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Abstract. Research in psychology, psycholinguistics, and cognitive science has discovered and examined nu-
merous psychological constraints on human information processing. Short term memory limitations, a focus of
attention bias, and a preference for the use of temporally recent information are three examples. This paper shows
that psychological constraints such as these can be used effectively as domain-independent sources of bias to guide
feature set selection and weighting for case-based learning algorithms.

We first show that cognitive biases can be automatically and explicitly encoded into the baseline instance
representation: each bias modifies the representation by changing features, deleting features, or modifying feature
weights. Next, we investigate the related problems of cognitive bias selection and cognitive bias interaction for
the feature weighting approach. In particular, we compare two cross-validation algorithms for bias selection that
make different assumptions about the independence of individual component biases. In evaluations on four natural
language learning tasks, we show that the bias selection algorithms can determine which cognitive bias or biases
are relevant for each learning task and that the accuracy of the case-based learning algorithm improves significantly
when the selected bias(es) are incorporated into the baseline instance representation.

Keywords: case-based learning, instance-based learning, feature set selection, feature weighting, natural
language learning

1. Introduction

Inductive concept acquisition has always been a primary interest for researchers in the field
of machine learning (Langley, 1996; Mitchell, 1997). Independently, psychologists, psy-
cholinguists, and cognitive scientists have examined the effects of numerous psychological
limitations on human information processing (Wilson & Keil, 1999). However, despite the
fact that concept learning is a basic cognitive task, cognitive processing limitations are
rarely exploited in the design of machine learning systems for concept acquisition.

This paper shows that cognitive processing limitations can be used effectively as domain-
independent sources of bias to guide feature set selection and, as a result, to improve
learning algorithm performance. We first describe how cognitive biases can be automati-
cally and explicitly encoded into a training instance representation. In particular, we use
a simple case-based learning algorithm (k-nearest neighbor (Cover & Hart, 1967)) and
initially focus on a single learning task from the field of natural language processing.
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After presenting a baseline instance representation for the task, we modify the represen-
tation in response to three cognitive biases—a focus of attention bias (Broadbent, 1958),
a recency bias (Kimball, 1973), and short term memory limitations (Miller, 1956). In a
series of experiments, we compare the modified instance representations to the baseline
description and find that, when used in isolation, only one cognitive bias significantly im-
proves system performance. We hypothesize that additional gains in accuracy might be
achieved by applying two or more cognitive biases simultaneously to the baseline instance
representation.

As more psychological processing limitations are included in the instance representa-
tion, however, the system must address the related issues of cognitive bias interaction and
cognitive bias selection. As a result, the paper next presents two methods for cognitive bias
selection that make varying assumptions about the independence of individual processing
limitations. In general, each method combines search and cross validation. The greedy
approach to bias selection incrementally incorporates into the baseline representation the
best-performing individual cognitive biases while the learning algorithm’s accuracy con-
tinues to improve. This method assumes that there will be few deleterious bias interactions.
In contrast, the second algorithm for bias selection makes no assumptions about bias in-
teractions and instead exhaustively evaluates all combinations of the available cognitive
biases. Our work differs from most previous work in that we use search and cross validation
for bias selection rather than for feature selection; the selected biases are then responsible
for directing feature set selection and feature weighting. The results of our experiments
show that the bias selection algorithms can determine which cognitive biases are relevant
for each learning task and that performance of the case-based learning algorithm improves
significantly when the selected bias or biases are incorporated into the baseline instance
representation.

Finally, we investigate the generality of the cognitive bias approach to feature set selection.
We first show that two additional cognitive biases can be translated into representational
changes for the baseline instance representation. We then apply the feature selection al-
gorithm with all five cognitive biases to three additional natural language learning tasks.
Again, we find that (1) the cognitive bias selection algorithms are able to choose one or
more appropriate biases for each task, and (2) the incorporation of these relevant biases
significantly improves the learning algorithm’s performance.

The remainder of the paper is organized as follows. The next two sections describe the first
natural language learning task—relative pronoun disambiguation—and its baseline instance
representation. This task will be used throughout the paper to introduce components of the
cognitive bias approach to feature set selection. Section 4 presents the case-based learning
algorithm and its evaluation on the relative pronoun task. The method used to incorporate
independently each of the three primary cognitive biases—focus of attention, recency,
short term memory limitations—is described in Section 5. Section 6 proposes and evaluates
the alternative approaches to bias selection briefly outlined above. An evaluation of the
cognitive bias approach to feature set selection on additional data sets comprises Section 7.
Cardie (1999) describes the implications of this work for natural language processing rather
than machine learning.
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2. Relative pronoun disambiguation

The goal of the machine learning algorithm for the first natural language task is to disam-
biguate wh-words (e.g., who, which, where) in sentences like:

Tony sawthe boywho won the award.

In particular, the learning algorithm must locate the phrase or phrases, if any, that represent
the antecedent of the wh-word given a description of the context in which the wh-word
occurs. For the sample sentence, the system should recognize that “the boy” is the antecedent
of “who” because “who” refers to “the boy.” Finding the antecedents of relative pronouns
is a crucial task for natural language understanding systems in part because the antecedent
fills a semantic role in two clauses. In the sample sentence, for example, “the boy” is both
the object of “saw”and the implicit actor of “won.”

In addition, we focus on disambiguation of relative pronouns because (1) they occur
frequently in the long, multi-clause sentences of many real-world texts, (2) disambiguation
of relative pronouns was determined to be critical for the larger information extraction task
within which the learning algorithm was embedded, (3) our existing natural language pro-
cessing (NLP) system (Lehnert et al., 1991) included hand-crafted disambiguation heuristics
with which we could directly compare the learning algorithm performance, and (4) there
is a large body of literature on the human processing of relative clauses. (Both the cor-
pus and the broader information extraction task will be described in Section 3.) We focus
more specifically on learning disambiguation heuristics for “who” because this was the
most frequent relative pronoun to appear in the corpus, occurring in about one out of every
ten sentences and at a higher frequency for the most important documents, i.e., for texts
that are actually relevant to the information extraction task. In addition, the majority of
psycholinguistic studies of human processing of relative clauses focus on “who.”

Although finding relative pronoun antecedents seems a simple enough task, there are
many factors that make it difficult:

The head noun of the antecedent of a relative pronoun does not appear in a consistent
syntactic constituent or position.In both examples S1 and S2 of figure 1, for example,
the antecedent is “the boy.” In S1, however, “the boy” is the direct object of the preceding
clause, while in S2 it appears as the subject. On the other hand, the head of the antecedent
is the phrase that immediately precedes “who” in both cases. S3, however, shows that this
is not always the case. In fact, the antecedent head may be very distant from the relative
pronoun (e.g., S4).

The antecedent may be a conjoined noun phrase.In S5, for example, the antecedent of
“who” is a conjunction of three phrases.

There may be more than one semantically valid antecedent.In S6, “GE” refers to the same
entity as “our sponsor.” As a result, the antecedent of “who” can be either “our sponsor,”
“GE,” or the entire phrase “our sponsor, GE.” A similar situation occurs in predicate
nominative constructions.
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S1. Tony sawthe boywho won the award.
S2. The boywho gave me the book had red hair.
S3. Tony ate dinner withthe menfrom Detroitwho sold computers.
S4. I spoke tothe womanwith the black shirt and green hat over in the far corner of

the roomwho wanted a second interview.
S5. I’d like to thankJim, Terry, and Shawn, who provided the desserts.
S6. I’d like to thankour sponsor, GE, who provided financial support.
S7. We wonderedwho stole the watch.
S8. The womanfrom Philadelphiawho played soccer was my sister.
S9. The gifts fromthe childrenwho attended the party are on the table.

Figure 1. Antecedents of “who”.

Sometimes there is no apparent antecedent.As in S7, sentence analyzers must be able to
distinguish uses of “who” that have no antecedent (e.g., interrogatives) from instances of
true relative pronouns.

Locating the antecedent requires the assimilation of both syntactic and semantic knowledge.
The syntactic structure of the clause preceding “who” in sentences S8 and S9, for example,
is identical. The antecedent in each case is different, however. In S8, the antecedent is
the subject, “the woman.” In S9, it is the head noun of the prepositional phrase, i.e., “the
children.”

Despite these difficulties, we will show that a machine learning system can learn to locate
the antecedent of “who” given a description of the clause that precedes it.

3. The baseline instance representation

In all experiments, we use the CIRCUS sentence analyzer (Lehnert, 1990) to generate
training instances. The system generates one instance for every occurrence of “who” that
appears in texts taken from the MUC terrorism corpus. This corpus was developed in con-
junction with the third Message Understanding Conference (MUC-3, 1991), a performance
evaluation of state-of-the-art information extraction systems. In general, an information ex-
traction system takes as input an unrestricted text and “summarizes” the text with respect to
a prespecified topic or domain of interest: it finds useful information about the domain and
encodes that information in a structured, template format, suitable for populating databases
(Cardie, 1997). The CIRCUS system has been a consistently strong performer in the MUC
evaluations. The MUC collection consists of 1300 documents including newswire stories,
speeches, radio and TV broadcasts, interviews, and rebel communiques. Texts contain both
well-formed and ungrammatical sentences; all texts are entirely in upper case.

Each training instance for the relative pronoun task is a list of attribute-value pairs that
encode the context in which the wh-word is found. In addition, each training instance is also
annotated with a class value that describes the position of the correct antecedent for “who”
in each example. This antecedent class value is the feature to be predicted by the learning
algorithm during testing. The details of the baseline instance representation depend, in part,
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Table 1. Relative pronoun resolution baseline instance representation for: “The man from Oklahoma, who. . . .”

Phrases Features

The man (S t)

(S-SEM human)

from Oklahoma (S-PP-1 t)

(S-PP-1-SEM location)

(S-PP-1-PREP from)

, (S-PP-1-MARK comma)

who . . . (PREV-TYPE comma) Antecedent: (S)

on the key characteristics of CIRCUS’s sentence analyzer:

• The CIRCUS parser recognizes phrases as it finds them in its left-to-right traversal of a
sentence.
• It recognizes major constituents like the subject, verb, and direct object.
• It makes no immediate decisions on structural attachment. In particular, it does not handle

conjunctions, appositives, or prepositional phrase attachment.
• CIRCUS uses one or more semantic features to describe every noun and adjective in

its lexicon.1 For example, “mayor” ishuman; “ELN” is an organization; and the noun
“murder” is anattack.
• CIRCUS keeps track of the most recently recognized entity, e.g., word, phrase, punctu-

ation mark.

Relative pronoun disambiguation cases are comprised of five types of features:CON-
STITUENT, SEM, PREP, MARK, andPREV-TYPE. Because the antecedent of “who” usually
appears as one or more phrases in the preceding clause, cases contain one or more attribute-
value pairs to describe each phrase in the clause that precedes “who.” Consider, for example,
the case in Table 1, in which there are two phrases before “who”—“the man” and “from
Oklahoma.” For each phrase, there is oneCONSTITUENTfeature that denotes the syntactic
class and position of the phrase as it was encountered by the parser. The feature (S t) indi-
cates that the parser has recognized “the man” as the subject (S) of the sentence, i.e., there
exists a subject. Similarly, (S-PP-1 t) declares that “from Oklahoma” is the first prepositional
phrase (PP) that follows the subject.

In addition, there is aSEMfeature for each phrase that provides its semantic classification
if one is available from the system lexicon. TheSEM feature for the subject (S-SEM human)
indicates that “the man” ishuman; “from Oklahoma” specifies alocation. If the phrase is
a prepositional phrase, then we include aPREPfeature that denotes the preposition.From
is the value of this feature for “from Oklahoma.” If the phrase is followed by a punctuation
mark or conjunction or both, then aMARK feature is included to denote this. TheMARK

feature for “from Oklahoma” indicates that acommafollows the phrase.
Finally, onePREV-TYPE feature per instance denotes the syntactic type of the linguistic

entity that immediately precedes the wh-word. In the sample sentence, the value of the
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Table 2. Relative pronoun resolution baseline instance representation for: “I thank Nike and Reebok, who. . . .”

Phrases Features

I (S t)

(S-SEM pronoun)

thank (V t)

Nike (DO t)

(DO-SEM proper-name)

and (DO-MARK and)

Reebok (DO-NP-1 t)

(DO-NP-1-SEM proper-name)

, (DO-NP-1-MARK comma)

who . . . (PREV-TYPE comma) Antecedent: (DO DO-NP-1)

PREV-TYPE feature iscomma. If no comma had preceded “who,” then the value ofPREV-
TYPE would have beenprepositional-phrase.

When clauses contain conjunctions and appositives, each phrase in the construct is labeled
separately. In the sentence of Table 2, for example, the direct object of “thank” is the conjunc-
tion “Nike and Reebok.” However, in CIRCUS, and therefore in our instance representation,
“Nike” is recognized as the direct object (DO) and “Reebok” as the first noun phrase that
follows the direct object (DO-NP-1). Because verb phrases have no semantic features in
CIRCUS, there is noSEM feature for verbs. The examples of Tables 1 and 2 also illustrate
an important characteristic of the relative pronoun data set: features differ across cases
because the structure of the preceding clause varies for each relative pronoun occurrence.

Every training instance is also annotated with class information—a list of theCON-
STITUENT attributes that represent the position of the antecedent of “who” ornoneif no
antecedent is present. In the sentence of Table 1, for example, the antecedent of “who” is
“the man.” Because this phrase is represented as theSconstituent, the antecedent class value
is (S). Sometimes, the antecedent is a conjunction of constituents. In these cases, we repre-
sent the antecedent as a list of theCONSTITUENTattributes associated with each element of
the conjunction. In the sentence of Table 2, for example, “who” refers to the conjunction
“Nike and Reebok;” therefore, the antecedent is encoded as (DO DO-NP-1). Appositive and
predicate nominative constructions result in a set of semantically equivalent antecedents,
all of which become part of the antecedent class information. In the sentence “I thank our
sponsor, GE, who. . . ” the antecedent can be “GE” (DO-NP-1), “our sponsor” (DO), or the
combined phrase “our sponsor, GE” (DO DO-NP-1). To be considered correct during testing,
only one of these three options must be predicted.

4. Evaluation of the baseline instance representation

This section describes the case-based learning algorithm and uses it to evaluate the baseline
case representation for relative pronoun disambiguation.
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4.1. The case-based learning algorithm

Throughout the paper, we employ a simple case-based, or instance-based, learning algorithm
(e.g., Aha, Kibler, & Albert, 1991). During the training phase, all relative pronoun instances
are simply stored in a case base. Then, given a new relative pronoun instance, a weighted
1-nearest neighbor (1-nn) case retrieval algorithm predicts its antecedent:

1. Compare the test case,X, to each case,Y, in the case base and calculate for each pair:

|N|∑
i=1

wNi ∗match
(
XNi ,YNi

)
whereN denotes the test case features,wNi is the weight of thei th feature inN, XNi is
the value of featureNi in the test case,YNi is the value ofNi in the training case, and
match(a, b) is a function that returns 1 ifa andb are equal and 0 otherwise. (For the
baseline experiments,wNi = 1.)

2. Return the cases with the highest score.
3. If a single case is retrieved, use its antecedent class information to find the antecedent

in the test case. Otherwise, let the retrieved cases vote on the position of the antecedent.

If the antecedent of the top-ranked case isDO (direct object), for example, then the direct
object of the test case sentence would be selected as the antecedent. Sometimes, however, the
retrieved case may list more than one option as the antecedent (for appositive and predicate
nominative constructions). In these cases, we choose the first option in the antecedent list
whose constituents overlap with those in the current example.

The above case retrieval algorithm matches only on features that appear in the test case.
Alternatively, the retrieval algorithm could normalize the feature set across the training
cases and then match with respect to this expanded feature set. We obtained comparable
performance on the relative pronoun task when using a normalized feature set, but will not
discuss those results here.

4.2. The relative pronoun data set

The relative pronoun data set contains 241 instances—CIRCUS generates one case for each
occurrence of “who” in 150 texts from the MUC-3 corpus. The correct antecedent for each
case must be specified by a human supervisor or by accessing a version of the training corpus
that has been annotated with relative clause attachment information. For the experiments
in this paper, we made one pass through the data set to correct a small number of obvious
parsing and semantic class disambiguation errors.

The performance of the learning algorithm depends, in part, on the underlying charac-
teristics of this data set. First, instances contain between two and 31 features and represent
clauses that have from one to 11 phrases. 77% of the cases are unique. In addition, the
antecedent class takes on 60 distinct values across the data set. In particular, there are ten
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instances with unique antecedent values. This establishes an upper limit of 96% accuracy
when using the baseline instance representation.

The data set contains just one pair of ‘ambiguous’ instances that have the same set of
attribute-value pairs, but a different antecedent value. Here our instance representation was
too coarse to differentiate wh-word contexts. In particular, it lacked the necessary lexical
features to distinguish one type of pronoun from another. More importantly, 51% of the
cases involve syntactically ambiguous constructs with respect to relative pronoun resolution.
These include sentences like the following, where the head noun of either constituent1 or
constituent2 is a syntactically viable antecedent:

I walked [with the man]2 [from Detroit]1 who . . .
I saw [the daughter]2 [of the colonel]1 who . . .

In theory, the case-based learning algorithm can use the available semantic class informa-
tion or punctuation to correctly handle most of these cases (e.g. “Detroit” is an unlikely
antecedent ofwho since it is a location). Even so, a small number of cases (like the second
example) will remain ambiguous without additional context.

4.3. Results

The results for the case-based learning algorithm using the baseline case representation are
shown in Table 3. In these runs, all weightsw f are set to 1 and, as mentioned above, the
1-nn algorithm performs calculations using the test case features rather than a normalized
feature set. Unless otherwise stated, all results in the paper are leave-one-out cross validation
averages and all statements of statistical significance are at or above the 95% confidence
level (p ≤ 0.05). We use bothχ2 and McNemar’s tests for statistical significance.

The first row of Table 3 shows the accuracy of this baseline case-based learning algo-
rithm. The remaining rows of the table show the performance of five additional baseline
systems. Three systems implement default rules for relative pronoun disambiguation. The
first heuristic always chooses the Most Recent Constituent as the antecedent and resorts
to none if the preceding clause contained no completed constituents. One might expect
a system that looks specifically for human antecedents to perform better. Results for the
Most Recent Human default rule show that this is not the case. The problem is that many

Table 3. Results for the baseline representation, default rules, hand-coded heuristics, and the IG-CBL feature
weighting algorithm for relative pronoun resolution (% correct).

1-nn with baseline instance representation 78.8

Most recent constituent 77.6

Most recent human 58.1

Most recent human or proper name 71.4

Hand-coded heuristics 80.5

IG-CBL 56.8



A COGNITIVE BIAS APPROACH TO FEATURE SELECTION 93

legitimate antecedents of “who” are characterized by semantic features other thanhuman.
Unfortunately, looking for more complicated semantic feature combinations like those of
the third rule (Most Recent Human or Proper Name) does no better than the simplest default
rule.

The fourth baseline system of Table 3 employs a set of hand-crafted heuristics for relative
pronoun resolution that were developed for use in the MUC-3 performance evaluation. The
heuristics consisted of approximately 30 rules. The following are examples:

If there is no verb and no subject in the preceding clause, and the last constituent was an
NP, then the antecedent is the head of the last constituent.

If there is no verb in the preceding clause, and the token that precedes “who” is a comma,
then the antecedent is the head of the subject of the preceding clause.

In general, the rules make use of the same syntactic and semantic information that is encoded
in the baseline instance representation. They were originally based on approximately 50
instances of relative pronouns taken from the MUC terrorism corpus, but were modified
over a nine-month period to handle counter-examples as they were encountered during
testing of the full information extraction system.

The results in Table 3 indicate that the baseline 1-nn system (78.8% correct) performs
as well as the best default rule (77.6% correct) and below that of the hand-coded heuristics
(80.5% correct). Bothχ2 and McNemar’s significance tests indicate, however, that all three
systems are indistinguishable from one another in terms of statistical significance. Although
the accuracies of the baseline representation and the Most Recent Constituent default rule are
quite close, their behavior is qualitatively different. As expected, the baseline representation
performs markedly worse than the default rule for antecedents that immediately precede
relative pronoun; however, it performs markedly better than the default rule for complex
antecedents (conjunctions and appositives), for subject antecedents, and for detecting when
“who” is not being used as a relative pronoun (antecedent= none). The final row in Table 3
is explained in the next section.

4.4. Comparison to IG-CBL

This section compares the performance of the baseline case-based learning algorithm to
IG-CBL (Cardie & Howe, 1997), a feature weighting algorithm that has shown good perfor-
mance across a number of natural language learning tasks. IG-CBL is a weighted k-nearest
neighbor algorithm that is a straightforward composition of two existing approaches for
feature selection and feature weighting. IG-CBL first uses a decision tree for feature se-
lection as described in Cardie (1993) and briefly below. The goal in this step is to prune
features from the representation so that the case-based learning algorithm can ignore them
entirely. IG-CBL then assigns each remaining feature a weight according to its information
gain across the training cases as done in the IB1-IG algorithm (Daelemans, van den Bosch,
& Zavrel, 1999). The intent here is to weight each feature relative to its overall importance
in the data set. There are three steps to the IG-CBL training phase:
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1. Create the case base.For this, we simply store all of the training instances.
2. Use the training instances to create a decision tree for the learning task.Our experiments

use C4.5 (Quinlan, 1993).
3. Compute feature weights for use during case retrieval.For each feature,f , we compute

a weight,w f , as follows:

w f = G( f ) if f is in the tree of step 2;

w f = 0 otherwise;

whereG( f ) is the information gain ratio off as computed across all training instances
by C4.5.

To apply the IG-CBL algorithm to the relative pronoun data set, we first normalize the
instances with respect to the entire feature set, filling in anil value for missing features.
After training, the class value for a novel instance is determined using a weighted k-nn case
retrieval algorithm identical to that of the baseline case-based learning algorithm except
that feature weights are computed as above.

We see from Table 3 that the IG-CBL feature-weighting approach works very poorly for
the relative pronoun task although it has worked well for other natural language learning
problems including part-of-speech tagging, semantic class tagging, prepositional phrase
attachment, grapheme-to-phoneme conversion, and noun phrase chunking (Cardie, 1993;
Daelemans et al., 1999). We believe that IG-CBL works poorly because of the large number
of antecedent classes and because the information gain bias is not appropriate for the relative
pronoun task, especially with normalized instances that contain mostly missing values. We
will see better performance of IG-CBL on the data sets of Section 7.

5. Incorporating the cognitive biases

In the following subsections, we modify the baseline representation in response to three
cognitive biases and measure the effects of those changes on the learning algorithm’s ability
to predict relative pronoun antecedents.

5.1. Incorporating the subject accessibility bias

A number of studies in psycholinguistics have noted the special importance of the first
item mentioned in a sentence (e.g., Gernsbacher, Hargreaves, & Beeman, 1989; Carreiras,
Gernsbacher, & Villa, 1995). In particular, it has been shown that the accessibility of the
first actor of a sentence remains high even at the end of a sentence (Gernsbacher et al.,
1989). The effect of thissubject accessibility biason processing relative clauses was also
noted in King and Just (1991) and is an example of a more generalfocus of attention bias.
In computer vision learning problems, for example, the brightest object in view may be
a highly accessible object for the learning agent; in aural tasks, very loud or high-pitched
sounds may be highly accessible. We propose to incorporate the subject accessibility bias
into the baseline case representation by increasing the weights for any features associated
with the subject of the clause preceding the relative pronoun. Weights for the subject features
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Table 4. The effect of the subject accessibility bias on relative pronoun resolution (% correct).

Baseline Subject wt= 2 Subject wt= 5 Subject wt= 8 Subject wt= 12

78.8 76.7 75.5 76.3 75.9

are increased as a function of a fixed increment, thesubject weight. More specifically, the
subject weight is divided evenly across all features associated with the subject (i.e.,S, S-
SEM, and possiblyS-PUNCor S-MARK) and then added to the original weight for each subject
feature.

Table 4 shows the effects on relative pronoun resolution when the subject weight is 2, 5,
8, and 12: incorporation of the subject accessibility bias never improves relative pronoun
disambiguation when compared to the baseline representation, although dips in performance
are never statistically significant using theχ2 test. McNemar’s test indicates significant
differences between the baseline representation and the subject-weighted representation
when the weight is 5 or 12. Higher subject weights were tested, but provide no improvement
in performance.

At first these results may seem surprising, but the baseline representation produced by
CIRCUS already somewhat encodes the subject accessibility bias by explicitly recognizing
the subject as a major constituent of the sentence (i.e.,S) rather than labeling it merely as a
low-level noun phrase (i.e.,NP). (Removing this bias from the baseline representation causes
a drop in performance from 78.8% to 75.5%.) It may be that the original encoding of the
bias is adequate or that additional modifications to the baseline representation are required
before the subject accessibility bias can have a positive effect. In addition, the subject
accessibility bias affects a relatively small number of features. Some cases have no subject
features because no subject was identified in the clause preceding the relative pronoun.
For these cases, the subject accessibility bias plays no role at all. An analysis of errors
indicates that the baseline representation performs slightly better than the subject-weighted
representation (weight= 2) across all of the major antecedent types.

5.2. Incorporating the recency bias

In processing language, people consistently show a bias towards the use of the most recent
information (e.g., Kimball, 1973; Nicol, 1988; Gibson, 1990; Gibson et al., 1993). In par-
ticular, Frazier and Fodor (1978), Cuetos and Mitchell (1988), and others have investigated
the importance of recency in finding the antecedents of relative pronouns. They found that
for English there is a preference for choosing the most recent noun phrase as the antecedent
in sentences where the antecedent of the relative pronoun is ambiguous. For example, in
sentences likeThe journalist interviewed the daughter of the colonel who had the accident,
people assume that “who” refers to “the colonel” rather than “the daughter of the colonel.”

The feature selection algorithm translates this recency bias into representational changes
for the training and test instances in two ways. The first is a direct modification of the
feature set; the second modifies the weights to indicate a constituent’s distance from the
relative pronoun. In the first approach, we rename the features according to the position of
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Table 5. Incorporating the recency bias using a right-to-left labeling.

Baseline representation Sentence Right-to-left labeling

(S t) it (S t)

(S-SEM entity) (S-SEM entity)

(V t) was (V t)

(DO t) the hardliners (NP-2 t)

(DO-SEM human) (NP-2 human)

(DO-PP-1 t) in Congress (PP-1 t)

(DO-PP-1-PREPin) (PP-1-PREPin)

(DO-PP-1-SEM entity) (PP-1-SEM entity)

(PREV-TYPE prepositional-phrase) who . . . (PREV-TYPE prepositional-phrase)

the associated constituent relative to the wh-word. As part of this renaming, subjects are
relabeled as noun phrases (NPs) unless there is a verb in the clause that unambiguously
denotes the presence of a subject. This establishes a right-to-left (r-to-l) labeling of con-
stituents rather than the left-to-right labeling that is more natural for the parser and that
is espoused in the baseline instance representation. Table 5 shows the effect of the new
r-to-l labeling for one example: “It was the hardliners in Congress, who. . . ” The leftmost
and rightmost columns indicate the original baseline and r-to-l recency representations,
respectively. The r-to-l labeling for “in Congress,” for example, is via thePP-1 attributes
because it is a prepositional phrase one position to the left of “who.” In the original repre-
sentation, that phrase is labeled with respect to the direct object that precedes it. Similarly,
“the hardliners” receives the attributeNP-2 in the r-to-l recency representation because it is
a noun phrase two positions before “who.” The r-to-l ordering yields a different feature set
and, hence, a different instance representation. Intuitively, the r-to-l representation provides
a more uniform encoding of the immediate context of the relative pronoun. Consider, for
example, the following sentences:

It was a message fromthe hardlinersin Congresswho . . .
It was fromthe hardlinersin Congresswho . . .

From the point of view of relative pronoun resolution, the two sentences seem very similar—
“who” refers to “the hardliners” in each case. The r-to-l labeling assigns the two most
recent constituents in each sentence (“in Congress” and “from the hardliners”) the same
attributes—PP-1 andPP-2. It also assigns the same class value to the instances for each
example: the antecedent is thePP-2 constituent. The baseline epresentation, on the other
hand, labels the most recent constituents and the antecedents for each instance with distinct
attributes, making it less likely that one case would be retrieved in response to the other.

In the second approach to incorporating the recency bias, we increment the weight asso-
ciated with each feature as a function of its proximity to the wh-word (Table 6). To create a
recency-biased weight vector, the feature associated with the element closest to the relative
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Table 6. Incorporating the recency weights (with a maximum weight of ten).

Phrase Attributes Baseline weight Recency weight Final weight

It S 1 2 3

S-SEM 1 3 4

was V 1 4 5

the hardliners DO 1 5 6

DO-SEM 1 6 7

in Congress DO-PP-1 1 7 8

DO-PP-1-PREP 1 8 9

DO-PP-1-SEM 1 9 10

PREV-TYPE 1 10 11

who . . .

Table 7. The effect of the recency bias on relative pronoun resolution (% correct). The boldface entry indicates
significance with respect to the baseline representation, the hand-coded heuristics, and the recency weighting
representation.

Hand-coded R-to-L Recency
Baseline heuristics labeling weighting R-to-L+ RecWt

78.8 80.5 81.3 80.1 85.1

pronoun receives a weight of ten,2 and the weights are decreased by one for each of the
preceding features until reaching zero. The recency weights are then added to the original
baseline feature weights to produce the final weight vector. When using a different NLP
system to generate cases, it may make more sense to implement recency weighting by
assigning the same proximity-based weight to all features associated with a single phrase.
This alternative does not work as well as the proposed recency weighting scheme for our
NLP system and the relative pronoun data set.

The results of experiments that use each of the recency representations separately and in
a combined form (R-to-L+ RecWt) are shown in Table 7. To combine the two implemen-
tations of the recency bias, the system first relabels the attributes of an instance using the
r-to-l labeling and then initializes the weight vector using the recency weighting procedure
described above. The table shows that the recency weighting and r-to-l labeling have rela-
tively little effect on the prediction of wh-word antecedents when applied individually: the
increases in performance for these runs over the baseline are not statistically significant.
The combined representation, however, improves performance significantly with respect
to the baseline instance representation, the hand-coded heuristics, and the recency weight-
ing representation (for both significance tests). McNemar’s test also indicates significant
differences with respect to the standalone r-to-l labeling representation.

We believe that the combined recency bias performs well because recency effects are
very strong for relative pronoun resolution and because the individual implementations
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of the recency bias complement one another. In particular, the representation of the local
context of the wh-word provided by the r-to-l labeling is critical for finding antecedents. The
recency weighting representation lacks such a representation of local context, but provides
an additional emphasis on those constituents closest to the relative pronoun.

One can get a sense of the broad changes to the instance space caused by the r-to-l recency
labeling by re-examining some of the original data set characteristics after applying this
bias. As described in Section 4.2, the data set encoded using the baseline case representation
exhibits 60 distinct antecedents. After incorporating the r-to-l recency bias, this number is
reduced to 39. In addition, the number of instances with unique antecedents is similarly
reduced—from ten to one. In spite of these reductions in data set complexity, the number
of instance types remains about the same: of the 241 cases, 184 (76%) are unique vs. 186
(77%) using the baseline representation.

In an analysis of the results, we see that for 25 test cases, the combined recency bias is
correct when the baseline representation is incorrect; the reverse is true only ten times. In
general, the combined representation does markedly better than the baseline in recognizing
when “who” is not being used as a relative pronoun. Although the combined represen-
tation performs better than the baseline for antecedents at all distances from the relative
pronoun, over half of the differences involve ‘middle distance’ antecedents that are two or
three phrases before the relative pronoun. Two instances that the combined recency rep-
resentation gets correct when the baseline does not are listed here. (Subscripts denote the
antecedent phrases selected using each representation. A subscript ofbothmeans that both
the baseline and combined recency representations selected the phrase as a component of
the antecedent.)

Ordonez added: I was aware that Pena wanted to get rid of somebody, but Ibaselinenever
learnedwho they were going to kill until. . . (Correct antecedent is nonecombined recency).

Spaniard Jose Maria Martinezboth, Frenchman Roberto Lisandycombined recency, and Ital-
ian Dino Rossycombined recency, who were staying. . .

5.3. Incorporating the restricted memory bias

Psychological studies have determined that people can remember at most seven plus or mi-
nus two items at any one time (Miller, 1956). More recently, Daneman and Carpenter (1980;
1983) show that working memory capacity affects a subject’s ability to find the referents
of pronouns over varying distances. Also, King and Just (1991) show that differences in
working memory capacity can cause differences in the reading time and comprehension of
certain classes of relative clauses. Moreover, it has been hypothesized that language learn-
ing in humans is successful precisely because limits on information processing capacities
allow children to ignore much of the linguistic data they receive (Newport, 1990). Some
computational language learning systems (e.g., Elman, 1990) actually build a short term
memory directly into the architecture of the system.

It should be clear that the baseline instance representation for the relative pronoun task
does not make use of short term memory limitations: the learning algorithm uses all available
features during case retrieval. Short term memory studies, however, do not explicitly state
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Table 8. The effect of the restricted memory bias on relative pronoun resolution (% correct).

Memory limit Memory limit Memory limit Memory limit
Baseline = 3 = 5 = 8 = 12

78.8 73.4 75.3 77.3 77.8

what the short term memory limit should be—it appears to vary from five to nine depending
on the cognitive task. It may also depend on the size and type of the ‘chunks’ that have to be
remembered. In addition, the short term memory bias alone does not state which features to
keep and which to discard: King and Just hypothesize the existence of interactions between
short term memory limitations and attentional biases (like the subject accessibility bias) that
allow certain semantic representations in a sentence to remain active over long distances.

This argues for an implementation of arestricted memorybias that accommodates the
influence of other cognitive biases. Given a memory limit ofn, the restricted memory bias
selects then features with the highest weights, choosing randomly in case of ties. It then sets
the weights for the remaining features to zero. This effectively prunes all but then selected
features from the instance representation. In the baseline representation where all features
have a weight of one, the restricted memory bias is as likely to discard relevant features
as it is to discard irrelevant features: we expect that this bias will have a positive impact
on performance only when it is combined with cognitive biases that provide additional
feature relevance information. Another version of the restricted memory bias might select all
features associated withn phrases rather than selectingn features. However, this alternative
would be more difficult to implement in the presence of cognitive biases that modify weights
for individual features rather than for entire constituents.

Table 8 shows results for the restricted memory bias withn set to one of 3, 5, 8, and
12. (Because of the random component of the restricted memory bias, results are averages
across five leave-one-out cross-validation runs.) It is clear from the table that this bias
degrades the ability of the system to predict relative pronoun antecedents although the drop
in performance is statistically significant only whenn= 3 using theχ2 test. (McNemar’s
test shows no significant differences in performance with respect to the baseline.) These
results are not surprising given the random feature selection imposed by the restricted
memory bias when applied in isolation. In general, the effect of the restricted memory bias
depends on the number of features in the test case and the memory limit. The average
number of features per instance is 8.9; the maximum number of features in any instance
is 31. Whenever the number of test case features is within the memory limit, the restricted
memory bias has no effect; as the limit is increased, the performance approaches that of the
baseline representation.

5.4. Discussion of results

Table 9 provides a summary of the best-performing variation of each bias implementation
as well as the best baseline systems. Individually, none of the cognitive bias implementa-
tions significantly improves the accuracy of relative pronoun antecedent prediction over the
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Table 9. Individual cognitive bias summary for relative pronoun resolution. The boldface entry indicates statistical
significance with respect to the baseline representation and the hand-coded heuristics.

Cognitive bias or baseline system Parameters % Correct

Baseline systems

Best default rule — 77.6

Hand-coded heuristics — 80.5

Baseline representation (no biases, 1-nn) — 78.8

Single biases

Subject accessibility Subject wt= 2 76.7

Restricted memory Memory limit= 12 77.8

Recency (r-to-l labeling) — 81.3

Recency (recency weighting) Max wt= 10 80.1

Combining bias implementations

Recency (r-to-l+ recency weighting) Max wt= 10 85.1

baseline representation. Neither the subject accessibility nor the restriced memory biases
is able to boost performance. Increases in performance from the recency weighting and
r-to-l labeling when applied in isolation are not statistically significant. Only when com-
bining both implementations of the recency bias—recency weighting and r-to-l labeling of
features—do we obtain a representation that produces the first significant performance gains
with respect to the baseline case representation. This combined recency representation also
significantly outperforms the hand-coded heuristics. The next section presents and evaluates
two automatic methods for selecting and combining all three cognitive biases. It is here that
we might expect to see further increases in performance if the biases are complimentary.

6. Cognitive bias selection

The last section showed that, in spite of results on human language processing, cognitive
biases are not always useful when applied in isolation. Nonetheless, we found that gains
in performance for the relative pronoun resolution task can be achieved by applying more
than one cognitive bias to the instance representation: e.g., when both implementations
of the recency bias were instantiated simultaneously. Furthermore, the same experiments
indicate that cognitive bias interactions may make it difficult to determine which biases are
relevant to a particular learning task. For example, the combined recency representation
performed quite well in spite of the relatively small gains produced by each recency bias
in isolation. This section, therefore, presents two automated methods for cognitive bias
selection—Greedy Bias Selection and Exhaustive Bias Selection—each of which makes
different assumptions as to the independence of individual cognitive biases. The approaches
also reflect a potential tradeoff between the quality of the selected bias combination and the
computing time required to make the selection.



A COGNITIVE BIAS APPROACH TO FEATURE SELECTION 101

1. Divide the dataD into n partitions. For each partitionDtest,

(A) Let Dtest be the test partition andDtrain = D − Dtest, the training data.

(B) Divide Dtrain into m partitions.

i. For each partitionDtrains

A. Let Dtrains be the selection data andDtrainl = Dtrain − Dtrains ,

the learning data.

B. Apply each cognitive bias combination (and associated pa-

rameter settings) toDtrainl in turn. Test on Dtrains .

ii. For each bias combination tested, compute its average accuracy across

them selection data partitions.

iii. Select the bias combination with the highest average accuracy.

(C) Apply the selected bias(es) onDtrain; test onDtest.

2. Return the average of the accuracies for eachDtest partition.

Figure 2. The cross-validation algorithm for bias selection. The greedy and exhaustive bias selection algorithms
differ only in the method each uses to instantiate the boldface step above.

6.1. The bias selection algorithms

At a high level, both the greedy and exhaustive bias selection methods employ nested cross
validation as suggested in Schaffer (1993) and outlined in figure 2. The difference in the
bias selection algorithms lies in the methods each uses to instantiate the highlighted step of
the general algorithm. This step effectively determines the structure of the bias space and
the order in which it should be searched.

In general, the greedy bias selection algorithm (figure 3) operates by incorporating the
best of the remaining individual biases, one at a time, while accuracy on the selection data
improves or remains constant. For the relative pronoun data set, the Biases parameter (as well
as Available-Biases) includes all three cognitive biases under a variety of parameter settings,
e.g., Biases= {r-to-l labeling, combined recency with max wt= 10, subject accessibility
with wt = 2, . . . }. During each iteration (step 5), one of the available biases is selected for
incorporation into the instance representation. After each iteration, alternative variations
of the newly selected bias are removed from the set of Available-Biases (step 18). If, for
example, the recency-weighting representation with a maximum weight of ten were the first
bias selected, then all recency biases are deleted from consideration for the next iteration
of bias selection.

The exhaustive bias selection algorithm operates simply by testing all combinations of
all biases and associated parameter settings under consideration. More specifically, the
exhaustive approach to bias selection instantiates the boldface step of the general bias
selection algorithm (figure 2) as follows:

1. Given an initial set of cognitive biases and associated parameter settings, create a list,
L, of all possible combinations thereof.
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Greedy ( Biases, Learning-Data, Selection-Data )
1. /* Initializations: */
2. Available-Biases= Biases
3. Sel-Biases= {} /* biases selected thus far */
4. Sel-Biases-Acc= 0 /* accuracy of Sel-Biases */

5. While Available-Biases
6. Best-Bias= nil; Best-Bias-Acc= 0

7. /* Find best remaining bias */
8. For each New-Bias in Available-Biases,
9. Apply Sel-Biases and New-Bias to the Learning-Data.

10. New-Bias-Acc= accuracy of new representation on Selection-Data
11. If New-Bias-Acc> Best-Bias-Acc
12. Best-Bias= New-Bias; Best-Bias-Acc= New-Bias-Acc

13. /* Exit if incorporating Best-Bias caused drop in accuracy */

14. If Best-Bias-Acc< Sel-Biases-Acc, Return Sel-Biases and Sel-Biases-Acc

15. /* Otherwise incorporate Best-Bias into Sel-Biases */

16. Sel-Biases= Sel-Biases∪ Best-Bias; Sel-Biases-Acc= Best-Bias-Acc

17. /* Remove all variations of Best-Bias from consideration */

18. Available-Biases= remove-variants (Available-Biases, Best-Bias)
19. Return Sel-Biases and Sel-Biases-Acc

Figure 3. Greedy bias selection algorithm. Instantiation of boldface step of figure 2.

2. For every bias combination inL,

(A) Apply the bias combination to the learning data.
(B) Test on the selection data.

In comparison to greedy bias selection, exhaustive bias selection makes few assumptions
about cognitive bias interactions; on the other hand, the method requires much more com-
puting time to select the appropriate bias combination for a particular data set. When testing
n cognitive biases, each of which hasm parameter settings to be considered, greedy bias
selection will testO(n2m) bias/parameter setting combinations. The exhaustive approach,
on the other hand, requires testingO(mn) combinations.

6.2. Merging bias representations

Both the greedy and exhaustive bias selection algorithms require an ordered procedure for
merging the representations produced by two or more individual biases (step 9 in the greedy
algorithm). This is accomplished as follows:

1. Incorporate any bias that relabels or adds attributes (e.g., r-to-l labeling).
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2. Incorporate biases that modify feature weights by adding the weight vectors proposed
by each bias (e.g., recency weighting, subject accessibility).

3. Incorporate biases that discard features (e.g., restricted memory bias).

As was the case with representations that included one cognitive bias, the combined bias
representations are created automatically. The user specifies only the list of biases to be
applied to the problem and any associated parameters.

6.3. Results

Table 10 shows the results of applying the bias selection algorithms on the relative pro-
noun disambiguation task. For these runs, both levels of cross validation used ten partitions
(n= 10,m= 10). For each algorithm, the table lists the selected biases and the number of
partitions for which the combination was selected. The biases considered are shown at the
bottom of the table. The greedy algorithm makes a fairly uniform selection of cognitive
biases across partitions. Not surprisingly, the combined recency bias is always selected first.
The restricted memory (RM) bias was always selected next with memory limits ranging
from five to seven. Finally, the subject accessibility bias was selected for four out of ten

Table 10. Bias selection results for the relative pronoun resolution task. For each bias selection algorithm, the
table shows the selected biases and the number of 10-fold cross validation partitions for which the bias was
selected. Accuracy refers to average % correct across the ten partitions.

Selected biases Number of partitions

Greedy selection

Rec Combo (max wt= 10) RM (limit = 7) 5

Rec Combo (max wt= 10) RM (limit = 5) Subj (wt= 3) 2

Rec Combo (max wt= 10) RM (limit = 6) 1

Rec Combo (max wt= 10) RM (limit = 6) Subj (wt= 3) 1

Rec Combo (max wt= 10) RM (limit = 7) Subj (wt= 3) 1

Accuracy: 89.2± 5.5

Exhaustive selection

Rec Combo (max-wt= 10) RM (limit = 5) Subj (wt= 2) 7

Rec Combo (max-wt= 10) RM (limit = 8) Subj (wt= 2) 2

Rec Combo (max-wt= 10) RM (limit = 8) Subj (wt= 4) 1

Accuracy: 89.6± 5.9

Biases tested:

Right-to-left recency labeling (R-to-L)

Recency weighting (RecWt): max wt= {10, 20}
Combined R-to-L and RecWt (Rec Combo): max wt= {10, 20}
Subject accessibility (Subj): wt= {2, 3, 4, 6, 7, 10, 12}
Restricted memory (RM): limit= {3, 4, 5, 6, 7, 8, 10, 12, 15, 20, 25, 30}
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partitions with a subject weight of three in all cases. The average accuracy of the repre-
sentations created using greedy bias selection is 89.2%, which significantly outperforms
the baseline case representation, the best default rule, the hand-coded heuristics, and all
of the individual cognitive biases. It also significantly outperforms the combined recency
biases.3

Exhaustive bias selection also chooses a fairly stable set of cognitive biases across par-
titions: it selects the combined recency representation with a maximum weight of ten;
the restricted memory bias with a relatively small memory limit (usually five); and the
subject accessibility bias with a small subject weight (usually two). The average accu-
racy of the representations created using exhaustive bias selection is 89.6%. Like greedy
bias selection, exhaustive bias selection performs significantly better than the baseline case
representation, the best default rule, all of the individual biases, the hand-coded heuris-
tics, and the combined recency biases. Significance tests indicate no difference in per-
formance when compared to the greedy selection algorithm. The running time for one
(outer-level) partition of exhaustive bias selection withn= 10 andm= 10 is about 17 min-
utes on an Ultra Sparc 5. In contrast, one partition of greedy bias selection takes about two
minutes.

6.4. Discussion and summary of results

Table 11 summarizes the results of applying the cognitive bias approach to feature set selec-
tion for the relative pronoun task. The table clearly shows that performance of the learning
algorithm increases steadily as relevant biases are added to the baseline representation. As
noted earlier, we see mild, but statistically insignificant gains when the r-to-l recency bias
is applied in isolation. When merged with recency weighting, however, there are significant
gains in performance with respect to the baseline representation. Incorporation of the subject
accessibility and restricted memory biases using either greedy or exhaustive bias selection
provides additional improvements in performance. The feature set selection method obtains
improvements in spite of the fairly small data set size. With a larger data set, we would
expect better representation of, and hence better performance on, infrequently occurring
antecedent types.

In general, the all-biases representation performs markedly better than the combined
recency representation whenever the clause that precedes the relative pronoun is fairly
long. The average number of features for these cases is 14.5; in contrast, the average

Table 11. Bias selection summary for relative pronoun resolution. Results in boldface indicate significant in-
creases with respect to the baseline representation. The * indicates significant improvements with respect to the
combined recency representation.

No biases Baseline representation 78.8

Best individual bias Recency (r-to-l) 81.3

Combined recency (r-to-l+ recency weighting) 85.1

Combining two or more biases Greedy bias selection 89.2*

Exhaustive bias selection 89.6*
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number features per case for the entire data set is 8.9. It is likely that the restricted memory
bias is responsible for most of this improvement: it tends to prune features for distant
constituents in the all-biases representation, allowing the case-based learning algorithm to
concentrate on recent phrases during case retrieval. Furthermore, 73% of the improvement
between the combined recency and all-biases representations is due to better performance on
syntactically ambiguous relative pronoun constructs (see Section 4.2). Two such examples
follow:

The government publicly shows the horrorrecencyof womenall−biaseswho have been raped
in the prisons. . .

They also recommend that the persons who are going to carry out the abductions
should select the victims from among politicians and membersall−biasesof the Colom-
bian bourgeoisierecencywho have never distinguished themselves. . .

The two example shows that these syntactically ambiguous cases can be semantically diffi-
cult as well: it is often hard for a person to provide consistent antecedent information in the
presence of collective or mass nouns (e.g., group, members). In addition, it is sometimes
necessary to read the relative clause in order to disambiguate the relative pronoun. Our
current case representation, however, includes no features for phrases in the relative clause
itself, making it difficult to handle this type of ambiguity.

This section also showed that both the greedy and exhaustive search in conjunction with
cross validation can be used for automatic bias selection. In particular, the experiments
indicate that greedy bias selection may be adequate whenever interactions among cognitive
biases are sufficiently limited. Finally, while exhaustive bias selection performs slightly
better, the small gains in performance over greedy selection may not be worth the increase
in running time.

7. Additional data sets

Thus far, we have concentrated on evaluating the cognitive bias approach to feature set
selection using a single data set and three cognitive biases. In this section, we show that
the approach is effective for tasks other than relative pronoun resolution. In particular, we
apply the approach to three additional language learning tasks and make two more cognitive
biases available to the learning algorithm.

7.1. Handling unknown words

The additional data sets correspond to three lexical tagging tasks that address the problems
encountered by a natural language processing system when it reaches unknown words, i.e.,
words not in the system lexicon. Given the context in which each unknown word occurs,
our NLP system must predict the word’s part of speech as well as its general and specific
semantic class. Assume, for example, that the word “general” was an unknown word and
that the NLP system encountered the following two sentences from the MUC-3 information
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extraction corpus:

Thegeneralconcern was that children might be killed.
The terrorists killedGeneralBustillo.

In the first sentence, the system should indicate that the part of speech of “general” is an
adjective; in the second sentence, it is a noun modifier. Similarly, given a two-level semantic
feature hierarchy, the system should determine that “general” is being used in its “universal
entity” sense in the first case, but as a “person:military officer” in the second.

Each lexical tagging data set contains 2056 cases. Like the relative pronoun data set,
instances are created automatically by the CIRCUS parser. Each represents the context in
which the system encounters the unknown word in its left-to-right traversal of 120 randomly
selected sentences from the MUC business joint ventures corpus (MUC-5, 1994). Each case
has 34 features. In the example of figure 4, only the non-nil features are shown. Twenty-one
features describe the local context in which the test word occurred: these are the morphology
(MORPHOL) of the unknown word and the part of speech (P-O-S), semantic classes (GEN-SEM,
SPEC-SEM), information extraction concept (IE-CONCEPT), and actual lexical item (WORD)
corresponding to the words in a five-word window centered on the unknown word. In our
data sets, there are 18 possible parts of speech and 11 domain-specific concept types.GEN-
SEM andSPEC-SEM correspond to entries in a two-level semantic class hierarchy defined
for use in the joint ventures domain. The hierarchies in our experiments have 14 general
semantic features and 42 specific semantic features. The remaining 13 features of the lexical
tagging cases encode the semantic features and information extraction concepts for the major

Phrases Features

Toyota Motor Corp. (SUBJECT-GEN-SEM joint-venture-entity)
(SUBJECT-SPEC-SEM company-name)

has set up (LAST-PHRASE-SYN-TYPE verb)
a (PREV2-WORD a)

(PREV2-P-O-S determiner)
joint (PREV1-WORD joint)

(PREV1-P-O-S adjective)
(PREV1-GEN-SEM entity)

venture
firm (FOL1-WORD firm)

(FOL1-P-O-S noun)
(FOL1-GEN-SEM joint-venture-entity)

with (FOL2-WORD with)
(FOL2-P-O-S preposition)

Class values:
part-of-speech NOUN-MODIFIER

gen-sem ENTITY

spec-sem NIL

Figure 4. Baseline instance representation for the lexical tagging case for “venture” in “ Toyota Motor Corp. has
set up a joint venture firm with Yokogawa Electric Corp.. . .” Only the non-nil entries in the representaton are
shown.
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syntactic constituents (i.e., the subject, verb, direct object, and most recent phrase) that
have been recognized at the time that the unknown word is encountered. Finally, each case
includes the three class values to be predicted—the unknown word’s part-of-speech, and
general and specific semantic features. As was the case for relative pronoun resolution, the
case representation reflects the syntactic and semantic information available to CIRCUS as
it processes a text. In this specification for handling unknown words, we treat each prediction
task independently.

In general, the features for the lexical tagging tasks are very similar to those used for
relative pronoun resolution. There are two main differences. First, we have encoded a richer
description for the individual lexical items in close proximity to the unknown word. For the
relative pronoun task, we concentrated on constituent-level representations. This difference
is reasonable since the current task is a lexical task rather than a structural attachment
decision. However, since two-thirds of the features in the lexical tagging data sets now
represent neighboring tokens, the recency bias may have little effect. Second, we have
already discarded many irrelevant features from the representation. For example, the NLP
system could easily have included features for every low-level phrase it recognizes (as we
did for relative pronoun resolution) and then relied on the learning algorithm to discard
all irrelevant features. This preprocessing step inflates the performance of the baseline
representation. In addition, there may be less of a need for biases that discard features, like
the restricted memory bias. The data sets, therefore, may respond less readily to a number
of the cognitive biases. This will be a good test for the bias selection algorithms, which may
have to recognize that not all available biases are relevant to the problems at hand.

7.2. The semantic priming and syntactic biases

To show that our approach can support a variety of cognitive biases, we define two additional
biases for use with the lexical tagging tasks. The first issemantic priming. Semantic priming
is a well-known cognitive effect—during on-line information processing, people tend to
respond more quickly to words that are semantically related to entities currently involved
in the interpretation process. Our system implements semantic priming by increasing the
weights for all semantic features in the baseline representation (e.g., the general or specific
semantic classes of words or constituents) by some specified value. This is only a very
coarse implementation of this bias, however. It encourages the case retrieval algorithm to
match on semantic features, but ignores the problem of determining which entities are most
pertinent at the current point in processing. For this, we will rely on the other cognitive
biases. Analogously, we define asyntactic primingbias, which increases the weights for
all features associated primarily with syntactic issues (e.g., the part of speech of words or
syntactic category of constituents) by some specified value.

7.3. Results on the lexical tagging tasks

In the experiments below, we investigate the use of all five biases—recency weighting,
subject accessibility, restricted memory, semantic priming, and syntactic priming—on the
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lexical tagging tasks. The right-to-left labeling bias is not applicable to these data sets, since
all features are already effectively labeled with respect to the unknown word. To apply the
recency weighting bias, we assume that features associated with the words in the five-word
window are more recent than any constituent features. Furthermore, we assume the follow-
ing recency ‘ranking’ among terms in the five-word window: (1) unknown word features
(MORPHOL); (2) features for the token immediately preceding the unknown word (PREV1);
(3) features for the token immediately following the unknown word (FOL1); (4) features for
the second token that precedes the unknown word (PREV2); and (5) features for the second
token that follows the unknown word (FOL2). Allowing “following” tokens to incur weights
from the recency bias reflects the fact that lexical decision tasks often have an associated
time delay of about 200 ms (Swinney, 1979), during which time subsequent tokens can
begin to be processed. All experiments employ 10-fold cross validation.4

7.3.1. Effect of individual biases. The results for the lexical tagging tasks using each
of the cognitive biases in isolation are summarized in Table 12. For each bias, the table
shows results for only the best parameter setting for that bias. In addition, the table shows
the performance of two default heuristics and the IG-CBL feature-weighting algorithm as
well as the baseline case representation that includes no cognitive biases. The first default

Table 12. Incorporating individual cognitive biases for the lexical tagging tasks (% correct). The boldface entries
indicate significant increases with respect to the corresponding baseline representation. Significant decreases in
performance are not shown.

Cognitive bias or Part of speech General semantic Specific semantic
baseline system tested (p-o-s) class (gen-sem) class (spec-sem)

Most frequent tag 81.5 25.6 58.1

Weighted random selection 34.3 17.0 37.3

IG-CBL 90.3± 3.3 64.7± 5.7 73.4± 3.2

Baseline representation 89.0± 3.7 63.9± 5.4 74.8± 5.3

Recency weighting 92.9± 3.4 (max= 11) 70.4± 3.8 (max= 11) 77.5± 4.0 (max= 11)

Semantic priming 85.7± 4.2 (wt= 2) 62.0± 5.3 (wt= 2) 74.5± 5.1 (wt= 2)

Syntactic priming 90.7± 4.1 (wt= 6) 61.8± 4.4 (wt= 2) 73.0± 4.9 (wt= 2)

Subject accessibility 88.4± 3.6 (wt= 2) 63.9± 5.0 (wt= 2) 74.2± 5.1 (wt= 2)

Restricted memory 87.5± 3.0 (limit= 25) 61.5± 5.5 (limit= 25) 72.8± 5.1 (limit= 25)

Biases tested:

Recency weighting: max wt= {6, 11, 25}
Semantic priming: wt={2, 4, 6}
Syntactic priming: wt={2, 4, 6}
Subject accessibility: wt= {2, 6, 12}
Restricted memory: limit= {6, 11, 25}
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heuristic selects the most frequently occurring class value; the second heuristic performs a
weighted random selection based on class frequency. We see first that, unlike the relative
pronoun data set, the baseline representation performs significantly better than the default
heuristics. The IG-CBL feature-weighting approach also works well although it significantly
outperforms the baseline representation only for part-of-speech tagging.

Like relative pronoun resolution, however, the recency bias provides significant increases
in performance over the baseline system. This is the case for all three data sets and in spite
of the fact that the baseline representation already focuses somewhat on recent items. The
only other cognitive bias that boosts performance is the syntactic bias, which helps part-
of-speech prediction. All other biases either significantly decrease performance on all data
sets or have no effect on the lexical tagging task.

In general, the individual bias results for the lexical tagging tasks are not all that surprising.
From a linguistic point of view, the recency weighting corresponds to giving preferential
status to features of those lexical items that are closest to the unknown word. This is
consistent with many successful lexical tagging approaches that classify tokens based only
on information associated with one or two of the immediately preceding tokens.

7.3.2. Combining cognitive biases.Table 13 shows the results for combining more than
one bias for each lexical tagging task using the exhaustive and greedy bias selection al-
gorithms. Running the full nested 10-fold cross validation for exhaustive bias selection on
these larger data sets (2056 vs. 241 instances) and for a fairly large number of biases and
parameter settings was not feasible. Rather than limit the number of biases and parameter
settings considered, however, we chose to limitm, the number of partitions used in the inner
cross validation of figure 2. The running time for one outer and one inner partition (with
n = 10; m = 10) is close to 11 hours for exhaustive selection and under 20 minutes for
greedy selection. All results in Table 13 were obtained with ten outer partitions and two
inner partitions. The results for any bias combination that includes a random component
(i.e., the restricted memory bias) are averages over five such runs.

The table shows that both bias selection algorithms provide significant increases in per-
formance with respect to the baseline representation. The combined biases, however, never
significantly improve performance over the recency bias. Table 14 shows why: for the most
part, the greedy bias selection algorithm focuses on recency. Recency is often the only bias
selected for the lexical tagging tasks. This is the case in seven out of ten partitions for both

Table 13. Combining cognitive biases for the lexical tagging tasks (% correct). The boldface entries indicate
significant increases with respect to the corresponding baseline representation.

Task Baseline results Greedy selection Exhaustive selection

part-of-speech 89.0± 3.7 92.9± 3.5 93.0± 2.3

gen-sem 63.9± 5.4 69.1± 3.6 69.9± 3.8

spec-sem 74.8± 5.3 78.1± 3.8 78.5± 4.3
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Table 14. Summary of greedy bias selection results for lexical tagging. For each learning task, we show
the selected biases and the number of cross-validation partitions for which the corresponding bias combination
was selected.

Natural language task Selected biases Number of partitions

p-o-s Bias 1: recency weighting 10/10
with max wt = 11 7/10

Bias 2: restricted memory 8/10
with limit between 8 and 21 8/10

gen-sem Bias 1: recency weighting 10/10
with max wt = 11 9/10

Bias 2: none 7/10

spec-sem Bias 1: recency weighting 10/10
with max wt = 35 6/10

Bias 2: none 7/10

Biases tested:

Recency weighting: max wt= {6, 11, 18, 25, 35}
Semantic priming: wt={2, 4, 6}
Syntactic priming: wt={2, 4, 6}
Subject accessibility: wt= {2, 3, 6, 8, 14, 21}
Restricted memory: limit= {3, 6, 8, 11, 14, 21, 25}

semantic tagging tasks and suggests that the features associated with neighboring words
are critical for the lexical tagging tasks. The restricted memory bias is also often selected
for part-of-speech tagging, but not for the semantic tagging tasks. The effect of this bias is
to discard features associated with the major constituents in the sentence. In general, these
are semantically-based features that may be more useful for the semantic tagging tasks. We
also see that part-of-speech and general semantic tagging prefer a smaller context. The more
detailed predictions required by specific semantic tagging, however, require extending the
recency weighting across all context features, i.e., increasing the maximum weight.

Analysis of the exhaustive bias selection results (no table) shows similar trends: (1) the
recency bias plays the most prominent role; (2) the selected recency weights focus on a
three-word window for part-of-speech and general semantic class tagging; (3) the selected
recency weights affect the entire context for specific semantic class tagging; (4) the restricted
memory bias is selected for part-of-speech tagging, but with a slightly higher memory limit
than that chosen by the greedy algorithm. There is, however, one major difference between
the bias selection algorithms: the exhaustive approach tends to include more biases than the
greedy approach.

Overall, our results appear to indicate that, given CIRCUS’s linguistic knowledge sources
and bias implementations, the recency bias is the most important bias for lexical tagging
tasks. In addition, we find that the greedy bias selection algorithm is able to select biases
as well as the much more expensive exhaustive bias selection algorithm.
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8. Related work

Much previous work has addressed the role of biases in machine learning algorithms. In
particular, there has been recent interest in automating methods for evaluating and selecting
such biases. In their overview article to a special issue of this journal on the topic, Gordon
and desJardins (1995) view bias selection as searching a space of learning biases. Within
their framework, the work proposed here uses cognitive processing limitations as a type
of prior knowledge that guides the selection of an appropriaterepresentational biasfor
the learning algorithm—the cognitive biases specify the set of primitive terms, or features,
that define the space of allowable inductive hypotheses. Furthermore, our approach to
bias selection uses greedy and exhaustive search in conjunction with cross validation as
proceduralmeta-biases that order search in the representational bias space. In related work,
Provost and Buchanan (1995) specify three techniques for buildinginductive policies, i.e.,
policies for building strategies for bias selection. Our cognitive bias approach to feature
set selection makes use of all three techniques: (1) cognitive biases add structure to the
bias space, e.g., the restricted memory bias limits the number of features considered by
the learning algorithm; (2) the cognitive bias approach guides bias-space search, e.g., the
greedy search algorithm incrementally combines the available biases; and (3) the cognitive
bias approach to feature set selection constructs a learned theory across multiple biases,
i.e., both bias selection algorithms combine the representations produced from individual
biases according to the bias merging procedure specified in Section 6. In addition, the work
presented here is innovative in the source of inspiration for the types of biases that we
consider, namely cognitive preferences.

Previous work in feature set selection has relied on greedy search algorithms (e.g., Xu
et al., 1989; Caruana & Freitag, 1994; John et al., 1994; Skalak, 1994) and cross validation
(e.g., Maron & Moore, 1997). Our work differs from these approaches in that search occurs
not in the feature space, but in the much smaller space of available cognitive biases. Search
and cross validation are not used to directly select relevant subsets of features. They are
used instead to select cognitive biases, which are, in turn, responsible for directing both
feature selection and feature weighting.

Because the cognitive bias approach to feature weighting differs in spirit from most
general methods for feature weighting (e.g., Winnow (Littlestone, 1988)), we focus here on
comparisons to feature-weighting methods for case-based learning algorithms. Even within
the case-based learning paradigm, however, we know of no previous work that makes use
of cognitive biases to guide feature selection. In general, feature-weighting algorithms for
instance-based approaches can be visualized on a continuum, from global methods that
compute a single weight vector for all cases to extremely local methods that compute a
different weight vector for each pair of training and test cases. A number of local weighting
schemes where feature weights can vary from instance to instance (or feature value to
feature value) have been proposed. The value difference metric of Stanfill and Waltz (1986)
was an early machine learning algorithm that assigned a different weight to each value
of a feature. In other work, Aha and Goldstone (1992) associate a different weight vector
with every training case by combining globally and locally computed feature weights. The
greater the similarity of a test case to the training case, the greater the emphasis of the
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training case weights over the global weights. Yet another case-based learning algorithm
that allows feature relevance to vary across the training instances is the RC algorithm of
Domingos (1997). This algorithm uses a context-sensitive clustering method to perform
feature selection rather than to assign continuous feature weights.

Still other case-based learning systems implement coarsely local feature weighting
schemes that allow weights to vary at the class level. Our class distribution weighting
method is one example (Howe & Cardie, 1997). It computes a different weight vector for
each class in the set of training cases using statistical properties of that subset of the data.
Creecy et al. (1992) use per-category feature importance to assign high weight to features
that are highly correlated with the class. The IB4 (Aha, 1992) classifier also calculates a
different weight vector for each class. It attempts to learn feature weights by cycling through
the training instances and adjusting their values. Weights are strengthened if feature values
match for instances of the same class, and weakened if the values match but the instances
are of different classes.

Other methods compute query-specific weights (Wettschereck et al., 1997) by producing
a different similarity metric for each test case. In recent work, we investigated the use of
test-case-specific feature weights based on information gain for improving the performance
of minority class instances (Cardie & Howe, 1997). Hastie and Tibshirani (1994) and
Friedman (1994) also compute test-case-specific metrics; their metrics rely on discriminant
analysis and recursive partitioning, respectively. In addition, Atkeson et al. (1997) create a
different similarity metric for each test case, but do so for regression rather than discrete-
valued classification. The cognitive bias approach to feature selection and feature weighting
creates either a query-specific similarity metric or a global similarity metric depending on
the data set. For the relative pronoun task, the method computes a similarity measure based
on the test case: the selected biases are applied to the test case and perform feature selection
and feature weighting. At first it may appear that the same is true for the lexical tagging
tasks. For these data sets, however, all cases have the same number and type of attributes.
The result is that the similarity metric derived by the cognitive bias approach is global in
that the same features are selected and the same weights used for every case retrieval during
testing.

Finally, others have examined local similarity metrics based upon domain-specific knowl-
edge (Cain, Pazzani, & Silverstein, 1991; Skalak, 1992). In contrast, our approach uses
domain-independent background knowledge in the form of general cognitive processing
limitations to guide feature set selection and feature weighting. Fisher’s (1987) COBWEB
also has some similarities to the methods introduced here. COBWEB is a conceptual clus-
tering system that uses a psychologically motivated, test-case-specific similarity metric to
guide concept formation. In particular, it creates a polythetic classification tree with training
cases at the terminal nodes, and bases most predictions on these stored cases. Because the
system uses probabilistic weights to sort test cases, it effectively assigns different weights
to each path in its tree and, like our approach, can apply a different similarity metric to each
test case.

Case-based learning approaches to language learning (see Daelemans, 1999) also some-
times make use of one or more cognitive biases. At a minimum, an appropriate context
window must be selected for inclusion in the case representation. In general, however, any
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use of cognitive biases in these systems is only implicit. In addition, previous case-based
learning efforts for NLP require the design of a new feature set for each natural language
learning problem. Our approach marks a first step in allowing an NLP system to use the same
underlying instance representation across many linguistic knowledge acquisition tasks. For
a more detailed discussion of related work in NLP, see Cardie (in press).

9. Summary

The research presented here has shown that cognitive processing limitations can serve as
a domain-independent source of bias to guide feature set selection for case-based learners.
We have concentrated on a collection of learning tasks from natural language processing
and explored the effects of five well-known cognitive biases on these tasks: (1) subject
accessibility, (2) recency, (3) short term memory limitations, (4) semantic priming, and
(5) syntactic priming. We have shown that cognitive biases can be automatically and ex-
plicitly incorporated into the instance representations for each natural language learning
task. We have also introduced two algorithms for cognitive bias selection. The algorithms
combine cross validation with greedy and exhaustive search and are able to select one or
more relevant biases under appropriate parameter settings for each of the data sets tested.
The representation that uses the selected bias or biases significantly outperforms the base-
line representation as well as the default heuristics for each data set. In addition, it performs
significantly better than an information gain-based feature set selection method known to
perform well on a variety of natural language learning data sets.

Moreover, our experiments using a nearest-neighbor learning algorithm to determine
the antecedents of relative pronouns indicate that the learning algorithm improves as more
relevant cognitive biases are incorporated into the instance representation. For the lexical
tagging tasks, the selected bias(es) were able to improve upon the baseline in spite of the
fact that a number of irrelevant features had already been discarded from the baseline repre-
sentation in a preprocessing step. Finally, we found that greedy bias selection worked quite
well for our data sets in spite of the algorithm’s limited ability to handle bias interactions.
This provides evidence that sets of compatible cognitive biases can sometimes be selected
for a particular learning task without enumerating and evaluating all possible cognitive bias
combinations.

Still, there are additional issues that need to be addressed in future work. First, the feature
set selection method should be tested on larger data sets. With larger lexical tagging data
sets, for example, it should be possible to reduce the variance in performance between
cross-validation partitions and possibly to see better performance of both the individual
biases and the bias selection algorithms. Another important line of investigation is the
development of methods that can identify cognitive bias interactions a priori so that only
appropriate bias combinations need to be tested for effectiveness. Furthermore, we have
tested the approach only on lexical and structural tasks in the natural language processing
domain. We would expect the cognitive bias approach to feature set selection to work well
for other learning tasks where the application of cognitive biases and preferences makes
sense. Examples might include speech understanding (where some of the same biases
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investigated here should apply), image classification (where focus of attention, brightness,
and color biases could be used), and the design of adaptable user-interfaces (where focus of
attention, restricted memory limitations, and recency and color preferences may play a role).
We hope to apply the methods presented here to learning problems from these domains.
Future work might also investigate the use of cognitive biases to aid feature weighting
for algorithms other than case-based learning. Finally, it may also be possible to create an
unsupervised counterpart to the inductive learning algorithm presented here. This would
eliminate the need for expensive and time-consuming linguistic annotation of training texts
with supervisory information.
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Notes

1. There are 11 such semantic features: human, proper-name, location, entity, physical-target, organization,
weapon, attack, pronoun, time, and quantity. A subset of these features are specific to the domain from which
the training instances were extracted. A different set would be required for texts from a different domain.

2. The weight was chosen based on preliminary testing. Other values will be tested in subsequent sections.
3. Here we are comparing accuracies for leave-one-out vs. 10-fold cross validation, which violates training set

size assumptions for the significance tests. The same significant differences were obtained, however, using
10-fold cross validation results for the baseline and single bias experiments.

4. The value ofk (k-nn) for each NLP task was chosen via cross validation from among values of 1, 3, 5, 10, and
15: part-of-speech prediction,k= 1; general semantic class,k= 5; specific semantic class,k= 10.
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