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Abstract

In this article, we show that common insurance policy provisions—namely, deductibles, coinsurance, and max-
imum limits—can arise as a result of adverse selection in a competitive insurance market. Research on adverse
selection typically builds on the assumption that different risk types suffer the same size loss and differ only in their
probability of loss. In this study, we allow the severity of the insurance loss to be random and, thus, generalize the
results of Rothschild and Stiglitz [1976] and Wilson [1977]. We characterize the separating equilibrium contracts
in a Rothschild-Stiglitz competitive market. By further assuming a Wilson competitive market, we show that an
anticipatory equilibrium might be achieved by pooling, and we characterize the optimal pooling contract.

1. Introduction

In an insurance market with perfect information, risk-averse individuals prefer policies that
offer full coverage when insurance is priced actuarially fair (Mossin [1968]). However,
most insurance policies do not offer full coverage. In the literature, several explanations
have been provided for this occurrence. One of the primary results of this type is due to
Arrow [1971]: if the insurance premium depends only on the policy’s actuarial value, then
insureds prefer policies that provide full coverage above a deductible. The optimality of
deductibles to consumers when insurance entails transactions costs has been recognized
by Townsend [1979], Brennan and Solanki [1981], Mayers and Smith [1981], Huberman,
Mayers, and Smith [1983], Schlesinger [1981], and Turnbull [1983], among others.

Raviv [1979] demonstrates that, in a perfect information market, coinsurance is either a
result of risk aversion of insurers or of nonlinearity in insurance costs. Raviv also shows that
policy limits are part of an optimal insurance contract when rates are regulated. Huberman,
Mayers, and Smith [1983] argue that policy limits are a consequence of the limit on liability
individuals receive through bankruptcy laws.

Information asymmetry between insurer and policyholder can also explain incomplete
coverage. For example, under conditions of moral hazard, Shavell [1979] shows that
optimal insurance will be less than full coverage. Adverse selection also provides ratio-
nale for incomplete coverage. Rothschild and Stiglitz [1976] show that equilibrium is
either nonexistent or separating, with low risks buying a policy that provides partial cov-
erage and high risks buying a policy that provides full coverage. In a competitive market,
Wilson [1977] shows that an anticipatory equilibrium will either be separating like that of
Rothschild-Stiglitz or pooling with both high and low risks buying the same policy at a
common price. Because there is only one loss size in the models of Rothschild-Stiglitz and
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Wilson, it is impossible to know whether the specific policy provisions include a deductible,
coinsurance, or a maximum limit. Fluet and Pannequin [1977] study the design of insurance
contracts under adverse selection when the severity of the loss is random and when first-best
solutions are not realizable, as do we. They focus on competitive insurance markets, as
in Rothschild and Stiglitz [1976], and extend the results of Rothschild and Stiglitz to the
continuous loss case.1 Specifically, if one defines low versus high risks according to their
expected losses (that is, a low risk has an expected loss less than or equal to a high risk),
then in a separating equilibrium, high risks buy full coverage, while low risks buy only
partial coverage.

In this article, we extend the literature on the design of optimal insurance contracts under
adverse selection in two ways. First, we give the necessary and sufficient conditions satisfied
by the optimal separating insurance policy for low risks. Second, and more important, we
extend the results of Wilson to the continuous loss case. We characterize both the optimal
separating and pooling contracts in a Wilson competitive market and describe how one can
determine whether the equilibrium is separating or pooling. If the equilibrium is separating,
then the equilibrium contracts are the same as in the (extended) Rothschild-Stiglitz model.
Under assumptions of information asymmetry, we, thereby, explain common provisions
found in many insurance policies, such as deductibles, coinsurance, and maximum limits.

In Section 2, we state our basic assumptions, and in Section 3, we formulate our problem
concerning equilibrium separating and pooling insurance policies in a competitive market.
We analyze the equilibrium separating and pooling policies in Section 4. In Section 5, we
include a constraint on the policies that will protect the insurer against underreporting of
losses and determine necessary conditions for the resulting equilibrium insurance policies.
In Section 6, we present an illustrative example in which we determine the equilibrium insur-
ance policies and show that the common insurance provisions of deductibles, coinsurance,
and maximum limits can be realized in our model.

2. Insurance risks and feasible contracts

Assume that insurers compete for the business of L low risks and H high risks in the market.
A risk is defined to be low versus high if the expected loss of a low risk is not greater than
the expected loss of a high risk. N is the total number of insureds in the market—that is,
N = L + H . Denote the initial wealth of an individual risk by w. Let u denote the utility
of wealth, a twice-differentiable function. Individuals are risk averse—that is, u′ > 0 and
u′′< 0. Low and high risks are identical except for their loss distributions, which are a
mixture of a point mass at zero and a continuous severity distribution above that. Denote
the cumulative loss distributions of low and high risks by FL and FH , respectively. Let
pi , i = L or H , be the probability that a risk suffers a loss; pi = 1 − Fi (0) ≤ 1. Let
fi , i = L or H , denote the probability density function of the severity of loss. We can,
therefore, write Fi , i = L or H , as follows:

Fi (x) =


0, x < 0;
1− pi , x = 0;
(1− pi )+ pi

∫ x
0 fi (t) dt, x > 0.
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Throughout this article, we assume that fL and fH have the same support—that is, they are
positive on the same set of nonnegative real numbers—and we assume that EL [X ] ≤ EH [X ].

Let I : R+ → R+ denote an insurance policy that pays I (x) to an insured if the insured
suffers a loss of size x . Assume that the indemnity benefit an insured receives, following
a loss x , lies between zero and x—that is, 0 ≤ I (x) ≤ x . Such an insurance policy I is
called feasible. Later, in Section 5, we further restrict feasible policies to be nondecreasing
in order to guard against underreporting of losses. We assume that insureds can buy at most
one insurance policy to cover their potential losses. The expected utility of an individual
of type i, i = L or H , who buys an insurance policy I for a premium P is

Ui (I, P)= Ei [u(w − P + I (x)− x)]

=
∫ ∞

0
u(w − P + I (x)− x) dFi (x)

= (1− pi )u(w − P)+ pi

∫ ∞
0

u(w − P + I (x)− x) fi (x) dx .

3. Separating and pooling equilibria

Assume that insurers behave as if they are risk neutral and that administrative expenses and
investment income are zero. Assume that the insurance market is a competitive market, as
in Rothschild and Stiglitz [1976], and that each insurance policy earns nonnegative profits.
A set of contracts is in equilibrium if there does not exist an additional contract that, if also
offered, would make a positive profit. Due to long-run competition, each policy will earn
zero expected profits in equilibrium. Information asymmetries exist in the market because
of regulatory prohibitions on underwriting or the inability of insurers to acquire relevant
information.

Fluet and Pannequin [1977] show that full insurance for both low and high risks constitutes
a separating equilibrium at an actuarially fair price if and only if EL [X ] = EH [X ]. They also
show that if equilibrium is achieved by a pair of separating policies and EL [X ] < EH [X ],
then the equilibrium coverage for high risks is full insurance at the actuarially fair price
of EH [X ] and the equilibrium coverage for low risks IS solves the following optimization
problem:

max
I,P

UL(I, P)=max
I,P

[
(1− pL)u(w − P)

+ pL

∫ ∞
0

u(w − P + I (x)− x) fL(x) dx

]
, (1)

subject to

P ≥ pL

∫ ∞
0

I (x) fL(x) dx, (2)

0 ≤ I (x) ≤ x, (3)
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and

u(w − EH [x])≥UH (I )

= (1− pH )u(w − P)+ pH

∫ ∞
0

u(w − P + I (x)− x) fH (x) dx . (4)

The last constraint (4) ensures high risks will not prefer the separating policy of low risks
to full coverage.

Now, further assume that insurers are nonmyopic, as in Wilson [1977]—that is, they
will not offer policies that will become unprofitable if other policies are removed from the
market in response to the introduction of a new policy. It may occur that both risks will
prefer a pooling policy to their optimal separating policies. In that case, any pooling policy
that is priced actuarially fair and that does not maximize the expected utility of the low
risks can be improved upon for the low risks. The old policy will be removed from the
market because it will eventually lose money, due to the following straightforward result,
and because insurers are nonmyopic.

Lemma 1: Suppose that EL [X ] < EH [X ]. For any pooling policy I with an actuarially
fair premium P, such that the high risks prefer I to full coverage with an actuarially fair
premium of EH [X ], we have that P < EH [I (X)].

Therefore, if the equilibrium is a pooling equilibrium, then the optimal pooling policy
IP solves the following problem:

max
I,P

UL(I, P)=max
I,P

[
(1− pL)u(w − P)

+ pL

∫ ∞
0

u(w − P + I (x)− x) fL(x) dx

]
, (5)

subject to

P ≥
∫ ∞

0
I (x)

LpL fL(x)+ H pH fH (x)

N
dx, (6)

and

0 ≤ I (x) ≤ x . (7)

Note that competition will force both premium constraints (2) and (6), to hold at the
optimal contracts. For the optimal separating policies to constitute an equilibrium, we
also have the self-selection constraints that at least one risk class will prefer its optimal
separating policy to the optimal pooling policy. Similarly, for the optimal pooling policy to
constitute an equilibrium, we have the self-selection constraints that both risk classes will
prefer the optimal pooling policy to their optimal separating policies. In the next section,
we uniquely determine the optimal separating and pooling insurance policies.
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4. Design of the optimal insurance contracts

In this section, we characterize the optimal separating and pooling insurance contracts, as
given in Section 3, (1) to (4) and (5) to (7). Recall that EL [X ] ≤ EH [X ] and that fL

and fH have the same support. We first state necessary and sufficient conditions for the
optimal separating insurance contracts, then for the optimal pooling contract. The optimal
separating insurance contract for high risks is full coverage at an actuarially fair premium,
EH [X ], as shown in Fluet and Pannequin [1997]. The optimal separating contract for low
risks is characterized in the following proposition.

Proposition 1: The optimal separating insurance policy IS for the low risks is charac-
terized by the following necessary and sufficient conditions: There exists a nonnegative
constant λ such that

a. IS(x0)= 0 iff MUCL − λMUCH ≥ u′(w − P − x0)

{
1− λ pH fH (x0)

pL fL(x0)

}
.

b. IS(x0)= x0 iff MUCL − λMUCH ≤ u′(w − P)

{
1− λ pH fH (x0)

pL fL(x0)

}
.

c. 0< IS(x0) < x0 iff MUCL − λMUCH

= u′(w − P + IS(x0)− x0)

{
1− λ pH fH (x0)

pL fL(x0)

}
.

MUCL = EL [u′(w− P+ IS(X)− X)] and MUCH = EH [u′(w− P+ IS(X)− X)] are the
marginal utility costs under the insurance policy IS of the low and high risks, respectively.
The premium P equals the expected indemnity benefit P = pL

∫∞
0 IS(x) fL(x) dx. Also,

the self-selection constraint (4) holds at the optimum, and one can use this constraint to
determine the value of λ.

Proof . See the appendix. 2

One can interpret the conditions in Proposition 1 economically. Indeed, in each condition
one compares the marginal utility cost to the low risks of paying additional premium, MUCL ,
with the marginal utility benefit of receiving the corresponding additional indemnity benefit,
adjusted for the net marginal benefit to the high risks. For example, IS(x0) = 0 if and only
if the marginal utility cost to the low risks is higher than the adjusted benefit. We have the
following corollaries of Proposition 1, which we state without proof. The first corollary
generalizes a result of Mossin [1968].

Corollary 1.1: The optimal separating policy for the low risks IS is full coverage iff
EL [X ] = EH [X ].

Corollary 1.2: If the ratio of severity density functions of the high and low risks, fH (x)
fL (x)

, is
increasing for all losses x > 0, then the optimal policy IS has full coverage only between
0 and some loss amount l ( possibly zero) and coinsurance above that amount.
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Therefore, if the severity densities satisfy a monotone likelihood ratio (MLR) ordering—
that is, fH (x)

fL (x)
increases with respect to x—then the optimal separating contract for the low

risks is not necessarily deductible insurance. In this case, low risks are willing to give up
coverage at higher loss amounts in order to receive full coverage at lower amounts, where
they are more likely to incur losses. In Section 5, we present an example that illustrates this
corollary. See Ormiston and Schlee [1993] for further insight into risk preferences when
distributions satisfy MLR dominance.

Corollary 1.3: If fH (x)
fL (x)

is increasing for all losses x > 0, and if 0 < IS(x) < x, for the
optimal policy IS, then I ′S(x) < 1.

Corollary 1.3 is similar to one in Raviv [1979]: our corollary states that if the severity
densities satisfy an MLR ordering, then IS grows more slowly than losses increase. In
this case, a policyholder has no incentive to create incremental damage when a loss has
occurred. The next corollary gives an instance in which a deductible policy is optimal.

Corollary 1.4: If the low and high risks have the same severity distribution and differ
only in their probabilities of having a positive loss, with pL < pH , then the optimal policy
IS has a deductible d. For losses, x, above the deductible, IS(x) = x − d.

The next corollary shows that when the severity density for the low risks grows relatively
more quickly than the one for the high risks, a type of ( possibly nonlinear) disappearing
deductible policy is optimal.

Corollary 1.5: If fH (x)
fL (x)

is decreasing for all losses x > 0, then the optimal policy IS has
a deductible d ( possibly zero) with I ′S(x) > 1 for losses above the deductive.

Now we turn our attention to the optimal pooling contract. In the next proposition, we
state necessary and sufficient conditions satisfied by the optimal pooling insurance contract.
The proof parallels the one of Proposition 1, so we omit it.

Proposition 2: The optimal pooling insurance policy IP is characterized by the following
necessary and sufficient conditions:

a. IP(x0) = 0 iff MUCL ≥ u′(w − P − x0)
N pL fL(x0)

LpL fL(x0)+ H pH fH (x0)
.

b. Ip(x0) = 0 iff MUCL ≤ u′(w − P)
N pL fL(x0)

LpL fL(x0)+ H pH fH (x0)
.

c. 0 < Ip(x0)< x0 iff MUCL

= u′(w − P + IP(x0)− x0)
N pL fL(x0)

LpL fL(x0)+ H pH fH (x0)
.
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MUCL represents the marginal utility cost of the low risks, EL [u′(w − P + IP(X)− X)],
and x0 is a given loss amount in (0,∞). The premium P equals the expected indemnity
benefit

P =
∫ ∞

0
IP(x)

LpL fL(x)+ H pH fH (x)

N
dx .

The left side of each expression in (a), (b), and (c) in Proposition 2 is the marginal
utility cost of paying additional premium. The corresponding right sides are the marginal
utility benefits of receiving the corresponding additional indemnity benefit at x0. Therefore,
0 < IP(x0) < x0 if and only if the marginal utility cost equals the marginal utility benefit.
Corollaries 1.1 to 1.5 also hold for the optimal pooling insurance IP , but in the interest of
conserving space, we do not repeat them.

Propositions 1 and 2 determine the optimal separating and pooling policies. These
propositions, together with self-selection constraints, completely determine the equilibrium
in a given market. Specifically, the equilibrium will be separating unless both risks prefer
the optimal pooling policy to their optimal separating policies.

5. Maximum limits

The conditions of Propositions 1 and 2 do not preclude the optimal policy from decreasing
with increasing loss. If a policy exhibits this behavior, then policyholders will be motivated
to represent their losses downward. However, the price of the insurance policy does not
anticipate this reporting hazard, and if policyholders misrepresent their losses downward,
then the insurers will lose money on average. In order to prevent this behavior, we restrict
the class of feasible insurance policies by requiring that a policy be nondecreasing with
increasing loss. That is, to the optimization problems stated in Section 3, we add the
constraint I ′(x) ≥ 0, for all x > 0. This constraint leads to possible maximum limits on
coverage.

In the first proposition, we give necessary conditions for the optimal separating policy of
the low risks when feasible insurance policies are required to be nondecreasing. The proof
parallels the one of Proposition 1, so we omit it.

Proposition 3: The optimal separating policy IS for the low risks that solves the opti-
mization problem given in (1) to (4) subject to the additional constraint that I ′(x) ≥ 0, for
all x > 0, satisfies the following necessary conditions: There exists a nonnegative constant
λ, such that
a. If the policy IS has a deductible d > 0—that is, if IS(x0) = 0, for all x0 ≤ d, and

IS(x0) > 0, for all x0 > d—then

MUCL − λMUCH ≥
∫ d

x0
[u′(w− P − x)(pL fL(x)− λ pH fH (x))] dx∫ d

x0
pL fL(x) dx

, ∀ x0< d.
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b. If IS(x0) = x0, then

MUCL − λMUCH ≤ u′(w − P)

(
1− λ pH fH (x0)

pL fL(x0)

)
.

c. If 0 < IS(x0) < x0 and if I ′S(x0) > 0, then

MUCL − λMUCH = u′(w − P + IS(x0)− x0)

(
1− λ pH fH (x0)

pL fL(x0)

)
.

d. If IS > 0 and if I ′S ≡ 0, on the interval (u1, u2), then∫ u2

x0
[u′(w − P + IS(u1)− x)(pL fL(x)− λpH fH (x))] dx∫ u2

x0
pL fL(x) dx

≤MUCL − λMUCH

≤
∫ y0

u1
[u′(w − P + IS(u1)− x)(pL fL(x)− λpH fH (x))] dx∫ y0

uI
pL fL(x) dx

,

for all x0, y0 in (u1, u2). MUCL and MUCH are the marginal utility costs under the
insurance policy IS of the low and high risks, respectively. The premium P equals the
expected indemnity benefit P = pL

∫∞
0 IS(x) fL(x)dx, and the self-selection constraint (4)

holds at the optimum.

We have the following corollary to Proposition 3 that gives one case for which the optimal
separating insurance has a maximum limit.

Corollary 3.1: If 0 < IS(x) < x and

−u′′(w − P + IS(x)− x)

u′(w − P + IS(x)− x)
<− d

dx
ln

(
1− λ pH fH (x)

pL fL(x)

)
= λ

1− λ pH fH (x)
pL fL (x)

pH

pL

d

dx

(
fH (x)

fL(x)

)
,

for all x greater than some loss amount u, then the optimal policy IS has a maximum limit.
Specifically, there exists a loss amount m ≤ u such that IS(x) = IS(m), for all x ≥ m.

Proof . See the appendix. 2

In Corollary 3.1, the left side of the inequality is the absolute risk aversion evaluated at the
outcome under the optimal separating policy. If the risk aversion of the low risks is bounded
by the right side, which depends on the relative growth of the severity densities, then the
low risks are willing to give up coverage at large losses. In fact, they prefer an indemnity
benefit that is decreasing with respect to the loss amount for large losses. Because that
policy is not feasible, the optimal policy has a maximum limit.
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In the next proposition, we give necessary conditions for the optimal pooling policy when
feasible insurance policies are required to be nondecreasing.

Proposition 4: The optimal pooling policy IP that solves the optimization problem given
in (5) to (7) subject to the additional constraint that I ′(x) ≥ 0, for all x > 0, satisfies the
following necessary conditions:
a. If the policy IP has a deductible d > 0, then

MUCL ≥
pL
∫ d

x0
u′(w − P − x) fL(x) dx∫ d

x0

LpL fL (x)+H pH fH (x)
N dx

, ∀x0< d.

b. If IP(x0) = x0, then

MUCL ≤ u′(w − P)
N pL fL(x0)

LpL fL(x0)+ H pH fH (x0)
.

c. If 0 < IP(x0) = x0 and if I ′P(x0) > 0, then

MUCL = u′(w − p + Ip(x0)− x0)
N pL fL(x0)

LpL fL(x0)+ H pH fH (x0)
.

d. If IP > 0 and if I ′P ≡ 0, on the interval (u1, u2), then

pL
∫ u2

x0
u′(w − P + IP(u1)− x) fL(x) dx∫ u2

x0

LpL fL(x)+ H pH fH (x)

N
dx

≤MUCL ≤
pL
∫ y0

u1
u′(w − P + IP(u1)− x) fL(x)dx∫ y0

u1

LpL fL (x)+H pH fH (x)
N dx

,

for all x0, y0 in (u1, u2).MUCLis the marginal utility cost of the low risks under the policy
IP , and the premium P equals the expected indemnity benefit

P =
∫ ∞

0
IP(x)

LpL fL(x)+ H pH fH (x)

N
dx .

One can interpret the conditions in Propositions 3 and 4, as in Propositions 1 and 2.
Indeed, in Proposition 4, MUCL is the marginal utility cost to the low risks of paying
additional premium. The right side in (a), for example, is the marginal utility benefit of
receiving the corresponding additional indemnity benefit between x0 and the deductible d.
Because this marginal utility benefit is lower than the marginal utility cost, the benefit is
zero. One can interpret the remaining conditions of this proposition and of Proposition 3
similarly.

The following corollary to Proposition 4 parallels Corollary 3.1.
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Corollary 4.1: If 0 < IP(x) < x and

−u′′(w − P + IP(x)− x)

u′(w − P + IP(x)− x)
<

d

dx
ln

(
L + H

pH fH (x)

pL fL(x)

)
,

for all x greater than some loss amount u, then the optimal policy IP has a maximum limit.
Specifically, there exists a loss amount m ≤ u such that IP(x) = IP(m), for all x ≥ m.

The conditions of Corollaries 3.1 and 4.1 are satisfied, for example, when risks have
constant risk aversion, as measured by − u′′(w)

u′(w) , when there exists at least one loss x that
satisfies the given inequality, and when the severity distributions for the low and high risks
come from a linear exponential family with θL < θH : A family of distributions is called a
linear exponential family of probability distributions if the distributions have densities of
the form (Lehmann [1991])

f (x | θ) = eθx h(θ) q(x),

in which h is a nonnegative function on a parameter space, and q is a nonnegative function
on a subset of R (R+ in this case). For example, the gamma family of distributions, G(α, β),
with fixed shape parameterα > 0 and variable scale parameterβ > 0, is a linear exponential
family. Indeed,

f (x | β) = βα

0(α)
xα−1e−βx , x > 0.

If we let θ = −β, then h(θ) = (−θ)α
0(α)

, q(x) = xα−1, and θ ranges over the negative real
numbers.

6. Illustrative example

In this section, we provide an illustrative example with which we show how the insurance
policy provisions of deductibles, coinsurance, and maximum limits can be realized through
our model. Let L = 9 and H = 1—that is, the high risks constitute 10 percent of the market.
Assume that low risks have pL = 0.20 and have loss severities distributed according to
the exponential distribution with mean $1,000. Similarly, high risks have pH = 0.80 and
have loss severities distributed according to the exponential distribution with mean $2,000.
Assume that both the low and high risks have an exponential utility with constant risk
aversion α = 0.0003—that is, u(w) = −e−αw. It follows that low and high risks are
willing to pay up to $274 and $2,628 for full coverage, respectively.

First, consider the case of optimal insurance without imposing the nondecreasing con-
straint. The expected utility of the low risks under the optimal pooling insurance, IP1,
is UL(IP1) = −1.0840, and the expected utility of the high risks under the optimal
pooling insurance is UH (IP1)=−2.006. We ignore the factor of e−αw in each expected
utility.

The expected utility of the high risks under full coverage is UH (IFull) = −1.616.Thus, the
high risks are better off if they separate from the low risks, and it follows that the equilibrium
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Figure 1. Indemnity benefit for the low risks under equilibrium separating contracts with and without the non-
decreasing constraint.

will be a separating one. The expected utility of the low risks, under the optimal separating
insurance policy, IS1, is UL(IS1) = −1.064. Thus, the expected utility of the low risks is
also higher under the optimal separating insurance policy than under pooling insurance but
slightly less than under full coverage at an actuarially fair premium; UL(IFull) = −1.062.

See figure 1 for a graph (dotted line) of the optimal separating policy of the low risks
for loses ranging from $0 to $8,000. The optimal insurance has a deductible of about
$61 and coinsurance above that amount. Note that the optimal insurance is decreasing for
losses greater than approximately $5,350. This is unrealistic, as pointed out by Huberman,
Mayers, and Smith [1983] because the insured is, thus, motivated to misrepresent his or her
loss downward if it is greater than $5,350.

Now, consider the case of optimal insurance in which we impose the nondecreasing con-
straint. The expected utility of the low risks under the optimal pooling insurance, IP2, is
UL(IP2) = −1.0842, and the expected utility of the high risks under the optimal pooling
insurance is UH (IP2) = −1.919. Note that the low risks lose a small amount of expected
utility—namely, 0.0002—due to the nondecreasing constraint. One can think of the dif-
ference as the utility cost of the reporting hazard. However, the high risks gain expected
utility because they get better coverage at high losses under IP2 than under IP1.

Similarly, the expected utility of the low risks under the optimal separating insurance, IS2,
is 0.009 less than without the nondecreasing constraint; it is UL(IS2) = −1.073.Again, the
risks buy separating insurance policies. See figure 1 for a graph (solid line) of the optimal
nondecreasing separating policy of the low risks for losses ranging from $0 to $8,000. This
policy has a deductible of about $350, coinsurance above that amount, and a maximum
limit at the loss amount $2,400. For losses above $2,400, the indemnity benefit is about
$900. In figure 1, the indemnity benefit graphed with the dotted line is preferred by the low
risks to the one graphed with the solid line, but the former is not likely to be seen in the
market because of the relative ease of underreporting losses.
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7. Summary

In this work, we characterize the equilibrium insurance contract in a market with asymmetric
information. We show that if the risk classes separate, then the equilibrium is a Rothschild-
Stiglitz separating equilibrium, determined by Proposition 1 and described in Fluet and
Pannequin [1997]. We show that if the market is a Wilson market and the risk classes pool,
then the optimal insurance contract is given by Proposition 2. In Propositions 3 and 4, we
describe the optimal separating and pooling policies when a nondecreasing constraint is
imposed. By varying the relationship between the loss distributions of the low and high
risks, one can explain insurance policy provisions commonly encountered in insurance.
These provisions include deductibles, coinsurance, and maximum limits.

We give an example that shows that low risks are willing to give up coverage for large
losses when they are very unlikely to have large losses, relative to the high risks In that
example, we also show that the low risks lose utility due to the underreporting hazard. We
suggest future research into models that allow for subsidies between policies, as in Spence
[1978], and that incorporate transaction costs.

Appendix: Proofs

Proof of Proposition 1

Write Is for the optimal separating insurance for the low risks. We can rewrite the optimiza-
tion problem in (1) to (4) as follows: For a fixed λ ≥ 0, find IS(λ) to solve the following
optimization problem:

max
I,P

[UL(I, P)− λUH (I, P)],

subject to P = pL
∫∞

0 I (x) fL(x) dx , and 0 ≤ I (x) ≤ x . One can find the value of λ that
determines the optimal separating policy IS by the self-selection constraint:

u(w − EH [x]) = UH (IS(λ), EL [IS(λ)]).

Suppose that IS is zero at x0 > 0, and consider an insurance policy I given by

I (x) = IS(x)+ ε[H(x − (x0 − δ))− H(x − (x0 + δ))],

in which ε > 0, δ > 0; that is, I is IS increased by a small amount ε in a small δ-neighborhood
of x0. Here H is the Heaviside function defined by

H(x) =
{

1, x ≥ 0,
0, x < 0.
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Competition forces the premium constraint to hold at the optimum, so without loss of
generality, we can write the premium P of the policy I as follows:

P(I )= P(IS)+ ε
∫ x0+δ

x0−δ
pL fL(x) dx

= P(IS)+ ε(2δ)pL fL(x
∗
0 ),

in which x∗0 is some number between x0 − δ and x0 + δ.
Now,

UL(IS, P(IS))− λUH (IS, P(IS)) ≥ UL(I, P(I ))− λUH (I, P(I ))

=UL(IS, P(IS))− λUH (IS, P(IS))− 2εδ(MUCL − λMUCH )pL fL(x
∗
0 )

+ ε
∫ x0+δ

x0−δ
u′(w − P(IS)+ IS(x)− x)(pL fL(x)− λpH fH (x)) dx + o(ε).

After simplifying this expression and letting ε and δ approach zero, we obtain the following
necessary condition for IS(x0) = 0:

MUCL − λMUCH ≥ u′(w − P − x0)

{
1− λ pH fH (x0)

pL fL(x0)

}
.

Similarly, we obtain necessary conditions for IS(x0) = x0 and for 0 < IS(x0) < x0, as
stated in parts (b) and (c) of Proposition 1. To see that the conditions are also sufficient to
determine the optimal insurance, note that becuase u is concave, one and only one of the
conditions holds at a specific x0, except possibly for equality at the boundaries. 2

Proof of Corollary 3.1

Take the natural logarithm of both sides of condition (c); then, differentiate with respect to
x to obtain the following:

I ′S(x)
u′′(w − P + IS(x)− x)

u′(w − P + IS(x)− x)
= −u′′(w − P + IS(x)− x)

u′(w − P + IS(x)− x)
+ d

dx
ln

(
1− λ pH fH (x)

pL fL(x)

)
.

If − u′′(w−P+IS(x)−x)
u′(w−P+IS(x)−x) < − d

dx ln (1− λ pH fH (x)
pL fL (x)

), then I ′S(x) < 0, for all x > u, contradicting
a requirement of condition (c). Thus, the policy has a maximum limit. 2
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Note

1. Other recent research also considers the case of random loss severity under conditions of information asymmetry.
Doherty and Jung [1993] allow random loss severity but constrain the form of the insurance contract. They
focus on finding when first-best equilibrium occurs and thereby eliminate the problem of adverse selection.
Such situations occur when the supports of the loss distributions of different risks are nonoverlapping; in that
case, the size of an insured’s loss may reveal whether an insured is a high risk. Doherty and Schlesinger [1995]
assume that individuals have different probabilities of loss but have the same loss severity distributions. They
also restrict the form of the insurance policies to be coinsurance with a fixed proportion of coinsurance for all
losses. (In this work, we show that in this case, the equilibrium insurance contract is deductible insurance.)
Landsberger and Meilijson [1994, 1996], study adverse selection in a monopolistic insurance market and
determine conditions under which a (quasi) first-best outcome exists.
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