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Abstract. Instance-based learning algorithms are often faced with the problem of deciding which instances to
store for use during generalization. Storing too many instances can result in large memory requirements and slow
execution speed, and can cause an oversensitivity to noise. This paper has two main purposes. First, it provides a
survey of existing algorithms used to reduce storage requirements in instance-based learning algorithms and other
exemplar-based algorithms. Second, it proposes six additional reduction algorithms called DROP1-DROP5 and
DEL (three of which were first described in Wilson & Martinez, 1997c, as RT1-RT3) that can be used to remove
instances from the concept description. These algorithms and 10 algorithms from the survey are compared on 31
classification tasks. Of those algorithms that provide substantial storage reduction, the DROP algorithms have the
highest average generalization accuracy in these experiments, especially in the presence of uniform class noise.
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1. Introduction

In supervised learning, a machine learning algorithm is shotairgsing set T, which is a
collection of training examples calledstancesEach instance has an input vector and an
output value. After learning from the training set, the learning algorithm is presented with
additional input vectors, and the algorithm mgsheralizei.e., it must use some inductive
bias (Mitchell, 1980; Schaffer, 1994; Dietterich, 1989; Wolpert, 1993) to decide what the
output value should be even if the new input vector was not in the training set.
A large number of machine learning algorithms compute a distance between the input
vector and storedxemplarsvhen generalizing. Exemplars canihstancedgrom the origi-
nal training set, or can be in other forms such as hyperrectangles, prototypes, or rules. Many
suchexemplar-basekbarning algorithms exist, and they are often faced with the problem of
deciding how many exemplars to store, and what portion of the input space they should cover.
Instance-based learningBL) algorithms (Aha, Kibler, & Albert, 1991; Aha, 1992) are
a subset of exemplar-based learning algorithms that use original instances from the training
set as exemplars. One of the most straightforward instance-based learning algorithms is
thenearest neighboalgorithm (Cover & Hart, 1967; Hart, 1968; Dasarathy, 1991). During
generalization, instance-based learning algorithms use a distance function to determine how
close anew input vectgris to each stored instance, and use the nearest instance or instances
to predict the output class gf(i.e., toclassifyy).
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Other exemplar-based machine learning paradigms inateiory-based reasoning
(Stanfill & Waltz, 1986).exemplar-based generalizati¢Balzberg, 1991; Wettschereck &
Dietterich, 1995), andase-based reasonin@BR) (Watson & Marir, 1994). Such algo-
rithms have had much success on awide variety of domains. There are also several exemplar-
based neural network learning algorithms, includimgbabilistic neural networkéPNN)
(Specht, 1992; Wilson & Martinez, 1996, 1997b) and otlaglial basis functiometworks
(Broomhead & Lowe, 1988; Renals & Rohwer, 1989; Wasserman, 1993), as wellas
terpropagation networkéHecht-Nielsen, 1987), ART (Carpenter & Grossberg, 1987), and
competitive learningRumelhart & McClelland, 1986).

Exemplar-based learning algorithms must often decide what exemplars to store for use
during generalization in order to avoid excessive storage and time complexity, and possibly
to improve generalization accuracy by avoiding noise and overfitting.

For example, the basic nearest neighbor algorithm retains all of the training instances.
It learns very quickly because it need only read in the training set without much further
processing, and it generalizes accurately for many applications. However, since the basic
nearest neighbor algorithm stores all of the training instances, it has relatively large memory
requirements. It must search through all available instances to classify a new input vector, so
it is slow during classification. Also, since it stores every instance in the training set, noisy
instances (i.e., those with errors in the input vector or output class, or those not representative
of typical cases) are stored as well, which can degrade generalization accuracy.

Techniques such dsd trees(Sproull, 1991; Wess, Althoff, & Richter, 1993) ampdo-
jection (Papadimitriou & Bentley, 1980) can reduce the time required to find the nearest
neighbor(s) of an input vector, but they do not reduce storage requirements, nor do they
address the problem of noise. In addition, they often become much less effective as the
dimensionality of the problem (i.e., the number of input attributes) grows (Sproull, 1991).

On the other hand, when some of the instances are removed from the training set, the
storage requirements and time necessary for generalization are correspondingly reduced.
This paper focuses on the problem of reducing the size of the stored set of instances
(or other exemplars) while trying to maintain or even improve generalization accuracy.

It accomplishes this by first providing a relatively thorough survey of machine learning
algorithms used to reduce the number of instances needed by learning algorithms, and then
by proposing several new reduction techniques.

Section 2 discusses several issues related to the problem of instance set reduction, and
provides a framework for the discussion of individual reduction algorithms. Section 3
surveys much of the work done in this area. Section 4 presents a collection of six additional
algorithms called DROP1-DROP5 and DEL that are used to reduce the size of the training set
while maintaining or even improving generalization accuracy. Section 5 presents empirical
results comparing 10 of the surveyed techniques with the six additional techniques presented
in Section 4 on 31 datasets. Section 6 provides conclusions and future research directions.

2. Issues in instance set reduction

This section provides a framework for the discussion of the instance reduction algo-
rithms presented in later sections. The issues discussed in this section include exemplar
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representation, the order of the search, the choice of distance function, the general intuition
of which instances to keep, and how to evaluate the different reduction strategies.

2.1. Representation

One choice in designing a training set reduction algorithm is to decide whether to retain

a subset of the original instances or to modify the instances using a new representation.
For example, some algorithms (Salzberg, 1991; Wettschereck & Dietterich, 1995) use hy-
perrectangles to represent collections of instances; instances can be generalized into rules
(Domingos, 1995, 1996); and prototypes can be used to represent a cluster of instances
(Chang, 1974), even if no original instance occurred at the point where the prototype is
located.

On the other hand, many algorithms (i.mstance-basealgorithms) seek to retain a
subset of the original instances. One problem with using the original data points is that
there may not be any data points located at the precise points that would make for the most
accurate and concise concept description. Prototypes, on the other hand, can be artificially
constructed to exist exactly where they are needed, if such locations can be accurately
determined. Similarly, rules and hyperrectangles can be constructed to reduce the need for
instances in certain areas of the input space.

2.2. Direction of search

When searching for a subs8tof instances to keep from training s&f there are also a
variety of directions the search can proceed, includicgementaldecrementalandbatch

2.2.1. Incremental. Anincremental search begins with an empty sul$eind adds each
instance inT to S if it fulfils some criteria. In this case the order of presentation of
instances can be very important. In particular, the first few instances may have a very
different probability of being included i& than they would if they were visited later.

Under such schemes, the order of presentation of instanc@stinthe algorithm is
typically random because by definition, an incremental algorithm should be able to handle
new instances as they become available without all of them being present at the beginning.
In addition, some incremental algorithms do not retain all of the previously seen instances
even during the learning phase, which can also make the order of presentation important.

One advantage of an incremental scheme is that if instances are made available later,
after training is complete, they can continue to be add&Hocording to the same criteria.
Another advantage of incremental algorithms is that they can be faster and use less storage
during learning than non-incremental algorithms, since they can ignore some of the dis-
carded instances when adding others. Thus inste@{iof) time andO(n) storage during
the learning phase, they can us¢ns) time andO(s) storage, whera is the number of
training instances anglis the number of instances retained in the subset.

The main disadvantage is that incremental algorithms are sensitive to the order of pre-
sentation of the instances, and their early decisions are based on very little information,
and are therefore prone to errors until more information is available. Some incremental
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algorithms (e.g., EACH, Salzberg, 1991) use a small number of instances (e.g., 100) in an
initial “batch” phase to help alleviate these problems.

Some algorithms add instances3m a somewhat incremental fashion, but they examine
all available instances to help select which instance to add next. This makes the algorithm
not truly incremental, but may improve its performance substantially.

2.2.2. Decremental. The decremental search begins w8h= T, and then searches for
instances to remove froi8. Again the order of presentation is important, but unlike the
incremental process, all of the training examples are available for examination at any time,
so a search can be made to determine which instance would be best to remove during each
step of the algorithm. Decremental algorithms discussed in Section 3 include RNN (Gates,
1972), SNN (Ritter et al. 1975), ENN (Wilson, 1972), VSM (Lowe, 1995), and tirenk
(SuBTRACTIVE) Algorithm (Kibler & Aha, 1987). RISE (Domingos, 1995) can also be
viewed as a decremental algorithm, except that instead of simply removing instances from
S, instances are generalized into rules. Similarly, Chang’s prototype rule (Chang, 1974)
operates in a decremental order, but prototypes are merged into each other instead of being
simply removed.

One disadvantage with the decremental rule is that it is often computationally more
expensive than incremental algorithms. For example, in order to find the nearest neighbor
in T of an instancen distance calculations must be made. On the other hand, there are
fewer thann instances irS (zero initially, and some fraction of eventually), so finding
the nearest neighbor i of an instance takes less computation.

However, if the application of a decremental algorithm can result in greater storage
reduction, then the extra computation during learning (which is done just once) can be
well worth the computational savings during execution thereafter. Increased generalization
accuracy, if it can be achieved, is also typically worth some extra time during learning.

2.2.3. Batch. Another way to apply a training set reduction rule is in batch mode. This
involves deciding if each instance meets the removal criteria before removing any of them.
Then all those that do meet the criteria are removed at once. For examplel theNN rule
(Tomek, 1976) operates this way. This can relieve the algorithm from having to constantly
update lists of nearest neighbors and other information when instances are individually
removed.

However, there are also dangers in batch processing. For example, assume the following
rule is applied to an instance set:

Remove an instance if it has the same output class &siggrest neighbors.

This could result in entire clusters disappearing if there are no instances of a different
class nearby. If done in decremental mode, however, some instances would remain, because
eventually enough neighbors would be removed that one df tiearest neighbors of an
instance would have to be of another class, even if it was originally surrounded by those of
its own class.

As with decremental algorithms, batch processing suffers from increased time complexity
over incremental algorithms.
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2.3. Border points vs. central points

Another factor that distinguishes instance reduction techniques is whether they seek to
retain border points, central points, or some other set of points.

The intuition behind retaining border points is that “internal” points do not affect the
decision boundaries as much as border points, and thus can be removed with relatively little
effect on classification.

On the other hand, some algorithms instead see&rtmveborder points. They remove
points that are noisy or do not agree with their neighbors. This removes close border points,
leaving smoother decision boundaries behind. However, such algorithms do not remove
internal points that do not necessarily contribute to the decision boundary.

It may take a large number of border points to completely define a border, so some
algorithms retaircenterpoints in order to use those instances which are most typical of
a particular class to classify instances near them. This can dramatically affect decision
boundaries, because the decision boundaries depend on not only where the instances of one
classlie, butwhere those of other classes lie as well. Roughly speaking (i.e., askusiihg
the decision boundary lies halfway between two nearest instances of opposing classes, so
center points must be chosen carefully in order to keep the decision boundaries in the correct
general vicinity.

2.4. Distance function

The distance function (or its complement, the similarity function) is used to decide which
neighbors are closest to an input vector and can have a dramatic effect on an instance-based
learning system.

The nearest neighbor algorithm and its derivatives usually use variants of the Euclidean
distance function, which is defined as:

PCEE €Y
i=1

whereX and y are the two input vectorsn is the number of input attributes, ang

andy; are the input values for input attribute This function is appropriate when all

the input attributes are numeric and have ranges of approximately equal width. When the
attributes have substantially different ranges, the attributes can be normalized by dividing
the individual attribute distances by the range or standard deviation of the attribute.

A variety of other distance functions are also available for continuously-valued at-
tributes, including the Minkowsky (Batchelor, 1978), Mahalanobis (Nadler & Smith, 1993),
Camberra, Chebychev, Quadratic, Correlation, and Chi-square distance metrics (Michalski,
Stepp, & Diday, 1981; Diday, 1974); the Context-Similarity measure (Biberman, 1994);
the Contrast Model (Tversky, 1977); hyperrectangle distance functions (Salzberg, 1991;
Domingos, 1995) and others. Several of these functions are defined in figure 1 (Wilson &
Martinez, 1997a).
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Figure L  Equations of selected distance functionsaidy are vectors ofn attribute values).

Whennominal(discrete, unordered) attributes are included in an application, a distance
metric is needed that supports them. Some learning algorithms have usgdrtlapmetric,
which defines the distance for an attribute as 0 if the values are equal, or 1 if they are different,
regardless of which two values they are.

An alternative distance function for nominal attributes is Wadue Difference Metric
(VDM) (Stanfill & Waltz, 1986). Using the VDM, the distance between two valesd
y of a single attributa is given as:

< Na,x.c Na,y,c 2
VDMa(x, y) = | Y~ - @

=1 Na,x Na,y

whereN, x is the number of times attribuge had valuex; N, xc is the number of times
attributea had valuex and the output class wasandC is the number of output classes.
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Using this distance measure, two values are considered to be closer if they have more similar
classifications, regardless of the order of the values.

In order to handle heterogeneous applications—those with both numeric and nominal
attributes—it is possible to use a heterogeneous distance function such as HVDM (Wilson
& Martinez, 1997a), which is defined as:

m
HVDM (X, §) = | ) d2(Xa, Ya) €)
a=1
where the functionl, (X, y) is the distance for attribut@and is defined as:
1, if x ory is unknown; otherwise...
da(X, ) = VDlyi(;(/,' y), if ais nominal, else (4)

if ais numeric.
4o

where VDM, (X, y) is the function given in (2), and;, is the standard deviation of the
values occurring for attribute in the instances in the training Set This distance function
provides appropriate normalization between numeric and nominal attributes, as well as
between numeric attributes of different scales. It handles unknown input values by assigning
them a large distance so that instances with missing attributes will be less likely to be used
as neighbors than those with all attributes specified. Using a constant for the distance to an
unknown attribute value also serves to effectively ignore such attributes when an instance
to be classified is missing a value, since the distance to that attribute will be the same for
all instances in the system.

2.4.1. Weighting. Several algorithms use weighting schemes that alter the distance mea-

surements and voting influence of each instance. In this paper we focus on training set
reduction, and thus will not use any weighting schemes in our experiments other than those
needed for normalization in the distance function, as explained above. A good survey of

weighting schemes is given by Wettschereck, Aha and Mohri (1997).

2.5. Voting

Another decision that must be made for many algorithms is the cholcevbiich is the num-

ber of neighbors used to decide the output class of an input vector. The vatlisgypically

asmall, oddinteger (e.g., 1, 3or5). Usually each such nearest neighbor gets exactly one vote,
so even values d&fcould resultin “ties” that would have to be resolved arbitrarily or through
some more complicated scheme. There are some algorithms which give closer neighbors
more influence than further ones, such addistance-Weighted kNN RulBudani, 1976).

Such modifications reduce the sensitivity of the algorithm to the selectiorR#dial Basis
Functionnetworks (Wasserman, 1993) aRdbbabilistic Neural Network§Specht, 1992)

use a Gaussian weighting of influence and allow all instances to “vote”, though instances
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that are very far from the input have only negligible influence. This does away with the
need for thek parameter, but introduces a need for weight-spreading parameters.

One common way of determining the valueka$ to usdeave-one-out cross-validation
For each of several values kfeach instance is classified by ksiearest neighbors other
than the instance itself, to see if it is classified correctly. The valuk foat produces the
highest accuracy is chosen.

In the basic nearest neighbor rule, settigreater than 1 decreases the sensitivity of the
algorithm to noise, and tends to smooth the decision boundaries somewhat (Cover & Hart,
1967; Dasarathy, 1991). It is also important for many instance set reduction algorithms to
have ak > 1. However, once reduction has taken place, it is possible that the value of
should be changed. For example, if the training set has been reduced to the point that there
is only one instance representing what was formerly a cluster of instances, then perhaps
k = 1 would be more appropriate th&n> 1, especially if the noisy instances have been
removed during the reduction process. In other cases, the vatighofild remain the same.
Thus, it may be appropriate to find a valuekofor use during the reduction process, and
then redetermine the best value koafter reduction is completed.

It may even be advantageous to updatiynamically during the reduction process. For
example, if a very large value &f were used initially, the order of removal of instances
from the subset might be improved.

2.6. Evaluation strategies

In comparing training set reduction algorithms, there are anumber of criteria that can be used
to compare the relative strengths and weaknesses of each algorithm. These include speed
increase (during execution), storage reduction, noise tolerance, generalization accuracy,
time requirements (during learning), and incrementality.

2.6.1. Storage reduction. One of the main goals of training set reduction algorithms is to
reduce storage requirements. It is important to note that if alternate representations are used
(e.g., hyperrectangles or rules), any increase in the size of the new representation must be
taken into account along with the reduction in number of instances stored.

2.6.2. Speed increase Another main goal is to speed up classification. A reduction in

the number of stored instances will typically yield a corresponding reduction in the time

it takes to search through these instances and classify a new input vector. Again, more
complex representations such as hyperrectangles may not need as many comparisons, but
may require more computation for each comparison, and this must be taken into account.

2.6.3. Generalization accuracy.A successful algorithm will often be able to significantly
reduce the size of the training set without significantly reducing generalization accuracy.
In some cases generalization accuracy can increase with the reduction of instances, such
as when noisy instances are removed and when decision boundaries are smoothed to more
closely match the true underlying function rather than the sampling distribution.
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2.6.4. Noise tolerance. Algorithms also differ with respect to how well they work in the
presence of noise. In the presence of class noise, for example, there are two main problems
that can occur. The first is that very few instances will be removed from the training set
because many instances are needed to maintain the noisy (and thus overly complex) decision
boundaries. The second problem is that generalization accuracy can suffer, especially if
noisy instances are retained while good instances are removed. In such cases the reduced
training set can be much less accurate than the full training set in classifying new input
vectors.

2.6.5. Learning speed. The learning process is done just once on a training set, so it is not
quite as important for the learning phase to be fast. However, if the learning phase takes
too long it can become impractical for real applications. Ironically, it is on especially large
training sets that reduction algorithms are most badly needed, so a reasonab@((€).,

or faster) time bound is desirable.

2.6.6. Incremental. In some cases itis convenientto have an incremental algorithm so that
additional instances can be added over time as they become available. On the other hand,
it is possible to use a non-incremental algorithm on an initial database and then employ a
separate incremental algorithm once a reasonable starting point has been achieved.

Note that not all algorithms attempt to meet all of these goals. For example, a hybrid
hyperrectangle and nearest-neighbor algorithm by Wettschereck (1994) saves all of the
training set in addition to the hyperrectangles, and thus actually increases storage require-
ments. However, it uses the hyperrectangles to quickly classify most input vectors, and only
uses the entire training set when necessary. Thus, it sacrifices the goal of storage reduction
in favor of the goals of classification speed and maintaining or increasing generalization
accuracy.

3. Survey of instance reduction algorithms

Many researchers have addressed the problem of training set size reduction. This section
surveys several techniques, discusses them in light of the framework presented in Section2,
and points out their interesting differences. This survey builds upon an earlier survey done
by Dasarathy (1991). Most of the algorithms discussed here use a Susstte original
instances in the training s&tas their representation, and though most have primarily used
the Euclidean distance function in the past, they can typically make use of the HVDM
distance function or other distance functions when needed. Most of the algorithms also tend
to usek = 1 except where noted, though in most cases the algorithms can be modified to
usek > 1.

3.1. Nearest neighbor editing rules

3.1.1. Condensed nearest neighbor ruleHart (1968) made one of the first attempts to
reduce the size of the training set with idsndensed Nearest Neighbor REENN). His
algorithm finds a subse? of the training sefl such that every member af is closer to
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a member ofS of the same class than to a memberSaéf a different class. In this way,
the subsets can be used to classify all the instancedTircorrectly (assuming thal is
consistent, i.e., that no two instanceslimave identical inputs but different classes).

This algorithm begins by randomly selecting one instance belonging to each output class
from T and putting them irs. Then each instance ihis classified using only the instances
in S. If an instance is misclassified, it is addedSahus ensuring that it will be classified
correctly. This process is repeated until there are no instanceghat are misclassified.

This algorithm ensures that all instancesTirare classified correctly, though it does not
guarantee a minimal set.

This algorithm is especially sensitive to noise, because noisy instances will usually be
misclassified by their neighbors, and thus will be retained. This causes two problems. First,
storage reduction is hindered, because noisy instances are retained, and because they are
there, often non-noisy instances nearby will also need to be retained. The second problem
is that generalization accuracy is hurt because noisy instances are usually exceptions and
thus do not represent the underlying function well. Since some neighbors have probably
been removed, a noisy instanceSnvill often cover more of the input space than it did in
T, thus causing even more misclassifications than before reduction.

3.1.2. Selective nearest neighbor ruleRitter et al. (1975) extended the condensed NN
method in theirSelective Nearest Neighbor RUBNN) such that every member af

must be closer to a member & of the same class than to any memberTofinstead

of S) of a different class. Further, the method ensures a minimal subset satisfying these
conditions.

The algorithm for SNN is more complex than most other reduction algorithms, and
the learning time is significantly greater, due to the manipulation of ann matrix and
occasional recursion. The SNN algorithm begins by constructing a binarg matrix A
(wheren is the number of instances i), whereAj; is set to 1 when instancgis of the
same class as instanigeand it is closer to instandéehani’s nearesenemyi.e., the nearest
neighbor ofi in T that is of a different class than A;; is always set to 1.

Once this array is set up, the following 5 steps are taken until no columns remain in the
array:

1. For all columns that have exactly one bit on, I¢tbe the row with the bit on in column
i. All columns with a bit on in rowj are removed, row is removed, and instangeis
added toS.

2. For all rowsj, delete rowj if for all (remaining) columnsg and for some (remaining)
row k, Aji < Ag. In other words, rowj is deleted if for some other row k, whenever
row j contains a 1, rovk also contains a 1. In this case instarjde notadded toS.

3. Delete any column if for all (remaining) rowsj and some (remaining) coluni
Aji > Aj. In other words, columnm is deleted if there is some other colurkrihat
has zeroes in every row that colurndoes (and possibly zeroes in other rows as well).
Again instance is notadded toS.

4. Continue to repeat steps 1-3 until no further progress can be made. If no columns remain
in the array, thersis complete and the algorithm is finished. Otherwise, go on to step 5.
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5. Find the rowj that when included i requires the fewest other rows to also be included
in S. This is done as follows:

(a) For each remaining roy, assume that instandgewill be added toS, and that row
j and any (remaining) columns with a bit on in rgwwill be deleted (but do not
actually remove rowj or the columns yet). Subject to this assumption, find the
fewest number of additional rows it would take to get at least as many 1's as there
are remaining columns. From the minimums found for each jrokeep track of the
absolute minimum found by any royv

(b) For each rowj in (a) that resulted in the absolute minimum number of additional
rows thatmightbe needed, actually remoyeand columns with bits on in royw and
call the algorithm recursively beginning with step 1. If the minimum number of rows
was really used, then addto S and stop:S is complete. Otherwise, restore rgw
and the removed columns, and try the next possible jrow

(c) If norow j is successful in achieving the minimum number, increment the absolute
minimum and try (b) again until successful.

Note that the only steps in which instances are chosen for inclusf®aria steps 1 and 5.

This algorithm takes approximate@(mr? + n®) time, compared to th® (mr?) or less
time required by most other algorithms surveyed. It also req@reg) storage during the
learning phase for the matrix, though this matrix is discarded after learning is complete. The
algorithm is sensitive to noise, though it will tend to sacrifice storage more than accuracy
when noise is present. For an example of how this algorithm works, the reader is referred
to Ritter et al. (1975), which also appears in Dasarathy (1991). An implementation in C is
also available in the on-line appendix to this paper.

3.1.3. Reduced nearest neighbor ruleGates (1972) introduced tHeeduced Nearest
Neighbor RulgRNN). The RNN algorithm starts witB = T and removes each instance
from S if such a removal does not cause atherinstances inl to be misclassified by
the instances remaining B It is computationally more expensive than Hart’s Condensed
NN rule, but will always produce a subset of CNN, and is thus less expensive in terms of
computation and storage during the classification stage.

Since the instance being removed is not guaranteed to be classified correctly, this al-
gorithm is able to remove noisy instances and internal instances while retaining border
points.

3.1.4. Edited nearest neighbor rule.Wilson (1972) developed thedited Nearest Neigh-

bor (ENN) algorithm in whichS starts out the same &3, and then each instance &

is removed if it does not agree with the majority of itsiearest neighbors (witk = 3,
typically). This edits out noisy instances as well as close border cases, leaving smoother
decision boundaries. It also retains all internal points, which keeps it from reducing the stor-
age requirements as much as most other reduction algorithm&é&peated ENKRENN)

applies the ENN algorithm repeatedly until all instances remaining have a majority of their
neighbors with the same class, which continues to widen the gap between classes and
smooths the decision boundary.
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3.1.5. All k-NN. Tomek (1976) extended the ENN with ldl k-NN method of editing.
This algorithm works as follows: for = 1 tok, flag as bad any instance not classified
correctly by itsi nearest neighbors. After completing the loop lallimes, remove any
instances frons flagged as bad. In his experiments, RENN produced higher accuracy than
ENN, and the AL K-NN method resulted in even higher accuracy yet. As with ENN, this
method can leave internal points intact, thus limiting the amount of reduction that it can
accomplish. These algorithms serve more as noise filters than serious reduction algorithms.
Kubat & Matwin (1997) extended Tomek’s algorithm to remove internal instances as
well as border instances. They first apply a variant of Hart's CNN rule (1968), and then
remove any instances that participateTomek Linksi.e., pairs of instances of different
classes that have each other as their nearest neighbors. Their algorithm was developed for
the purpose of handling cases where one class was much more rare than the other(s), so
only instances in the majority class are removed by their reduction algorithm, and all of the
instances in the minority class are retained.

3.1.6. Variable similarity metric. Lowe (1995) presented ¥ariable Similarity Metric

(VSM) learning system that produces a confidence level of its classifications. In order to
reduce storage and remove noisy instances, an instasmoemoved if alk of its neighbors

are of the same class, even if they are of a different classttfianwhich case is likely to

be noisy). This removes noisy instances as well as internal instances, while retaining border
instances. The instance is only removed, however, if its neighbors are at least 60% sure of
their classification. The VSM system typically uses a fairly lakde.g.,k = 10), and the
reduction in storage is thus quite conservative, butit can provide an increase in generalization
accuracy. Also, the VSM system used distance-weighted voting, which makes a larger value
of k more appropriate.

3.2. ‘“Instance-Based” learning algorithms

Aha et al. (1991; Aha, 1992) presented a serigasthnce-basetkarning algorithms. 1B1
(Instance Based learning algorithm 1) was simply the 1-NN algorithm, and was used as a
baseline.

3.2.1. 1B2. ThelB2 algorithm is incremental: it starts wit8 initially empty, and each
instance inT is added toS if it is not classified correctly by the instances alreadySin

(with the first instance always added). An early case study (Kibler & Aha, 1987) calls
this algorithm theGrowth (Additive) AlgorithmThis algorithm is quite similar to Hart’s
Condensed NN rule, except that IB2 does not sB&dth one instance of each class, and
does not repeat the process after the first pass through the training set. This means that 1B2
will not necessarily classify all instancesTncorrectly.

This algorithm retains border points 8while eliminating internal points that are sur-
rounded by members of the same class. Like the CNN algorithm, IB2 is extremely sensitive
to noise, because erroneous instances will usually be misclassified, and thus noisy instances
will alImost always be saved, while more reliable instances are removed.
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3.2.2. Shrink (subtractive) algorithm. Kibler & Aha (1987) also presented an algorithm
that starts witts = T, and then removes any instances that would still be classified correctly
by the remaining subset. This is similar to the Reduced Nearest Neighbor (RNN) rule,
except that it only considers whether tremovednstance would be classified correctly,
whereas RNN considers whether the classificationtioérinstances would be affected by
the instance’s removal. Like RNN and many of the other algorithms, it retains border points,
but unlike RNN, this algorithm is sensitive to noise.

3.2.3.IB3. The IB3 algorithm (Aha et al., 1991; Aha 1992) is another incremental algo-
rithm that addresses IB2’s problem of keeping noisy instances by retainingcogptable
misclassified instances. The algorithm proceeds as shown below.

1. Foreachinstandein T

2 Leta be the nearestcceptablénstance inSto t.

3 (if there are no acceptable instanceSiet a be a random instance )

4, If clasqa) # clasgt) then add to S.

5. For each instancgin S

6 If sis at least as close toasa is

7 Then update the classification recordsof

8 and remove from Sif its classification record is significantly poor.
9. Remove all non-acceptable instance frSm

An instance isacceptabldf the lower bound on its accuracy is statistically significantly
higher (at a 90% confidence level) than the upper bound on the frequency of its class.
Similarly, an instance is dropped fro8if the upper bound on its accuracy is statistically
significantly lower (at a 70% confidence level) than the lower bound on the frequency of
its class. Other instances are kepSduring training, and then dropped at the end if they
do not prove to be acceptable.

The formula for the upper and lower bounds of the confidence interval is:

p+22/2n+z, /PP 4 2

1+ 7Z%/n

®)

where for theaccuracyof an instance ir§, n is the number of classification attempts since
introduction of the instance t8 (i.e., the number of times it was at least as close 48
a was), p is the accuracy of such attempts (i.e., the number of times the instance’s class
matched'’s class, divided by), andz is the confidence (.9 for acceptance, .7 for dropping).
For the frequency of a clasp,is the frequency (i.e. proportion of instances so far that are
of this class)n is the number of previously processed instances zasthe confidence (.9
for acceptance, .7 for dropping).

IB3 was able to achieve greater reduction in the number of instances stored and also
achieved higher accuracy than IB2, due to its reduced sensitivity to noise on the applications
on which it was tested.



270 WILSON AND MARTINEZ

3.2.4.1B4 and IB5. In order to handle irrelevant attributes, 1B4 (Aha, 1992) extends IB3

by building a set of attribute weights for each class. It requires fewer instances to generalize
well when irrelevant attributes are present in a dataset. IB5 (Aha, 1992) extends IB4 to
handle the addition of new attributes to the problem after training has already begun. These
extensions of IB3 address issues that are beyond the scope of this paper, and are thus only
briefly mentioned here.

3.2.5. MCS. Brodley (1993) introduced Klodel Class SelectiofMCS) system that uses

an instance-based learning algorithm (which claims to be “based loosely on IB3") as part
of a larger hybrid learning algorithm. Her algorithm for reducing the size of the training
set is to keep track of how many times each instance was one kfrtbarest neighbors of
another instance (as instances were being added to the concept description), and whether
its class matched that of the instance being classified. If the number of times it was wrong
is greater than the number of times it was correct then it is thrown out. This tends to avoid
noise, though it uses a simpler approach than IB3.

3.2.6. TIBL. Zhang (1992) used a different approach calledTgical Instance Based
Learning(TIBL) algorithm, which attempted to save instances near the center of clusters
rather than on the border. This can result in much more drastic reduction in storage and
smoother decision boundaries, and is robust in the presence of noise.

Thetypicality of an instance is defined as the ratio of its average similarity to instances
of the same class to its average similarity to instances of other classesinileity of
two instancex andy is defined as 1 distancéx, y), where

m -\ 2
distanceX, §) = 1 > <&> (6)

m &= \ max — min;

In this equatiomm is the number of input attributes, and maxd min are the maximum and
minimum values occurring for attributerespectively. For nominal attributes, the distance
for that attribute is O if they are equal or 1 if they are different (i.e.,dherlap metric).
Each instance has a weightvy that is multiplied by the distance to compute a weighted
distance for use during training and subsequent classification.

The learning algorithm proceeds as follows. Pick the most typical instaiied — S
that is incorrectly classified by the instancesirind the most typical instangein T — S
which causes to be correctly classified, and add it 8 Note thatx itself is notadded at
this point. Sety’s weight to bew, = 1/typicality(y). Repeat this process until all instances
in T are classified correctly.

This strategy shows great reduction in storage, especially when the application has
“graded structures” in which some instances are more typical of a class than others in a
fairly continuous way. The TIBL algorithm also avoids saving noisy instances. It is pseudo-
incremental, i.e., it proceeds in an incremental fashion, but it uses the entire training set to
determine the typicality of each instance and the range of each input attribute.

The TIBL algorithm may have difficulty on problems with complex decision surfaces, and
requires modifications to handle disjoint geometric regions that belong to the same class.
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3.2.7. Random mutation hill climbing. Skalak (1994) usecindom mutation hill climbing
(Papadimitriou & Steiglitz, 1982) to select instances to us8.ifthe method begins with
m randomly-selected instances$(wherem is a parameter that is supplied by the user).
Then for each iteration (callednautatior), one randomly-selected instanceSis removed
and replaced with another randomly-selected instande i S. If this strictly improves
classification of the instances i, the change is retained, otherwise it is undone. This
process is repeated foriterations, wheren is another parameter provided by the user.
Skalak usedh = 100.

Since it does not determine the numbeof instances to retain in the subset, this method
only solves part of the problem.

3.2.8. Encoding length. Cameron-Jones (1995) usedenrcoding length heuristio de-
termine how good the subs8is in describingdl . The basic algorithm begins with a growing
phase that takes each instande T and adds it t&5if that results in a lower cost than not
adding it. As with IB3, the growing phase can be affected by the order of presentation of
the instances.

Thecost(i.e., the value to be minimized) of the instance-based model is

COSTm, n, x) = F(m, n) + mlog,(C) + F(x,n —m) + xlog,(C — 1) @)

wheren is the number of instances i, m is the number of instances B andx is the
number ofexceptiongi.e., the number of instancesen so fathat are misclassified by the
instances irS). C is the number of classes in the classification t&sim, n) is the cost of
encoding whichm instances of the available are retained, and is defined as:

m

m |
F(m, n) = log* ( > C;‘) = log* ( > %) (8)
j:O ].(n J)'

j=0

where log (x) is the sum of the positive terms of l9), log,(log,(x)), etc.

After all instances are seen, instance reduction is done, where each insianSés
removed if doing so lowers the cost of the classifier. Cameron-Jones calls this method the
“Pre/All” method, since it is not truly incremental, but to better distinguish it from other
techniques in this paper, we call it tBmcoding Length GroWELGRow) method.

TheExploremethod (Cameron-Jones, 1995) begins by growing and red&eising the
ELGRow method, and then performs 1000 mutations to try to improve the classifier. Each
mutation tries adding an instance $opremoving one fronts, or swapping one it with
one inT — S, and keeps the change if it does not increase the cost of the classifier. The
generalization accuracy of thexBLORE method is quite good empirically, and its storage
reduction is much better than most other algorithms.

3.3. Prototypes and other modifications of the instances

Some algorithms seek to reduce storage requirements and speed up classification by modi-
fying the instances themselves, instead of just deciding which ones to keep.
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3.3.1. Prototypes. Chang (1974) introduced an algorithm in which each instande im
initially treated as a prototype. The nearest two instances that have the same class are merged
into a single prototype (using a weighted averaging scheme) that is located somewhere
between the two prototypes. This process is repeated until classification accuracy starts to
suffer.

This method achieved good results, though it requires modification to handle applications
that have one or more nominal input attributes.

3.3.2. RISE. Domingos (1995) introduced the RISE 2.0 system which treats each instance
in T as arule inR. For each rule in R, the nearest examptein T of the same class as
is found that is not yet covered Iy The ruler is then minimally generalized to covar
unless that harms accuracy. This process is repeated until no rules are generalized during
an entire pass through all the rulesRn

During generalization, the nearest rule to an input vector is used to provide the output
class. If two rules are equally close, the one with higher generalization accuracy on the
training set is used.

3.3.3.EACH. Salzberg(1991)introduced thiested Generalized Exemp{&IGE) theory,

in which hyperrectangles are used to take the place of one or more instances, thus reducing
storage requirements. The program used to implement NGE is call&kémeplar-Aided
Constructor of HyperrectangldEACH). EACH seeds the system with several randomly-
selected instances from the training set, after which it operates incrementally. As each
instance is presented, EACH finds the distance to the nearest exemplar (i.e., a point or
hyperrectangle), whichis 0 if the instance is inside a hyperrectangle. A pointinside multiple
hyperrectangles is considered to be closest to the smallest one.

When the new instance has the same class as its nearest exemplar, the exemplar is
generalized (i.e., the hyperrectangle is grown) so that it also covers the new instance. When
the classes are different, EACH attempts to change the shape of the second-closest exemplar
so that it becomes the closest one. If it cannot do so, then the new instance becomes a
new exemplar. Weights are maintained for each exemplar that reduce the effect of noisy
exemplars and irrelevant attributes.

Wettschereck & Dietterich (1995) introduced a hybrid nearest-neighbor and nearest-
hyperrectangle algorithm that uses hyperrectangles to classify input vectors if they fall inside
the hyperrectangle, amdNN to classify inputs that were not covered by any hyperrectangle.
This algorithm must store the entire training 3etbut accelerates classification by using
relatively few hyperrectangles whenever possible.

4. Ordered removal

Given the issues in Section 2 to consider, our research has been directed towards finding
instance reduction techniques that provide noise tolerance, high generalization accuracy,
insensitivity to the order of presentation of instances, and significant storage reduction,
which in turn improves generalization speed.

This section presents a collection of new heuristics used to decide which instances to keep
and which instances to remove from a training set. Unlike most previous methods, these
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algorithms take careful note of the order in which instances are removed. The first three
methods, DROP1-DROPS3, were previously introduced by the authors under the names
RT1-RT3, respectively (Wilson & Martinez, 1997c).

In order to avoid repeating lengthy definitions, some notation is introduced here. A
training setT consists ofh instances (or prototype$) . Each instancé hask nearest
neighborsP.N;  (ordered from nearest to furthest), whkiis typically a small odd integer
such as 1, 3 or 5P also has a neareshemy P.E, which is the nearest instance with a
different output class. Those instances that hawes one of theik nearest neighbors are
calledassociatesf P, and are notated d3.A; , (sorted from nearest to furthest) where
is the number of associates tHahas.

4.1. DROP1

The first new reduction technique we present isBleeremental Reduction Optimization
Procedure 1or DROP1. This algorithmis identical to RNN (Gates, 1972) with the exception
that the accuracy is checked &instead ofT . It is included here mostly as a baseline for
comparison with the other DROP algorithms, and to provide a framework on which to build
the others.

DROPL1 uses the following basic rule to decide if it is safe to remove an instance from
the instance se$ (whereS = T originally):

RemoveP if at least as many of its associatesSmvould be classified correctly without
P.

To see if an instancP can be removed using this rule, each associate (i.e., each instance
that hasP as one of its neighbors) is checked to see what effect the remowamaiuld
have on it.

RemovingP causes each associ@eA; to use itk+1st nearest neighboP(A; . Ny 1) in
place ofP. If P has the same class BsA;, andP.A;.Ny. 1 has a different class thd A,
this weakens its classification, and could caBsé; to be misclassified by its neighbors.

On the other hand, iP is a different class tha®.A; and P.A;.Nky1 is the same class
asP.A;, the removal ofP could cause a previously misclassified instance to be classified
correctly.

In essence, this rule tests to see if removiagvould degrade leave-one-out cross-
validation generalization accuracy, which is an estimate of the true generalization ability
of the resulting classifier. An instance is removed when it results in the same level of
generalization with lower storage requirements. By maintaining lists-6f1 neighbors
and an average &f+ 1 associates (and their distances), the leave-one-out cross-validation
can be computed i@ (k) time for each instance instead of the us@dmn) time, wheren
is the number of instances in the training set, ani the number of input attributes. An
O(mn) step is only required once an instance is selected for removal. This efficient method
is similar to the method used in RISE (Domingos, 1995).
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The algorithm for DROP1 proceeds as follows.

1. DROP1(Training s€et): Instance ses.
2 LetS=T.
3 For each instancB in S:
4, Find P.N1. k.1, thek + 1 nearest neighbors & in S.
5 Add P to each of its neighbors’ lists of associates.
6 For each instancB in S
7 Letwith = # of associates dP classified correctly witiP as a neighbor.
8. Letwithout= # of associates dP classified correctly withouP.
9. If without > with
10. RemoveP from S.
11. For each associateof P
12. RemoveP from A’s list of nearest neighbors.
13. Find a new nearest neighbor far
14. Add A to its new neighbor’s list of associates.
15. For each neighbad of P
16. RemoveP from N'’s lists of associates.
17. Endif

18. ReturnS.

This algorithm begins by building a list of nearest neighbors for each instance, as well
as a list of associates. Then each instancgimremoved if its removal does not hurt the
classification of the instances remainingSnWhen an instanc® is removed, all of its
associates must remowe from their list of nearest neighbors, and then must find a new
nearest neighbor so that they still hdve- 1 neighbors in their list. When they find a new
neighborN, they also add themselves b's list of associates so that at all times every
instance has a current list of neighbors and associates.

This algorithm removes noisy instances, because a noisy indeamsgally has associates
that are mostly of a different class, and such associates will be at least as likely to be
classified correctly withouP. DROP1 also removes instances in the center of clusters,
because associates there are not near their enemies, and thus continue to be classified
correctly withoutP.

Nearthe border, the removal of some instances can cause others to be classified incorrectly
because the majority of their neighbors can become enemies. Thus this algorithm tends to
keep non-noisy border points. At the limit, there is typically a collection of border instances
such that the majority of thk nearest neighbors of each of these instances is the correct
class.

4.2. DROP2: using more information and ordering the removal

There is a potential problem that can arise in DROP1 with regard to noisy instances. A noisy
instance will typically have associates of a different class, and will thus cover a somewhat
small portion of the input space. However, if its associates are removed by the above rule,
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the noisy instance may cover more and more of the input space. Eventually it is hoped that
the noisy instance itself will be removed. However, if many of its neighbors are removed
first, its associates may eventually include instances of the same class from the other side
of the original decision boundary, and it is possible that removing the noisy instance at that
point could cause some of its distant associates to be classified incorrectly.

DROP2 solves this problem by considering the effect of the removal of an instance on
all the instances in theriginal training setT instead of considering only those instances
remaining inS. In other words, an instand@is removed fronS only if at least as many of
its associates—including those that may have already been remove&4rame classified
correctly without it.

Thus, the removal criterion can be restated as:

RemoveP if at least as many of its associatesTiwould be classified correctly without
P.

Using this modification, each instand® in the original training sefl continues to
maintain a list of itk + 1 nearest neighbors i, even afterP is removed fronS. This in
turn means that instances$have associates that are both in and ou8,afhile instances
that have been removed froBhave no associates (because they are no longer a neighbor
of any instance). This modification makes use of additional information that is available
for estimating generalization accuracy, and also avoids some problems that can occur with
DROP1 such as removing entire clusters. This change is made by removing lines 15 and 16
from the pseudo-code for DROPL1 in Section 4.1 so that instances that have been removed
from Swill still be associates of their nearest neighborSin

DROP?2 also changes the order of removal of instances. It initially sorts the instances in
S by the distance to their nearest enemy. Instances are then checked for removal beginning
at the instance furthest from its nearest enemy. This tends to remove instances furthest from
the decision boundary first, which in turn increases the chance of retaining border points.

4.3. DROPS: filtering noise

DROP2 sortsSin an attempt to remove center points before border points. One problem
with this method is that noisy instances are also “border” points, and cause the order of
removal to be drastically changed. One noisy point in the center of a cluster causes many
points in that cluster to be considered border points, and some of these can reBaiem
after the noisy point is removed.
Two passes throug8 can remove the dangling center points, but unfortunately, by that
time some border points may have already been removed that should have been kept.
DROP3 therefore uses a noise-filtering phsforesorting the instances i®. This is
done using a rule similar to ENN (Wilson, 1972): Any instance misclassified bl its
nearest neighbors is removed. This removes noisy instances, as well as close border points,
which can in turn smooth the decision boundary slightly. This helps to avoid “overfitting”
the data, i.e., using a decision surface that goes beyond modeling the underlying function
and starts to model the data sampling distribution as well.
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After removing noisy instances froBin this manner, the instances are sorted by distance
to their nearest enemy remaining$nand thus points far from the real decision boundary
are removed first. This allows points internal to clusters to be removed early in the process,
even if there were noisy points nearby.

4.4. DROP4: more carefully filtering noise

DROP4 is identical to DROP3 except that instead of blindly applying ENN, the noise-
filtering pass removes each instance only if it is (1) misclassified Byriesarest neighbors,

and(2) it does not hurt the classification of other instances. While DROP3 usually works
well, it can in rare cases remove far too many instances in the noise-reduction pass. In one
experiment, it went so far as to remove all of them. DROP4 avoids such problems and thus
protects against especially poor generalization accuracy in such rare cases, at the expense
of slightly higher storage requirements on average.

4.5. DROPS5: smoothing the decision boundary

DROP5 modifies DROP2 so that instances are considered for removal beginning with
instances that aneearestto their nearest enemy, and proceeding outward. This serves as
a noise-reduction pass, but will also cause most internal points to be removed as well. By
removing points near the decision boundary first, the decision boundary is smoothed. After
this pass, the furthest-to-nearest pass as done by DROP2 is done repeatedly until no further
improvement can be made.

A modified version of DROP5 was used in tReduced Probabilistic Neural Network
(RPNN) (Wilson & Martinez, 1997b), which is Radial Basis FunctiofRBF) network
used for classification. The RPNN used a reduction technique that included a conservative
nearest-to-furthest noise-filtering pass followed by a more aggressive furthest-to-nearest
node instance reduction pass.

4.6. Decremental encoding length

The Decremental Encoding Leng{BEL) algorithm is the same as DROPS3, except that it
uses the encoding length heuristic (as is used in&hand EXPLOREIN Section 3.2.8) to

decide in each case whether an instance can be removed. DEL star&s-with and begins

with a noise-filtering pass in which each instance is removed if (a) it is misclassified by its

k nearest neighbors, and (b) removing the instance does not increase the encoding length
cost. The remaining instances are then sorted by the distance to their nearest enemy, and
as long as any improvement is being made, the remaining instances are removed (starting
with the instance furthest from its nearest enemy) if doing so does not increase the encoding
length cost.

5. Experimental results

Many of the reduction techniques surveyed in Section 3 and all of the techniques proposed in
Section 4 were implemented and tested on 31 datasets from the Machine Learning Database
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Repository at the University of California, Irvine (Merz & Murphy, 1996). Those included in
these experiments are CNN, SNN, ENN, RENNLA-NN, IB2, IB3, ELGROW, EXPLORE,
DEL, and DROP1-DROPS5.

These experiments were limited to those algorithms that choose a shifrggh the
training seftT to use for subsequent classification. Therefore, the methods that modify the
instances themselves were not included, i.e., rule-based, prototype, and hyperrectangle-
building methods. Similarly, VSM and MCS were excluded since they are part of more
complicated systems. RMHC was excluded because it does not specify how many in-
stances to retain, and its method is subsumed}BL&RE Similarly, RNN and SIRINK
(SUBTRACTIVE) are improved upon by DROP2 and DROP1, respectively, and are thus not
included for the sake of parsimony.

The basick nearest neighboik(NN) algorithm that retains 100% of the training set is
also included for comparison.

All of the algorithms usé& = 3, and in our experiments they all use the HVDM distance
function. (Experiments were also done using a more traditional Euclidean distance metric
with overlap metric for nominal attributes, but the average accuracy for every one of the
algorithms was higher using HVYDM.)

5.1. Results

Ten-fold cross-validation was used for each experiment. Each dataset was divided into 10
partitions and each reduction technique was given a trainin§ s®mnsisting of 9 of the
partitions (i.e., 90% of the data), from which it returned a suBs&he remaining partition

(i.e., the other 10% of the data) was classified using only the instan&Jam such trials

were run for each dataset with each reduction algorithm, using a different one of the 10
partitions as the test set for each trial. The average accuracy over the 10 trials is reported for
each reduction algorithm on each dataset in Table 1. The average percentage of instances
in T that were included ir§ is also reported for each experiment under the column “%".

The average accuracy and storage percentage for each method over all of the 31 datasets
is shown in bold near the bottom of Table 1. Due to the size of Table 1, it is broken into
three parts, but the overall average of all of the reduction techniques on each dataset and
the results for th&NN algorithm are included with each part for comparison.

DROP3 seemed to have the best mix of storage reduction and generalization accuracy
of the DROP methods, so it was selected for comparisons with all of the other methods.
Three tests were used to see how DROP3 compared to the other reduction algorithms on
this entire set of classification tasks. The first is a count of how often DROP3 was “better”
and “worse” than each of the other algorithms, where “better” means higher accuracy or
lower storage requirements in the respective columns. These counts are given as a pair of
numbers in the row labeledDROPS3 better/worseFor example, under CNN, “26-5" in
the accuracy column and “25-6" in the storage column indicates that DROP3 had higher
average accuracy than CNN on 26 of the 31 datasets, and lower average storage requirements
on 25 of them.

Since many differences were not statistically significant, a one-tailed paiesi was
used on the 10-fold cross-validation results for each dataset to measure whether the average



278 WILSON AND MARTINEZ

Table 1 Empirical results on 31 datasets. The left column shows generalization accuracy and the right column
(“%™) shows what percent of the original training set was retained by the reduction algorithm. (a) Accuracy and
storage percentage for CNN, SNN 1B2, 1B3 and DEL.

Database kNN % | CNN %| SNN %| 1B2 %| IB3 % | DEL % | Average | Avg%
Anneal 9311 [100]| 9699 | 957 | 86.08"|1057 | 96.74 | 948 | 91.35"| 979 | 9385 9.30| 9232 | 28.12
Augtralian 84.78 |100| 77.68"|24.22| 81.31° | 2838 | 7826|2415 | 8522 | 478 | 8478 256 | 8235 | 27.92
Breast Cancer(WI1) 9628 |100| 9571 | 7.09| 9385"| 835| 9571 | 7.09| 9657 | 347 | 9628 189 | 9456 | 2555
Bridges 66.09 | 100 | 61.18 |49.48| 61.37 |5252 | 62.18 | 4864 | 64.73°|28.83 | 6427 3564 | 59.20 | 37.74
Crx 83.62" | 100 | 79.42"|24.15| 8159"|27.52 | 79.42*|2415| 86.09 | 428 | 8362 308 | 8291 | 27.85
Echocardiogram 9482 |100| 8518 |14.72| 4875|2629 | 8518 | 1472 | 7286|1157 | 9339 691 | 89.01 | 3031
Flag 61.34 |100| 53.63"|50.29 | 53.63"|51.66 | 53.11|49.95 | 49.47"|34.14 | 56.18" 4588 | 56.85 | 39.50
Glass 7383|100 | 68.14 |3853| 64.39 |4263 | 66.77 |39.25| 6214 |33.80 | 69.59° 3842 | 6530 | 38.95
Heart 8148 |100| 70.00"|26.17 | 77.04"|33.78 | 70.00"|26.17 | 80.00""| 1358 | 78.89" 4.73| 7841 | 30.68
Heart(Cleveland) 8119 |100| 7395|3084 | 76.25|3388 | 73.96|30.29 | 8116 |11.11 | 79.49 1364 | 79.00 | 3193
Heart(Hungarian) 7955 |100| 7040|2887 | 7584|3401 | 73.87"|27.44 | 7920 | 9.90 | 77.18" 1228 | 78.04 | 30.13
Heart(Long BeachVA) | 70.00 | 100 | 61.00"|35.67 | 67.00""| 4356 | 57.00"|3539 | 70.00 | 4.89 | 7000 19.28 | 70.26 | 31.01
Heart(More) 73.78"| 100 | 69.69" | 3321 | 72.22*'| 4364 | 69.69""| 3321 | 7631 | 9.36 | 7515 1681 | 73.02 | 30.99
Heart(Swiss) 9269 |100| 91.09 |11.38| 9269 |1590 | 90.26° |11.38 | 9346 | 3.70 | 9269  4.25| 9295 | 26.05
Hepatitis 80.62 |100| 7550|2530 | 81.92 |30.96 | 7417|2566 | 73.08 | 509 | 80.00 759 | 7869 | 28.88
Horse Colic 57.84| 100 | 59.90" | 35.66 | 64.47"|48.65 | 60.24"| 3536 | 66.75 | 849 | 67.73 21.82| 60.89 | 27.38
Image Segmentation 9310 |100| 90.00"|16.61 | 77.38"|13.02 | 89.52"|16.93 | 9214 |16.01 | 91.90 11.11| 89.71 | 30.43
lonosphere 84.62| 100 | 8293|2162 | 8174|1921 | 8293|2162 | 8575 | 1459 | 8632 1288 | 8399 | 28.73
Iris 94.00 |100| 90.00"|12.74 | 83.34"|14.07 | 90.00|12.74 | 94.67 |19.78 | 9333 956 | 9227 | 31.29
LED Creator+17 67.10"| 100 | 55.50| 43.14 | 59.10""|51.38 | 55.50*|43.16 | 60.70*"|32.31 | 66.60*" 20.90 | 66.21 | 34.89
LED Creator 7340° | 100 | 64.90"|3579 | 71.80 |92.78 | 64.60*'|35.71 | 7040 |22.04 | 72.30 1392 | 70.79 | 35.10
Liver (Bupa) 6557 | 100 | 56.80 |40.87 | 57.70 |5259 | 56.80 |40.87 | 5824 |10.66 | 61.38 38.36 | 60.33 | 37.62
Pima Diabetes 7356 | 100 | 65.76|36.89 | 67.97"|42.95 | 65.76*"| 36.89 | 69.78"| 1097 | 7161 1264 | 7100 | 33.04
Promoters 9345 |100| 8673 |13.83| 87.09 | 1551 | 84.91 |1436| 9164 |1812 | 8309 7.34| 8864 | 3148
Sonar 87.55 | 100 | 7412 |3285| 79.81 | 2826 | 80.88 |33.87 | 69.38"|12.02 | 8329 29.86 | 77.90 | 37.66
Soybean (Large) 88.59° | 100 | 8310 |24.97 | 8044 | 20.27 | 84.06 |24.61 | 86.63 |30.33 | 87.27 24.76| 8481 | 3831
Vehicle 7176|100 | 6750 |37.04| 67.27° | 4321 | 67.50 |37.04 | 67.62 | 2836 | 68.10° 3251 | 66.80 | 37.67
Voting 95.64 |100| 9359| 9.12| 9540 |10.21 | 9359*| 912 | 9564 | 544 | 9427 202 | 9444 | 2657
Vowel 9657|100 | 86.72° | 30.05| 78567/ 19.97 | 87.48 |29.71 | 89.57 |36.60 | 9317 36.15| 8557 | 47.48
Wine 9493 |100| 9265 |1430| 96.05 |14.23 | 9265 |14.30 | 91.50* | 16.60 | 9438  9.05| 9350 | 3091
Zoo 9444100 | 9111 |1247| 7667|1062 | 91.11 |1247 | 9222 |29.38 | 90.00 1827 | 9105 | 34.69
Aver age 8211 [100| 7648 |26.69| 7544 |3163| 7658 |26.64 | 7885 |16.13 | 80.65 16.88 | 79.06 | 3254
#DROPS better/worse 14-17 |31-0| 265 | 256 247 | 256 | 256 | 256| 20-10 [20-11 | 20-10 17-14

#Sig. better/worse 510 |31-0| 191 | 255| 201 | 254 | 192 | 255| 82 | 139 95 1512

Wilcoxon -78.99 |99.5| 9950 [99.50 | 99.50 |99.50 [ 99.50 |99.50 | 99.32 |93.53 | 91.97 87.55

accuracy for DROP3 was significantly higher (when its average accuracy was higher) or
lower (when its average accuracy was lower) than each of the other methods. In Table 1, the
superscripts+”and “++"indicate that DROP3's average accuracy was significantly higher
than the other method’s average accuracy at a 90% and 95% confidence level, respectively.
Similarly, “—" and “——"indicate that DROP3 had significantly lower average accuracy
than the other method at a 90% and 95% confidence level, respectively.

The row labeled#sig. better/worsggives a count of how often DROP3 was significantly
“better” and “worse” than each of the other algorithms at a 90% or higher confidence level.
A t-test was also done to test the significance of differences in storage requirements for
each experiment, and the results are summarized in this same row, though'sharid
“—'s” were not included in the storage column due to space constraints.

In a further effort to verify whether differences in accuracy and storage requirements
on this entire set of classification tasks were statistically significant, a one-tailed Wilcoxon
Signed Ranks test (Conover, 1971; DeGroot, 1986) was used to compare DROP3 with each
of the other reduction techniques. The confidence level of a significant difference is shown
in the “Wilcoxon” row of Table 1. Positive values indicate the confidence that DROP3 is
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Table 1(b) Accuracy and storage percentage for DROP1-DROP5.

Database kNN % | DROPI]| % | DROP2 % | DROP3 % | DROP4 % | DROP5 % |Average | Avg%
Anneal 9311 |100| 87.70"™| 505| 9561 | 808 | 94.11 865 | 9436 |11.67 | 9524 9.93 | 9232 | 2812
Austraian 84.78 |100 | 64.49™| 230 | 83.62 7.28 | 8391 596 | 84.78 7.99 | 8391 9.18 | 8235 | 27.92
Breast Cancer(WI) 96.28 |100 | 77.52*"| 1.14| 95.86 313 | 9%.14 358 | 96.28 405 | 9571 407 | 9456 | 2555
Bridges 66.09 | 100 | 39.64"|10.17 | 61.18" |17.30 | 56.36 |17.60 | 57.36 |21.28 | 62.82° 2222 | 59.20 | 37.74
Crx 83.62" | 100 | 6594 3.75| 84.64 7.31 | 8580 546 | 8551 733 | 8377 768 | 8291 | 27.85
Echocardiogram 9482 |100 | 93.39 9.61 | 9482 |1051 | 9339 |10.66 | 9482 |10.96 | 93.39 9.16 | 89.01 | 30.31
Flag 61.34 |100 | 4318"| 9.05| 6279 |20.62 | 61.29 |20.45| 59.58 |27.09 | 5813 2526 | 56.85 | 39.50
Glass 7383|100 | 6297 |1547 | 65.04 | 2310 | 6502 |23.88 | 6591 |29.54 | 6545 24.81 | 6530 | 38.95
Heart 8148 |100 | 7259*"| 547 | 8185 |1222| 8333 |1362| 8185 |16.71 | 8111 16.67 | 7841 | 30.68
Heart(Cleveland) 8119 [100 | 7091 6.09 | 7955 |11.92 | 80.84 |12.76 | 7819 |15.26 | 79.84 1537 | 79.00 | 31.93
Heart(Hungarian) 7955 |100 | 72.17"| 574 | 7852 8.80 | 80.29 9.86 | 79.22 |1153 | 79.60 1115 | 7804 | 30.13
Heart(Long BeachVA) | 70.00 |100 | 69.00 439 | 70.00" |11.83 | 7350 450 | 7400 |1172 | 73.00 14.94 | 7026 | 31.01
Heart(More) 7378|100 | 6346 | 351 | 7398 10.71 | 76.38 9.14 | 7436'°|13.19 | 74.63" 14.62 | 73.02 | 30.99
Heart(Swiss) 92.69 |100 | 93.46 181 | 9346 253 | 93.46 181 | 9346 235 | 9263 542 | 9295 | 26.05
Hepatitis 80.62 |100 | 72.38""| 4.66 | 80.75 |10.54 | 81.87 781 | 78.75"| 9.75 | 8329 9.39 | 7869 | 28.88
Horse Colic 57.84™ | 100 | 59.15™| 155| 70.74 820 | 70.13 |10.30 | 67.73 | 2041 | 6845 14.14 | 60.89 | 27.38
Image Segmentation 93.10 [100 | 81.19*"| 6.61 | 9286 |10.45 | 92.62 |10.98 | 94.05 |1241 | 89.29" 11.35 | 89.71 | 30.43
lonosphere 84.62" | 100 | 79.77*"| 3.23 | 86.60 7.79 | 87.75 7.06 | 8690 |10.60 | 86.90 9.78 | 8399 | 28.73
Iris 9400 |100 | 84.67"| 859 | 9467 |14.22 | 9533 |14.81 | 9533 |14.89 | 9400 1215 | 9227 | 31.29
LED Creator+17 6710 | 100 | 61.40"| 9.94 | 69.20 |12.98 | 7040 |12.66 | 69.50" | 16.37 | 69.80 14.96 | 66.21 | 34.89
LED Creator 7340 |100 | 68.30""|10.05| 71.80 |11.85| 7170 |11.93 | 71.90 |1371 | 7200 1233 | 70.79 | 35.10
Liver (Bupa) 65.57" | 100 | 5824 |10.92 | 67.77 | 2477 | 60.84 |24.99 | 62.60 |32.56 | 6550 31.08 | 60.33 | 37.62
Pima Diabetes 7356 100 | 65.23"| 650 | 70.44""|17.59 | 75.01 |16.90 | 7253 |21.76 | 73.05° 2195 | 71.00 | 33.04
Promoters 93.45 |100 | 87.00 6.39 | 8491 | 1363 | 86.82 |16.67 | 86.82 |16.67 | 87.00 1258 | 88.64 | 3148
Sonar 87.55" | 100 | 64.93"|11.38 | 80.88° | 26.60 | 78.00 |26.87 | 82.81" | 31.20 | 79.88 29.81 | 77.90 | 37.66
Soybean (Large) 8859 | 100 | 77.20"| 19.51 | 86.60° | 22.77 | 84.97 |25.26 | 86.29 |2841 | 83.73 2544 | 8481 | 3831
Vehicle 7176 | 100 | 59.91*|12.07 | 67.37 | 2149 | 6585 |23.00| 67.03 |27.88 | 70.22 26.71 | 66.80 | 37.67
Voting 95.64 |100 | 9311" | 291 | 9450 | 4.90 | 95.87 511 | 95.87 5.36 | 95.86 7.13 | 9444 | 2657
Vowel 96.57 | 100 | 83.31'"|39.16 | 91.08 | 44.66 | 89.56 |45.22 | 90.70 " | 46.02 | 93.36° 42.66 | 8557 | 47.48
Wine 9493 100 | 90.98" | 574 | 93.24" |1142 | 9493 |16.11 | 9493 |16.17 | 96.08 9.74 | 9350 | 30.91
Zoo 9444|100 | 88.89 |18.02 | 8889 |15.80 | 90.00 |20.00 | 91.11 |21.60 | 9556 17.16 | 91.05 | 34.69
Average 82.11 | 100 | 72.65 841 | 81.07 |14.03 | 8114 |14.31| 8111 |17.30 | 81.39 16.09 | 79.06 | 32.54
#DROPS better/worse 14-17 |31-0| 281 | 0-30| 17-13 |10-21 na 00| 11-15 | 300 | 1812 256
#Sig. better/worse 510 [31-0| 240 | 0-29 56 | 811 na 0-0 4-3 | 26-0 45 226
Wilcoxon -7899 |99.5| 99.50 |-99.50 | 70.23 |-91.03 na |-50.00 | 56.25 [99.50 | 62.42 99.50

“better” (i.e., higher accuracy or lower storage requirements) than the other method on these
datasets, while negative values indicate the confidence that DROP3 is “worse.” Confidence
values with a magnitude of at least 90% can be considered significant differences, and
throughout the remainder of this paper, the word “significant” will be used to refer to
statistical significance with at least a 90% confidence level.

The accuracy and storage percentages for each of the 10 trials for each method on each
datasetare available in an on-line appendix, along with standard deviattessgonfidence
values, source code and data files (see the Appendix of this paper for details).

5.2.  Analysis of results

Several observations can be made from the results in this table. CNN and IB2 achieve almost
identical results (less than 1% difference in both size and accuracy in most cases), due to the
similarity of their algorithms. SNN had lower accuracy and higher storage requirements on
average when compared to CNN and IB2, and the SNN algorithm is much more complex
and substantially slower than the others as well. IB3 was able to achieve higher accuracy
and lower storage than SNN, CNN and IB2, with the only disadvantage being a learning
algorithm that is somewhat more complex (though not much slower) than CNN or IB2.
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Table 1(c) Accuracy and storage percentage for ENN, RENN, A-NN, ELGRow, and EXPLORE.

Database kNN % | ENN %| RENN % | AIIKNN %|ELGrow % | Explore % | Average | Avg%
Anneal 9311 | 100 | 89.737| 91.99| 89.48~| 90.70| 89.98"|92.43| 8835~| 070 | 9111 0.75| 9232 | 28.12
Augtralian 8478 | 100 | 8449 | 8649 | 84.20 |84.80| 86.09"|7807| 8362 | 032 | 8580 0.32| 8235 | 27.92
Breast Cancer(WI) 96.28 | 100 | 97.00 | 96.80| 96.86 | 96.61| 97.00° | 9458 | 89.86"| 032 | 9671 0.32| 9456 | 2555
Bridges 66.09 | 100 | 59.46 | 68.23| 58.36 | 6593 | 59.36 | 5848 | 56.27 | 535| 5718 567 | 59.20 | 37.74
Crx 8362 | 100 | 8536 | 86.17| 8580 |8564| 8507 |7882| 8522 | 032 | 8551 0.32| 8291 | 27.85
Echocardiogram 9482 | 100 | 9339 |9294| 9339 |9294| 9339 |9218| 9339 | 301 | 9482 301 | 8901 | 3031
Flag 61.34 | 100 | 63.32 | 67.07| 62.76 | 62.83 | 61.24 | 5567 | 5550 | 2.00 | 56.16  2.06 | 56.85 | 39.50
Glass 7383 | 100 | 6591 |70.82| 64.00 | 69.06| 67.75 | 6589 | 50.54"| 2.28 | 6398 353 | 6530 | 3895
Heart 8148 | 100 | 81.11"|83.13| 8111|8198 | 81.85 | 7202| 7444~ | 082 | 8185 082 | 7841 | 30.68
Heart(Cleveland) 8119 | 100 | 8249 |8346| 8216 |8251| 8151 |7272| 8152 | 073 | 8215 073| 79.00 | 3193
Heart(Hungarian) 7955 | 100 | 80.28 | 8212| 79.25 | 79.93| 8062 |70.79| 8061 | 0.75| 8230 075| 7804 | 30.13
Heart(Long BeachVVA) | 70.00 | 100 | 74.00 | 75.44| 7400 | 72.72| 7400 |6228| 7250° | 084 | 7450 111| 7026 | 3101
Heart(More) 73.78" | 100 | 76.31 | 7658 | 7651 | 7441 | 7560 | 66.97 | 67.48"| 014 | 7313 0.14| 7302 | 30.99
Heart(Swiss) 9269 | 100 | 9346 | 9349 | 9346 | 93.49| 9346 |8871| 9346 | 090 | 9346 090 | 9295 | 26.05
Hepatitis 8062 | 100 | 81.25 |83.73| 8058 |8280| 81.33 | 7520| 76.67| 1.00| 7867 129| 7869 | 28.88
Horse Colic 57.84** | 100 | 45.89"| 58.21| 32.91*| 27.87 | 45.89*|5216| 67.09 | 037 | 67.09 037 | 60.89 | 27.38
Image Segmentation 9310 | 100| 91.90 |9272| 9143 |91.77| 9214 |9146| 8595~ | 222 | 89.76" 243 | 8971 | 3043
lonosphere 84.62" | 100 | 84.04" | 84.24 | 84.04| 8227 | 84.05"|8218| 73.77*| 063 | 80.89" 0.63| 8399 | 28.73
Iris 9400 | 100| 9533 | 94.74| 9533 | 9467| 9533 |9378| 8867"| 230 | 9267 230| 9227 | 3129
LED Creator+17 67.10"* | 100 | 71.00 | 71.42| 7090 | 70.00| 7090 |5898| 7120 | 166 | 7220 1.40| 66.21 | 34.89
LED Crestor 7340 | 100 | 7210 |7388| 7200 |72.86| 71.80 | 7207 | 7040 | 153 | 7210 152 | 70.79 | 3510
Liver (Bupa) 65.57" | 100 | 6112 | 68.15| 58.77 | 63.13| 60.24 | 52.34| 56.74"| 055| 57.65 0.64 | 60.33 | 37.62
Pima Diabetes 7356 | 100 | 7539 | 76.37| 7591 | 7452 | 74.88 | 64.61| 67.84"| 029 | 7527 029 | 7100 | 33.04
Promoters 9345 | 100 | 9345 | 96.33| 9345 | 96.33| 9345 | 9507| 8882 | 210 | 9136 210| 8864 | 3148
Sonar 8755 | 100 | 81.79 |84.35| 7838 |8179| 80.36 | 80.29| 70.24"| 1.07 | 70.29" 107 | 77.90 | 37.66
Soybean (Large) 88.59 | 100 | 86.61 | 89.90| 8597 |87.41| 86.62 | 8824 | 8270 | 7.35| 8592 7.78| 8481 | 3831
Vehicle 7176 | 100 | 69.52- | 7381 | 69.05- | 69.75| 70.21-| 64.74 | 58.15"| 2.25| 60.76" 2.47 | 66.80 | 37.67
Voting 9564 | 100 | 9541 |9584| 9541 | 9581 | 9541 |9435| 8899 | 051 | 94.25° 051 | 9444 | 2657
Vowel 96.57 | 100 | 92.40° | 9657 | 9127 | 9594 | 93.54-| 96.70| 50.20'"| 4.69 | 57.77"* 6.65| 8557 | 47.48
Wine 9493 | 100 | 94.93 | 9557 | 94.93 | 9557| 9493 |94.76| 8147+| 193 | 9546 212| 9350 | 3091
Zoo 94.44- | 100 | 9111 | 92.96| 91.11 | 9259 | 93.33°| 94.07| 9444~ | 7.90 | 9556 840 | 9105 | 34.69
Aver age 8211 [100] 80.95 |83.34| 80.09 [80.92] 81.01 |[77.44]| 7568 | 183 ]| 7924 2.01| 79.06 | 3254
#DROPS better/worse 14-17 |31-0 | 10-18 | 31-0| 10-17 | 31-0| 1216 | 31-0| 245 | 031 | 1614 0-31

#Sig. better/worse 510 |31-0| 46 | 310 45 | 310 37 | 31-0] 171 | 0-31 94 031

Wilcoxon -78.99 995 |-91.85 | 99.50 | -57.88 | 99.50 | -84.48 | 99.50 | 99.50 99.50 | 95.62 -99.50

DROP3 had significantly higher accuracy than all of these four methods at over a 99%
confidence level (according to the Wilcoxon test) on these datasets. It also had significantly
lower storage requirements than all of these methods at over a 99% confidence level, except
on IB3, where the confidence of lower storage requirements was still over 90%.

As expected, ENN, RENN andlA K-NN all retained over 75% of the instances, due to
their retention of internal (non-border) instances. They all had fairly good accuracy, largely
because they still had access to most of the original instances. In agreement with Tomek
(1976), the AL K-NN method achieved better reduction and higher accuracy than RENN,
which in turn had higher reduction (though slightly lower accuracy) than ENN. All three
of these methods had higher average accuracy than DROP3, though only ENN’s accuracy
was significantly higher, but this is mostly due to retaining most of the instances.

The ELGRow and ExpPLORE techniques had by far the best storage reduction of any
of the algorithms. The EL&ow algorithm achieved the best average reduction (retaining
only 1.67% of the training instances) but also suffered a significant drop in generalization
accuracy when compared to the original (unredue@dl)l system. However, thexeLORE
method achieved better average accuracy tharfelv@vith only a slightincrease in storage
over ELGRow, indicating that the random mutation hill climbing step was successful in
finding a better subs&after the growing and reduction phases were complete. DROP3 had
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significantly better accuracy than both of these algorithms, but their storage requirements
were significantly better than that of DROP3.

The ordered reduction techniques DROP2-DROPS5 all had average generalization ac-
curacy that was within 1% of the fukNN classifier. Their average accuracy was higher
than any of the other reduction methods. DROP2 and DROP3 both had average storage
requirements of about 14%, which is lower than any of the other methods exceptil G
and ExPLORE. DROPL1 retained about half as many instances as the other ordered reduction
techniques (significantly better than DROP3), but had the worst generalization accuracy
of any of them (significantly worse than DROP3), because it fails to use information pro-
vided by previously removed instances in determining whether further instances should be
removed.

The DEL approach also had good accuracy, but was not quite as high as DROP2—-DROP5,
and its storage requirements were not quite as low as most of the DROP methods. DROP3
had lower storage and significantly higher accuracy than DEL.

5.3. Effect of noise

Since several of these algorithms are designed to be robust in the presence of noise, the
same experiments were repeated with 1@8§orm class noisartificially added to each
dataset. This was done by randomly changing the output class of 10% of the instances in
the training set to an incorrect value (with an equal probability for each of the incorrect
classes). The output class of the instances iebtset are not noisy, so the results indicate
how well each model is able to predict the correct output even if some of its training data
is mislabeled.

Table 2 shows the average accuracy and storage requirements over all 31 datasets for
each algorithm, including the basic (unreducedN algorithm.

As can be seen from Table 2, the accuracy foN&l algorithm dropped just over 3%
on average. Note that some of the effect of noise is already handled by thelkuse3in
these experiments. Otherwise the drop in accuracy would be more on the order of 8% (i.e.,
10% of the 82% already classified correctly).

As expected, CNN and IB2 increased storage and suffered large reductions in accuracy
in the presence of noise. SNN dropped only slightly in accuracy when uniform class noise
was added, but it retained almost half of the instances in the training set due to its strict (and
noise intolerant) requirements as to which instances must 8e in

In agreement with Aha’s results (1992), IB3 had higher accuracy and lower storage
requirements in the presence of noise than IB2, though it still suffered a dramatic decrease
in accuracy (and a slightincrease in storage) when compared to its performance in the noise-
free case. In our experiments we found that when the number of instances in the training
set was small, IB3 would occasionally end up withemnptysubsetS, because none of
the instances gets enough statistical strength tadoeptable This problem worsens in
the presence of noise, and thus more training data (or a modification of the algorithm) is
required to handle small, noisy datasets.

DROP1 did not fall much in accuracy, but its accuracy was already poor to begin with.
However, all of the other DROP methods (DROP2-DROP5) achieved actigh®rthan
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Table 2 Average accuracy and storage requirements in the presence of 10% uniform class noise.

Algorithm | Clean | Size%| Noisy | Size%

kNN 82.11 | 100.00 | 78.93 | 100.00
CNN 76.48 | 26.69 | 68.14 | 38.29
SNN 7544 | 31.63 | 74.60 | 48.60
IB2 76.58 | 26.64 | 67.80 | 38.27
IB3 7885 | 1613 | 72.09 | 1885
DEL 80.65 | 16.88 | 78.16 8.57

DROP1 72.65 841 | 71.24 8.00
DROP2 81.07 | 1403 | 79.99 | 1475
DROP3 81.14 | 1431 | 80.00 | 1149
DROP4 81.11 | 17.30| 79.57 | 14.74
DROP5 81.39 | 16.09 | 79.95 | 1552
Wilson 80.95 | 8334 | 80.19 | 74.91
Wilson2 80.09 | 80.92| 79.65 | 7253
AlIKNN 81.01 | 7744 | 79.98 | 64.58
EL Grow 75.68 1.83 | 73.67 1.88
Explore 79.24 201 | 77.96 2.03
Average 79.06 | 3254 | 76.36 | 32.83

thekNN method, while using less than one-sixth of the original instances. DROP3 had the
highest accuracy of the DROP methods, and had the lowest storage of the accurate ones
(DROP2-DROPS5), using less than 12% of the original instances.

The ENN, RENN, and AL K-NN methods also achieved higher accuracy tkam,
since they were designed specifically for noise filtering. They also required about 10% less
storage than in the noise-free case, probably because they were throwing most of the noisy
instances (as well as a few good instances that were made to appear noisy due to the added
noise).

The encoding-length heuristic methods all dropped about 2% in accuracy when noise
was added leaving them closer to—nbut still below—tiNN method in terms of accuracy.
ELGRow had fairly poor accuracy compared to the others, btRUBRE was within 1%
of the KNN method in terms of accuracy while using only about 2% of the instances for
storage.

6. Conclusions and future research directions

Many techniques have been proposed to reduce the number of instances used for classifica-
tion in instance-based and other exemplar-based learning algorithms. In experiments on 31

datasets, the results make possible the division of the tested algorithms into several groups.

The first group consists of algorithms which had low generalization accuracy and are thus
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mostly of historical significance. This group includes CNN, SNN, IB2 (which led to the
development of IB3) and DROP1 (which led to the more successful DROP algorithms).
These had low generalization even before noise was introduced, and dropped further when
it was. Of this group, only DROP1 kept less than 25% of the instances on average, so the
storage reduction did not make up for the lack of accuracy.

The second group consists of the three similar noise-filtering algorithms: ENN, RENN,
and ALL K-NN. These had high accuracy but also kept most of the instances. In the noise-
free environment, they achieved slightly lower accuracy #1dN, but when uniform class
noise was added, their accuracy was higher #IdN, indicating that they are successful
in the situation for which they were designed. These algorithms are useful when this type
of noise is expected in the data and when it is reasonable to retain most of the data. Of this
group, ALL K-NN had the highest accuracy and lowest storage requirements in the presence
of noise.

The third group consists of two algorithms, ERG~ and EXPLORE, that were able to
achieve reasonably good accuracy with only about 2% of the datar&W@Bad the lowest
storage (about 1.8%) but its accuracy was somewhat poor, especially in the noisy domain.
The ExPLORE method had fairly good accuracy, especially in the noisy arena, though it
was not quite as accurate as the DROP methods. However, its aggressive storage reduction
would make this trade-off acceptable in many cases.

The final group consists of algorithms which had high accuracy and reasonably good
storage reduction. These include 1B3, DROP2-DROP5 and DEL. IB3 was designed to
overcome the noise-sensitivity of IB2, and in our experiments it had better accuracy and
storage reduction than IB2, especially in the noisy case. However, its accuracy still dropped
substantially in the noisy experiments, and it had lower average accuracy and higher average
storage than thexX®LORE method both with and without noise.

The algorithms DROP2-DROP5 had higher average accuracy than IB3 on the original
data, and had much higher average accuracy in the noisy case. They also improved in terms
of average storage reduction as well. DROP2-DROPS5 all had an accuracy within about
1% of KNN on the original data, and were about 1% higher when uniform class noise was
added, with storage ranging from 11% to 18%. DEL had slightly lower accuracy than the
DROP2-DROP5 methods, but had lower storage in the noisy domain.

DROP3 seemed to have the best mix of generalization accuracy and storage requirements
of the DROP methods. DROP3 had significantly higher accuracy and lower storage than
any of the algorithms in the first group; somewhat lower accuracy but significantly lower
storage than any of the algorithms in the second group; and significantly worse storage but
significantly better accuracy than the algorithms in the third group.

This paper has reviewed much of the work done in the area of reducing storage require-
ments in instance-based learning systems. The effect of uniform output class noise on many
of the algorithms has also been observed on a collection of datasets. Other factors that
influence the success of each algorithm must still be identified. Continued research should
help determine under what conditions each of these algorithms is successful so that an
appropriate algorithm can be automatically chosen when needed. Current research is also
focused on combining the reduction techniques proposed here with various weighting tech-
niques in order to develop learning systems that can more dynamically adapt to problems of
interest.
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Appendix

An on-line appendix is available at the following location.

ftp://axon.cs.byu.edu/pub/randy/ml/drop/

This site contains the complete source code used for these experiments, including the cost
function for the encoding-length methods and the code used to getweateand Wilcoxon

test statistics. The FTP site also contains all of the data sets and complete experimental
results, including the accuracy for all 10 trials of each experiment, standard deviations, etc.
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