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Abstract. This paper deals with learning first-order logic rules from data lacking an explicit classification
predicate. Consequently, the learned rules are not restricted to predicate definitions as in supervised inductive logic
programming. First-order logic offers the ability to deal with structured, multi-relational knowledge. Possible
applications include first-order knowledge discovery, induction of integrity constraints in databases, multiple
predicate learning, and learning mixed theories of predicate definitions and integrity constraints. One of the
contributions of our work is a heuristic measure of confirmation, trading off novelty and satisfaction of the rule.
The approach has been implemented in theTertius system. The system performs an optimal best-first search,
finding thek most confirmed hypotheses, and includes a non-redundant refinement operator to avoid duplicates
in the search.Tertius can be adapted to many different domains by tuning its parameters, and it can deal either
with individual-based representations by upgrading propositional representations to first-order, or with general
logical rules. We describe a number of experiments demonstrating the feasibility and flexibility of our approach.
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1. Introduction

This paper deals with unsupervised discovery of rules in first-order logic. We define a
statistically well-founded confirmation measure to induce rules that are in some sense
unusual or interesting. We then describe a complete best-first search algorithm that uses
an optimistic estimate of the best confirmation of possible refinements of a rule to prune
the search, and an non-redundant refinement operator that is guaranteed to generate each
rule not more than once during search. The algorithm works on a function-free first order
Prolog representation, which enables application to a wide range of structured domains,
and to include background knowledge as part of the heuristic evaluation.

1.1. First-order unsupervised learning

In our perspective, there are four main paradigms in rule learning (Table 1). Along one
dimension, rule learning can be either supervised or unsupervised. Supervised learning
includes concept learning, classification, and inductive logic programming (ILP). It is dis-
tinguished by the use of a single predicate that appears in the head of rules. Unsupervised
learning does not have such a single focus of inference. This may be either because there
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Table 1. The four paradigms in rule learning. Each cell lists a typical task addressed in that paradigm.

Supervised Unsupervised

Individual-based Concept learning Rule discovery

Other Program synthesis Multiple predicate learning

are several, inter-dependent predicates to be learned, as in multiple predicate learning, or
because the main direction of inference is not known a priori, as in association rule learning
or database dependency discovery. A second, major dimension distinguishes between rep-
resentations that are essentially individual-based, and other representations. Propositional
representations are inherently individual-based, although there is usually no explicit repre-
sentation of individuals in either examples or rules due to the single representation trick.
It is simply assumed that each example concerns a single individual, and that rules gener-
alise over all individuals. First-order representations offer significantly more flexibility in
representing a domain. While initial work in ILP tended to focus on tasks like Prolog pro-
gram synthesis, which is less obviously individual-based, many recent ILP systems adopt a
more structured representation based on an underlying notion of individual. TheTertius
system described in this paper was designed to handle unsupervised learning in first-order
representations of both kinds.

1.2. The learning task

In general, inductive learning is concerned with finding plausible generalisations (hypothe-
ses) from the evidence. This is often formalised by assuming a particular syntactic form
of evidence and hypotheses, such as pre-classified instances or non-instances of a concept,
and classification rules defining that concept. In this paper we make no such assumptions,
and therefore resort to the more abstract framework of confirmatory induction.

Definition 1 (Confirmatory induction). Given a first-order languageL, a confirmation
relationis a binary relation< ⊆ 2L × L; if E < H we say that evidenceE confirmshypoth-
esis H . A confirmation function is a partial functionc : 2L × L → [0, 1]; we say that
evidenceE confirms hypothesisH to degree c(E, H) if c(E, H) is defined. A confirmation
relation iscategoricalif evidence and all confirmed hypotheses are consistent with each
other; a confirmation function is categorical if it is defined only for such evidence and
hypothesis.

A simple example of a categorical confirmation relation can be defined when the evidence
E is given as a set of ground (i.e., variable-free) facts, from which we can construct a model
m(E) (i.e., a truthvalue assignment). In this case we can defineE <H iff H is true inm(E);
it follows thatm(E) is a model of the set of confirmed hypotheses. In order to ensure general-
isation, in categorical confirmatory induction we are typically interested in some intensional
representation of the set of all confirmed hypotheses, i.e., a compact axiomatisation. This
is roughly the approach followed in theClaudien system (De Raedt & Dehaspe, 1997).
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An alternative way of defining a confirmation relation is on top of a confirmation function,
e.g.,E <H iff c(E, H) ≥ c0 for a fixed thresholdc0. In general the resulting confirmation
relation will be non-categorical, i.e., some hypotheses confirmed by the same evidence may
be mutually inconsistent. In such a case the confirmation relation does not contain sufficient
information to single out a consistent set of hypotheses. On the other hand, the use of a
confirmation function has the advantage of being able to rank the hypotheses.

The systemTertius presented in this paper was designed to address both categorical and
non-categorical confirmatory induction tasks. The system searches for thek most confirmed
hypotheses; if a consistent set of hypotheses is requested, the additional requirement of the
evidence forming a model of the hypothesis is enforced. Our research goals were, first, to
devise a suitable confirmation function that is theoretically and empirically well-founded;
and secondly, to implement a first-order knowledge discovery system that employs this
confirmation function. A major consideration when implementing the system was efficiency:
specifically, much attention was paid to employing the confirmation heuristic for pruning the
search, and to efficiently traversing the search space.

1.3. Outline of the paper

The outline of the paper is as follows. In Section 2 we present the preliminary material
necessary to understand the rest of the paper. Section 3 defines the confirmation measure
used throughout the paper. It is a modifiedX2 statistic defined on a sample of ground-
ing substitutions for the rule under consideration. We present a thorough analysis of this
measure, including an optimistic estimate for use in our A* algorithm, and a discussion
of how to adapt the measure in order to incorporate logical background knowledge. In
Section 4 we present theTertius system and give implementation details, including our
approach to avoid generating redundant hypotheses during search. The system has many
options, allowing the user to customise it to the domain. These options include the use of
individual-based and structural representations, and the use of a frequency threshold as in
association rule learning. Section 5 describes our experience with applyingTertius to
a range of domains. The tasks we consider are classification, learning in problem solving,
database dependency discovery, and multiple predicate learning. In Section 6 we discuss
related work, and Section 7 concludes.

2. Preliminaries

This section explicates the logical and statistical background and notation employed in the
paper.

2.1. Logical setting

Throughout the paper, the hypothesis language is a function-free first-order language. The
signatureof such a language is a set of domain-specific predicates and constants. Alit-
eral consists of a predicate applied to variables and/or constants. Aground literal does
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not contain any variables. Literals can be combined into formulae by means of the usual
logical connectives (negation¬, conjunction∧, disjunction∨, implication→ or←, and
equivalence↔). A variable in a formula can beboundby a universal quantifier∀ or an ex-
istential quantifier∃. A free variableis a variable that is not bound by a quantifier. Aclosed
formula is a formula without free variables. IfF is a formula,∀(F) denotes theuniversal
closureof F , i.e. a closed formula in which all free variables inF are bound by universal
variables.

Although our approach is generally applicable to first-order languages, theTertius
system employs a normal form variant calledclausal logic. A clauseis a disjunction of
possibly negated literals, e.g.,H1 ∨ H2 ∨ ¬B1 ∨ ¬B2. Such a rule is usually written as
an implicationH1 ∨ H2← B1 ∧ B2, or H1;H2:-B1,B2 in Prolog notation. All variables
in a clause are universally quantified (the quantifiers are conventionally left implicit). In
Section 3 we mostly employ a general first-order language, whereas in Sections 4 and 5 we
use clausal logic.

We assume the standard Tarskian semantics for first-order logic, and writeF |= G if all
models ofF are also models ofG, where a model is an interpretation in which the formula is
true. We say thatF entails G, or thatG is aspecialisationof F . In the case of clausal logic,
specialisationsG of a clauseF can be obtained by a syntactic process calledrefinement.
Briefly, there are three types of refinement operations: adding a literal to a clause, unifying
two variables, or instantiating a variable with a term (i.e., a constant in function-free logic).
The refinement operator employed byTertius will be discussed in Section 4.2.

The evidence that is input toTertius consists essentially of ground literals, possibly
enhanced with intensional background knowledge. However, in the theoretical setting of
Section 3 we will make minimal assumptions about the logical form of the evidence, only
assuming availability of the following procedures:

GS: a procedure returning a finite set of grounding substitutions for the free variables in
a given formula;

TV: a procedure assigning truthvalues to closed formulae according to the evidence.

These procedures allow us to leave the form in which the evidence is given unspecified. For
instance, if the evidence is partitioned as in learning from interpretations (De Raedt, 1997)
GS will not return grounding substitutions that mix terms from different interpretations.
Since the proceduresGS andTV provide the interface to a given body of evidence, we
will normally not explicitly refer to the evidence in our formalisation, and simply say ‘the
degree of confirmation of hypothesisH is c(H)’.

2.2. Contingency tables

Our main statistical tool in this paper will be the contingency table, which is an important
tool in the analysis of categorical data (Wickens, 1989). Suppose we have a population
of unspecified entities, and two attributesX and Y that can each take on two possible
values for each entity. We want to know whether these two attributes are dependent with
respect to the population. To this end, we draw a sample from the population, and record the
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Table 2. A contingency table.ni j denotes observed frequency of a joint event, andni∗ andn∗ j denote marginal
frequencies.

Y= y1 Y = y2 total

X=x1 n11 n12 n1∗
X=x2 n21 n22 n2∗
total n∗1 n∗2 N

frequencies of possible outcomes in a two by two table, which is called acontingency table
(Table 2).

Suppose the two attributes are independent (thenull hypothesis). In that case, the expected
frequency for e.g.n11 would beµ11 = n∗1n1∗/N, and similarly for the other cells. We would
expect the observed frequenciesni j to be close to theseµi j . To check this, we compare the
two sets of numbers by calculating the Pearson statisticX2:

X2 =
∑

i j

(ni j − µi j )
2

µi j
=
∑

i j

n2
i j

µi j
− N (1)

If one of theµi j ’s is 0, we setX2 = 0 (see below).
Large values ofX2 indicate big discrepancies between observed and expected values,

while small values indicate a close fit. Because we observe only part of the population
an exact fit is unlikely, but we can assess the value ofX2 by referring it to the sampling
distributionχ2 with one degree of freedom (ann by m table has(n − 1)(m− 1) degrees
of freedom). For instance, the criticalχ2 value at the 5% level is 3.84 — if ourX2 value is
larger than that, the probability is less than 5% that discrepancies this large are attributable
to chance, and we are led to reject the null hypothesis of independence.

For a two by two table we can rewrite Eq. (1) as follows:

X2 = (n11n22− n12n21)
2

n1∗n2∗n∗1n∗2
N (2)

From this equation we see thatX2 is proportional to the sample sizeN, which is typical for
a test statistic (with increasing sample size we can be more certain of our decision to accept
or reject the null hypothesis). DividingX2 by N we obtain a measure of the strength of the
dependency betweenX andY:

82 = X2/N =
∑

i j

(ni j − µi j )
2

Nµi j
= (n11n22− n12n21)

2

n1∗n2∗n∗1n∗2
(3)

82 ranges from 0 (total independence) to 1 (total dependence) for a two by two table.
Total independence occurs iff the products of the observed frequencies on the diagonals
are identical (a special case is when there are 2 zeroes in the same row or column, i.e.,
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when one of the marginals is zero). Total dependence is obtained iff a table has 2 zeroes in
different rows and columns. A single zero in the table typically leads to a relatively high
82, especially when it is accompanied by a low value in the diagonally opposite cell.
82 assesses the strength of the dependency between two variables, based on a single sam-

ple of events. This can be generalised to several samples and/or more than two variables.
There are various ways of combining information from several contingency tables into a
single82. In the simplest case one combines the tables into a single contingency table by
summing the corresponding cells, and then calculates82 of the combined table. Alterna-
tively, one can calculate82 for each table separately and average those. This is preferable
if each sample can be meaningfully interpreted as a separate experiment, otherwise the first
approach is better.Tertius can use partitioned data, and uses the first summative method
of combination unless explicitly instructed by the user to use the averaging method.

A contingency table with more than two variables is called amultiwaytable. For instance,
in a three-way table there are eight observed frequenciesni jk . Furthermore, there are three
one-waymarginalsni∗∗, n∗ j∗ andn∗∗k; and threetwo-waymarginalsni j ∗, ni∗k andn∗ jk . In
general anm-way contingency table hasm− 1 different kinds of marginals. The expected
frequencies can sum up to all of these marginals, or only to a subset, as determined by the
null hypothesis. For instance, under the null hypothesis ofcomplete independenceof the set
of variables, the expected frequencies are products of one-way marginals, as before. In this
case, they sum up only to the one-way marginals, not necessarily to the others. Multiway
contingency tables do not play a major role in this paper, except for indicating how logical
background knowledge can be incorporated into the confirmation measure.

3. Confirmation

This section presents the main theoretical contribution of the paper, which is a confirmation
measure for first-order formulae. In Section 3.1 we derive and justify this confirmation mea-
sure for the special case of universally quantified implications. In Section 3.2 we obtain an
upper bound on the degree of confirmation that can be obtained by specialising a formula,
and prove its correctness for a specific kind of specialisations calledadmissiblespecialisa-
tions. This upper bound is exploited inTertius ’ A* search algorithm to prune without
losing completeness. Finally, Section 3.3 discusses an extension of the confirmation function
which takes logical background knowledge into account.

3.1. Confirmation of rules

In this section we only consider rules of the form∀(H ← B), whereH andB are arbitrary
formulae with some free variables, and∀(·)denotes universal closure over the free variables.
H is called theheadof the rule, andB is called itsbody. We do not place further restrictions
on the syntactic form ofH and B, although frequently the rule is a clause, i.e.,H is a
disjunction andB is a conjunction of atoms.

The idea is to measure how strongly the rule is confirmed by the evidence by determining
the number of (counter-)instances ofH and B and the number of (counter-)instances of
∀(H ← B). We consider a sample ofN grounding substitutionsθ of H ← B, returned
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Table 3. The contingency table used to evaluate a rule∀(H ← B).

B B̄

H nHB (µHB) nHB̄ (µH B̄) nH

H̄ nH̄B (µH̄B) nH B (µH B) nH̄

nB nB̄ N

by GS, and tabulate the corresponding truthvalues ofHθ and Bθ as returned byTV in a
contingency table (Table 3). For instance,nHB denotes the number of grounding substitutions
that satisfy both head and body of the rule; similarly,nH̄B denotes the number of substitutions
that satisfy the body but falsify the head, also referred to ascounterinstancesof the rule
∀(H ← B).

A second set of frequenciesµi j is obtained from the row and column marginals under
some null hypothesis. They are calledexpected frequencies—in particular,µH̄B is the ex-
pected frequency of counterinstances of the rule∀(H ← B). Notice that expected frequen-
cies add up to the same marginal frequencies as the observed frequencies—they represent
a different distribution of mass over the four cells of the contingency table. The more the
observed frequenciesni j differ from the expected frequenciesµi j , the more information is
contained in the observed frequencies that cannot be predicted from the marginal frequen-
cies. It will often be convenient to switch to relative frequenciespi j (observed) andπi j

(expected).1

In the simplest case, expected frequencies are given by the product of the corresponding
row and column marginals divided byN.

Definition 2(Simple expected frequency).µi j = ni∗n∗ j
N .

For instance,µH̄B = nH̄ nB
N . Most of what follows holds for arbitrary null hypotheses

(i.e., arbitrary ways of computing expected frequencies), but we will occasionally resort
to Definition 2. An alternative definition of expected frequencies will be considered in
Section 3.3.

Our objective is to define a confirmation function for rules of the form∀(H ← B) in
terms of the frequencies in its associated contingency table. A similar problem is considered
by Piatetsky-Shapiro (1991). He considers confirmation functions defined in terms ofnHB,
nH , andnB. Specifically, thenHB substitutions satisfying bothH and B are considered
theconfirming instancesof ∀(H ← B). The problem with this approach is that the rules
∀(H ← B) and∀(B ← H) will always have the same number of confirming instances,
which is clearly undesirable in learning tasks whereH andB can be chosen freely. We solve
this problem by focusing instead on the quantitynH̄B, which is the number ofcounterin-
stancesof the rule∀(H ← B). All grounding substitutions that are not counterinstances are
considered to be confirming instances. That is, we do not treat∀(H ← B) as a classification
rule, which has onlynHB confirming instances, but rather as a logical formula.

Piatetsky-Shapiro proposes three principles that should be satisfied by confirmation func-
tions. Rewritten in terms of counterinstances, these principles are as follows:
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P1: the confirmation should be 0 ifpH̄B = πH̄B;
P2: the confirmation should monotonically decrease withpH̄B, all other parameters re-

maining the same;
P3: the confirmation should monotonically increase withpH̄ (or pB), all other parameters

remaining the same.

As Piatetsky-Shapiro notes, the simplest measure satisfying P1-3 isπH̄B − pH̄B. It is easy
to show that this is equal topHB − πHB, and thus symmetric inH and B. On the other
hand, this measure has a certain interest: e.g., under simple expected frequency it equals
p(B)[ p(H | B)−p(H)], which has been calledweighted relative accuracyin a classification
context (Lavraˇc, Flach, & Zupan, 1999). Here, we call it thenoveltyassociated with the
rule, because it measures the novel information expressed by the rule that cannot be inferred
from the evidence and the null hypothesis alone.

Definition 3. Thenoveltyof a rule∀(H ← B) is defined as1H̄B = πH̄B − pH̄B.

Note that−0.25≤ 1H̄B ≤ 0.25.
To exclude measures that are symmetric inH andB, we add the following principle:

P4: two rules∀(H ← B) and∀(B← H) should get equal confirmation only if they have
the same number of counterinstances.

We thus need a second measure to distinguish between∀(H ← B) and∀(B← H), select-
ing the one that is most satisfied (has the least number of counterinstances).

Definition 4. Thesatisfactionof a rule∀(H ← B) is defined asσH̄B = πH̄B−pH̄B
πH̄B

.

That is, satisfaction is defined as the fraction of expected counterinstances that are not ob-
served, i.e., the relative difference between expected error and observed error. Satisfaction is
a version of rule accuracyp(H | B) that takes the whole contingency table into account. To
see this, notice thatσH̄B can be re-expressed aspH B−πH B

pB−πH B
, which under simple expected fre-

quency is equal top(H | B)−p(H)
1−p(H) . Thus, satisfaction increases linearly with rule accuracy,

reaching its maximum of 1 iffp(H | B) = 1, but becoming negative as soon as the
rule accuracy drops under the ‘default’ accuracyp(H).

Naturally, we want high novelty and high satisfaction. The question is then how to
combine them in a single measure. Note that the product of novelty and satisfaction, i.e.,
(πH̄ B−pH̄ B)

2

πH̄ B
, is equal to the term in the sum for82 associated with the cell̄HB. If we want

to assess the contribution of a particular cell, i.e., a particular pair of observed and expected
frequencies, we ask the question: What would be thelowest82 obtainable if we could vary
everything except that particular cell and the population size? The answer is given by the
following result.
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Theorem 1. For any contingency table with givenπH̄B and pH̄B:

82 ≥ 82
H̄B =

(
πH̄B − pH̄B√
πH̄B − πH̄B

)2

This minimum is reached in the following table:

B B̄

H
√
πH̄B − pH̄B 1+ pH̄B − 2

√
πH̄B 1−√πH̄B

pH̄B
√
πH̄B − pH̄B

√
πH̄B

H
√
πH̄B 1−√πH̄B 1

Proof: 82 can be expressed inpH̄B, πH̄B, and (say)pH̄ . The resulting expression is
quadratic inpH̄ and thus has a single minimum.82

H̄B
is then calculated by setting the

pH̄ -derivative to 0 and solving forpH̄ . 2

Notice the equality ofpH̄ and pB in this table. More generally, we have82 = 82
H̄B

iff
pH̄ = pB = √πH̄B.

Putting everything together, we are now ready to define the degree of confirmation of a
rule.

Definition 5. Thedegree of confirmationof a rule∀(H ← B) is defined as

8H̄B = ±
√
82

H̄B
= πH̄B − pH̄B√

πH̄B − πH̄B

Thus, given the observed and expected relative frequencies of counterinstances of a rule
∀(H ← B), we define its degree of confirmation as the minimal8 that results from those
relative frequencies, by building the “virtual” contingency table displayed in Theorem 1.
In this way we cancel out the contributions of other associations that can possibly exist
betweenH andB, for instance the association expressed by∀(B← H).

Clearly8H̄B, being the square root of the “virtual”82, is normalised between−1 and
+1. We have that8H̄B = 1 iff pH̄B = 0 and pH̄ = pB = .5,8H̄B = 0 iff pH̄B = πH̄B
(P1), and8H̄B = −1 iff pH̄B = √πH̄B. In general,8H̄B increases with decreasing number
of observed counterinstances and increasing number of expected counterinstances (P2-3).
Finally, P4 is satisfied since8H̄B is not symmetric inH andB.

Example. Consider the following contingency table, associated with the rule∀XY : female
(X)← mother (X,Y):
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mother(X,Y) mother (X,Y)

female(X) 11 (5.8) 179 (184.2) 190
female (X) 0 (5.2) 171 (165.8) 171

11 350 361

We haveπH̄B = .014, and8H̄B = .137. This corresponds to
√
82 of the following virtual

table:

mother(X,Y) mother (X,Y)

female(X) 43.4 (38.2) 274.2 (279.4) 317.6
female (X) 0 (5.2) 43.4 (38.2) 43.4

43.4 317.6 361

Notice how both observed and expected frequencies of the lower left-hand cell stay the
same, but the values got evenly distributed on the other diagonal, also increasing the upper
right-hand cell.

On the other hand, the rule∀XY : mother (X,Y) ← female (X) has pH̄B = .496,
πH̄B = .510, and8H̄B = .070. 2

3.2. Optimistic estimate of confirmation

The degree of confirmation of a rule, as defined in the previous section, is a measure for
ranking given rules. In order to use it as a search heuristic, we need a function that estimates
the extent to which the degree of confirmation of a given rule can be improved by specialising
it. If this function never under- estimates the possible improvement, it is called anoptimistic
estimate. The significance of such an optimistic estimate is that it guarantees completeness
of A* search, i.e., we can prune without fear of losing good solutions. Clearly, in order to
prune as much as possible we would like the estimate to be as tight as possible, without
becoming pessimistic.

In clausal logic, specialising a clause means adding a literal or applying a substitution.
The latter kind of specialisation reduces the number of variables, thereby changing the
sample of grounding substitutions. We discuss this special case later, and for the moment
assume that the only possible specialisations consist in making the body harder to satisfy
and/or the head easier to satisfy.

Definition 6. An admissible specialisationof a rule∀(H ← B) is a rule∀(H ′ ← B′)
such that∀(H ← B) |= ∀(H ′ ← B′), nH̄ ′ ≤ nH̄ , andnB′ ≤ nB.

Thus, any admissible specialisation (possibly) decreasesnH̄B and (possibly) increasesnHB̄,
while the other two cells can either increase or decrease. Note, however, that in general
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8 is highest for tables with low numbers in̄HB and HB̄, and high numbers in the other
two cells. That is, the most promising admissible specialisations are those that move all
substitutions fromH̄B to HB andH B, leavingHB̄ untouched. Furthermore,nHB = nH B
prevents redistribution of substitutions in the virtual table of Theorem 1.

We then arrive at the following optimistic estimate, expressed as a function ofpHB̄.

Theorem 2. Under simple expected frequencies, if∀(H ′ ← B′) is an admissible spe-
cialisation of∀(H ← B), then

8H̄ ′B′ ≤
1− pHB̄

1+ pHB̄

Proof: We have argued above that the most confirmed admissible specialisation∀(H ′ ←
B′) haspH̄ ′B′ = 0, pH ′B′ = pH ′B′ , and pH ′B̄′ = pHB̄. It follows that pH̄ ′ = pB′ , and thus√
πH̄ ′B′ = (pH̄ ′ + pB′)/2. Then

8H̄ ′B′ =
πH̄ ′B′ − pH̄ ′B′√
πH̄ ′B′ − πH̄ ′B′

= πH̄ ′B′√
πH̄ ′B′ − πH̄ ′B′

=
√
πH̄ ′B′

1−√πH̄ ′B′

= pH̄ ′ + pB′

2− pH̄ ′ − pB′

= 1− (pH ′B̄′ − pH̄ ′B′)

1+ (pH ′B̄′ − pH̄ ′B′)

= 1− pHB̄

1+ pHB̄
2

Such a specialisation decreases the expected relative frequency of counterinstances to
(pH̄ + pB − pH̄B)

2/4 (assuming that the specialised rule is satisfied, the degree of confir-
mation of the specialised rule will however increase).

Example. Consider the contingency table on the left. AspH̄B > πH̄B = .2, this table has
negative confirmation. The best we can hope to achieve by specialisation is a confirmation
of 10− 4

10+ 4 = .43, corresponding to the table on the right.

B B̄

H 2 4 6
H̄ 3 1 4

5 5 10

B′ B̄′

H ′ 3 4 7
H̄ ′ 0 3 3

3 7 10

This table hasπH̄ ′B′ = (.4+ .5− .3)2/4= .09. 2
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We can make the estimate a bit tighter by noting that the optimum cannot be reached if
pH̄B < pB−pH̄ (or pH̄B < pH̄−pB). In such cases, we can get no more thanpH̄ (pB−pH̄B)

(or pB(pH̄ − pH̄B)) expected counterinstances in any specialisation.
The optimistic estimate just derived is correct for admissible specialisations, that make

the head easier and/or the body harder to satisfy. It is thus correct for any specialisation that
adds a literal without altering the variables in the rule. It is also correct for specialisations
that add a literal with new variables to the head (body), since this cannot increase the relative
frequency of satisfying (falsifying) substitutions. A problem occurs with specialisations that
decrease the number of variables, i.e., substitutions. The problem is that under substitutions
πH̄B canincrease, counter to the assumptions in the above proof.

Example. Consider a domain of 20 animals, each belonging to one of 4 classes. 8 of
the 20 animals are birds, all of them having feathers. The expected relative frequency of
counterinstances of the rule∀AC : class (A,C) ← feathered (A) is 80− 20

80 × 8
20= .3.

The expected relative frequency of counterinstances of the rule∀A : class (A, bird )←
feathered (A) is 20− 4

20 × 8
20= .32. The optimistic estimate associated with the first rule

will under-estimate this number and therefore the confirmation of the second rule, since it
has no counterinstances. 2

There are basically two solutions to this problem. The first is to represent substitutions
explicitly in both head and body of a rule. In this way we make sure that also substitutions
are admissible specialisations, since they don’t remove any variables. E.g., the second rule
in the example becomes

∀AC : class (A,C) ∨ C 6= bird ← feathered (A) ∧ C= bird

The expected relative frequency of counterinstances of this clause is16
80 × 8

80 = .02.
The second solution to the substitution problem is to restrict counting of satisfying and

falsifying substitutions to a fixed set of variables. E.g., in the first rule above we would
restrict counting to the variableA, and the expected relative frequency of counterinstances
becomes20

20 × 8
20 = .4. In effect, the rule would be interpreted as

∀A : (∀C : class (A,C))← feathered (A)

i.e., variableC becomeslocal to the head of the rule. The negation of the head is now
∃C : ¬class (A,C), which is true for any value ofA.

Definition 7. In the individual-based representation, the domains of grounding substitu-
tions are restricted to a fixed set ofindividual variables. Other variables occurring in a rule
are calledauxiliary variables; they are always local to the body or head in which they occur.
Admissible specialisations can only instantiate or unify auxiliary variables.

This representation is called individual-based because the individual variables quantify
over the individuals in the domain, be they animals, trains, or molecules. The individual-
based first-order representation is a natural upgrade of the propositional attribute-value
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representation (Flach, Giraud-Carrier, & Lloyd, 1998; Flach & Lachiche, 1999a). In the
Tertius system (Section 4) the user can choose between an individual-based represen-
tation and explicit substitutions if she wants to restrict to admissible specialisations. The
unrestricted setting is also available, but as indicated above this renders the confirmation
estimate non-optimistic and the A* search potentially incomplete.

3.3. Including background knowledge in confirmation

Until now we have assumed simple expected frequencies under the null hypothesis of
statistical independence of head and body of a rule, as defined by Definition 2. In this section
we describe a more sophisticated null hypothesis which offers two distinct advantages:

1. it assigns the same confirmation to logically equivalent rules;
2. it allows the incorporation of logical background knowledge.

Although the approach is fully implemented in theTertius system, there are still some
open issues that need to be resolved. This section is therefore somewhat speculative, and
can be skipped on first reading.

To illustrate the first point, consider the two logically equivalent rules∀x : P(x) ←
Q(x) ∧ R(x) and∀x : P(x) ∨ ¬R(x) ← Q(x). Although these rules have the same
number of observed counterinstances, they have different heads and bodies and therefore
different marginal distributions and expected frequencies. This means that under simple ex-
pected frequency we treat← non-classically.2 As long as we have some means of deciding
what goes in the head and what in the body, for instance because we are doing classification,
this is not really a problem. If we do not have a reason for distinguishing between logically
equivalent but syntactically different rules, it makes sense to consider multiway contingency
tables, which are capable of assessing dependencies between more than two objects.

In Table 4 a three-way contingency table is depicted for the three-literal clause∀(H ←
B1∧ B2). There are eight observed frequencies,nH B1B2 etc.; also depicted are the one-way
marginals forH , B1 andB2. In addition there are three two-way marginals forHB1, HB2 and
B1B2 which are not explicitly included in the table, although they can easily be calculated
from the observed frequencies. As stated before, the expected frequencies can sum up to
all of these marginals, or only to a subset, as determined by the null hypothesis. We will be
using a general iterative algorithm to approximate expected frequencies, and therefore are
able to use arbitrary null hypotheses of complete or partial independence. To simplify the

Table 4. The three-way contingency table for the clause∀(H ← B1 ∧ B2).

B1/nB1 B̄1/nB̄1
B1 B̄1

H nH B1B2 nH B̄1B2
nH B1 B̄2

nH B1B2
nH

H̄ nH̄ B1B2
nH B1B2

nH̄ B1 B̄2
nH B1B2

nH̄

B2/nB2 B̄2/nB̄2
N
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discussion, we will however only discuss the null hypothesis of complete independence,
and show how to adapt it to include background knowledge.

Example. Consider the following three-way contingency table:

B1/6 B̄1/14 B1 B̄1

H 3 3 0 3 9
H̄ 3 4 0 4 11

B2/13 B̄2/7 20

The expected number of counterinstances of the clause∀(H ← B1 ∧ B2) under complete
independence of the 3 literals is11× 6× 13

202 = 2.15. Similarly,µH̄ B1 B̄2
= 11× 6× 7

202 = 1.15.
Notice that the clause gets negative confirmation, as the actual number of counterinstances
is 3. 2

Another way to calculate the 8 expected frequencies is to initialise them all to 1, and
then proportionally change them to fit each of the one-way marginals in turn. For instance,
since the first row of four 1’s needs to add up to 9, we multiply all by 2.25; similarly, the
second row gets multiplied by 2.75. We then continue to fit theB1 marginal in the same
way, yielding 1.35 - 3.15 - 1.35 - 3.15 for the first row, and 1.65 - 3.85 - 1.65 - 3.85 for
the second row. Finally, after fitting theB2 marginal the table contains the correct expected
frequencies. For further details the reader is referred to Dahl (1999).

This iterative fitting algorithm provides the clue for incorporating background knowledge.
Suppose that the clause∀(B2← B1) is part of the background knowledge. That is, the two
zeroes in the above table could have been predicted without consulting the data. What we
would like to do now is to adjust the expected frequencies to take this knowledge into
account. That is, we would like to find a set of expected frequencies that fit the one-way
marginalsand obeyµH B1 B̄2

+ µH̄ B1 B̄2
= 0. This is easily achieved by using the iterative

fitting algorithm just explained, and to initialise all cells to 1 except the indicated ones,
which are set to 0. Since the fitting algorithm only makes multiplicative changes, it will
converge to a solution that fits the one-way marginalsand includes the desired zeroes.

Example. We continue the previous example. Taking the required zeroes into account, the
iterative fitting algorithm calculates the following expected frequencies:

B1/6 B̄1/14 B1 B̄1

H 2.7 3.15 0 3.15 9
H̄ 3.3 3.85 0 3.85 11

B2/13 B̄2/7 20
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Due to the lower expected frequencies in theB1B̄2 column, the frequencies in theB1B2

column get increased, and the clause∀(H ← B1∧ B2)will get positive confirmation. 2

The approach has been implemented in theTertius system (Section 4). Before calcu-
lating the expected values in the multiway table, each of the cells is tested for satisfiability
against the background knowledge by asking the appropriate Prolog query. Clearly, some
open issues remain. For instance, multiway contingency tables are exponential, e.g., for an
m-way table 2m Prolog queries are required. Also, interfacing with Prolog can be slow, as
the rest of the system is implemented in C. More generally, the results obtained by means
of two-way analysis (including the optimistic estimate) may no longer apply and need to
be adapted. However, we do believe to have indicated a novel and promising way in which
statistical and logical information can be combined in a general-purpose discovery system.

4. Tertius

TheTertius system implements a top-down rule discovery system employing the con-
firmation measure defined in the previous section. The system is implemented in approx-
imately 7500 lines of GNU C and is freely available for academic purposes (Flach &
Lachiche, 1999b). In this section we describe theTertius system and some of its options
in more detail. From this point on, the representation language is first-order clausal logic in
Prolog notation. A clause consists of a headH and a bodyB, and is denotedH : −B. The
head is a disjunction of literals separated by semicolons. The body is a conjunction of literals
separated by commas. Constant names start with a lowercase letter or digit, whereas variable
names start with a capital.

4.1. Representation

Tertius uses a first-order logic representation. Such a representation allows it to deal with
several kinds of data and, moreover, allows the user to choose the most convenient or the
most comprehensible representation among several possible representations.

Tertius is able to deal with extensional knowledge, either with explicit negation or
under the Closed-World Assumption. In the first case, the truthvalue of all ground facts is
given. For example,mutagenic(d101) indicates that moleculed101 is mutagenic, and
if moleculed102 is not mutagenic, it should be specified by the explicit negative ground
fact¬mutagenic(d102) . No assumption is made when the truthvalue of a ground fact is
not given. Given a third moleculed103 whose mutagenicity is unknown, moleculesd102
andd103 are not counted as molecules satisfyingmutagenic(X) and moleculesd101
andd103 are not counted as molecules satisfying¬ mutagenic(X) .

For calculating the degree of confirmation, only the substitutions satisfying explicitly
the body of the rule (respectively the negation of the head, the conjunction of the body and the
negation of the head) are taken into account. The remaining substitutions are counted in the
other cells and marginals. This approach is conservative with respect to the counterinstances,
since only those that are explicitly given are counted. From a three-valued logic perspective,
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the undefined value of the body (respectively the negation of the head) is merged with the
substitutions not satisfying the body (resp. the negation of the head).

Under the Closed-World Assumption, only true ground facts are given and all the
other ground facts are supposed to be false. For example, givenmolecule(d101) ,
molecule(d102) , mutagenic(d101) , the missing ground factmutagenic(d102)
is implicitly assumed to be false. The degree of confirmation is calculated from true ground
facts only, which means that in this case the approach is conservative regarding substitutions
satisfying the body, but greedy when it comes to counting substitutions falsifying the head.

The previous representations require the truthvalue of all ground facts to be given either
explicitly or implicitly by the Closed-World Assumption. A main advantage of a first-order
representation is, however, the ability to use background knowledge.Tertius can use
intensional knowledge where the truthvalues of ground facts are not given in extension
but in intension. In this case, the truthvalues are derived from the available knowledge
using either the Prolog inference mechanism if the background knowledge consists of
Horn clauses, or using a theorem prover otherwise. For instance, since a bond between
two atoms in a molecule is symmetric, givenbond(d101 1,d101 2,7) the symmet-
ric fact bond(d101 2,d101 1,7) can be deduced from the background knowledge
bond(A1,A2,K):-bond(A2,A1,K) .3

Tertius assumes that predicates are weakly typed, i.e., each argument of a predicate
belongs to a named type.4 For instance, arguments of the predicatebond(A1,A2,B) are
two atomsA1 andA2, and the kind of bondB. The set of values of the argument found in
the data defines the domain of the associated type. For example, the domain of the kind of
bond is the set{1,2,3,4,5,7 } of all constants appearing in the data as the third argument
of bond(A1,A2,B) .

Some arguments of a predicate are meaningful only when they are instantiated. For in-
stance, the predicateatomel(Atom,Element) states that the atomAtom is anElement .
Obviously, an atom is always of some element. It cannot be used as a condition in a rule since
it is always satisfied. Therefore the variableElement must always be instantiated with an
element constant. This kind of argument is called aparameterin Tertius . Parameters
are similar to non-boolean attributes in attribute-value learning. Moreover, if a domain is
continuous,Tertius allows discretisation into a user-specified number of intervals, each
one standard deviation wide, and centred around the mean (figure 1).5

4.2. Non-redundant refinement operator

Tertius uses a top-down best-first search. In a top-down search, shorter and more general
rules are considered first.θ -subsumption (Plotkin, 1970, 1971) is used to compare the

Figure 1. Discretisation of continuous domains.
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Figure 2. A lattice and a covering tree.

generality of rules. The search starts with the empty rule and then refines it iteratively. The
refinement operations used inTertius are: adding a literal, unifying two variables, and
instantiating a variable with a constant from its domain. The search space is a lattice: there
may be several paths from the empty rule to a hypothesis. Considering the same clauses
several times would mean generating all their refinements several times, therefore it would
decrease the efficiency of the search. The aim is to find a tree that covers the lattice. A
typical example is the enumeration of subsets of a set (Rymon, 1992). Figure 2 shows the
lattice of subsets of the seta, b, c and a covering tree in bold lines. The search is constrained
along a covering tree by ordering the refinement operations and allowing an operation to be
applied only if all the refinement operations applied until then precede it in the ordering.

Refinement operations inTertius obey the following order: adding a new literal, unify-
ing two variables, and instantiating a variable with a constant from its domain. For instance,
adding a literal to a clause is not allowed once two variables have been unified. Furthermore,
each of these refinement operations can generate a lattice of hypotheses, and thus has to be
constrained in a similar way.

Predicates are ordered following the order in which they are declared (see Section 4.3). A
literal containing predicateP can only be added to a clause not containing predicates suc-
ceedingP in the ordering. For instance, if predicateatomel(Atom,c) is declared before
predicateatomty(Atom,22) , then it is possible to refine the rulemutagenic(M) :-
atm(M,A), atomel(A,c) into the rule mutagenic(M) :- atm(M,A),
atomel(A,c), atomty(A,22) , but the latter rule cannot be obtained as a refinement
of mutagenic(M) :- atm(M,A), atomty(A,22) .

Variables of a rule are also ordered according to their order in the clause (right to left).
A variable at positioni can be unified with a variable at positionj > i iff (1) no variable at
positionk > i has been unified so far, and (2) the variable at positioni has not been unified
with a variable at positionl > j before. For instance, the clausep(Z,Y,X) :- q(Y,X)
can be refined into either of

p(Z,X,X) :- q(X,X)
p(X,Y,X) :- q(Y,X)
p(Y,Y,X) :- q(Y,X)
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The first refinement can be further refined top(X,X,X) :- q(X,X) . But the second
refinement cannot be further refined by unification of two variables, because the first variable
X has been unified with the third oneZ, i.e., X can no longer be unified with the second
variableY (2), andY is never allowed to be unified with a variable preceding it in the
ordering. The third refinement cannot be further refined by unification of two variables
either, because since the second variableY has been unified already,X can no longer be
unified with any variable (1).

Finally, the instantiation of variables with a constant of their domain is constrained in
a similar fashion. Constants are ordered following the order in which they appear in the
data. Then the mechanism is similar to the one of unification: a variable at positioni can
be instantiated with a constant at positionj from its domain iff no variable at position
k> i has been instantiated so far, and the variable at positioni has not been instantiated
with a constant at positionl > j before. For instance, some possible refinements of the rule
mutagenic(M):- atm(M,A), atomel(A,B), atomty(A,C) are:

mutagenic(M) :- atm(M,A), atomel(A,c), atomty(A,C)
mutagenic(M) :- atm(M,A), atomel(A,B), atomty(A,22)

The first refinement can in turn be refined intomutagenic(M) :- atm(M,A),
atomel(A,c), atomty(A,22) . But the second refinement cannot be further refined
by instantiation of the variableB, since it has been obtained by instantiating the variableC
which succeedsB in the ordering.

In conclusion, we note that these constraints are similar to the constraints established
independently by Badea and Stanciu in order to prove that refinement operators can be
weakly perfect (Badea & Stanciu, 1999).

4.3. Inductive bias

Inductive biases are auxiliary pieces of knowledge used to produce, in a deductive way,
candidate inductive hypotheses from the data. They can be either language biases or search
biases.

Several language biases are used inTertius to define and restrict the search space.
The search is always restricted to a maximum number of literals and of variables, specified
to Tertius as command-line arguments. In addition, the user can restrict the number of
occurrences of individual predicates. The hypothesis language considered inTertius is
the set of clausal rules. If the user so chooses, it can be restricted to Horn clauses only
(option-b horn ). Moreover the predicate in the head can be fixed for classification or for
subgroup discovery (options-b class for positive and negative classification rules,-b
pos class for positive classification rules only, and-b horn pos class for positive
classification rules without negation in the body).

Additional language biases are best explained by considering an example of the decla-
rations required byTertius . These declarations concern a possible representation of the
mutagenesis problem discussed in Section 5.1.



CONFIRMATION-GUIDED DISCOVERY OF FIRST-ORDER RULES WITHTertius 79

--INDIVIDUAL
mol 1 mol cwa
--STRUCTURAL
atm 2 1:mol *:atom * cwa
--PROPERTIES
mutagenic 1 mol cwa
atomel 2 atom #letter cwa
atomty 2 atom #number cwa
atomch 2 atom #charge cwa
bond 3 atom atom #type cwa

In this domain we use an individual-based representation. The individual is defined by a
type (or a cartesian product of types) by means of a dummy predicate. In the example above,
the first two lines define a single individual variable of typemol .

Moreover, we distinguish betweenstructural predicatesreferring to parts of individ-
uals, andpropertiesof either individuals or their parts. Structural predicates are binary
predicates used to represent the link between a complex type and one of its components.
They are used to introduce new variables in rules. Lines 3–4 in the declaration above
define a structural predicateatm(M,A) , referring to an atomA of the moleculeM. It is
a one-to-many relation, indicating that one molecule may contain many atoms, but each
atom belongs to exactly one molecule. This functions as a language bias, since rules like
mutagenic(M):-atm(M,A),atm(B,A) will not be considered. Furthermore, with a
structural representation like the above, every auxiliary variable must be introduced by a
structural predicate in the body of the rule.

In an individual-based representation, properties are the predicates that are not structural.
They cannot introduce any new variable, they just state properties of the individual or of
its parts represented by the variables introduced so far. The remaining lines of the example
above indicate that there are five properties, a unary propertymutagenic of molecules,
three binary properties of atoms (atomel , atomty andatomch ), and a ternary property
representing abond between two atoms. The last argument’s types of the last properties
are preceded by#, indicating that they areparameterswhich should always be instantiated
in rules. Notice that we use the Closed-World Assumption for all predicates here (cwa).

These language biases are similar to mode declarations, albeit on the predicate level
rather than the argument level. Other ILP systems, such asProgol (Muggleton, 1995) or
WARMR (Dehaspe & De Raedt, 1997), use mode declarations such asinside
(-Object1, +Object2) indicating that the first object is the output argument, and
that the second objectObject2 is an input argument and should use a variable already
occurring previously in the current hypothesis. They however do not distinguish between
structural predicates and properties, as their hypothesis language is not individual-based.

Several search biases are used inTertius . When only admissible specialisations are
considered (Definition 6), refining a rule can only lead to a new body satisfied by fewer
substitutions, and similarly for the negation of the new head. Therefore, if less than 10% of
the individuals satisfy, for instance, the body of a rule, then less than 10% of the individuals
will satisfy the body of any of its refinements. Since it is desirable that a rule covers a
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significant proportion of the individuals, a thresholdf can be set on the proportion of
individuals satisfying the body (resp. the negation of the head) of a rule (option-f f ).
This frequency thresholdis one of the search biases used inTertius , and is similar to the
pruning rule used in the search of frequent subsets by Dehaspe and Toivonen (1999).

The optimistic estimate (Section 3.2) is also used to constrain the search. That is, a
thresholdc can be set on the confirmation, and the refinement of a rule can be stopped
as soon as the optimistic estimate of the confirmation of its refinements is lower than the
threshold (option-c c). Alternatively, thek best confirmations found so far can be stored
and the lowest of the currentk best confirmations can be used as a dynamic threshold on
the confirmation (option-k k; k = 10 by default).

If a rule is added to the currentk best rules, it may or may not be further refined. The reason
for refining it is that one of its refinements may have an even higher confirmation. However,
if the rule has no counterinstances, its confirmation cannot be increased by specialisation—
in this case we do not consider its refinements. This stopping criterion can be relaxed by
allowing a small percentagen of counterinstances, typically referred to as thenoise level
(option -n n). AnotherTertius option is to restrict output to satisfied clauses only
(option -sat ); with this option,Tertius performs categorical confirmatory induction
(see Definition 1). Combining the-sat and-n n options,Tertius produces ‘almost
satisfied’ clauses.

5. Experiments

In this section we describe our experience with applyingTertius to a variety of discovery
tasks. In Section 5.1 we useTertius to discover classification rules in the mutagenesis
domain. Section 5.2 describes our experiments in a problem solving and planning domain.
In Section 5.3Tertius discovers functional dependencies in a database relation, and in
Section 5.4 the system is applied to a multiple predicate learning task.

5.1. Classification

Although not specifically designed for classification tasks,Tertius can be used to learn
rules predicting a given predicate. We consider in this section the problem of identifying
mutagenic compounds from a dataset of 188 molecules (Srinivasan et al., 1994).Tertius
was run with an individual-based hypothesis language, restricted to clauses with the target
predicatemutagenic(A) in the head and positive literals in the body. The rules it found
are reproduced below. The first column of numbers indicates the degree of confirmation
8H̄B of the rule, while the second column indicates the relative frequency of counterin-
stancespH̄B. The number of hypotheses explored and the average number of ground literals
that have been evaluated for each rule are reported after the list of rules. Notice that the
latter number is roughly the number of possible instantiations of the rule times its number
of literals. The CPU-time on a Sun Ultra 10 is also given.

tertius -b hornposclass 3/2 mutagenesis

t1. /* 0.364484 0.058511 */ mutagenic(A) :- atm(A,B), atomty(B,27).
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t2. /* 0.231743 0.063830 */ mutagenic(A) :- atm(A,B), atomty(B,29).

t3. /* 0.210764 0.000000 */ mutagenic(A) :- atm(A,B), atomty(B,28).

t4. /* 0.198029 0.005319 */ mutagenic(A) :- atm(A,B), atomch(B,0.142).

t5. /* 0.198029 0.005319 */ mutagenic(A) :- atm(A,B), atomch(B,-0.118).

t6. /* 0.187607 0.000000 */ mutagenic(A) :- atm(A,B), atomch(B,0.812).

t7. /* 0.182032 0.005319 */ mutagenic(A) :- atm(A,B), atomch(B,0.145).

t8. /* 0.182032 0.005319 */ mutagenic(A) :- atm(A,B), atomch(B,0.012).

t9. /* 0.179557 0.000000 */ mutagenic(A) :- atm(A,B), atomch(B,0.141).

t10. /* 0.173767 0.005319 */ mutagenic(A) :- atm(A,B), atomch(B,-0.388).

t11. /* 0.171306 0.000000 */ mutagenic(A) :- atm(A,B), atomty(B,195).

t12. /* 0.154081 0.000000 */ mutagenic(A) :- atm(A,B), atomch(B,-0.085).

Number of hypotheses explored: 498

Average number of ground queries to the database: 14479

Time: 46.7s

The rules found byTertius are compared with the following rules found withProgol 6

using information on atoms and bonds only (Srinivasan, King, & Muggleton, 1996) (to fa-
cilitate comparison, we calculated8H̄B and pH̄B for these rules):

p1. /* 0.126 0.000 */ mutagenic(A):-atm(A,B),atm(A,C),atm(A,D),

atomel(B,c),atomty(B,29),

bond(C,B,7),bond(D,C,1).

p2. /* -0.01 0.027 */ mutagenic(A):-atm(A,B),atm(A,D),atomel(B,c),

atomty(B,22),atomch(B,C),C=<0.202,

atomel(D,c),atomty(D,29).

p3. /* 0.241 0.021 */ mutagenic(A):-atm(A,B),atm(A,C),atm(A,D),

atomel(B,c),atomty(B,27),

bond(C,B,7),bond(D,C,1).

p4. /* 0.389 0.000 */ mutagenic(A):-atm(A,B),atomel(B,c),

atomty(B,27),atomch(B,C),C=<-0.085.

p5. /* 0.086 0.011 */ mutagenic(A):-atm(A,B),atomel(B,c),

atomty(B,22),atomch(B,-0.114).

p6. /* 0.269 0.011 */ mutagenic(A):-atm(A,B),atomel(B,c),

atomty(B,29),atomch(B,C),C=<0.011.

p7. /* 0.171 0.000 */ mutagenic(A):-atm(A,B),atomel(B,c),atomty(B,195).

p8. /* 0.028 0.021 */ mutagenic(A):-atm(A,B),atm(A,D),atomel(B,o),

atomty(B,40),atomch(B,C),

atomel(D,n),atomty(D,32),atomch(D,C).

p9. /* 0.211 0.000 */ mutagenic(A):-atm(A,B),atm(A,D),atomel(B,c),

atomty(B,10),atomch(B,C),atomel(D,c),

atomty(D,10),atomch(D,C),bond(D,B,1).

p10. /* 0.104 0.000 */ mutagenic(A):-atm(A,B),atm(A,D),atomel(B,o),

atomty(B,40),atomch(B,C),

C=<-0.403,bond(B,D,2).



82 P. A. FLACH AND N. LACHICHE

p11. /* 0.092 0.000 */ mutagenic(A):-atm(A,B),atomel(B,c),

atomty(B,16),atomch(B,-0.191).

p12. /* 0.097 0.011 */ mutagenic(A):-atm(A,B),atm(A,D),atomel(B,c),

atomty(B,26),atomel(D,c),

atomty(D,22),atomch(D,E),E=<-0.110.

p13. /* 0.063 0.000 */ mutagenic(A):-atm(A,B),atomel(B,c),

atomty(B,29),atomch(B,0.010).

p14. /* 0.079 0.000 */ mutagenic(A):-atm(A,B),atm(A,C),atm(A,D),

atm(A,E),atomel(B,cl),atomty(B,93),

bond(D,E,2),bond(C,E,1).

p15. /* 0.163 0.000 */ mutagenic(A):-atm(A,B),atm(A,C),atm(A,D),atomel(B,o),

atomty(B,40),atomch(B,-0.389),

bond(C,B,2),bond(D,C,1).

Rule t1 found byTertius covers rules p3 and p4 found byProgol , and rule t2 covers
rules p1, p2, p6, and p13. Note that p4 and p6 are refinements of t1 and t2, respectively,
that get higher confirmation and less counterinstances (they weren’t found byTertius
because they are outside the specified language bias).

On the other hand,Tertius finds also some considerably simpler rules that are equiva-
lent toProgol rules in terms of confirmation and counterinstances. For instance, rule t11
covers rule p7; since both rules have exactly the same8H̄B andpH̄B, the condition thatB is
a carbon atom in theProgol rule is redundant. Similarly, further down the list (not shown
above)Tertius finds some rules subsuming otherProgol rules (p11 and p5) with the
same confirmation and counterinstances:

t42. /* 0.092226 0.000000 */ mutagenic(A) :- atm(A,B), atomch(B,-0.191).

t51. /* 0.086106 0.010638 */ mutagenic(A) :- atm(A,B), atomch(B,-0.114).

Interestingly, the most highly confirmed satisfied rule found byTertius (t3), stating
each of the 17 molecules containing an atom of type28 is mutagenic, is not found by
Progol , nor is any of its refinements. Similarly, the remaining rules (t4–t10, t12) found
by Tertius are relatively highly confirmed, some are even satisfied, and none of them
subsume any of the rules found byProgol .

The reader will have noticed that one rule found byProgol gets a negative confirma-
tion. This can be explained by the sequential covering algorithm employed byProgol ,
which repeatedly changes the dataset (and thereby the confirmation values) by throwing out
covered positive examples. Specifically, rule p2 gets a negative confirmation on the whole
dataset because its expected number of counterinstances (4.7) is lower than the observed
number (see the left table).

Body Body

Head 9 116 125
Head 5 58 63

14 174 188

Body Body

Head 9 0 9
Head 5 58 63

14 58 72
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Figure 3. Examples of situations before and after stacking, unstacking, and transfer operations (after Vere, 1978;
used with permission).

Without going into a detailed analysis of which positive examples were removed by
Progol , we show how this could have led to much higher confirmation of p2. The max-
imum confirmation one can get by removing positive examples from the left contingency
table would be obtained when the 116 instances satisfyingHead andBodyare removed
(right table). The expected number of counterinstances14× 63

72 = 12.25 is then greater than
the observed number of counterinstances, and the confirmation of the rule becomes 0.42.
This is obviously an optimistic estimate, and the actual effect of removing positive exam-
ples can lead to a lower degree of confirmation. However, the example demonstrates that
sequential covering algorithms can induce locally confirmed but globally unconfirmed rules.

In conclusion,Tertius found simple rules subsuming nine out of the fifteen rules found
by Progol using atoms and bonds only. It also found nine highly confirmed rules such as
t3, none of which were found byProgol . We should add thatTertius — in its current
implementation — cannot learn rules of the complexity of, e.g., p14 and p15, because of
the search depth required.

5.2. Problem solving and planning

Tertius can be used in a problem solving and planning context. In this section, we
consider a planning domain. Figure 3 shows an experimental framework taken from Vere
(1978). It consists of six examples of ‘blocks world’ pairs representing the situations before
and after the application of one of the operators stack, unstack, and transfer. Vere’s task was
to identify a set of operators, defined by their pre-conditions and post-conditions, such that
one of the operator applies to each example. The intended result is:

action pre-conditions post-conditions
stack clear(X), clear(Y), ontable(X) clear(X), on(X,Y)
unstack clear(X), on(X,Y) clear(X), ontable(X), clear(Y)
transfer clear(X), clear(Y), on(X,Z) clear(X), on(X,Y), clear(Z)

Vere defines aproduction as a pre/post-condition pair, for instanceclear(X),
clear(Y), ontable(X) → clear(X), on(X,Y) . The original learning task was
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to learn such productions. However,Tertius is not directly applicable to that task for
two reasons. In the first place, productions are not logical rules: A being clear and on the
table and T being clear beforehand in example 1 does not imply that A will be stacked
on T. Secondly, instead of identifying a set of “rules” completely covering the examples,
Tertius learns a set of integrity constraints, each of which applies to all examples. The
first learning task considered in this section is therefore to find the set of all satisfied clauses
from the complete set of six examples.

In our experiments, each example is described by a set of ground facts representing the
properties of each blockbefore andafter the operation, plus the identification of the
subject of the operation (i.e., the block to be moved) and itsdestination . We also
indicate that thetable is a special kind of block.7 The first example, for instance, is
represented by the following facts:

clear(table,before). clear(table,after). subject(x).
clear(x,before). clear(x,after). destination(w).
on(x,table,before). on(x,w,after). table(table).
on(u,table,before). on(u,table,after).
on(t,u,before). on(t,u,after).
clear(t,before). clear(t,after).
on(z,table,before). on(z,table,after).
on(y,z,before). on(y,z,after).
on(w,y,before). on(w,y,after).
on(a,table,before). on(a,table,after).
clear(a,before). clear(a,after).
clear(w,before).

Given that this domain is noise-free, we looked for satisfied rules only. Since each example
represents a separate dataset, partitioning was used and the confirmation value was averaged
over the partitions.Tertius produced the following rules (since they are all satisfied, we
omit the relative frequency of counterinstances):

tertius -sat -c 0 -avg 3/2 all

1. /* 0.406156 */ subject(A); on(A,B,after) :- on(A,B,before).

2. /* 0.406156 */ subject(A); on(A,B,before) :- on(A,B,after).

3. /* 0.389417 */ destination(A); on(B,A,before) :- on(B,A,after).

4. /* 0.336546 */ destination(C); clear(C,after) :- clear(C,before).

5. /* 0.329346 */ table(B) :- on(A,B,before), clear(B,before).

6. /* 0.328989 */ table(B) :- on(A,B,after), clear(B,after).

7. /* 0.245619 */ clear(B,before) :- subject(B).

8. /* 0.245619 */ clear(B,before) :- table(B).

9. /* 0.245619 */ clear(B,before) :- destination(B).

10. /* 0.244962 */ clear(B,after) :- subject(B).

11. /* 0.244962 */ clear(B,after) :- table(B).

12. /* 0.217840 */ on(A,B,after) :- subject(A), destination(B).

13. /* 0.203063 */ destination(B) :- subject(A), on(A,B,after).
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14. /* 0.197992 */ table(C) :- destination(C), clear(C,after).

15. /* 0.180560 */ on(A,B,after); clear(A,before) :- on(A,B,before).

16. /* 0.180560 */ on(A,B,before); clear(B,before) :- on(A,B,after).

17. /* 0.180560 */ on(A,B,before); clear(A,before) :- on(A,B,after).

18. /* 0.179924 */ on(A,B,after); clear(B,after) :- on(A,B,before).

19. /* 0.179924 */ on(A,B,after); clear(A,after) :- on(A,B,before).

20. /* 0.179924 */ on(A,B,before); clear(A,after) :- on(A,B,after).

21. /* 0.161257 */ clear(B,before) :- on(A,B,after), clear(B,after).

22. /* 0.161005 */ clear(B,after) :- on(A,B,before), clear(B,before).

23. /* 0.139252 */ on(A,B,before) :- destination(A), on(A,B,after).

24. /* 0.139252 */ on(A,B,after) :- destination(A), on(A,B,before).

25. /* 0.103594 */ on(B,A,after) :- destination(A), on(B,A,before).

26. /* 0.097025 */ table(A) :- destination(A), on(B,A,before).

27. /* 0.091987 */ clear(B,before) :- subject(A), on(A,B,after).

28. /* 0.091679 */ clear(B,after) :- subject(A), on(A,B,before).

29. /* 0.020408 */ clear(A,after) :- destination(A), on(B,A,before).

30. /* 0.000000 */ :- subject(A), on(B,A,before).

31. /* 0.000000 */ :- subject(A), on(B,A,after).

32. /* 0.000000 */ :- on(A,B,before), on(B,A,after).

33. /* 0.000000 */ :- on(A,B,before), table(A).

34. /* 0.000000 */ :- on(B,B,before).

35. /* 0.000000 */ :- on(A,B,after), table(A).

36. /* 0.000000 */ :- on(B,B,after).

37. /* 0.000000 */ :- subject(A), destination(B), on(A,B,before).

38. /* 0.000000 */ :- subject(B), destination(B).

39. /* 0.000000 */ :- subject(B), table(B).

40. /* 0.000000 */ :- subject(A), on(A,B,before), on(A,B,after).

41. /* 0.000000 */ :- destination(A), on(A,B,before), clear(A,after).

42. /* 0.000000 */ :- destination(A), on(A,B,after), clear(A,after).

Number of hypotheses explored: 2869

Average number of ground queries to the database: 471

Time: 7.6s

All these rules are integrity constraints on this domain. The four most confirmed ones
deal with the frame-problem. For instance, rules 1 and 2 state that a block does not move if
it isn’t the subject of the action. There are some characteristics of the subject (rules 7, 10,
13, 30, 31, 37, 38, 40) and some of the destination (rules 9, 14, 13, 25, 26, 27, 37, 38). Rules
15–20 and 23–24 are actually variants of rules 1 and 2. For instance, rule 19 can be read
as if A is onB beforehand, andA is not clear afterwards, thenA is onB afterwards, but we
know (rule 10) that ifA is not clear afterwards thenA isn’t the subject, and (rule 1) that ifA
is onB beforehand, andA isn’t the subject, thenA is onB afterwards, so rule 19 is a logical
consequence of rules 1 and 10. More than half of the rules (rules 5, 6, 8, 11, 14, 21, 22, 25,
26, 29, 33, 35, 39, 41, 42) deal with the special case of the table and could be considered
as background knowledge. Rules 34 and 36 are typical background knowledge too.
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From the point of view of action learning, some of the rules do give the pre-conditions
and post-conditions of the actions performed in the examples. Rules 7 and 9 state that the
subject and the destination must be clear before. Rules 10 and 12 state that the subject
is clear and on the destination afterwards. Rule 28 models a more subtle post-condition
that is used mainly for the unstacking and the transfer operations: if the subject was onB
beforehand, thenB is clear afterwards (it happens to be true for stacking as well, because
in our representation the table is always clear).

In the remainder of this section, we report results of experiments carried out for each
operation separately. In a second experiment,Tertius was run on the two stacking exam-
ples, searching for satisfied clauses only. It produced 51 rules, many of which are omitted
below as they were already found previously. For instance, the second rule learned in this
experiment is the same as the first rule learned in the first experiment, the only difference
is the confirmation value which was somewhat higher before. The rules shown below are
the ones that hold for the stacking examples, but are falsified by the other examples:

tertius -sat -c 0 -avg 3/2 stack

s1. /* 0.322138 */ table(A); on(B,A,after) :- on(B,A,before).

s5. /* 0.310329 */ table(A) :- on(B,A,before), clear(A,after).

s10. /* 0.254569 */ clear(B,before) :- clear(B,after).

s11. /* 0.224389 */ on(B,A,before) :- table(A), on(B,A,after).

s12. /* 0.224389 */ on(A,B,before) :- on(A,B,after), clear(B,after).

s21. /* 0.183373 */ on(A,B,before) :- subject(A), table(B).

s23. /* 0.168783 */ table(B) :- subject(A), on(A,B,before).

s24. /* 0.168783 */ subject(A) :- destination(B), on(A,B,after).

s25. /* 0.111757 */ clear(B,after) :- destination(A), on(B,A,after).

s30. /* 0.077907 */ on(A,B,after); clear(B,before) :- on(A,B,before).

s34. /* 0.027631 */ clear(B,before) :- destination(A), on(B,A,after).

s35. /* 0.027631 */ clear(B,before) :- subject(A), on(A,B,before).

s41. /* 0.000000 */ :- destination(A), on(B,A,before).

s45. /* 0.000000 */ :- destination(B), clear(B,after).

s46. /* 0.000000 */ :- destination(B), table(B).

s49. /* 0.000000 */ :- subject(A), table(B), on(A,B,after).

s51. /* 0.000000 */ :- subject(A), on(A,B,after), clear(B,after).

Number of hypotheses explored: 2797

Average number of ground queries to the database: 151

Time: 2.9s

The rule s1 is a variant of rule 1 above (that is also found as rule s2), specific to stacking:
a block that is not on the table does not move. The rule s5 characterises the table as the place
that becomes clear. The rule s10 is a generalisation of the rule 21 we have already seen with
the six examples, stating that nothing becomes clear in a stacking operation. The rule s11
states that there is nothing new on the table. The rule s12 is a variant of s11 since only the
table can have something on it and be clear at the same time (rule 6 aka s13). The rule s21 is a
pre-condition specific to the stacking operation: the subject is on the table before. The rules
s23, s24, s25, s34 are variants of known rules: the subject is on the table beforehand, on the
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destination afterwards, and the subject is clear beforehand and afterwards. The remaining
rules deal with the destination (s41, s45, s46, s51) or with the table (s35, s46, s49).

In a third experiment we ranTertius on the two unstacking examples, again searching
for satisfied clauses only. Below we show only new rules among the 62 found. Moreover,
since the first two rules establish an equivalence betweentable(B) and destina-
tion(B) , many rules come in two forms, one withtable and one withdestination ;
we only show the rules concerning the table.

tertius -sat -c 0 -avg 3/2 unstack

u1. /* 0.461982 */ destination(B) :- table(B).

u2. /* 0.461982 */ table(B) :- destination(B).

u3. /* 0.326589 */ table(A) :- on(B,A,after), clear(A,before).

u14. /* 0.241720 */ on(A,B,after) :- on(A,B,before), clear(B,before).

u19. /* 0.217890 */ clear(B,after) :- clear(B,before).

u32. /* 0.066040 */ on(B,A,after); clear(B,after) :- table(A).

u34. /* 0.066040 */ on(B,A,before); clear(B,after) :- table(A).

u39. /* 0.060994 */ on(A,B,before); clear(B,after) :- on(A,B,after).

u40. /* 0.060994 */ table(A); clear(B,after) :- on(B,A,after).

u42. /* 0.060994 */ table(A); clear(B,after) :- on(B,A,before).

u44. /* 0.037557 */ clear(B,before); clear(A,after) :- on(A,B,after).

u45. /* 0.037557 */ clear(B,before); clear(A,after) :- on(A,B,before).

u47. /* 0.022222 */ clear(B,after) :- subject(A), on(A,B,after).

u60. /* 0.000000 */ :- subject(A), on(A,B,before), clear(B,before).

Number of hypotheses explored: 2797

Average number of ground queries to the database: 151

Time: 3.0s

The first two rules u1 and u2 ensure the destination is the table. Several rules concern the
frame-problem, the subject, or the destination, as in the previous two experiments. However,
some rules are worth emphasising. The rules u40 and u42 state that if a block is not on
the table, either beforehand or afterwards, then it is clear afterwards. It means that, after
unstacking, the stacks cannot be higher than 2 blocks. It is only coincidental in this case and
these properties would not hold with more unstacking examples. However, it shows that it
is possible to represent concepts such as “not more than two blocks high” in our framework.

Finally, we ranTertius on the two transfer examples only, and looking for satisfied
clauses only. It produced 49 rules, all of which had been found in one of the previous three
experiments. This is not surprising since a transfer can be seen as a sequence of unstacking
then stacking. We omit the details.

5.3. Functional dependencies

Tertius can be used to learn functional dependencies from a database relation. To illus-
trate this,Tertius was run on the following data from Flach (1993):
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train(utrecht,8,8,den-bosch). train(utrecht,9,8,den-bosch).

train(tilburg,8,10,tilburg). train(tilburg,9,10,tilburg).

train(maastricht,8,10,weert). train(maastricht,9,10,weert).

train(utrecht,8,13,eindhoven-bkln). train(utrecht,9,13,eindhoven-bkln).

train(tilburg,8,17,eindhoven-bkln). train(tilburg,9,17,eindhoven-bkln).

train(utrecht,8,25,den-bosch). train(utrecht,9,25,den-bosch).

train(utrecht,8,31,utrecht).

train(utrecht,8,43,eindhoven-bkln). train(utrecht,9,43,eindhoven-bkln).

train(tilburg,8,47,eindhoven-bkln). train(tilburg,9,47,eindhoven-bkln).

The four arguments oftrain mean, respectively: the train’s direction, the departure
time in hours and minutes, and the first stop.

The rules found byTertius are the following:

tertius 3/6 index

/* 0.143461 0.000000 */ equaldir(G,E) :- train(G,F,C,D), train(E,F,C,D).

/* 0.141036 0.000000 */ equaldir(A,E) :- train(A,B,C,D), train(E,F,C,D).

/* 0.119142 0.000000 */ equalfirst(D,G) :- train(A,E,C,D), train(A,E,C,G).

/* 0.117170 0.000000 */ equalfirst(F,D) :- train(A,B,C,D), train(A,E,C,F).

/* 0.068466 0.006250 */ equalmin(G,F) :- train(A,E,G,D), train(A,E,F,D).

/* 0.066730 0.006250 */ equalmin(C,F) :- train(A,B,C,D), train(A,E,F,D).

/* 0.055864 0.001111 */ equalfirst(F,D) :- train(A,B,C,D), train(E,B,C,F).

/* 0.047506 0.001111 */ equaldir(A,E) :- train(A,B,C,D), train(E,B,C,F).

/* 0.036298 0.002778 */ equaldir(A,E) :- train(A,B,C,D), train(E,B,F,D).

/* 0.026429 0.003333 */ equalfirst(F,D) :- train(A,B,C,D), train(A,B,E,F).

Number of hypotheses explored: 1685

Average number of ground queries to the database: 4293

Time: 1min54s

The second rule expresses the functional dependency “minutes and first stop determine
direction” and the fourth rule states “direction and minutes determine first stop”, which
are both valid on the data. These are the same rules as found byINDEX (Flach, 1993) and
Claudien (De Raedt & Dehaspe, 1997). The first and third rule are not found by these sys-
tems, because they are refinements of the second and fourth rule, respectively. Here they are
kept byTertius because they have a higher degree of confirmation than their ancestor. If
this were not the case,Tertius ’ final subsumption test would have removed them as well.

The remaining 6 rules have small but non-zeronH̄B, and appear to be ‘almost satisfied’
functional dependencies. For instance, the first non-satisfied rule says “direction, hour and
first stop determines minutes”, i.e., trains depart once an hour at most. This dependency has
12 contradicting pairs of tuples, or approximately 4.2% of the total 17× 17= 289 pairs of
tuples. However, the sample consists of all pairs ofpossibletuples that can be constructed
from the types, which is 1920 in this case. Here we thus see the need for the sample of
grounding substitutions to be constructed in a more sensible way. On the other hand, we
have shown that theTertius setting is general enough to allow database dependency
inference, and that the confirmation measure can be applied in this context as well.
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5.4. Multiple predicate learning

Tertius does not focus on a single predicate unless it is constrained to do so by a lan-
guage bias. By default,Tertius is able to learn along several dimensions, which is called
multiple predicate learningwhen a first-order representation is used. We took the family
dataset from De Raedt and Lavraˇc (1996), and ranTertius to find all clauses (possibly
indefinite) with up to 3 literals and 3 variables. We also restricted output to satisfied clauses
only, and set a small positive threshold on the confirmation. The learned clauses were as
follows:

tertius -sat -c 0.0001 3/3 mpl

/* 0.314447 0.000000 */ father(D,B); mother(D,B) :- parent(D,B).

/* 0.293511 0.000000 */ ancestor(C,B) :- parent(C,B).

/* 0.210408 0.000000 */ male(D); mother(D,B) :- parent(D,B).

/* 0.207553 0.000000 */ father(C,D) :- parent(C,D), male(C).

/* 0.207553 0.000000 */ mother(C,D) :- parent(C,D), female(C).

/* 0.203596 0.000000 */ parent(C,B) :- father(C,B).

/* 0.203596 0.000000 */ parent(C,B) :- mother(C,B).

/* 0.196670 0.000000 */ female(D); father(D,B) :- parent(D,B).

/* 0.191114 0.000000 */ ancestor(C,B) :- father(C,B).

/* 0.191114 0.000000 */ ancestor(C,B) :- mother(C,B).

/* 0.145001 0.000000 */ male(B) :- father(B,C).

/* 0.136544 0.000000 */ female(B) :- mother(B,C).

/* 0.083298 0.000000 */ ancestor(A,B) :- ancestor(A,C), ancestor(C,B).

/* 0.069193 0.000000 */ ancestor(A,B) :- ancestor(C,B), parent(A,C).

/* 0.069193 0.000000 */ ancestor(A,B) :- ancestor(A,C), parent(C,B).

/* 0.059986 0.000000 */ ancestor(A,B) :- ancestor(A,C), mother(C,B).

/* 0.047955 0.000000 */ ancestor(A,B) :- ancestor(C,B), mother(A,C).

/* 0.047955 0.000000 */ ancestor(A,B) :- ancestor(C,B), father(A,C).

/* 0.043326 0.000000 */ ancestor(A,B) :- parent(A,C), mother(C,B).

/* 0.036373 0.000000 */ ancestor(A,B) :- parent(C,B), mother(A,C).

/* 0.036373 0.000000 */ ancestor(A,B) :- parent(C,B), father(A,C).

/* 0.032409 0.000000 */ ancestor(A,B) :- ancestor(A,C), father(C,B).

/* 0.030252 0.000000 */ ancestor(A,B) :- father(A,C), mother(C,B).

/* 0.027945 0.000000 */ ancestor(A,B) :- parent(A,C), father(C,B).

/* 0.024071 0.000000 */ female(C) :- ancestor(A,B), father(B,C).

/* 0.020779 0.000000 */ female(C) :- parent(A,B), father(B,C).

/* 0.019600 0.000000 */ ancestor(A,B) :- father(C,B), mother(A,C).

/* 0.014604 0.000000 */ female(C) :- father(B,C), mother(D,B).

Number of hypotheses explored: 8276

Average number of ground queries to the database: 12105

Time: 28min35.5s

Notice the highly confirmed disjunctive clause. Also, notice the clauses for ancestor, which
include singly and doubly recursive clauses. While such clauses typically pose problems
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to supervised ILP systems, there is no particular difficulty involved in learning recursive
clauses in our approach, other than the fact that the search space increases if literals can
occur more than once. All the clauses learned by theMPLandClaudien algorithms in
De Raedt and Lavraˇc (1996) are also learned. In addition, at the bottomTertius lists
three satisfied but meaningless clauses that happen to be true in this particular dataset.

Tertius took almost half an hour of CPU-time to find these clauses. This is explained
by the weak declarative bias imposed by this domain: it is not individual-based, all variables
are of the same type, there is no single target predicate, and disjunctive clauses are allowed.
Therefore the number of possible hypotheses and the number of possible instantiations are
higher than those of previous experiments, and the learning time is proportionally higher.
Furthermore, in cases where we ask for all clauses with non-zero confirmation, there will
be no best-first pruning as the system returns all solutions and not only the best ones.

6. Related work

In this section we discuss some work in machine learning and knowledge discovery that
is closely related to our work. In Section 6.1 we indicate how our confirmation measure
differs from other measures found in the data mining literature. In Section 6.2 we compare
ourTertius system with other published algorithms and systems.

6.1. Related evaluation measures

Pearson’sX2 statistic is intended for hypothesis testing—that is, it is used to asses the
confidence with which the null hypothesis of statistical independence between variablesA
and B can be rejected or accepted. The use ofX2 or its normalised version82 to assess
the strengthof the dependency betweenA and B is considered somewhat dubious by
many statisticians. On the other hand, since there is no generally agreed upon measure of
dependency,82 or a variant thereof does not seem less acceptable than many of the other
measures proposed over the years (Goodman & Kruskal, 1979).

The main problem with using82 as a measure of dependency is that it is completely
undirected: swapping two columns or two rows in the contingency table does not affect the
value of82. This is partly alleviated by e.g., Yule’s coefficientn11n22−n12n21

n11n22+n12n21
, which is−1

in case of a zero on one diagonal, and+1 in case of a zero on the other. However, this
measure is still partly undirected, since if we swap the two columnsand the two rows of
a two-by-two contingency table, the value of Yule’s coefficient remains the same. Thus, it
violates principle P4 in Section 3.1.

Much of the work in Section 3 was devoted to devising a measure of dependence fit for
assessing directed rules such as implications. To the best of our knowledge, such a directed
confirmation measure has not been published in the machine learning and knowledge dis-
covery literature before. This is perhaps not surprising if one considers that in the majority of
approaches one searches for rules with a fixed head. In such a case one effectively evaluates
the usefulness or interestingness of a body with respect to a given head.

Not only is this true in classification, it also holds for knowledge discovery tasks such
as subgroup discovery (Kl¨osgen, 1996). In Kl¨osgen’s setting, a conceptC indicates an
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Table 5. A comparison of evaluation measures for rule discovery.

(1) g(p− p0) πH̄B − pH̄B

(2)
√

g(p− p0)
πH̄B−pH̄B√pB

(3)
√

g
1−g (p− p0)

πH̄B−pH̄B√
pB(1−pB)

(4) g√
g(1−p0)−g(1−p0)

(p− p0)
πH̄B−pH̄B√
πH̄B−πH̄B

interesting subgroup with respect to a fixed target groupT , if the distribution ofT ’s and
non-T ’s among the individuals satisfyingC is significantly different from the distribution
over the whole populationP. In our more general framework of rule discovery, the target
T corresponds to the headH of a clause, and the conceptC to its bodyB. We can compare
rules with different heads and bodies, and thus compare the interest of different subgroups
associated with different targets.

We compare our confirmation function with the main ones considered by Kl¨osgen
(Table 5). The first three evaluation measures are from (Kl¨osgen, 1996),8 the last one is
our confirmation function8H̄B. The left column uses Kl¨osgen’s notation:p = p(T |C),
p0 = p(T), andg = p(C). This can be translated to our notation usingp0 = pH , g = pB,
and pg= pHB (right column).

Notice that each of these measures includes the quantityg(p− p0) = πH̄B− pH̄B, which
is called novelty in this paper. As noted in Section 3.1, this quantity displays unwanted
symmetry in thatH ← B and B ← H always get the same evaluation. The other three
measures all break this symmetry in one way or another, by dividing novelty by some
denominatorD. Notice that (3) introduces another symmetry: ifH ← B gets evaluationc,
thenH ← ¬B gets evaluation−c. While such a symmetry could make sense in the context
of subgroup discovery, where the targetT is fixed, it is not obvious why it should be valid
in the wider context of rule discovery.9

The main difference, then, between our confirmation function (4) and measures (2-3) in
Table 5 is that for the latterD is based only ong = pB, while in our case alsop0 = pH

is taken into account. This supports our view that confirmation as defined in this paper is
better suited for comparing rules with different heads as well as bodies.

6.2. Related systems

Our approach has initially been motivated by the work of Oates and Cohen on finding
structure in data (Oates & Cohen, 1996). LikeTertius , their MSDD system employs an
A* algorithm to find thek strongest rules that describe dependencies in the data, where the
strength of a rule is defined in terms ofX2. Tertius upgrades their system to using a
first-order representation, and also improves their heuristic in order to deal with directed
implications.

As a system,Tertius is most closely related to the ILP clausal discovery system
Claudien (De Raedt & Dehaspe, 1997).Claudien finds regularities expressed in
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first-order logic that hold for the data. Essentially, it performs a top-down refinement search
to find all most general non-contradicted formulae.Tertius extendsClaudien by em-
ploying a powerful confirmation heuristic, that allows us to rank the induced formulae.
Furthermore, by restricting attention to thek best confirmations an optimistic estimate of
confirmation can be used as a search heuristic. Another difference betweenTertius and
Claudien is that the latter employs a grammar-based declarative bias formalism to restrict
the search space, whileTertius relies on more semantic notions such as individual-based
and structural representations.

Like Claudien ,Tertius is a general-purpose system that is not restricted to particular
discovery tasks. It is also related to a number of specialised knowledge discovery algorithms,
although such algorithms tend to be more efficient because they are tailored towards that
specific task. Database dependency discovery is such a restricted form of clausal discovery.
TheINDEXsystem (Flach, 1993) provided a straightforward top-down refinement approach
in a deductive database setting. Thefdep system (Flach & Savnik, 1999) offers more
sophisticated and efficient bottom-up algorithms.Tertius can in principle be applied
to database dependency discovery tasks, although it will not have the efficiency of the
special-purposefdep system. The confirmation heuristic, however, directly carries over to
database dependency discovery.

Association rules were originally defined over single relations, but have recently been
upgraded to the multi-relational first-order case (Dehaspe & Toivonen, 1999). Association
rules have a different semantics from the clauses considered in this paper, as they have a
conjunctive head rather than a disjunctive one. Also, association rule algorithms crucially
depend on the pruning enabled by the frequency threshold. AlthoughTertius does al-
low the user to set a frequency threshold, an A-PRIORI-like algorithm has not yet been
implemented.

Subgroup discovery (Kl¨osgen, 1996) has also recently been extended to the multi-
relational case (Wrobel, 1997). As indicated in the previous section, the goal here is to
find subgroupsC of a population that display a significantly different distribution with
respect to a target propertyT . Tertius is particularly well-suited to this task, employ-
ing a similar novelty-based heuristic as discussed above, but allowing a more general
hypothesis language. Moreover,Tertius allows to discover and compare subgroups
related to different targets. Notice that subgroup discovery differs from rule discovery
in that T ← C is, in general, not a satisfied rule.Tertius ’ ability to perform non-
categorical confirmatory induction enables it to find such highly confirmed but non-satisfied
rules.

Our work is furthermore related to the multiple predicate learning task in ILP (De Raedt
& Lavrač, 1996). The approach we take here is similar to theClaudien approach: instead
of searching for definitions of the predicates to be learned, we search for dependencies
between them. This avoids the traditional problems with multiple predicate learning in ILP
because there are no proofs involved, and so mutual recursion is not a problem. Finally,
there is the task of learning mixed theories of predicate definitions and integrity constraints.
Previous work has concentrated on learning them separately by two different learners
(Dimopoulos, Dzeroski, & Kakas, 1997).Tertius is able to learn such mixed theories in
one go.
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7. Conclusions

In this paper we described theTertius approach to first-order unsupervised learning. First-
order logic offers the ability to deal with structured, multi-relational knowledge.Tertius
is a general-purpose first-order unsupervised rule learner. Compared to other clausal dis-
covery systems such asClaudien , our main contribution is the confirmation measure we
propose. This measure uses concepts from categorical data analysis and is thus well-founded
in statistics. It also allows the inclusion of first-order background knowledge, and has the
potential to provide a real integration between logic and statistics.

Tertius is a fully-fledged and powerful rule discovery system. It takes an approach
to declarative bias which is more semantically motivated, distinguishing individual-based
and structural domains, among others. The individual-based representation is very intuitive
and provides a clear link with propositional attribute-value representations.10 We have
compared our approach with other rule discovery systems on a few benchmark tasks, such
as database dependency discovery and multiple predicate learning. We have also shown
thatTertius can be applied to supervised learning tasks such as concept learning, where
its rich and flexible representation formalism leads to meaningful results. This supports our
view that supervised and unsupervised learning represent two distinct but related points on
a dimension, rather than completely separate worlds.

Future work includes improvement ofTertius ’ efficiency and further declarative bias
in order to search deeper in the hypothesis space. We are also looking at ways to reduce the
overhead of counting in domains with many grounding substitutions. As indicated before,
further theoretical analysis of the multiway confirmation measure is needed in order to
guarantee the same kind of properties we proved in this paper for the two-way measure.
Finally, although induction of novel and interesting rules is often a goal in itself, we will
also study post-processing approaches where the learned rules are, for instances, separated
into predicate definitions and integrity constraints for use by a reasoner which is able to
deal with such mixed theories.
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Notes

1. Strictly speaking these are probabilityestimates, as they are taken over the sample and not over the population.
For simplicity we will not reflect this in our notation.

2. We do have an extreme form of contraposition:∀(H ← B) and ∀(¬B ← ¬H) always get the same
confirmation.
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3. Note that in some ILP systems such asProgol (Muggleton, 1995) all the information relative to an example,
except its class, is considered background knowledge (e.g., moleculed101 has a carbon atomd101 1 with
type22 and charge-0.121). In Tertius, all information specific to an example is considered foreground
knowledge; the background knowledge consists of general properties shared among the examples, such as the
rule of symmetry above, or general ground facts stating that, e.g., in a blocks world the constantt is a table
appearing in all examples (Section 5.2).

4. In a strongly typed language, each type has an associated set of operations. See (Flach, Giraud-Carrier &
Lloyd, 1998) for a discussion of the utility of strong typing for concept learning.

5. This approach to discretisation was suggested by Stephen Muggleton.
6. The originalProgol rules used a predicateatm(Mol,Atom,Element,Type,Charge); we adapted them

to our individual-based representation, using a structural predicateatm(Mol,Atom) and binary properties
atomel(Atom,El), atomty(Atom,Type) andatomch(Atom,Charge).

7. This information is a typical example of ground background knowledge. In the current implementation of
Tertius, it has to be either put in a separate Prolog file containing all the background knowledge, or included
in each example. We chose the second alternative that allowed us to avoid slower calls to Prolog by storing
more facts.

8. The third measure occurs asg1−g (p− p0)
2 in Kl ösgen (1996), but this ignores the sign of(p− p0).

9. Notice that the measure πH̄ B−pH̄ B√
πH̄ B(1−πH̄ B)

would achieve a similar symmetry.

10. This link has already proven useful, as it has given rise to a descendant system called1BC, which is a first-order
naive Bayesian classifier (Flach & Lachiche, 1999a).

References

Badea, L. & Stanciu, M. (1999). Refinement operators can be (weakly) perfect. In S. Dˇzeroski and P. Flach (Eds.),
Proceedings of the 9th International Workshop on Inductive Logic Programming, volume 1634 of Lecture Notes
in Artificial Intelligence, (pp. 21–32). Springer-Verlag.

Dahl, T. S. (1999). Background knowledge in the Tertius first-order knowledge discovery tool. Technical Report
CSTR-99-006, Department of Computer Science, University of Bristol, March 1999.

De Raedt, L. & Lavraˇc, N. (1996). Multiple predicate learning in two inductive logic programming settings.
Journal on Pure and Applied Logic, 4(2), 227–254.

De Raedt, L. (1997). Logical settings for concept learning.Artificial Intelligence 95(1), 187–201.
De Raedt, L. & Dehaspe, L. (1997). Clausal discovery.Machine Learning, 26(2/3), 99–146.
Dehaspe L. & De Raedt, L. (1997). Mining association rules in multiple relations. In S. Dˇzeroski & N. Lavrač
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