
Machine Learning, 37, 75–87 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Mixed Memory Markov Models: Decomposing
Complex Stochastic Processes as Mixtures
of Simpler Ones

LAWRENCE K. SAUL lsaul@research.att.com
AT&T Labs, Florham Park, NJ 07932

MICHAEL I. JORDAN jordan@cs.berkeley.edu
University of California, Berkeley, CA 94720

Editor: Padhraic Smyth

Abstract. We study Markov models whose state spaces arise from the Cartesian product of two or more discrete
random variables. We show how to parameterize the transition matrices of these models as a convex combination—
or mixture—of simpler dynamical models. The parameters in these models admit a simple probabilistic interpreta-
tion and can be fitted iteratively by an Expectation-Maximization (EM) procedure. We derive a set of generalized
Baum-Welch updates for factorial hidden Markov models that make use of this parameterization. We also describe
a simple iterative procedure for approximately computing the statistics of the hidden states. Throughout, we give
examples where mixed memory models provide a useful representation of complex stochastic processes.

Keywords: Markov models, mixture models, discrete time series

1. Introduction

The modeling of discrete time series is a fundamental problem in machine learning, with
widespread applications. These include speech recognition (Rabiner, 1989), natural lan-
guage processing (Nadas, 1984), protein modeling (Haussler et al., 1993), musical analysis/
synthesis (Dirst & Weigend, 1993), and numerous others.

Probabilistic models of discrete time series typically start from some form of Markov
assumption—namely, that the future is independent of the past given the present. For the
purpose of statistical estimation, problems arise if either: (i) the system possesses a large
number of degrees of freedom, or (ii) the window of present knowledge required to predict
the future extends over several time steps. In these cases, the number of parameters to
specify the Markov model can overwhelm the amount of available data. In particular, for a
system withn possible states and memory lengthk, the number of free parameters scales
exponentially asnk+1.

The difficulties are compounded for latent variable models in which the Markov assump-
tion applies to the hidden state space. In this case, it may be computationally intractable
to infer values for the hidden states. For example, in first-order hidden Markov models
(HMMs), computing the likelihood of a sequence of observations scales asn2, wheren is

76 SAUL AND JORDAN

the number of hidden states (Rabiner, 1989). In practice, exact probabilistic inference is
therefore limited to HMMs with relatively small (or tightly constrained) state spaces.

In this technical note, we propose a principled way to investigate Markov models
with large state spaces. This is done by representing the transition matrix as a convex
combination—or mixture—of simpler dynamical models. We refer to the resulting models
asmixed memoryMarkov models. While the use of mixture distributions to parameterize
higher-order Markov models is well known (Raftery, 1985; Ney, Essen, & Kneser, 1994;
MacDonald & Zucchini, 1997), here we apply this methodology more broadly tofactorial
models—models in which large state spaces are represented via the Cartesian product of
smaller ones.

Our note builds on earlier work describing factorial HMMs (Ghahramani & Jordan, 1997)
and dynamic probabilistic networks (Binder et al., 1997). These papers show that complex
stochastic processes can be graphically represented by sets of Markov chains connected
(via directed links) to a common set of observable nodes. Such models arise naturally in
the study of coupled time series, where the observations have ana priori decomposition as
the Cartesian product of two or more random variables. Factorial HMMs aim to combine
the power of latent, distributed representations with the richness of probabilistic semantics
(Williams & Hinton, 1990). Capturing this type of probabilistic reasoning is a fundamental
problem in artificial intelligence (Dean & Kanazawa, 1989).

We believe that mixed memory Markov models have several advantages for representing
complex stochastic processes and learning from examples. The parameters in these models
admit a simple probabilistic interpretation and can be fitted iteratively by an Expectation-
Maximization (EM) procedure (Dempster, Laird, & Rubin, 1977). The EM algorithm has
several desirable properties, including monotone convergence in log-likelihood, lack of step
size parameters, and naturalness at handling probabilistic constraints. In many situations,
it provides a compelling alternative to gradient-based learning methods (Baldi & Chauvin,
1996; Binder et al., 1997).

Mixed memory models can also express a rich set of probabilistic dependencies, making
them appropriate for modeling complex stochastic processes. Applied to factorial HMMs,
they generalize the work by Ghahramani and Jordan (1997) in two important directions: by
introducing coupled dynamics, and by considering non-Gaussian observations. They also
give rise to a simple iterative procedure for making inferences about the hidden states. We
describe this procedure not only for its practical value, but also because it very cleanly
illustrates the idea of exploiting tractable substructures in intractable probabilistic networks
(Saul & Jordan, 1997).

The main significance of this work lies in its application to factorial HMMs and the
modeling of coupled time series. In principle, though, mixed memory Markov models can
be applied wherever large state spaces arise as the Cartesian product of two or more random
variables. We will take advantage of this generality to present mixed memory models in a
number of different settings. In doing this, our goal is to build up—in a gradual way—the
somewhat involved notation needed to describe factorial HMMs.

The organization of this note is therefore as follows. In order of increasing complexity, we
consider: (1) higher-order Markov models, where large state spaces arise as the Cartesian
product of several time slices; (2) factorial Markov models, where the dynamics are first

MIXED MEMORY MARKOV MODELS 77

order but the observations have a componential structure; and (3) factorial HMMs, where
the Markov dynamics apply to hidden states, as opposed to the observations themselves.
We conclude that mixed memory models provide a valuable tool for understanding complex
dynamical systems.

2. Higher order Markov models

Let i t ∈ {1, 2, . . . ,n} denote a discrete random variable that can take onn possible values.
A kth order Markov model is specified by the transition matrixP(i t | i t−1, i t−2, . . . , i t−k).
To avoid having to specify theO(nk+1) elements of this matrix, we consider parameterizing
the model by the convex combination (Raftery, 1985; Ney, Essen, & Kneser, 1994):

P(i t | i t−1, i t−2, . . . , i t−k) =
k∑

µ=1

ψ(µ) aµ(i t | i t−µ), (1)

whereψ(µ) ≥ 0,
∑

µ ψ(µ) = 1, andaµ(i ′ | i) arek elementaryn× n transition matrices.
The model in Eq. (1) is specified byO(kn2) parameters, as opposed toO(nk+1) for the
full memory model. Note howψ(µ) is used to weight the influence of past observations on
the distribution overi t . This type of weighted sum is the defining characteristic of mixed
memory models.

The mixture model in Eq. (1) is to be distinguished from models that approximate higher-
order Markov models by “n-gram smoothing”; that is, by employing a linear combination
of nth order transition matrices (Chen & Goodman, 1996). Our model is not ann-gram
smoother; rather it approximates a higher-order Markov model by taking a linear combi-
nation of non-adjacent bigram models. The model in Eq. (1) also differs from mixture-of-
experts models as applied to continuous time series (Zeevi, Meir, & Adler, 1996), in which
the predictions of differentnth order regressors are combined by the weights of a softmax
gating function.

For the purpose of parameter estimation, it is convenient to interpret the indexµ in Eq. (1)
as the value of a latent variable. We denote this latent variable (at each time step) byxt and
consider the joint probability distribution:

P(i t , xt = µ | i t−1, . . . , i t−k) = ψ(µ) aµ(i t | i t−µ). (2)

Note that marginalizing outxt (i.e., summing overµ) recovers the previous model for the
transition matrix, Eq. (1). Thus we have expressed the dynamics as a mixture model, in
which the parametersψ(µ) are the prior probabilities,P(xt = µ). Likewise, we can view
the parametersaµ(i ′ | i)as the conditional probabilities,P(i t = i ′ | i t−1, . . . , i t−k, xt = µ).

Let I = {i1, i2, . . . , i L}denote an observed time series of lengthL. The sufficient statistics
for a full memory Markov model are the transition frequencies. To fit the mixed memory
Markov model we avail ourselves of the EM procedure (Dempster, Laird, & Rubin, 1977). In
general terms the EM algorithm calculatesexpectedsufficient statistics and sets them equal
to theobservedsufficient statistics. The procedure iterates and is guaranteed to increase

78 SAUL AND JORDAN

the likelihood at each step. For the model in Eq. (2), the EM updates are (Ney, Essen, &
Kneser, 1994):

ψ(µ)←
∑

t P(xt = µ | I)∑
t,ν P(xt = ν | I)

, (3)

aµ(i ′ | i)←
∑

t P(xt = µ, i t−µ = i, i t = i ′ | I)∑
t P(xt = µ, i t−µ = i | I)

. (4)

In the case where multiple time series are available as training data, the sums overt should
be interpreted as sums over series as well. The EM updates for this model are easy to
understand; at each iteration, the model parameters are adjusted so that the statistics of
the joint distribution match the statistics of the posterior distribution. The expectations in
Eqs. (3) and (4) may be straightforwardly computed from Bayes rule:

P(xt = µ | I) = ψ(µ) aµ(i t | i t−µ)∑
ν ψ(ν) aν(i t | i t−ν)

. (5)

Note that this algorithm requires no fine-tuning of step sizes, as does gradient descent.
In terms of representational power, the model of Eq. (1) lies somewhere in between a first

order Markov model and akth order Markov model. To demonstrate this point, we fitted
various Markov models to word spellings in English, Italian, and Finnish. The state space
for these models was the alphabet (e.g.,A to Z for English), and the training data came from
very long lists of words with four or more letters. The matricesaν(i ′ | i) were initialized
by count-based bigram models predicting each letter by theµth preceding one. (This type
of initialization, in which the component sub-models are first trained independently of one
another, is useful to avoid poor local maxima in the learning procedure.) In Table 1, we
give the results measured in entropy per character. The results show that the mixed memory
model does noticeably better than the first-order model. Of course, it cannot capture all
the structure of the full second-order model, which has over ten times as many parameters.
The mixture model should accordingly be viewed as an intermediate step between first and
higher-order models.

We envision two situations in which the model of Eq. (1) may be gainfully applied. The
first is when the dynamics of the process generating the data are faithfully described by a
mixture model. In this case, one would expect the mixture model to perform as well as the

Table 1. Entropy per character, computed from various Markov models.

Order Memory English Italian Finnish

0th None 0.900 0.844 0.840

1st Full 0.776 0.696 0.707

2nd Mixed 0.754 0.678 0.679

2nd Full 0.689 0.622 0.607

MIXED MEMORY MARKOV MODELS 79

(full) higher-order model while requiring substantially less data for its parameter estimation.
A real-world example might be the modeling of web sites visited during a session on the
World Wide Web. The modeling of these sequences has applications to web page prefetching
and resource management on the Internet (Bestavros & Cunha, 1995; Cunha, Bestavros, &
Crovella, 1995). Typically, the choice of the next web page is conditioned on a previous
site, but not necessarily the last one that has been visited. (Recall how often it is necessary
to retrace one’s steps, using theBACK option.) The model in Eq. (1) captures this type of
conditioning explicitly. Here, the states of the Markov model would correspond to web
pages; the matricesaµ(i ′ | i), to links from web pagei to web pagej ; and the indexµ, to
the number of backward or retraced steps taken before activating a new link.

The second situation in which this model may be appropriate is when the amount of
training data is extremely sparse relative to the size of the state space. In this case, the pa-
rameterization in Eq. (1), though a poor approximation to the true model, may be desirable
to avoid overfitting. Ney, Essen, and Kneser (1994) have investigated models of this form
for large vocabulary language modeling. The ability to discern likely sequences of words
from unlikely sequences is an important component of automated speech recognition. For
large vocabularies—in the tens of thousands of words—there is never sufficient data to
estimate (robustly) the statistics of second or higher order Markov models. In practice,
therefore, these models are “smoothed” or interpolated (Chen & Goodman, 1996) with
lower order models. The interpolation with lower order models is forced on practitioners
by the enormous size of the state space (e.g., 104 words) and the small (in relative terms)
amount of training data (e.g., 108 words). Recently, one of us applied a more sophisti-
cated version of Eq. (1) to large vocabulary language modeling (Saul & Pereira, 1997).
In only a few CPU hours, it was possible to fit over ten million parameters to the statis-
tics of an eighty million word corpus. Moreover, the smoothed combination of mixed and
full memory Markov models led to significantly lower entropies on out-of-sample predic-
tions.

3. Factorial Markov models

In the last section, we saw how large state spaces arose as the result of higher order
dynamics. In this section, we consider another source of large state spaces—namely,
factorial representations. Many time series have a natural componential structure. Consider
for example the four voices—soprano (S), alto (A), tenor (T), and bass (B)—of a Bach
fugue (Dirst & Weigend, 1993). We can model each voice by a separate Markov model,
but this will not capture the correlations due to harmony. The most straightforward way
to model the coupling between voices is to write down a Markov model whose dynamical
state is the Cartesian product of the four voices. But the combinatorial structure of this state
space leads to an explosion in the number of free parameters; thus it is imperative to provide
a compact representation of the transition matrix.

Mixed memory models are especially geared to these sorts of situations. LetIt denote
the t th element of a vector time series, andi µt theµth component ofIt . If each vector has
k components, and each component can take onn values, then the overall state space has
sizenk. To model the coupling between these components in a compact way, we make two

80 SAUL AND JORDAN

simplifying assumptions: (i) that the componentsi νt at timet are conditionally independent
given the vectorIt−1, or

P(It | It−1) =
k∏
ν=1

P
(
i νt
∣∣ It−1

); (6)

and (ii) that the conditional probabilitiesP(i νt | It−1) can be expressed as a weighted sum
of “cross-transition” matrices:

P
(
i νt
∣∣ It−1

) = k∑
µ=1

ψν(µ) aνµ
(
i νt
∣∣ i µt−1

)
. (7)

Here again, the parametersaνµ(i ′ | i) arek2 elementaryn × n transition matrices, while
the parametersψν(µ) are positive numbers that satisfy

∑
µ ψ

ν(µ) = 1. The number of
free parameters in Eq. (7) is thereforeO(k2n2), as opposed toO(n2k) for the full memory
model. (By allowing non-square transition matrices, this model can also be generalized to
the case where the different components take on different numbers of values.)

The parametersψν(µ)measure the amount of correlation between the different compo-
nents of the time series. In particular, if there is no correlation, thenψν(µ) is the identity
matrix, and theνth component is independent of all the rest. On the other hand, for non-zero
ψν(µ), all the components at one time step influence theνth component at the next. The
matricesaνµ(i ′ | i) provide a compact way to parameterize these influences.

As in the previous section, it is convenient to introduce latent variablesxνt and view
Eq. (7) as a mixture model. Thus we may write:

P
(
i νt , xνt = µ | It−1

) = ψν(µ) aνµ
(
i νt
∣∣ i µt−1

)
, (8)

P(It , Xt | It−1) =
∏
ν

P
(
i νt , xνt

∣∣ It−1
)
. (9)

Here, the role ofxνt is to select which component ofIt−1 determines the transition matrix
for i νt . As before, we can derive an EM algorithm to fit the parameters of this model. In this
case, the EM updates are:

ψν(µ)←
∑

t P
(
xνt = µ | I

)∑
t,µ′ P

(
xνt = µ′ | I

) (10)

aνµ(i ′ | i)←
∑

t P
(
xνt = µ, i µt−1 = i, i νt = i ′ | I

)∑
t P
(
xνt = µ, i m

t−1 = i | 1) (11)

whereI stands for the observed time series. Naturally, the structure of these updates is quite
similar to the model of the previous section.

To test this algorithm, we learned a model of the four-component time series generated
by Bach’s last fugue. This fugue has a rich history (Dirst & Weigend, 1993). The time

MIXED MEMORY MARKOV MODELS 81

Table 2. Portion of the four-component time series generated by Bach’s last fugue.

Soprano 61 61 61 66 66 66 66 66 66 66 66 66 66 66 66 66

Alto 54 54 54 54 54 54 54 54 54 54 54 54 56 56 56 56

Tenor 49 49 49 49 49 49 49 51 51 52 52 51 51 51 51 51

Bass 46 44 44 46 46 46 46 46 46 46 46 48 48 48 48 48

series (3284 beats long) was made public following the Santa Fe competition on time series
prediction. Table 2 shows a portion of this time series: here, each element represents a
sixteenth note, while the numerical value codes the pitch. To help avoid poor local maxima
in the learning procedure, the transition matricesaνµ(i ′ | i)were initialized by count-based
bigram models predicting theνth voice at timet from theµth voice at the previous time
step.

By examining the parameters of the fitted model, we can see to what extent each voice
enables one to make predictions about the others. In general, we observed that the mixture
coefficientsψν(µ) were very close to zero or one. The reason for this is that the voices do
not typically change pitch with every sixteenth note. Hence, for each voice the note at the
previous beat is a very good predictor of the note at the current one.

When the voices do make a transition (i.e., move up or down in pitch), however, the
coupling between voices becomes evident. To see this, we can look at theposteriorprob-
abilities of the latent variables,xµt , which reveal the extent to which the voices inter-
act at specific moments in time. Figure 1 shows a plot of the posterior probabilities,
P(xS

t = T | I), versus time calculated from the fitted model. Within the framework
of the mixture model, these probabilities measure the relative degree to which the so-
prano’s note at timet can be predicted from the tenor’s note at the previous time step.
The moments at which this probability acquires a non-zero value indicate times when

Figure 1. Plot of soprano-tenor correlations versus time, as measured by the posterior probabilities of a mixed
memory Markov model.

82 SAUL AND JORDAN

the tenor and soprano are tightly coupled. Not surprisingly, these pulses of coupling
(when viewed as a time series) have a discernible local rhythm and regularity of their
own.

4. Factorial HMMs

Building on the results of the last section, we now consider the generalization to factorial
hidden Markov models (HMMs). These are HMMs whose states and observations have an
internal, combinatorial structure (Ghahramani & Jordan, 1997; Binder et al., 1997). How
might such structure arise? Suppose we are trying to model the processes that give rise to
a speech signal. A number of unobserved variables interact to generate the signal that we
ultimately observe. In an articulatory model of speech production, these variables might
encode the positions of various organs, such as the lip, tongue, and jaw. In a recognizer,
these variables might encode the current phonemic context, the speaker accent and gender,
and the presence of background noise. In either case, the hidden state for these models is
naturally decomposed as the Cartesian product of several random variables.

Another motivation for factorial representations is that in many applications, the obser-
vations have an a priori componential structure. This is the case, for example, in audiovisual
speech recognition (Bregler & Omohundro, 1995), where information from different modal-
ities is being combined and presented to the recognizer. It is also the case in frequency
subband-based speech recognition (Bourlard & Dupont, 1996), where different recognizers
are trained on sub-bands of the speech signal and then combined to make a global decision.
Simple ways to integrate these different components are: (a) collapsing the data into a
single time series or (b) reweighting and combining the likelihood scores of independent
HMMs. One might hope for a more sophisticated integration, however, by building a joint
model that looks for correlations on the actual time scale of the observations.

Whatever the manner in which they arise, factorial HMMs pose two concrete problems.
The first is representation. In most applications, there is not sufficient data to estimate the
elements of the full transition and emission matrices formed by taking the Cartesian prod-
uct of the individual factors. How should one parameterize these matrices without making
restrictive or inelegant assumptions? Ideally, the representation should not make unjusti-
fied assumptions of conditional independence, nor should it force us to give up desirable
properties of the EM algorithm, such as monotone convergence in log-likelihood.

The second problem in factorial HMMs is one of computational complexity. The Baum-
Welch algorithm for parameter estimation scales asO(N2), whereN is the number of
hidden states. If the hidden state is a Cartesian product ofk random variables, each of
degreen, then the effective number of hidden states isN = nk. Even for smallk, this may
be prohibitively large to calculate the statistics in the E-step of the EM algorithm. Hence,
one is naturally led to consider approximations to these statistics.

Let us now return to our development of factorial HMMs with these issues in mind. We will
see that mixture models provide a good compromise to the problem of representation, and
that efficient deterministic approximations exist for the problem of parameter estimation.

For concreteness, suppose that we have trainedk simple HMMs on separate time series
of lengthL. Now we wish to combine these HMMs into a single model in order to capture

MIXED MEMORY MARKOV MODELS 83

(what may be) useful correlations between the different time series. If each individual HMM
hadn hidden states andm types of observations, then the hidden state space of the combined
model has sizenk; likewise, the observation space of the combined model has sizemk. At
each time step, we denote these spaces by the Cartesian products:

It = i 1
t ⊗ i 2

t ⊗ · · · ⊗ i k
t (hidden), (12)

Jt = j 1
t ⊗ j 2

t ⊗ · · · ⊗ j k
t (observed). (13)

In an HMM, it is the hidden states (as opposed to the observations) that have a Markov
dynamics. Accordingly, in this setting, we use Eqs. (6) and (7) to model the hidden state tran-
sition matrix. By analogy to Eqs. (6) and (7), we parameterize the emission probabilities by:

P(Jt | It) =
∏
ν

∑
µ

φν(µ)bνµ
(

j νt
∣∣ i µt), (14)

wherebνµ(j | i) arek2 elementaryn×m emission matrices. Note that this model can cap-
ture correlations between the hidden states of theµth Markov chain and the observations
in theνth time series.

For the purposes of parameter estimation, it is again convenient to introduce latent vari-
ables that encode the mixture components in Eq. (14). By analogy to Eqs. (8) and (9), we
have:

P
(

j νt , yνt = µ | It
) = φν(µ)bµν(i µt , j νt

)
, (15)

P(Jt ,Yt | It) =
∏
ν

P
(

j νt , yνt
∣∣ It
)
. (16)

Having encoded the mixture components as hidden variables, we can now apply an EM
algorithm to estimate the model parameters. In this case, the updates have the form:

ψν(µ)←
∑

t P
(
xνt = µ | J

)∑
t,µ′ P

(
xνt = µ′ | J

) , (17)

aνµ(i ′ | i)←
∑

t P
(
xνt = µ, i µt−1 = i, i νt = i ′ | J

)∑
t P
(
xνt = µ, i µt−1 = i | J

) , (18)

φν(µ)←
∑

t P
(
yνt = µ | J

)∑
t,µ′ P

(
yνt = µ′ | J

) , (19)

bνµ(j | i)←
∑

t P
(
yνt = µ, i µt = i, j νt = j | J

)∑
t P
(
yνt = µ, i µt = i | J

) (20)

whereJ denotes the observed time series. A Viterbi approximation is obtained by condi-
tioning not only onJ, but also on the most probable sequence of hidden states,I ∗, where

I ∗ = arg max
I

∏
t

P(It | It−1)P(Jt | It). (21)

84 SAUL AND JORDAN

Note that computing the posterior probabilities in these updates requiresO(Ln2k) opera-
tions; the same is true for computing the Viterbi path. To avoid this computational burden,
we have used an approximation for estimating the statistics in factorial HMMs, first outlined
in Saul and Jordan (1996). The basic idea behind our approach is simple: the structure of
the factorial HMM, though intractable as a whole, gives rise to efficient approximations
that exploit the tractability of its underlying components. In this note, we discuss how these
approximations can be used to estimate the Viterbi path. In general, these ideas may be
extended to approximate the full statistics of the posterior distribution, as for example in
Ghahramani and Jordan (1997).

In the factorial HMM, dynamic programming procedures to compute the Viterbi path
algorithm requireO(Ln2k) steps. As a practical alternative, we consider an iterative proce-
dure that returns a (possibly sub-optimal) path in polynomial time. Our iteration is based on
a subroutine that finds the optimal path of hidden states through theµth chaingiven fixed
values for the hidden states of the others. Note that when we instantiate the hidden variables
in all but one of the chains, the effective size of the hidden state space collapses fromnk

to n, and we can perform the optimization with respect to the remaining hidden states in
O(Ln2) steps. A factor ofk2 is picked up when converting the right hand side of Eq. (21)
into a form for which the standard Viterbi algorithm can be applied; thus this elementary
chainwise Viterbioperation requiresO(Lk2n2) steps.

The algorithm for approximately computing the full Viterbi path of the factorial HMM is
obtained by piecing these subroutines together in the obvious way. First, an initial guess is
made for the Viterbi path of each component HMM. (Typically, this is done by ignoring the
intercomponent correlations and computing a separate Viterbi path for each chain.) Then,
the chainwise Viterbi algorithm is applied, in turn, to each of the component HMMs. After
the Viterbi algorithm has been appliedk times, or once to each chain, the cycle repeats;
each iteration of this process therefore involvesO(Lk3n2) steps.

Note that each iteration results in a sequence of hidden states that is more probable than
the preceding one; hence, this process is guaranteed to converge to a final (though possibly
suboptimal) path. In practice, we have found that this process typically converges to a stable
path in three or four iterations.

The chainwise Viterbi algorithm is not guaranteed to find the truly optimal sequence of
hidden states for the factorial HMM. The success of the algorithm depends on the quality
of the initial guess and, as always, the good judgment of the modeler. The approximation is
premised on the assumption that the model describes a set of weakly coupled time series—
in particular, that the auto-correlations within each time series are as strong or stronger
than the cross-correlations between them. We view the approximation as a computationally
cheap way of integrating HMMs that have been trained on parallel data streams. Its main
virtue is that it exploits the modeler’s prior knowledge that these separate HMMs should
be weakly coupled. When this assumption holds, the approximation is quite accurate.

To test these ideas, we fitted a mixed memory HMM to the Bach fugue from Section 3.
One hopes in this model that the hidden states will reflect musical structure over longer
time scales than a single note. In our experiments, each voice had a component HMM
with six hidden states; thus, in our previous notation,n = 6 andk = 4. We employed
a Viterbi approximation to the full EM algorithm, meaning that the posterior probabili-

MIXED MEMORY MARKOV MODELS 85

Figure 2. Plot of soprano-tenor correlations versus time, as measured by the posterior probabilities of a mixed
memory HMM.

ties in Eqs. (17)–(20) were conditioned not only on the observationsJ, but also on the
Viterbi path, I ∗. The most probable sequence of hidden statesI ∗ was estimated by the
iterative procedure described above. Again it was interesting to see how this model discov-
ered correlations between the different voices of the fugue. Figure 2 shows a plot of the
posterior probabilitiesP(xS

t = T | I ∗, J) versus time, calculated from the factorial HMM
(after training). The frequent pulses indicate (within the framework of this model) moments
of strong coupling between the soprano and tenor themes of the fugue.

5. Discussion

Many parameterizations have been proposed for probabilistic models of time series. The
mixed memory models in this note have three distinguishing features. First, they can express
a rich set of probabilistic dependencies, including coupled dynamics in factorial models.
Second, they can be fitted by EM algorithms, thus avoiding potential drawbacks of gradient
descent. Third, they are compact and easy to interpret; notably, as in ordinary Markov
models, every parameter defines a simple conditional probability. All these features should
enable researchers to build more sophisticated models of dynamical systems.

Acknowledgments

We thank Marney Smyth for retrieving the word lists, Tommi Jaakkola for helping us with
Finnish, and Fernando Pereira for pointing out the application to web page prefetching.
We also acknowledge useful discussions with Zoubin Ghahramani and Yoram Singer. This
work was initiated while the authors were affiliated with the Center for Biological and
Computational Learning at MIT. During that time, it was supported by NSF grant CDA-
9404932 and ONR grant N00014-94-1-0777.

86 SAUL AND JORDAN

References

Baldi, P., & Chauvin, Y. (1996). Hybrid modeling, HMM/NN architectures, and protein applications.Neural
Computation, 8, 1541–1565.

Baum, L. (1972). An inequality and associated maximization technique in statistical estimation for probabilistic
functions of a Markov process. In O. Shisha (Ed.),Inequalities(Vol. 3, pp. 1–8). New York: Academic Press.

Bestavros, A., & Cunha, C. (1995).A prefetching protocol using client speculation for the WWW. (Technical
Report TR-95-011). Boston, MA: Boston University, Department of Computer Science.

Binder, J., Koller, D., Russell, S., & Kanazawa, K. (1997). Adaptive probabilistic networks with hidden variables.
Machine Learning, 29, 213–244.

Bourland, H., & Dupont, S. (1996). A new ASR approach based on independent processing and recombination of
partial frequency bands. In H. Bunnell, & W. Idsardi (Eds.),Proceedings of the Fourth International Conference
on Speech and Language Processing(pp. 426–429). Newcastle, DE: Citation Delaware.

Bregler, C., & Omohundro, S. (1995). Nonlinear manifold learning for visual speech recognition. In E. Grimson
(Ed.),Proceedings of the Fifth International Conference on Computer Vision(pp. 494–499). Los Alamitos, CA:
IEEE Computer Society Press.

Chen, S., & Goodman, J. (1996). An empirical study of smoothing techniques for language modeling.Proceedings
of the Thirty Fourth Annual Meeting of the Association for Computational Linguistics(pp. 310–318). San
Francisco, CA: Morgan Kaufmann.

Cunha, C., Bestavros, A., & Crovella, M. (1995).Characteristics of WWW client-based traces. (Technical Report
TR-95-010). Boston, MA: Boston University, Department of Computer Science.

Dean, T., & Kanazawa, K. (1989). A model for reasoning about persistence and causation.Computational Intel-
ligence, 5(3), 142–150.

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society B, 39, 1–38.

Dirst, M., & Weigend, A. (1993). Baroque forecasting: on completing J. S. Bach’s last fugue. In A. Weigend,
& N. Gershenfeld (Eds.),Time series prediction: Forecasting the future and understanding the past. Reading,
MA: Addison-Wesley.

Ghahramani, Z., & Jordan, M. (1997). Factorial hidden Markov models.Machine Learning, 29, 245–273.
Haussler, D., Krogh, A., Mian, I., & Sjolander, K. (1993). Protein modeling using hidden Markov models: Analysis

of globins.Proceedings of the Hawaii International Conference on System Sciences(Vol. 1, pp. 792–802). Los
Alamitos, CA: IEEE Computer Society Press.

MacDonald, I., & Zucchini, W. (1997).Hidden Markov and other models for discrete-valued time series. Chapman
and Hall.

Nadas, A. (1984). Estimation of probabilities in the language model of the IBM speech recognition system.IEEE
Transactions on Acoustics, Speech, and Signal Processing, 32(4), 859–861.

Ney, H., Essen, U., & Kneser, R. (1994). On structuring probabilistic dependences in stochastic language modeling.
Computer Speech and Language, 8, 1–38.

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech recognition.Proceed-
ings of the IEEE, 77(2), 257–286.

Raftery, A. (1985). A model for high-order Markov chains.Journal of the Royal Statistical Society B, 47, 528–539.
Ron, D., Singer, Y., & Tishby, N. (1996). The power of amnesia: Learning probabilistic automata with variable

memory length.Machine Learning, 25, 117–150.
Saul, L., & Jordan, M. (1996). Exploiting tractable substructures in intractable networks. In D. Touretzky,

M. Mozer, & M. Hasselmo (Eds.),Advances in neural information processing systems(Vol. 8, pp. 486–492).
Cambridge, MA: MIT Press.

Saul, L., & Pereira, F. (1997). Aggregate and mixed-order Markov models for statistical language processing. In
C. Cardie, & R. Weischedel (Eds.),Proceedings of the Second Conference on Empirical Methods in Natural
Language Processing(pp. 81–89). Somerset, NJ: ACL Press.

Williams, C., & Hinton, G. (1990) Mean field networks that learn to discriminate temporally distorted strings.
In D. Touretzky, J. Elman, T. Sejnowski, & G. Hinton (Eds.),Connectionist Models: Proceedings of the 1990
Summer School(pp. 18–22). San Francisco, CA: Morgan Kaufmann.

MIXED MEMORY MARKOV MODELS 87

Zeevi, A., Meir, R., & Adler, R. (1997). Time series prediction using mixtures of experts. In M. Mozer, M. Jordan,
& T. Petsche (Eds.),Advances in neural information processing systems(Vol. 9, pp. 309–315). Cambridge,
MA: MIT Press.

Received November 10, 1997
Accepted February 19, 1999
Final manuscript February 19, 1999

