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Abstract. As a form of Machine Learning the study of Inductive Logic Programming (ILP) is motivated by a
central belief: relational description languages are better (in terms of accuracy and understandability) than propo-
sitional ones for certain real-world applications. This claim is investigated here for a particular application in
structural molecular biology, that of constructing readable descriptions of the major protein folds. To the authors’
knowledge Machine Learning has not previously been applied systematically to this task. In this application,
the domain expert (third author) identified a natural divide between essentially propositional features and more
structurally-oriented relational ones. The following null hypotheses are tested: 1) for a given ILP system (Progol)
provision of relational background knowledge does not increase predictive accuracy, 2) a good propositional learn-
ing system (C5.0) without relational background knowledge will outperform Progol with relational background
knowledge, 3) relational background knowledge does not produce improved explanatory insight. Null hypotheses
1) and 2) are both refuted on cross-validation results carried out over 20 of the most populated protein folds.
Hypothesis 3 is refuted by demonstration of various insightful rules discovered only in the relationally-oriented
learned rules.
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1. Introduction

Inductive Logic Programming (ILP) has been applied successfully in a large number of
applications to structural biology (Muggleton, King & Sternberg, 1992; King et al., 1992;
King et al., 1996; Srinivasan et al., 1996; Finn et al., 1998; Srinivasan et al., 1997; Sternberg
et al., 1994). Underlying these investigations has been an attempt to test whether rela-
tional description languages are better (in terms of accuracy and understandability) than
propositional ones for such applications. In general the advantages of relational repre-
sentations seem to be born out in these investigations. However, it is always possible to
choose propositional attributes which defeat such a conclusion. This can be demonstrated as
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follows. Suppose investigator A applies ILP system B to problem C and shows that the rule
P(x, y) ← Q(x, z), R(z, y) has high accuracy and then submits a paper to journal D.
Referee R might now respond that the solution could have been expressed in propositional
form asP← S whereS was defined (behind the scenes) asQ(x, z), R(z, y). Such a re-
sponse seems unreasonable since it was only possible for R to make such a suggestion
after seeing the solution produced by system B. Alternatively R could suggest that a large
set of propositions could have been introduced, which could then be combined to produce
something equivalent toS. However, for relational representations (like the rule produced
by B) in which new “existential” variables (like z) are introduced into the body it is far from
clear how such propositional variables would be defined. Any such attempts at “proposi-
tionalisation” seem rather contrived and tend to detract from the readability of the resulting
rules.

In this paper we take a different approach. The domain expert (third author) defined
what appeared to him to be a “natural” representation for the application. One of these
representations was more relationally-oriented than another. It was not possible in any
obvious way to “propositionalise” the relationally-oriented representation. We used these
representations to investigate the advantages and disadvantages of relationally-oriented
representations.

This paper is structured as follows. In Section 2 the main null hypotheses to be empirically
evaluated are laid out. The Molecular Biology motivation for the general application area is
given in Section 3. In Section 4 background is given for both ILP (Section 4.1) and protein
structure classification (Sections 4.2 and 4.3). The experiments are described in Section 5.
Section 6 concludes and discusses the results.

2. Hypotheses to be tested

The null hypotheses to be empirically investigated in this paper are as follows.

1. For a given ILP system (Progol) provision of relational background knowledge does not
increase predictive accuracy.

2. A good propositional learning system (C5.0) without relational background knowledge
will outperform Progol with relational background knowledge.

3. Relational background knowledge does not produce improved explanatory insight.

3. Molecular biology motivation

The functional properties of proteins are determined by their three-dimensional structure.
Therefore, to understand the function of proteins we need to unravel the principles that
govern protein structure. Despite more than three decades of research, we cannot deduce
the three-dimensional structure from the knowledge of its constituents (sequence) alone.
However, vast amounts of data on protein structure have been accumulated, approximately
10,000 protein structures, and new projects, such as the Protein Structure Initiative, might
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produce as much as 10,000 new structures over the next five years (Bourne, 1999). Fur-
thermore, classification schemes, such as SCOP(Brenner et al., 1996), have been developed
and can be used as a starting point for machine learning experiments. Here, we present an
application of Inductive Logic Programming (ILP) to learn rules relating local structures
to the concept of folds defined by SCOP. The objective is to automate the discovery of
structural features, or signatures, of a fold that distinguish it from the rest. The three-dimen-
sional structures of proteins are highly complex and the identification of rules explaining
the observed fold remains a challenging area often involving the manual intervention of
experts (Brenner et al., 1996; Branden & Tooze, 1999; Orengo Jones & Thornton, 1994).
For several folds, these signatures are reported in the literature generally after extensive
study. A few experts are familiar with many of these signatures, but the knowledge is not
formalised with a common language, in a form suitable for automated testing as new struc-
tures are determined. Furthermore, automated methods could identify features missed by
manual examination.

4. Background

4.1. Inductive logic programming

ILP is a logic-based approach to machine learning. Several features suggest it might be
particularly well suited to study problems encountered in molecular biology. First, protein
structures are the result of complex interactions between sub-structures and the ability of
ILP algorithms to learn relations might prove to be a key feature. Second, ILP systems can
make use of problem-specific background knowledge. Vast amounts of knowledge have
been accumulated over the years of research on protein structure and can be used effec-
tively. Third, logic programs are used as a common representation for examples, background
knowledge and hypotheses, which provide a good integration for the development of appli-
cations together with the machine learning experiments. Finally, hypotheses can be made
readable, by straightforward translation to natural languages, and integrated to the cycles
of scientific debate.

Inductive Logic Programming is concerned with the induction of hypotheses from ex-
amples and background knowledge (Muggleton & Raedt, 1994). A restricted subset of
first-order logic is used as a common representation for the examples, the background
knowledge and also the generated hypotheses. In the case of the protein folds problem, a
positive example might be that domaind1hlb belongs to the Globin fold, represented
asfold(’Globin-like’, d1hlb ). The background knowledge might contain infor-
mation such as the relationship between secondary structure and the presence of proline
residues. The ILP algorithm then constructs a hypothesis which explains this example in
terms of the background knowledge. The following rule was generated for the Globin-like
fold.

fold(’Globin-like’, X) :-
adjacent(X, , B, 1, h, h),
has pro(B).
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According to this rule a domainX belongs to the Globin-like fold if its first helix is followed
by another one that contains a proline. The results presented here were obtained with the
ILP system Progol (Muggleton & Firth, 1999).

Progol is an ILP system which takes background knowledge, integrity constraints,
and examples in the form of a logic program. It is also given the description of the
hypothesis language in the form of “mode” declarations and “prune” statements. Pro-
gol then progresses using a covering algorithm by forming general rules from indivi-
dual examples. For each example a “most specific” (or bottom) clause is constructed. A
graph search is then carried out over the generalisations of the bottom clause. Individual
clausal hypotheses in this search are evaluated by the “information compression” produced.
Progol can be viewed as a modified Bayesian Maximum A Posteriori (MAP) learning
algorithm.

4.2. Protein structure

Protein structures can be described at various levels of abstraction. In general, three levels
are distinguished: primary, secondary and tertiary structure. Proteins are polymers, which
means that they are made of smaller molecules, amino acids, assembled linearly. This level
of abstraction is referred to as the primary structure or sequence. There are twenty naturally
occurring amino acids and each one has a diverse set of chemical properties, for example
hydrophobicity and size. Amino acids are represented with a standard one letter code and
protein sequences are often written as strings of letters. The typical length of proteins varies
from 100 to 500 amino acids.

A particular sequence of amino acids folds into a specific compact three-dimensional
or tertiary structure from which the exact location of every atom can be deduced. The
two predominant methods to structure determination are X-ray crystallography and NMR
spectroscopy. Those techniques require sophisticated equipments—nowadays synchrotron
facilities are often used as a source of radiation (Kim, 1998). Because of technological
limitations, the sequences of amino acids are routinely determined in large quantities while
the determination of the three-dimensional structure remains difficult. It is estimated that
as part of the structural genomics projects there will be 10 large-scale initiatives and each
of them will produce 200 structures per year (Bourne, 1999).

Early on it was predicted that segments of the primary sequence would adopt local regu-
lar structures (Pauling, Corey & Branson, 1951). The two main types being theα-helices
and theβ-strands, while the intervening regions are called loops or coils. Several com-
puter programs exist to identify secondary structure elements from the three-dimensional
structure.

The “Holy Grail” of molecular biology is to devise a method that would predict the
three-dimensional structure, the exact location of every atoms, from the knowledge of the
sequence alone. The problem is often broken down into two sub-problems; i) prediction
of the secondary structure and ii) docking of the secondary structure elements to form the
compact three-dimensional structure; for example,β-strands assemble together to form
β-sheets. The problem of secondary structure prediction is to map each residue to one of
the three types (H-helix, E-strand and C-coil).
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4.3. Protein structure classification

There are several stages in the process of scientific discovery. One of the earliest is often
the development of classification schemes (Langley, 1998). Once in place, qualitative and
quantitative rules can be derived that relate the examples to each other. With approximately
10,000 known protein structures, over the last few years, classification schemes have been
developed. In our study we have been using SCOPwhich is a classification done manually
by a world-expert on protein structure (Brenner et al., 1996). These schemes facilitate our
understanding of protein structure and here serves as a starting point for machine learning
experiments, figure 1 illustrates the diversity of protein structures.

The basic unit of this classification is a domain, a structure or substructure that is con-
sidered to be folded independently, see figure 1. Small proteins have a single domain. For
larger ones, a domain is a substructure.

Domains are grouped into families. Domains of the same family have evolved from
a common ancestry. In most cases, the relationship can be identified by direct sequence
comparison methods. The next level is called a super-family. The members of a super-family
are believed to have evolved from a common ancestry, but often the relationship cannot be
inferred by sequence comparison methods alone; the expert relies on other evidence, such
as functional features.

The next level is a fold, proteins that share the same core secondary structures, and the
same interconnections. The similarity is generally considered due to convergence towards a
stable architecture. Finally, folds are conveniently grouped into classes based on the overall
distribution of their secondary structure elements, see figure 1, the cytokines and globins
are members of the all-α class, while the Rossmann fold belongs to theα/β class.

5. Experiments

The experiments in this section are aimed at evaluating the hypotheses in Section 2.

5.1. Materials

In order to allow reproducibility of the results, the algorithms and data have all been made
available. The algorithms used in these experiments were Progol4.41 and C5.0.2 The data
sets, including algorithm settings, for the experiments have also been made available.3

We report on three experiments. In the first one, the background knowledge was limited
and learning was essentially attribute-valued based. In the second one, the background
knowledge was augmented with relational information. Finally, integrity constraints were
used to express preferences formulated by the protein structure expert for certain forms of
rules.

Our study is restricted to the five most populated folds of each of the four main classes,
see Table 1. The justifications of this choice are as follows.

• Since these are the most populated folds they contain a relatively large number of exam-
ples, which means that learning is more robust and the results more meaningful. Many
of the folds have only one known protein in them.
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Figure 1. Schematic representation showingβ-strands (arrows),α-helices (ribbons) and intervening loop regions.
The figure shows the diversity of protein structures, for example the top two domains belong to two different folds
while the bottom two domains belong to the same one. The secondary structure elements which are used in the
description of a rule have been coloured in black, see text for details.

• Less populated folds are often ill-defined and contain multiple domains which coagulated
together.
• The highly populated folds have been well studied and characterised in the literature,

which means that the rules learned can be compared against what is already known.
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Table 1. Selected folds. Dom is the number of domains, Fam the number of families and Super the number of
super-families. The number of domains represents the number of entries after selection (scoplib.pl).

Fold Dom Fam Super

All-α:

DNA-binding 3-helical bundle 30 17 4

EF Hand-like 14 7 2

Globin-like 13 2 1

4-helical cytokines 10 3 1

lambda repressor-like DNA-binding domains 10 3 1

Other folds (92) 210 139 111

All-β:

Immunoglobulin-like beta-sandwich 45 12 8

Trypsin-like serine proteases 21 4 1

OB-fold 20 11 4

SH3-like barrel 16 7 6

Lipocalins 14 2 1

Other folds (56) 220 123 90

α/β:

beta/alpha (TIM)-barrel 55 28 17

NAD(P)-binding Rossmann-fold domains 21 7 1

P-loop 14 4 1

alpha/beta-Hydrolases 12 10 1

Periplasmic binding protein-like II 13 2 1

Other folds (70) 200 131 88

α + β:

Ferredoxin-like 26 21 17

Zincin-like 13 8 2

SH2-like 13 1 1

beta-Grasp 12 6 6

Interleukin 8-like chemokines 9 1 1

Other folds (96) 240 158 113

The four main classes of SCOPcontain a total of 334 folds–representing 1251 domains,
while the 20 folds we study in this paper contain 381 domains representing 30% of the total
number of domains.

5.2. Method

Rules were generated for each fold as separate runs. In the case of the Globin-like fold the
positive examples are the 13 domains classified as such in SCOP. Negative examples were
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selected from all other folds of the same structural class, in the case of the Globin-like 26
negative examples were randomly selected from the 274 domains from the 96 other folds
of the all-α class. The ratio of positive to negative examples was chosen to achieve rules
which would have good coverage without having too many general clauses per fold. This
was achieved by trying to maximise the number of rules plus the remaining number of
uncovered examples. The best ratio of positives to negatives was found to be 1 : 2.

To reduce the redundancy in the data-set, one representative domain per protein was
selected usingscoplib.pl (Kelley et al. 2000). Prior to the cross-validation experiments
the data was curated manually, when Progol was unable to find a rule for a given example.
Visual inspection often revealed abnormalities in the data. The most common problem was
the fusion of duplicated domains.

Secondary structure information for each domain was calculated from the three-dimen-
sional structure using PROMOTIF (Hutchinson & Thornton, 1996).

Predictive accuracy was assessed by use of cross-validation.

5.3. Results

The cross-validation results are tabulated in Table 2. Weighted average accuracies, accom-
panied by standard errors based on summed contingency tables, are given in the last row
of the table. The averaged accuracy differences between Progol II and all other systems are
significant. No other differences are significant. We can thus refute null hypotheses 1 and 2
(see Section 2). Null hypothesis 3 requires a more in depth analysis of the contents of the
rules in the experiments. This is provided below.

5.4. Attribute-values learning

For the first experiment, the background knowledge contains only predicates which encode
global characteristics of protein folds, specifically, the total number of residues and the total
number of secondary structures of both types,α andβ.

This experiment shows that it is possible to construct good classifiers with a background
knowledge which is essentially limited to attribute-values, see Table 2. The C5.0 algorithm,
successor of C4.5 (Quinlan, 1993), gives greater accuracy than Progol I, though the differ-
ence between the two systems is not significant (Wilcoxon’s test). Indeed, the two systems
often produce similar rules, for example, Progol’s rule for the Globin-like fold is:

Rule 1 (Globin-like) X is a Globin-like if the length of the domain is between 135 and 166
residues long.

fold(’Globin-like’, X) :-
len_interval(135 =< A =< 166).

while C5.0 gives an interval of 135 to 163. This is perhaps not so surprising with such a
restricted background knowledge.
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Table 2. Cross-validation predictive accuracy. Columns labelled I, II and III refer to results obtained with Progol
for three experiments.

Fold C5.0 I II III

All-α:

Globin-like 96.8 94.75 95.06 94.56

DNA-binding 3-helical bundle 84.6 65.36 82.97 81.92

4-helical cytokines 85.7 83.28 70.69 73.13

lambda repressor-like DNA-binding domains 73.7 49.95 73.43 63.37

EF Hand-like 78.5 66.64 77.57 68.48

All-β:

Immunoglobulin-like beta-sandwich 77.4 81.41 76.29 71.07

SH3-like barrel 90.7 91.37 91.40 76.53

OB-fold 79.3 62.93 78.43 76.92

Trypsin-like serine proteases 94.7 93.56 93.13 81.47

Lipocalins 87.9 75.90 88.30 78.50

α/β:

beta/alpha (TIM)-barrel 73.4 67.09 70.66 66.14

NAD(P)-binding Rossmann-fold domains 55.9 57.07 71.63 78.47

P-loop 56.7 67.29 76.02 81.21

alpha/beta-Hydrolases 52.4 66.89 72.18 75.08

Periplasmic binding protein-like II 58.0 66.42 68.91 62.94

α + β:

Interleukin 8-like chemokines 86.0 92.36 92.93 85.63

beta-Grasp 59.3 75.18 71.66 63.56

Ferredoxin-like 69.8 63.56 83.07 80.38

Zincin-like 69.2 67.01 64.30 56.30

SH2-like 66.7 69.45 76.81 79.38

Average:

74.8 72.48 78.28 74.35

±1.30 ±1.34 ±1.23 ±1.31

5.5. Relational learning

New predicates are added to the background knowledge which introduce relationships be-
tween secondary structure elements and their properties, see Appendix A.1 for the complete
list of predicates.

The overall accuracy for this experiment, Progol II, is 78.8 %, which is significantly
higher than the mean accuracy for Progol I experiment. More importantly, some of rules
can now be related to published results in the relevant scientific literature. Consider the rule
generated for the lambda repressor:
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Rule 2 (lambda repressor) The protein is between 53 and 88 residues long. Helix A at
position 3 is followed by helix B. The coil between A and B is about 6 residues long.

fold(’lambda repressor’, X) :-
len_interval(53 =< X =< 88),
adjacent(X, A, B, 3, h, h),
coil(A, B, 6).

The particular coil region mentioned in the rule turns out to be important for the specific
recognition of DNA (Branden & Tooze, 1999), see Section 6. When inspecting the rules, our
protein structure expert (Sternberg) showed more interest in rules containing information
about secondary structure elements. Although Progol had access to a richer background
knowledge, including information about secondary structure, often Progol produced the
same rule as previously, Progol I experiment, in particular this is seen for the Globin-like
fold.

In the Progol III experiment, integrity constraints are introduced in the background knowl-
edge to express the preference of the protein structure expert towards rules containing in-
formation about specific secondary structure elements. In effect this means that Progol now
returns sub-optimal solutions. Indeed, the accuracy is reduced to 74.8%, but a larger fraction
of the rules can now be interpreted in terms of previously published results in the relevant
scientific literature.

5.6. Expert-type knowledge

In this section, we review four rules and present a possible biological interpretation. The
complete set of rules is available from our Web site (www.bmm.icnet.uk/ilp).

Rule 3 (Globin fold) Helix A at position 1 is followed by helix B. B contains a proline
residue.

fold(’Globin-like’, X) :-
adjacent(X, A, B, 1, h, h),
has_pro(B).

The Globin-fold is a good example of divergent evolution. In SCOP, this fold comprises
diverse sequences such as myoglobin, hemoglobin and phycocyanins. Yet the three-dimen-
sional structure of these proteins is well preserved. One hallmark of this fold is the presence
of a conserved proline residue in helix B, which causes a sharp bend in the main chain. This
observation has been reported previously by Bashford, Chothia and Lesk (1987), see figure 1
where helicesA andB are coloured black while the proline is represented as ball-and-stick.

Rule 4 (Rossmann fold)Strand A at position 1 is followed by helix B. Strand C at position
6 is followed by helix D. The coil between A and B is about one residue long.
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fold(’NAD(P)-binding Rossmann-fold’, X) :-
adjacent(X, A, B, 1, e, h),
adjacent(X, C, D, 6, e, h),
coil(A, B, 1).

NAD-binding domains of the Rossmann fold all have a similar binding mechanism. The
adenosine is bound to the short loop between the first strand and the following helix. The
region is embedded in aβ − α − β motif which is highly conserved and contains the
sequence motif G-X-G-X-X-G (Weirenga1 et al., 1986). The fifth and sixth secondary
structures clamp the nicotinamide moiety of NAD, see figure 1, elementsA, B, C andD
are coloured black, while NAD is shown as ball-and-stick.

Similarly the rules generated for the lambda repressor and P-loop can be related to regions
which are important for recognition and activity and have been documented in the literature.

Rule 5 (4-helical cytokines)The first helix is long and followed by another helix.

fold(’4-helical cytokines’, X) :-
adjacent(X, A, B, 1, h, h),
unit_len(A, hi).

Rule 6 (4-helical cytokines)The second strand is immediately followed by a helix.

fold(’4-helical cytokines’, X) :-
adjacent(X, A, B, 2, e, h),
coil(A, B, 0).

Often, Progol produces more than one rule to cover all the positive examples of a fold.
Similarly, SCOPclassification has often more than one family and/or more than one super-
family per fold. Thus, sometimes the mapping of the rules onto the examples matches that
of SCOP. This occurs for the 4-helical cytokines, which has two families, the long-chain
and short-chain cytokines. Members of the long-chain cytokines family all start with a long
helix, as observed by Progol, see Rule 5. While the distinctive feature of the short-chain
cytokines is the absence of a coil between the last strand-helix pair, Rule 6. Although these
proteins have been classified in the same family, their sequences are quite diverged (with
pairwise distances within the so-called twilight zone) (Rozwarski et al., 1994). The fact that
the second strand and last helix form a contiguous segment was observed by (Rozwarski
et al., 1994) and used to tether their structural alignment. Further investigation reveals that
the first residue of the helix also participates in the hydrogen bonds network of the sheet;
except for one domain where the sheet is distorted.

The analysis above is sufficient to convince us that null hypothesis 3 (Section 2) can also
be rejected.
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6. Conclusion and discussion

We have presented three learning experiments using two background knowledge sets,
attribute-valued and relational. All of the null hypotheses of Section 2 were rejected on
the basis of the results. Overall we conclude that relational background knowledge has
demonstrable advantages for learning in the construction of fold descriptions. The rules
constructed in the experiments described in this paper represent the first systematic charac-
terisation of the major protein folds.

In 1972, Irwin D. Kuntz wrote: “Although more than ten protein crystal struc-
tures have been determined, the principles by which these molecules develop secondary
and tertiary structure are not yet well understood.” (Kuntz, 1972) Twenty eight years
later, approximately 10,000 protein structures are known yet our understanding of
the principles governing protein folds is still not sufficient to provide accurate pre-
dictions.

In such a complex field as protein structure, it is unlikely that understanding will
come from machine learning experiments alone. Rather the machine learning tools
must be strongly integrated into the human process of scientific discovery. Inductive
Logic Programming offers many distinct advantages with this respect. First, protein struc-
tures are the result of complex interactions between secondary structure elements
and the ability of ILP algorithms to learn relations is a key feature. Second, ILP sys-
tems can make use of problem-specific background knowledge, allowing the expert to
guide the search through the hypothesis space. Third, logic programs are used as a com-
mon representation for examples, background knowledge and hypotheses, which
provides a good integration for the development of applications together with the ma-
chine learning experiments. Finally, hypotheses can be made readable, by straight-
forward translation to natural languages, and integrated to the cycles of scientific
debates.

The two ways to describe protein folds have different biological implications. In the
first paradigm, attribute values correspond to global properties, such as the number of
residues of a domain or the number of secondary structure of a given. The rules produced
in the context of the relational learning experiments, were found to be more informative,
as judged by the protein structure expert. The rules can be explained in terms of structural
and/or functional concepts, such as active site location. Progol, when constructing a rule,
looks for motifs which are common to all the domains of a given fold but almost never
encountered in others, except for a limited number of cases which is set by a user defined
threshold (noise). Features which are important for structure and/or function tend to be
conserved amongst members of the same fold, at least up to the super-family level. Hence
the rules constructed by Progol can sometimes identify conserved functional motifs. Of the
59 rules generated for the experiment III, at least 5 can be related to previously published
results. Unfortunately, no one seems to provide new insights. The current limitations of this
application are concerned with the representation and we are currently investigating the
possibility to introduce superposition information in the background knowledge as a mean
to circumvent these problems.
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Appendix

A.1. Protein folds background knowledge.

This appendix lists the predicates constituting the background knowledge.

A.1.1. Global information (attribute-valued).

len interval(Lo =< Dom =< Hi) when Lo and Hi variables are both instantiated,
len interval is true if the length of the domainDom is in the rangeLo toHi. Otherwise,
Lo is bound to the length of the smallest positive example andHi is bound to the length
of the longest positive example.

nb alpha interval(Lo =< Dom =< Hi) similar to len interval but process the
number of alpha helices.

nb beta interval(Lo =< Dom =< Hi) similar to len interval but process the
number of beta strands.

A.1.2. Relational information.

adjacent(Dom, S1, S2, Loop, TypeS1, TypeS2) if S1 andS2 are both instantiated
this predicate returns true if the type of secondary structureS1 is TypeS1 andS2 is
TypeS2, and the length of the loop separatingS1 and S2 is Loop plus or minus an
allowed delta. Otherwise,S1 andS2 are bound to two consecutive secondary structure
elements,Loop, TypeS1 andTypeS2 are bound appropriately. Through backtracking
all successive pairs are found.

A.1.3. Local information.

unit len(S,Cst) is true if the length of the secondary structureS is Cst, the values for
Cst arevery lo, lo, hi andvery hi.

unit aveh(S,Cst) similar tounit len but process the average hydrophobicity.
unit hmom(S,Cst) similar tounit len but process the hydrophobic moment.
unit pro(S) is true ifS contains a proline amino acid, the presence of a proline is known

to disrupt secondary structure.
coil(S1,S2,Len) boundsLen to the length of the loop between secondary structuresS1

andS2 or is true if the length of the loop isLen plus or minus 50%.
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Notes

1. Available from ftp://ftp.cs.york.ac.uk/pub/MLGROUP/progol4.4 .
2. Available from http://www.rulequest.com/.
3. http://www.bmm.icnet.uk/ilp/ML2000.tar.gz .
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