(w))
7 (M*(A) = mi_1(M(w))

Proof: We use the notation of Lemma 2.2 fp (1) andR, (1) and proceed by induction
onm. First we study the beginnings M*(1) andM (). We compare

1) 0- xi+ (x1+1— (fromM*(1))
with
2 0-[x+ x+D— v+ (yy—D-] (fromM(w))
We have put bracket] ] around a part of (2), because these signatures do not occur when
X3 = 0 by Lemma 2.2.
If x; = 0then (1) and (2) become

0—- 0+ 1- and O

The former gives a contribution1 to residue 1 and contributions 0 to all others, the latter
a contribution—1 to residue 0 and 0 to all others.
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If X1 #£ 0thenx; +1# 1=y, sobylLemma?2.3; =1, and (2) becomes
@ 0- -+ xx— 0+ (p—-D-

The signatures® 0+ in the latter sequence have no influence on the end values and peak
values ofM (u), (even wherx; — 1 = 0) and may be ignored. Then again we see that (1)
gives the same contribution to residuas(2)’ to residugi — 1) for all i. Thus our result
is true ifm = 1.
We assume that the result is true for partitions whose Mullineux symbols have length
m — 1 > 1, and we have to compare
@A Ym-1t Ym-1— D= Xmt Gm+D—  (fromM*(1))
with
@ Xpt Xp+D- Ypt p—D— (fromM(w)
By Lemma 2.2, (4) may be written as
@ Xm—8m)+ m—m+D— (Ym-1—m+ (Ym-1—8m—D—

We see that up to rearrangement the difference between the residues occurring in (3) and
(4 is justs,. Whereas the rearrangement is irrelevant for the end values it could influence
the peak value if signatures with same residue but different signs are interchanged. The
possible coincidences of residues with different signs are

(@) Ym_1=Xm+1 (firstand fourth residue i(B))
or

(B) Ym-1—1=xm (second and third residue (8))

But the equationgw) and(B) are equivalent, and by Lemma 2.2 they are fulfilled if and
only if 8, = 0! If Y1 = Xm + 1 (and thuss,, = 0) (3) and (4) becomes

ymfl'f‘ (mel - 1)_ (Ym—l - 1)+ Ym-1—

and
(ym—l - 1)+ Ym-1— Ym—1+ (ym—l - 1)_

In this case the difference between the occurring residues is 1 (without rearrangement) and
our statement is true.

If ym—1 # Xm + 1 (and thuss,, = 1) then the difference between the occurring residues
is again 1= &) and since there is no coincidence for residues with different signs we
may apply Lemma 4.1 and the induction hypotheses to prove the statement in this case
too. |



246 BESSENRODT AND OLSSON

Lemma 4.5 Suppose that in the notation as above we have foryi,
wi—1(M()) = 7mi—1(M(w)).
Then d# 0.

Proof: Supposed = 0. Then by Remark 2.3, = ym = i, and henceM (1) ends on
(i —1)—. But then clearlywj_1(M(w)) # mi_1(M(w)). O

Lemma 4.6 Letthe notation be as in Lemmda4.
(1) Forl1 < j <m-—1we have

yj isi-good for M*(1)
8j41=1and yj+1 is (i — 1)-good for M(u)

& or
8j+1 = 0and >§+1 is (i — 1)-good for M(w).

(2) For1 < j <m we have
X;j isi-good for M"(})
4§ =1and >§ is (i —1)-good for M(u).

Proof: This follows immediately from the proof of Lemma 4.4. It should be noted
that x; cannot be 0-good foM* (1) since M*(A) starts by 6-. Moreover, the proof of
Lemma 4.4 shows that K; isi-good forM*(1), then we cannot hawg = 0, since other-
wisexj— = (yj—1 — 1)— proceeds;+. O

Proposition 4.7 Let) andu be as above.
(1) Ifi # ymandi# yn— 1lthen

wi(MQ)) = wi1(M(w)).
(2) Ifi = ymthen
i (M) = wi-1(M(w)) +1
and ifi = y,, — 1then
wi(M@Q)) = wi-2(M(w)) — 1.
(3) We have
T (MQ)) = mi_1(M(w))

unless i= yn andwi_1(M(w)) = mi_1(M(w)). In that case y is i-good for M(1)
and

T (M@Q)) = mi1(M(w) + 1.



RESIDUE SYMBOLS AND MULLINEUX CONJECTURE 247

Note. There is a strict analogy between the Propositions 4.3 and 4.7. In part (3) the
assumptiord # 0 is not necessary in Proposition 4.7 due to Lemma 4.5.

Proof: BylLemma4.4

@i (M*(1)) = wi—1(M(n))
mi(M*(1) = mi—1(M(w)

If we addym+ and(ym — 1)— to M*(%) we getM ()). Therefore, an argument completely
analogous to the one used in the cdsg 0 in the proof of Proposition 4.3 may be applied.
O

Theorem 4.8 Letx be a p-regular partition.
Thenforalli0O<i<p-1

@i (M) = wi(NQ))

7 (M) = 7 (N(A))
Proof: We use induction on the numbeéof columns ini. Foré = 1, i.e.,A» = (19) we
haveGp(1) = (§) andRy(M) = {;, %4 ). Thus

NV :1—- A-d)+ (—d)—

M®X) :0— 0+ 1— @A—d)+ (—d)—

and the result is clear. Assume the result has been proved for partitions-witltolumns,
£ > 2. Letu be obtained by removing the first column framBy the induction hypothesis
we have

wi—1(M(w)) = wi—1(N(1))
i1 (M()) = mi—1(N (1))

for all i. Using Propositions 4.3 and 4.7 (see also the note to Proposition 4.7) we get the
result. |

Theorem 4.9 The following statements are equivalent for a p-regular partiticend i,
O<i=zp-1

(1) There is a good node of residue i in

(2) M(A) hasi as a good residue.

(3) N(1») hasi as a good residue.

Proof: (1)< (3): See the beginning of this section.
(2)<(3): Theorem 4.8. |

Finally, we describe the effect of the removal of a good node on the residue symbol (or
equivalently on the Mullineux symbol). First we prove a lemma.
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Lemma 4.10 Suppose that there is a good node of residue i.iThen the following
statements are equivalent

(1) The good node of residue i occurs in the first columa.of

(2) ymisi-good for M().

Proof: The statement (1) clearly is equivalent to
D" m(NQ) # m(NG)
(where, as beforg, is obtained from. by removing all parts equal to 1) We now have

m(NW) # m(N(L)
& m(NW) # mi—1(N(w))  (by Remark 4.2)
& 1 (ML) # mi—1(M(u))  (by Theorem 4.8)
& Ym isi-good forM(r) (by Proposition 4.7) O

Theorem 4.11 Suppose that the p-regular partitiarhas a good node A of residuei. Let

Rp()h) = {

X1 Xp --- Xm}
i Y2 o Yml)

Then for some,j1 < j < m, one of the following occurs
(1) x; isi-good for M(x») and

O

yl y2 PP yJ e ym :
(2) yj isi-good for M(*) and

X1 Xo --- X c Xm

Ry (A A)={
P Yo Y2 oo ¥+l - ¥m

} it (3, 1) # (L, 0),

Xo -+ Xm

Rp(k\A)z{ } ifj=1,i=0.
V2

m

Proof: The proof is by induction of.|. Suppose first thaf occurs in the first column

of A. Then the first column irG ,(A\ A) is obtained from the first column iG (1) by
subtracting 1 in each entry and all other entries are unchanged; note that in the case where
Gp(h) = (i), we have a degenerate case &)\ A) is the empty symbol. By definition

of the residue symbol this means thatin Ry(1) is replaced bym + 1 in Ry(A\A); of

course, in the degenerate case &Ryor\A) is the empty residue symbol. On the other
handyp, isi-good forM (i) by Lemma 4.10, and in the degenerate casis 0-good for

M (1), and so we are done in this case.
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Now we assume thah doesnotoccur in the first column of. Let B be the node of.
corresponding tA. Clearly B is a good node of residuie— 1 for u. We may apply the
induction hypothesis tp andB. Suppose that

/

X
Rp(,bb) = { :/L ’ r/n}
Yi Y2 0 Ym

Xé ... X

By the induction hypothesis we know that one of the following cases occurs:

Case I >§ in Ry() is replaced byq —1in Ry(u\B) andx} is (i —1)-good forM ().

Casel ll. )g in Rp(uw) is replaced bwlf + 1in Ry(u\B) andyj is (i — 1)-good forM (),
respectively in the degenerate cageis 0-good forM(u), and then the first column
’;1 in Rp(w) is omitted inRy(1\ B).
We treat Case | in detail. Case Il is treated in a similar way.

Case I: By Lemma 4.6 we have one of the following cases:

Case laiy;_1 isi-good forM* (1) ands; = 0
Case Ib:x; isi-good forM*(1) ands; = 1

We add a first column tg\ B to getiA\ A. ThenRy(A\A) is obtained fromR,(\B)
using Lemma 2.4. We fix the notation

X/l/ e )(r’]’1
TN = {.\/1’ yr%}
and
X0 X1 -+ X
Rp(A\A)Z{_O _1 _m}
Yo Y1 -0 Ym
Case la. We knowx; =i — 1 since we are in Case | aiyl_, = i, since we are in Case la.
Moreover sincel; = §; = O (see Remark 2.5) we haye = x| =i. Alsoxj = x; and

ny = yj—1 by Lemma 2.2. By Lemma 2.4
Yioi=Y +8

where

I 1 otherwise

//_{0 ifX}/—l-]_:y}/

But xj/ +1= (xj -D+1= xj =i-1 andyj/ = y] = yj_1 =i by the above. Thus
8 =1andyj_1 =y;+1=1i+1. Itisreadily seen that all other entriesfy(1\A)
coincide with those oR(A). Thus possibility (2) occurs in the theorem.
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Case Ib. We knowx; =i — 1 since we are in Case | angl = i since we are in Case Ib.
Also sinces; = 1,y; = yj_1 — 1. Moreovery] = y; andxj = X; —1,i.e.x{ =i — 2.
Let s} again be defined by

" __

{0 X +1=y/
j_ .

1 otherwise

Then by Lemma 2.&; =x| + §] =i —2+4]. We claim thats] = 1. Otherwise

I —1=X{+ 1=y =yj and we also know that; =i — 1. Butif x; = y; then by
definition ofM () X] is nota peak, contrary to our assumption that we are in Case I. Thus
8’ =1andx; =i — 1, as desired. Again it is easily seen that all other entrid%,0£\ A)
coincide with those oRy(1). Thus possibility (1) occurs in the theorem. O

We illustrate the theorem above by giving Kleshcheggood branching graph for
p-regular partitions forp = 3 up ton = 5 in both the usual and the residue symbol
notation; we recall that th@-good branching graph fop-regular partitions is also the
crystal graph for the basic representation of the quantum affine algebra (see [11] for these
connections).

Below, an edge labelledis drawn from a partitior. of m to a partitionu of m — 1 if u
is obtained from by removing a node of residue

0 0
0 0
(1) {}
N Y
(2) (12) {o} &}
2 1 2 1
/(3) (2,1) {&} 2}

0 2 1 0 0 2 1 0
4 (31 (2,>(22) {83/{3} {i\.{gé
1 \KO 1 /O / 2 1 &0 \ 2 0 / 2
5) (1) (3,12 (241 (3,2 oo 03y & {0 £,

We can now easily deduce the combinatorial conjecture to which the Mullineux conjecture
had been reduced by Kleshchev:
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Corollary 4.12 Suppose that the p-regular partitionhas a good node A of residue i.
Then its Mullineux conjugate™ has a good node B of residud satisfying

A\AM =AM\ B.

Proof: Considering the residue symboloit is easily seen that the Mullineux sequence

of A and its conjugate™ are very closely related. Indeed, the peak and end values for each
residue in M () equal the corresponding values for the residiign M (AM), and if there

is ai-good node at columh in the residue symbol of, then there is a-i-good node at
columnk in the residue symbol 6f. More precisely, in the regular case these good nodes
are one at the top and one at the bottom of the column, whereas in the singular case both
are at the top. Comparing this with Theorem 4.11 implies the result. O
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