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Abstract. We consider the problem of one-step ahead prediction for time series generated by an underlying
stationary stochastic process obeying the condition of absolute regularity, describing the mixing nature of process.
We make use of recent results from the theory of empirical processes, and adapt the uniform convergence framework
of Vapnik and Chervonenkis to the problem of time series prediction, obtaining finite sample bounds. Furthermore,
by allowing both the model complexity and memory size to be adaptively determined by the data, we derive
nonparametric rates of convergence through an extension of the method of structural risk minimization suggested by
Vapnik. All our results are derived for generalL p error measures, and apply to both exponentially and algebraically
mixing processes.
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1. Introduction

The problem of time series modeling and prediction has a long history, dating back to
the pioneering work of Yule in 1927 (Yule, 1927). Most of the work since then until the
1970s has been concerned with parametric approaches to the problem whereby a simple,
usually linear, model is fitted to the data (for a review of this approach, see for example the
text-book by Brockwell and Davis (1991)). While many appealing mathematical properties
of the parametric approach have been established, it has become clear over the years that
the limitations of the approach are rather severe, in their imposition of a rigid structure
on the process. One of the more productive solutions to this problem has been the extension
of the classic nonparametric methods to the case of time series (see, for example, Gy¨orfi
et al. (1989) and Bosq (1996) for a review). In this work we use the termparametric modelto
refer to any model which imposes a specificformon the estimated function, which is exactly
known up to a finite number of parameters. Nonparametric models, on the the other hand,
do not impose any structural assumptions, and can model any (smooth) underlying process.

In this work we consider a third approach to the problem of time series prediction, which
although nonparametric in spirit, possesses many affinities with the parametric approach.
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†Part of this work was done while the author was visiting the Isaac Newton Institute, Cambridge, England.



6 R. MEIR

The method is strongly related to the method of sieves, introduced by Grenander (1981)
and studied further by Geman and Hwang (1982). This type of approach had in fact been
introduced in the late 1970’s by Vapnik and titled by himStructural Risk Minimization
(SRM) (Vapnik, 1982). The basic idea behind this approach, applied so far in the context
of independent data, is the construction of a sequence of models of increasing complexity,
where each model within the hierarchy is usually taken to be parametric. As the complexity
of the model increases, manifested by a growing complexity index, the model approximates
a very rich, nonparametric, class of functions. One of the seminal contributions of the work
by Vapnik and Chervonenkis (1971) was the establishment of upper bounds on the true
performance of estimators within each class, based on a natural complexity index, which
has come to be known as the VC dimension. These bounds contain two terms, the first
of which is the empirical error on the training data, the second being a complexity term
penalizing overly complex models. As can be expected, the empirical error decreases as the
complexity of the class increases, while the second, complexity term, naturally increases.
Thus, it was suggested in (Vapnik, 1982) that for each sample size one may obtain the best
trade-off between the two terms, thus achieving the optimal guaranteed performance bounds
for any sample size. Moreover, by tracking the optimal complexity for each sample size it
was shown that very large families of functions may be modeled in this fashion. The major
advantage of this type of approach is that on the one hand it is nonparametric in nature, in
that very large classes of functions may be modeled, while at the same time being adaptive.
By adaptive we refer to the following situation: assume that the function to be modeled in
fact belongs to the sequence of models under consideration. In that case, one would like
the estimation scheme to converge to the true model at a rate which is similar to the one
that would be attained had we known the true model in advance. In fact, exactly this type
of adaptivity has been demonstrated recently for the case of classification (Lugosi & Zeger,
1996), regression (Lugosi & Nobel, 1996) and data compression (Feder & Merhav, 1996).
We should also note that a similar approach based on the so-called index of resolvability
has been pursued by Barron and co-workers in a series of papers (Barron & Cover, 1991;
Barron, 1994), with similar results. The major advantage of these approaches is that while
being adaptive in the above sense, they can often be shown to achieve the minimax rates of
convergence in nonparametric settings (Stone, 1982) under i.i.d. conditions, showing that
they are effective estimation schemes in this regime as well.

In this work we extend the SRM idea to the case of time series. This extension is not
entirely straightforward for several reasons. First, even within a single parametric model,
the problem of deriving robust finite sample bounds is exacerbated by the dependence
inherent in the process. Generalizing the basic tools of uniform convergence of empirical
measures utilized in the i.i.d. setting requires the introduction of new methods. In particular,
it should be clear that assumptions concerning the dependence structure of the process must
be taken into account, and quantified in a precise manner. Second, in opposition to the case
of regression, the dimension of the input vector is not fixed, as the process may possess a
very long memory. Thus, any universal prediction scheme must allow the prediction to be
based on potentially unlimited memory. By memory size we roughly refer to the number
of past values of the process, needed to achieve the optimal prediction error; this term will
be defined precisely in Section 2. Finally, the optimal balance between the complexity of
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the model and the memory size used for prediction must be determined. We observe that
our results bear strong affinities to the approach taken by Modha and Masry (1998), while
deviating from them in scope and methodology; see Remark 7 in Section 6 for a detailed
comparison. An additional related work is the one by Campi and Kumar (1998), which
deals with the problem of learning dynamical systems in a stationary environment. In this
case an input/output mapping of a fixed input dimension is learned, and estimation error
bounds are given for theL2 loss.

Finally, before outlining the remainder of the paper, we comment on the relevance of
this work to Machine Learning. Clearly, many of the problems to which Machine Learning
techniques are applied are inherently temporal in nature. Some obvious examples are stock
market prediction, analysis of financial markets, monitoring and diagnosing complex control
systems and speech recognition, to name but a few. Until recently most of the theoretical
results within the PAC (Probably Approximately Correct) approach to learning have dealt
with situations in which time played no role. In fact, the problem of extending the PAC
framework to time series is the first ‘open problem’ mentioned in the recent monograph
of Vidyasagar (1996). One approach to incorporating temporal structure in order to form
better predictors, by more appropriate complexity regularization, is described in this work.
In particular, the optimal memory size that should be used in order to form a predictor is in
principle derivable from the procedure (see also (Modha & Masry, 1998)), given information
about the mixing nature of the time series (see Section 4 for a definition of mixing). It is
thus hoped that many of the successful Machine Learning approaches to modeling static
data will be extended to time series, with the benefit of a solid mathematical framework. If
precise knowledge of the mixing parameters is lacking, the procedure requires estimation
of these parameters. Unfortunately, as far as we are aware, there is no efficient practical
approach known at this stage for estimation of mixing parameters.

Another related and very fruitful line of recent research has been devoted to the so called
on-line approach to learning, where very few assumptions are made about the data (see
(Blum, 1996) for a recent survey). In the most extreme case, no assumptions whatsoever
are made, and an attempt is made to compare the performance of various on-line algo-
rithms to that of the best algorithm within some class. Prediction from expert advice and
competitiveness with some comparison class are two well-studied examples within this
broad field. While the assumptions in these latter approaches are very weak, it should be
noted that they address a different question from the one studied in this work. Here we
are concerned with establishing consistency and rates of convergence for general (off-line)
algorithms, under specific statistical assumptions about the data, while the on-line work is
usually concerned with comparing on-line performance to some other approach, for which
performance bounds are usually not given. In fact, one can use the on-line approach to study
how well these algorithms approximate the off-line algorithms studied here.

The remainder of the paper is organized as follows. In Section 2 we introduce the problem
of time series prediction in a general context, discussing the basic trade-off between approx-
imation and estimation. In Section 3 we present a brief review of some uniform convergence
results for the case of i.i.d. data, which will serve as a basis for the derivation of results in the
context of dependent data. Section 4 introduces the notion of mixing processes, and presents
several results, mainly due to Yu (1994), establishing uniform laws of large numbers for
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these processes. Section 5 then proceeds to consider the problem of prediction for scalar
mixing stochastic processes, restricting the results to a single model class. Utilizing the
results of Section 4, a particular estimator is shown to be consistent, and finite sample per-
formance bounds are derived. We then proceed in Section 6 to consider a hierarchy of model
classes as in the method of structural risk minimization, and present an algorithm which
adaptively determines, for each sample size, an optimal value for both the complexity of the
model and the memory size used. A short discussion and list of open questions concludes
the paper in Section 7. Some of the proofs have been relegated to the appendix. We comment
that in the sequel we will make use of the terms ‘loss’ and ‘error’ interchangeably.

2. The problem of time series prediction

Consider a stationary stochastic processX̄ = {. . . , X−1, X0, X1, . . .}, whereXi is a real-
valued random variable such that|Xi | ≤ B with probability 1, for some positive constant
B < ∞. The problem of one-step prediction, in the expectedL p norm sense, can then
be phrased as that of computing apredictor function f (·) of the infinite past such that
E{|X0 − f (X−1

−∞)|p} is minimal, where we use the notationX j
i = (Xi , Xi+1, . . . , X j ),

j ≥ i . It is well known that for the special casep = 2, the optimal predictor is given by
the conditional mean,E[X0 | X−1

−∞]. While this solution, in principle, settles the issue of
optimal prediction, it does not settle the issue of actually computing the optimal predictor.
First of all, note that to compute the conditional mean, the probabilistic law generating the
stochastic process̄X must be known. Furthermore, this computation is usually intractable
for non-trivial conditional densities. Finally, the requirement of knowing the full past,X−1

−∞
is of course rather stringent. In the casep > 2, the problem is further exacerbated in that
there does not even exist a formal analytic solution as in the casep = 2. In this work, we
consider the more practical situation, where afinitesub-sequenceXN

1 = (X1, X2, . . . , XN)

is observed, and an optimal prediction is needed, conditioned on this data. Moreover, we
allow for a sequence of model classes, in each of which the prediction is based on a finite
number of past values. We denote this number byd, and refer to it as thememory size.
Since the process may in principle possess infinite memory, in order to achieve full generality
we may letd→∞ in order to obtain the optimal predictor. Of course this can only be done
when the sample sizeN →∞, as the constraintd ≤ N must obviously be obeyed.

For each fixed value of the memory sized, we consider the problem of selecting an
empirical estimator from a class of functionsFd,n :Rd→R, | f | ≤ B for f ∈Fd,n, wheren
is a complexity index of the class. For example,n may stand for the number of computational
nodes in the single hidden layer of a feedforward neural network withd inputs, namely

Fd,n =
{

f : f (x) =
n∑

i=1

ciσ
(
aT

i x + bi
)

ci ∈ R,ai ∈ Rd, bi ∈ R
}
,

whereσ is some activation function. Other classes could include radial basis functions and
multi-variate splines with a variable number of knots, to name but a few.

Consider then an empirical predictor̂fd,n,N(X
i−1
i−d), i > N, for Xi based on the finite

data vectorXN
1 and depending on thed-dimensional vectorXi−1

i−d, where f̂d,n,N ∈ Fd,n. It is



TIME SERIES PREDICTION AND MODEL SELECTION 9

possible to split the error incurred by this predictor into three terms, each possessing a rather
intuitive meaning. It is the competition between these terms which determines the optimal
solution, for afixedamount of data. First, define the loss of a predictorfd :Rd → R as

L( fd) = E
∣∣Xi − fd

(
Xi−1

i−d

)∣∣p. (1)

Observe that due to stationarityL( fd) is independent ofi . Let f ∗d be the optimal predictor
of memory sized minimizing the loss (1), namely

E
∣∣Xi − f ∗d

(
Xi−1

i−d

)∣∣p = inf
f :Rd→R

E
∣∣Xi − f

(
Xi−1

i−d

)∣∣p,
and denote the error incurred by this function byL∗d. We say that predictor hasfinite memory
if

L
(

f ∗d
) = L

(
f ∗∞
)
,

for somed <∞, namely, the minimal prediction error may be achieved by a finite memory
sized. Similarly, for the classFd,n we denote byf ∗d,n the optimal predictor within the class,
namely

E
∣∣Xi − f ∗d,n

(
Xi−1

i−d

)∣∣p = inf
f ∈Fd,n

E
∣∣Xi − f

(
Xi−1

i−d

))∣∣p,
denoting the resulting loss byL∗d,n. We assume throughout the paper thatf ∗d,n exists, amount-
ing to a compactness assumption aboutFd,n. If this assumption does not hold, we may simply
add an arbitrarily small term to the r.h.s. of the equation. Observe thatf ∗d need not in general
belong to the classFd,n, due to its limited expressive power. Furthermore, denote byf̂d,n,N

an empirical estimator based on the finite data setXN
1 . We find it useful to express the error

as a sum of three terms, each of which possesses a clear intuitive meaning,

L( f̂d,n,N) =
(
L( f̂d,n,N)− L∗d,n

)+ (L∗d,n − L∗d
)+ L∗d. (2)

The third term,L∗d, often referred to as the dynamicmiss-specification error, is related to
the error incurred in using a finite memory model (of memory sized), to predict a process
with potentially infinite memory. We do not at present have any useful upper bounds for this
term, which is related to the rate of convergence in the martingale convergence theorem,
which to the best of our knowledge in unknown for the type of mixing processes we study in
this work. The second term in (2), is related to the so-calledapproximation error, given by
E{| f ∗d (Xi−1

i−d)− f ∗d,n(X
i−1
i−d)|p} to which it can be immediately related through the inequality

‖a|p − |b|p| ≤ p|a − b‖max(a, b)|p−1. This term measures the excess error incurred by
selecting a functionf from a class of limited complexityFd,n, while the optimal predictor of
memory sized, namelyf ∗d , may be arbitrarily complex. Of course, in order to bound this term
we will have to make some regularity assumptions about the latter function. Finally, the first
term in (2) represents the so calledestimation error, and is the only term which depends on
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the dataXN
1 . Similarly to the problem of regression for i.i.d. data, we expect that the approxi-

mation and estimation terms lead to conflicting demands on the choice of the the complexity,
n, of the functional classFd,n. Clearly, in order to minimize the approximation error the
complexity should be made as large as possible. However, doing this will cause the estima-
tion error to increase, because of the larger freedom in choosing a specific function inFd,n to
fit the data. However, in the case of time series there is an additional complication resulting
from the fact that the misspecification errorL∗d is minimized by choosingd to be as large as
possible, while this has the effect of increasing both the approximation as well as the estima-
tion errors. We thus expect that some optimal values ofd andn exist for each sample sizeN.

Up to this point, we have not specified how to select the empirical estimatorf̂d,n,N . In
this work we follow the ideas of Vapnik & Chervonenkis (1971), which have been studied
extensively in the context of i.i.d observations, and restrict our selection to that function
which minimizes the empirical error, given by

L̂ N( f ) = 1

N − d

N∑
i=d+1

∣∣Xi − f
(
Xi−1

i−d

)∣∣p. (3)

Thus, f̂d,n,N = argminf ∈Fd,n
L̂ N( f ). Again, we assume that̂fd,n,N exists. It is a simple

matter to modify this assumption by demanding thatf̂d,n,N only minimize the empirical
error within some margin which is allowed to shrink asN→∞. For the sake of clarity we
do not proceed in this direction. For this function, it is easy to establish the following result
(see for example Lemma 8.2 in (Devroye, Gy¨orfi, & Lugosi, 1996), the proof of which does
not depend on the independence property).

Lemma 2.1. Let f̂d,n,N be a function inFd,n which minimizes the empirical error. Then

L( f̂d,n,N)− inf
f ∈Fd,n

L( f ) ≤ 2 sup
f ∈Fd,n

|L( f )− L̂ N( f )|.

It is obvious from Lemma 2.1 that the estimation error will vanish in the limitN →∞ if
some form of uniform law of large numbers can be established. The latter will depend on the
properties of the stochastic processX̄, as well as on the attributes of the functional spaceFd,n.
These issues will be addressed in Section 4. The main distinction here from the i.i.d. case,
of course, is that random variables appearing in the empirical error,L̂ N( f ), are no longer
independent. It is therefore clear that some assumptions are needed regarding the stochastic
processX̄, in order that a uniform law of large numbers may be established. In any event, it is
obvious that the standard approach of using randomization and symmetrization as in the i.i.d
case (Pollard, 1984) will not work here. To circumvent this problem, two approaches have
been proposed. The first makes use of extensions of the Bernstein inequality to dependent
data (White, 1991; Modha & Masry, 1998). The second approach, to be pursued here, is
based on mapping the problem onto one characterized by an i.i.d. process (Yu, 1994), and
the utilization of the standard results for the latter case.

A comment is in order here concerning notation. Hatted variables will denote empiri-
cal estimates, while starred variables denote optimality with respect to the true (unknown)
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distribution. Moreover, letf (x) be a function defined over a domainχ . ThenL p(Q) repre-
sents theQ-weightedL p norm‖ f ‖L p(Q) = (

∫ | f (x)|pQ(x) dx)1/p, andl p represents the
empiricalp’th order semi-norm‖ f ‖l p = (N−1∑N

i=1 | f (Xi )|p)1/p, where{X1, . . . , XN} is
a given set of points defined over the domainχ .

3. Uniform convergence results for independent processes

A powerful tool used in recent years to establish both consistency and rates of convergence
of empirical estimators, is provided by the theory of empirical processes (Pollard, 1984;
Vaart & Wellner, 1996). Unfortunately, most of the results in this field are geared towards
the case of memoryless processes, and are thus not directly suited to the study of time series.
In this section, we summarize some of the basic results concerning uniform convergence
for independent processes, and then present in Section 4 a recent result by Yu (1994) for
dependent processes, which we will make extensive use of in the sequel.

We begin with a result concerning the uniform convergence of empirical measures to
their expected value, for the case where the data is independent and identically distributed.
Let X ∈ χ ⊆ Rd be a vector-valued random variable, drawn according to some probability
distribution P. ConsiderN independently drawn random variablesXN = {X1, . . . , XN},
each drawn according toP. LetF :Rd → R+ be a class of functions, and denote expecta-
tions with respect toP byE. Furthermore, letPN represent the empirical distribution, i.e.,
for any measurable setA ⊆ B(χ),

PN(X ∈ A) = 1

N

N∑
i=1

I A(Xi ),

whereI A(·) is the indicator function for the setA. Denote expectations with respect toPN

byEN . Thus for any functionf (·), EN f = (1/N)
∑N

i=1 f (Xi ).
A major tool for discussing uniform convergence within functional classes is the so called

covering numberof the class, which roughly measures how well the set can be covered by a
finite subset of functions, using some specified distance measure. Formally we have (Pollard
(1984)),

Definition 1. Let F be a class of real valued functions fromχ to R, and denote byρ a
semi-norm onF . For eachε > 0 define the covering numberN (ε,F, ρ) as the smallest
value ofm for which there exist functionsg1, g2, . . . , gm (not necessarily inF) such that
min j ρ( f, gj ) < ε for every f ∈ F . If no such finitem exists thenN (ε,F, ρ) = ∞.

In the sequel we will make extensive use of empirical covering numbers. LetXN ={X1,

X2, . . . , XN} be points inχ and denote the empiricall1,N distance by

l1,N( f, g) = 1

N

N∑
i=1

| f (Xi )− g(Xi )|.
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Moreover, letF(XN) = {( f (X1), f (X2), . . . , f (XN)) : f ∈ F}. We denote the covering
number ofF with respect to the semi-norml1,N by N (ε,F(XN), l1,N), which clearly
depends on the specific set of points{X1, X2, . . . , XN} considered.

Since the functional classes considered here are in general uncountable, some conditions
are required in order to avoid measurability problems. Following common practice, we
assume throughout that all function classes arepermissiblein the sense specified in Pollard
(1984). We then have,

Lemma 3.1 (Pollard, 1984). Let F be a permissible class of real-valued non-negative
functions such that f(x) ≤ B for all f ∈ F . Then

P
{

XN ∈ χN : sup
f ∈F
|EN f − E f | > ε

}
≤ 4E

{
N
(
ε

16
,F(XN), l1,N

)}
exp

{
− Nε2

128B2

}
,

where the expectation is taken with respect to a sample of size N drawn independently at
random from the distribution P.

In most cases of interest for regression or time series analysis, one is actually interested
in working in the space of loss functions, as in Haussler (1992). Consider thenN randomly
drawn pairs{(Xi ,Yi )}, (Xi ,Yi ) ∈ (χ,Y), i = 1, . . . , N, where each pair is drawn according
to the distributionP(X,Y) (we avoid cluttering the notation usingPX,Y(·, ·), as the particular
distribution will be clear from its argument). For eachf ∈ F , let ` f (x, y) :Rd+1 → R+
be a non-negative function termed theloss function, and define theloss spaceLF

LF =
{
` f (x, y) : x ∈ Rd, y ∈ R, f ∈ F} .

The covering numbers for the spacesF andLF can be easily related if a certain Lipschitz
condition is obeyed by the loss functions` f (x, y). In particular, assume that for ally, x1, x2

and f

|` f (x1, y)− ` f (x2, y)| ≤ η| f (x1)− f (x2)|.

Then it can easily be shown (Vidyasagar, 1996, Sec. 7.1.3) that

N
(
ε,LF (ZN), l1,N

) ≤ N( ε
η
,F(XN), l1,N

)
, (4)

where ZN = {Z1, . . . , ZN} = {(X1,Y1), . . . , (XN,YN)}. Note that the empirical semi-
norm l1,N on the l.h.s. of (4) is taken with respect to bothX andY. In the case where
` f (x, y) = |y − f (x)|p, it is easy to see thatη = p(2B)p−1, where we have used the
inequality||a|p − |b|p| ≤ p|a− b||max(a, b)|p−1. Now, let us define

L( f ) = E{` f (X,Y)}, (5)
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L̂ N( f ) = EN{` f (X,Y)}. (6)

Using these definitions we may restate Lemma 3.1 in terms of loss functions as follows:

Lemma 3.2. LetF be a permissible class of bounded functions, | f | ≤ B for f ∈ F and
some0 < B < ∞. For the classLF consisting of loss functions̀f (x, y) = |y− f (x)|p,
f ∈ F , |y| ≤ B, there holds

P
{

ZN ∈ ZN : sup
f ∈F
|L̂ N( f )− L( f )| > ε

}
≤ 4E

{
N
(

ε

16pB2p−2
,F(XN), l1,2N

)}
exp

{
− Nε2

128(2B)p

}
,

whereZN = (χ ×Y)N , and the probability is taken with respect to the product measure on
ZN.

Note that by using (4) we have written the covering number in Lemma 3.2 in terms ofF
rather thanLF .

Finally, we recall a result from (Haussler, 1992), which allows for extra flexibility and
improved rates of convergence under certain conditions. We make use of this result in
Sections 5 and 6.

Lemma 3.3(Haussler,1992,Theorem 2). LetF be a permissible class of real-valued non-
negative functions such that f(x) ≤ B for all f ∈ F , and assumeν > 0 and0 < α < 1.
Then

P

{
XN ∈ χN : sup

f ∈F

|EN f − E f |
EN f + E f + ν > α

}

≤ 4E

{
N
(
αν

8
,F(XN), l1,N

)}
exp

{
−Nα2ν

16B

}
.

4. Uniform convergence results for mixing processes

Having presented in Section 3 the essential results for the case of independent samples, we
now proceed to discuss the main tools needed in the case of dependent sequences. Many
of the ideas as well as the notation of this section rely on the work of Yu (1994). First, it
should be clear that it will not be possible to obtain rates of convergence for uniform laws
of large numbers, unless some assumptions about the processX̄ are stipulated. In this work,
we follow the widely used practice in the field of time-series analysis, and restrict ourselves
to the class ofmixingprocesses. These are processes for which the ‘future’ depends only
weakly on the ‘past’, in a sense that will now be made precise.
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Definition 2. Letσl = σ(Xl
1) andσ ′l+m = σ(X∞l+m), be the sigma-algebras of events gen-

erated by the random variablesXl
1 = (X1, X2, . . . , Xl ) andX∞l+m = (Xl+m, Xl+m+1, . . .),

respectively. The coefficient of absolute regularity,βm, is given by

βm = sup
l≥1
E sup

B∈σ ′l+m

|P(B | σl )− P(B)|, (7)

where the expectation is taken with respect toσl . A stochastic process is said to be absolutely
regular, orβ-mixing, if βm→ 0 asm→∞.

We note that there exist many other definitions of mixing (see Doukhan (1994) for an
extensive listing). The particular proof method we use, relying on the work of Yu (1994),
is based on theβ-mixing coefficient. Similar results apply, of course, to processes with
stronger mixing conditions (see Doukhan (1994)). We note that Modha and Masry (1998)
have recently derived similar results in the context of the more generalα-mixing processes;
however, their results only apply to exponential mixing (see definition below). In this work,
we consider two types of processes for which the mixing coefficient decays to zero, namely
algebraicallymixing processes for whichβm=O(m−r ), r > 0, andexponentiallymixing
processes for whichβm=O(exp{−bmκ}), b, κ >0. Since we are concerned with finite
sample results, we will assume that the conditions can be phrased, for anym> 0, as

βm ≤ b̄m−r (algebraic mixing),

βm ≤ b̃ exp{−bmκ} (exponential mixing),
(8)

for some finite non-negative constantsb, b̄ andb̃. We refer to the exponentsr andκ as the
mixing exponents. Note also that the usual i.i.d. process may be obtained from either the
exponentially or the algebraically mixing process, by taking the limitκ →∞ or r →∞,
respectively. We summarize the above notions in the following assumption, which will be
used throughout.

Assumption 4.1. The stationaryβ-mixing stochastic process̄X = {Xi }∞−∞ is compactly
supported,|Xi | ≤ B for some 0< B <∞. Moreover, the mixing exponent is known.

Observe that, to the best of our knowledge, there is no practical method to determine
whether a process is mixing, unless it is Gaussian, Markov etc. Thus, Assumption 4.1,
stringent as it is, cannot be avoided at this point. This type of assumption is used both in the
work on nonparametric prediction (Gy¨orfi et al., 1989) and in the results using complexity
regularization, as in Modha & Masry (1998).

In order to motivate the mixing assumption, we recall two examples where exponential
mixing has been established. First, consider the standard ARMA process described by the
equation

p∑
j=0

bj Xi− j =
q∑

k=0

akεi−k,
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whereεi are i.i.d. mean-zero random variables. Under the conditions that the probability
distribution ofεi is absolutely continuous and that the zeros of the polynomialP(Z) =∑p

i=0 bi zi lie outside the unit circle, Mokkadem (1988) has shown that the process is
exponentiallyβ-mixing. A further example is provided by Markov processes obeying the
so called Doeblin condition, which basically restricts the process from being trapped in sets
of small measure (see Rosenblatt (1971)); this assumption is, however, rather stringent.

As mentioned above, in this section we follow Yu (1994) in deriving uniform laws of large
numbers for mixing processes. While Yu’s work was mainly geared towards the asymptotic
regime, we will be concerned here with finite sample theory, and will need to modify her
results accordingly. Moreover, our results differ from hers when discussing specific assump-
tions about functional classes and their metric entropies. Finally, Yu’s paper was concerned
with algebraically mixing processes for whichr ≤ 1, as a central limit theorem holds in the
caser > 1. Since we wish to derive finite sample bounds, we cannot make use of central
limit results. In this work we study both the exponential and the algebraic mixing cases.

In the remainder of this section, we outline the basic ideas in the construction of Yu (1994),
which serves as the main tool in the following sections. This construction is essential to
the proofs of Sections 5 and 6, and is thus expanded on. The basic idea in (Yu, 1994), as
in many related approaches, involves the construction of anindependent-blocksequence,
which is shown to be ‘close’ to the original process in a well-defined probabilistic sense.
We first motivate the construction. Divide the sequenceXN

1 into 2µN blocks, each of size
aN . We assume that 2µNaN = N, so as not to be concerned with the remainder terms, which
become insignificant as the sample size increases. The blocks are then numbered according
to their order in the block-sequence. For 1≤ j ≤µN define

Hj = {i : 2( j − 1)aN + 1≤ i ≤ (2 j − 1)aN},
(9)

Tj = {i : (2 j − 1)aN + 1≤ i ≤ (2 j )aN}.

Denote the random variables corresponding to the blocksHj andTj by

X( j ) = {Xi : i ∈ Hj } and X′( j ) = {Xi : i ∈ Tj }.

The sequence of H-blocks is then denoted byXaN = {X( j )}µN
j=1. Now, construct a sequence

of independently distributed blocks{4( j ))}µN
j=1, where4( j )={ξi : i ∈ Hj }, such that the se-

quence is independent ofXN
1 and each block4( j ) has the same distribution as the blockX( j )

from the original sequence; denote this sequence by4aN ={4( j )}µN
j=1. Because the process

X̄ is stationary, the blocks4( j ) are not only independent but also identically distributed.
The basic idea in the construction of the independent block sequence is that one can show
that it is ‘close’, in a well-defined sense to the original blocked sequenceXaN . Moreover, by
appropriately selecting the number of blocks,µN , depending on the mixing nature of the
sequence, one may relate properties of the original sequenceXN

1 , to those of the independent
block sequence4aN .

In accordance with Lemma 2.1, we observe that in order to bound the estimation error,
use must be made of uniform laws of large numbers. Now, from the construction above we
clearly have for a functional classF :R 7→ R,
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P

{
sup
f ∈F

∣∣∣∣∣ 1

N

N∑
i=1

f (Xi )− E f (X)

∣∣∣∣∣ > ε

}

= P
{

sup
f ∈F

∣∣∣∣∣ 1

N

µN∑
j=1

∑
i∈Hj

f (Xi )− 1

2aN
E
∑
i∈Hj

f (Xi )

+ 1

N

µN∑
j=1

∑
i∈Tj

f (Xi )− 1

2aN
E
∑
i∈Tj

f (Xi )

∣∣∣∣∣ > ε

}
,

where the summations have been split into a sum over the blocks, 1≤ j ≤ µN , followed
by a summation over the elements within each even or odd block. HereP{·} is taken with
respect to the original sequence{X1, . . . , XN}. In order to simplify the notation, in the
sequel we omit the specific dependence of probabilities on their arguments, as this will be
clear from the context. Thus, instead ofP{XN ∈ χN : · · ·} we writeP{· · ·}. Let

fHj

(
X( j )

) =∑
i∈Hj

f (Xi ); fTj

(
X( j )

) =∑
i∈Tj

f (Xi ).

Then usingN = 2µNaN , we easily conclude

P

{
sup
f ∈F

∣∣∣∣∣ 1

N

N∑
i=1

f (Xi )− E f (X)

∣∣∣∣∣ > ε

}

≤P
{

sup
f ∈F

∣∣∣∣∣ 1

µN

µN∑
j=1

fHj

(
X( j )

)− E fH1

∣∣∣∣∣ > aNε

}

+P
{

sup
f ∈F

∣∣∣∣∣ 1

µN

µN∑
j=1

fTj

(
X( j )

)− E fT1

∣∣∣∣∣ > aNε

}

≤ 2P

{
sup
f ∈F

∣∣∣∣∣ 1

µN

µN∑
j=1

fH
(
X( j )

)− E fH

∣∣∣∣∣ > aNε

}
. (10)

At this point the problem has been fully expressed in terms of the blocked processXaN ,
defined over the blocks{Hj }. From the above construction, recall that the process4aN

was defined to be block-wise independent, while possessing the same marginal distribution
as{XaN } on each blockHj . Since uniform laws of large numbers for independent sequences
are available from the results quoted in Section 3, we need at this point to relate the results
for XaN to those for the sequence4aN . To do so, use is made of the following lemma from
Yu (1994), the proof of which relies on standard mixing inequalities, which may be found
in Doukhan (1994).

Lemma 4.1(Yu, 1994, Lemma 4.1). Let the distributions of XaN and4aN be Q andQ̃,
respectively. Then for any measurable function h onRaNµN with bound M,∣∣EQh

(
XaN

)− EQ̃h
(
4aN

)∣∣ ≤ MµNβaN .
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Consider the block-independent sequence4aN and define

ẼµN f̃ = 1

µN

µN∑
j=1

f̃H j

(
4( j )

)
,

f̃H j

(
4( j )

) =∑
i∈Hj

f (ξi ), j = 1, 2, . . . , µN .

Similarly we let Ẽ f̃ = E f̃ (4( j )). We use the tilde symbol to denote expectations with
respect to the independent block process4aN . Recall that by construction,{4( j )} are inde-
pendent and that| f̃H j | ≤ aN B if | f | ≤ B. In the remainder of the paper we use variables
with a tilde above them to denote quantities related to the block sequence4aN . With this
notation and making use of (10) and Lemma 4.1 one obtains the following key result:

Lemma 4.2(Yu, 1994, Lemma 4.2). SupposeF :R 7→ R is a permissible class of bounded
functions, | f | ≤ B for f ∈ F . Then

P
{

sup
f ∈F
|EN f − E f | > ε

}
≤ 2P̃

{
sup
f ∈F
|ẼµN f̃ − Ẽ f̃ | > aNε

}
+ 2µNβaN . (11)

Note that the result is slightly modified from Yu (1994), due to the different notation, and
the fact that we have assumed thatN= 2µNaN exactly, i.e., there is no remainder term.
Lemma 4.1 is the main result which will allow us in Section 6 to derive performance bounds
for time series prediction.

5. Error bounds for time series prediction

In order to make use of the results of Section 4, we first need to transform the problem
somewhat. We define a new vector-valued process¯̄X= {. . . , EX−1, EX0, EX1, . . .}, where

EXi = (Xi , Xi−1, . . . , Xi−d) ∈ Rd+1.

For this sequence theβ-mixing coefficients obey the inequality

βm( ¯̄X) ≤ βm−d(X̄). (12)

For any functionf :Rd → R, consider the loss functioǹf :Rd+1→ R+,

` f
(
Xi−1

i−d, Xi
) = ∣∣Xi − f

(
Xi−1

i−d

)∣∣p.
In this section, as well as Section 6, we revert to the notationFd,n for the functional classes

used for estimation, as our results depend explicitly ond andn. In the present section,
however,d andn arefixed, while they will be allowed to vary in Section 6. Keeping in mind
the definition of EXi , we may, with a slight abuse of notation, use the notation` f ( EXi ) for
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this function. As in Section 3, we will work within the loss spaceLFd,n = {` f : f ∈ Fd,n}.
With view to the results in Section 4, we need to introduce a related class of functions.

Definition 3. Let LFd,n be a class of real-valued functions fromRD → R, D = d + 1.
For each̀ f ∈ LFd,n andEx = (Ex1, Ex2, . . . , ExaN ), Exi ∈ RD, let ˜̀ f (Ex) =

∑aN
i=1 ` f (Exi ). Then

defineL̃Fd,n = { ˜̀ f : ` f ∈ LFd,n}, where ˜̀ f :RaN D → R+.

We now proceed to derive error bounds for prediction of mixing stochastic processes.
Recall that we seek upper bounds on the uniform deviations

P
{

sup
f ∈Fd,n

|L N( f )− L( f )| > ε

}

= P
{

sup
f ∈Fd,n

∣∣∣∣∣ 1

N − d

N∑
i=d+1

` f ( EXi )− E` f ( EXd+1)

∣∣∣∣∣ > ε

}
.

We comment that in principle, we should use a sample size ofN − d instead ofN, since
the firstd values do not appear in the empirical loss. Since we assume thatN À d, we
will not be bothered with this mathematical detail, assuming throughout a sample size of
N. Furthermore, in this section we take both the memory sized and the complexity index
n to be fixed. The question of determiningd adaptively will be addressed in Section 6.

Using Lemma 4.2, with the transformationf 7→ ` f , we immediately conclude that

P
{

sup
f ∈Fd,n

|L N( f )− L( f )| > ε

}

≤ 2P̃

{
sup

f ∈Fd,n

∣∣∣∣∣ 1

µN

µN∑
j=1

˜̀ f
( EX( j )

)− E ˜̀ f
∣∣∣∣∣ > aNε

}
+ 2µNβaN−d,

where

˜̀ f
( EX( j )

) =∑
i∈Hj

` f ( EXi ) =
∑
i∈Hj

∣∣Xi − f
(
Xi−1

i−d

) ∣∣p, (13)

and Hj is defined in (9). Note that we have replacedβaN in Lemma 4.2 byβaN−d be-
cause eachEXi containsd + 1 lagged values of the processX̄.

Having transformed the problem to the block-independent process, we can use Lemma
3.1 with the transformationN 7→ µN , noting that| ˜̀ f | ≤ aN(2B)p, to obtain

P̃

{
sup

f ∈Fd,n

∣∣∣∣∣ 1

µN

µN∑
j=1

˜̀ f
(
X( j )

)− E ˜̀ f
∣∣∣∣∣ > aNε

}

≤ 4E
{
N (aNε/16, L̃Fd,n(4aN ), l̃1,µN )

}
exp

{
− µNε

2

128(2B)2p

}
, (14)
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whereL̃Fd,n(4aN ) = { ˜̀ f ( EX(1)), . . . , ˜̀ f ( EX(µN )) : ˜̀ f ∈ L̃Fd,n}, and we have used the semi-
norm

l̃1,µN (
˜̀ f , ˜̀g) = 1

µN

µN∑
j=1

∣∣ ˜̀ f ( EX( j )
)− ˜̀g( EX( j )

)∣∣.
The covering number in (14) is taken with respect to the loss classL̃Fd,n . We now relate the
covering numbers ofLFd,n andL̃Fd,n .

Lemma 5.1. For anyε > 0

N
(
ε, L̃Fd,n

(
4aN

)
, l̃1,µN

) ≤ N (ε/2aN,LFd,n(Z
N), l1,N

)
.

Proof: The following sequence of inequalities holds:

l̃1,µN (
˜̀ f , ˜̀g) = 1

µN

µN∑
j=1

∣∣ ˜̀ f ( EX( j )
)− ˜̀g( EX( j )

)∣∣
= 1

µN

µN∑
j=1

∣∣∣∣∣∑
i∈Hj

` f ( EXi )−
∑
i∈Hj

`g( EXI )

∣∣∣∣∣
≤ 1

µN

µN∑
j=1

∑
i∈Hj

|` f ( EXi )− `g( EXi )|

= 1

µN

N∑
k=1

|` f ( EXk)− `g( EXk)|

= 2aNl1,N(` f , `g),

where we have usedN = 2µNaN . Settingl1,N(` f , `g) ≤ ε/2aN the result follows. 2

Since the connection between the covering numbers ofLFd,n andFd,n is known through
(4), we can summarize the results of this section in the following theorem.

Theorem 5.1. Let X̄ = {. . . , X1, X0, X1, . . .} be a stationaryβ-mixing stochastic pro-
cess, with |Xi | ≤ B, and letFd,n be a class of bounded functions, f :Rd → [−B, B]. For
each sample size N, let f̂d,n,N be the function inFd,n which minimizes the empirical error
(3), and f∗d,n is the function inFd,n minimizing the expected error(1). Then,

P{L( f̂d,n,N)− L( f ∗d,n) > ε}

≤ 8EN
(
ε/64p(2B)p−1,Fd,n(X

N), l1,N
)

exp

{
− µNε

2

128(2B)2p

}
+ 2µNβaN−d. (15)
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Proof: The claim is established through a sequence of inequalities.

P
{
L( f̂d,n,N)− L( f ∗) > ε

} (a)≤ P{ sup
f ∈Fd,n

|L̂ N( f )− L( f )| > ε/2

}
(b)≤ 2P̃

{
sup

f ∈Fd,n

∣∣ẼµN` f̃ − Ẽ` f̃

∣∣ > aNε

2

}
+ 2µNβaN−d

(c)≤ 8E
{
N
(

aN

32ε
, L̃Fd,n

(
4aN

)
, l̃1,µN

)}
exp

{
− µNa2

Nε
2

128
(
aN(2B)p

)2}+ 2µNβaN−d

(d)≤ 8EN
(
ε

64
,LFd,n(Z

N), l1,N

)
exp

{
− µNε

2

128(2B)2p

}
+ 2µNβaN−d

(e)≤ 8EN
(

ε

64p(2B)p−1
,Fd,n(X

N), l1,N

)
exp

{
− µNε

2

128(2B)2p

}
+ 2µNβaN−d

Step(a)makes use of Lemma 2.1, in(b) we have used Lemma 4.2 and (12), and(c) relies
on Lemma 3.1 and the observation thatl̃ f ≤ aN(2B)p (see (31)). Steps(d) and(e) use,
respectively, Lemma 5.1 and the inequality (4) withη = p(2B)p−1. 2

In order to guarantee that an estimatorf̂d,n,N converge asymptotically to the optimal
estimator in the class, namelyf ∗d,n, we introduce the following notion of (weak) consistency.

Definition 4. An estimator f̂d,n,N ∈ Fd,n is weakly consistent if for everyε > 0,
P{|L( f̂d,n,N)− L( f ∗d,n)| > ε} → 0 as N→∞.

Note that in Definition 4 we require only convergence of the lossL( f̂d,n,N), rather than of
the estimatorf̂d,n,N itself, as is more customary in the field of parametric statistics.

Up to this point we have not specifiedµN andaN , and the result is therefore quite general.
In order to obtain weak consistency we require that that the r.h.s. of (15) converge to zero
for eachε > 0. This immediately yields the following conditions onµN (and thus also
on aN through the condition 2aNµN = N), which will be related to the mixing conditions
in (8).

Corollary 5.1. Under the conditions of Theorem5.1, and the added requirement that
EN (ε,Fd,n(XN), l1,N) < ∞, ∀ε > 0, the following choices ofµN are sufficient to guar-
antee the weak consistency of the empirical minimizerf̂d,n,N :

µN = 2
(
Nκ/(1+κ)) (exponential mixing), (16)

µN = 2
(
Ns/(1+s)

)
, 0< s< r (algebraic mixing), (17)

where the notation aN = 2(bN) implies that there exist two finite positive constants c1 and
c2 such that c1bN ≤ aN ≤ c2bN for all N larger than some N0.

Proof: Consider first the case of exponential mixing. In this case, the r.h.s. of (15) clearly
converges to zero because of the finiteness of the covering number. The fastest rate of
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convergence is achieved by balancing the two terms in the equation, leading to the choice
µN = 2(Nκ/(1+κ)). In the case of algebraic mixing, the second term on the r.h.s. of (15) is
of the orderO(µNa−r

N ), where we have usedd = o(aN), and dominates the first term for
largeN. SinceµNaN = 2(N), a sufficient condition to guarantee that this term converge
to zero is thatµN = 2(Ns/(1+s)), 0< s< r , as was claimed. 2

Remark 1. Strong consistency, i.e.,L( f̂d,n,N)→ L( f ∗d,n) a.s.-P, can also be established
under appropriate conditions. In the case of exponential mixing, strong consistency may
immediately be established using Theorem 5.1 and the Borel-Cantelli Lemma. In the case
of algebraic mixing, the requirement that

∑∞
N=1µNaaN−d <∞, together with the choice

µN = Ns/(1+s), 0< s< r , and the conditiond= o(aN) leads to strong consistency only if
0< s<(r − 1)/2, implying r > 1. We note that forr > 1, Arcones and Yu (1994) have
proven a central limit theorem, which is of course stronger than mere consistency.

From Theorem 5.1 we may immediately obtain a result for the expected loss. However, in
order to do so, something must be assumed about the dependence ofN (ε,Fd,n(XN), l1,N)
on ε. We recall the definition of pseudo-dimension (Pollard, 1984).

Definition 5. Let (X,S) be a given set, and letF ⊆ [0, B]X consist of functions fromX
to the closed interval [0, B]. A setS= {x1, . . . , xn} is P-shattered byF if there exists a real
vectorc ∈ [0, B]n such that, for every binary vectore∈ {0, 1}n, there exists a corresponding
function fe ∈ F such that

fe(xi ) ≥ ci if ei = 1, and fe(xi ) < ci if ei = 0.

The pseudo-dimension ofF , denoted by Pdim(A), equals the largest integern such that
there exists a set of cardinalityn that is P-shattered byA. If no such value exists the
pseudo-dimension is infinite.

The pseudo-dimension becomes useful due to the following result of Haussler and Long
(1995), which relates it to the covering number.

Lemma 5.2(Haussler, 1995, Corollary 3). For any set X, any probability measure P on
X, any setF of P-measurable functions taking values in the interval[0, B] with pseudo-
dimensionPdim(F), and anyε > 0,

N (ε,F, l1,N(P)) ≤ e(Pdim(F)+ 1)

(
2eB

ε

)Pdim(F)
.

A special case of Lemma 3.1 occurs whenl1,N(P) is the empiricall1,N semi-norm, which
is used to define the covering numbers. We make the following assumption concerning the
functional spaceFd,n.

Assumption 5.1. The functional spaceFd,n possesses a finite pseudo-dimension
Pdim(Fd,n).
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An immediate consequence of the assumption is that the covering numberN (ε,Fd,n(XN),

l1,N)may be bounded from above by a term of the formKd,nε
−Pdim(Fd,n). Many examples of

classes with finite pseudo-dimension are known. Two recently studied examples are neural
networks with the standard sigmoidal activation function (Karpinksi & Macintyre, 1997)
or with piecewise polynomial activation functions (Goldberg & Jerrum, 1995). In the latter
case, rather tight bounds on the pseudo-dimension have recently been derived in (Bartlett
et al., 1998).

Remark 2. We have made Assumption 5.1 for convenience. It is known that there are
situations where the pseudo-dimension is not the optimal quantity for computing upper
bounds for the covering number (Lee et al., 1996; Lugosi & Zeger, 1995). However, in
all these cases one obtains covering number bounds which behave likeO(ε−D) for some
generalized dimensionD. If this is the case, replace the pseudo-dimension by the dimension
D, and all the results below follow. Note, however, that in some casesD may depend on
ε, and a more careful analysis is needed using the so-called fat-shattering dimension as
is discussed in Bartlett et al. (1996). Furthermore, there are specific situations where the
pseudo-dimension yields nearly optimal bounds for the estimation error, since in that case
the pseudo-dimension is essentially equivalent to another combinatorial dimension, called
the fat-shattering dimension, which gives nearly matching lower bounds on estimation error
(see Bartlett et al. (1996)).

Corollary 5.2. Under the conditions of Theorem5.1, and the added requirement that
Pdim(Fd,n) <∞, there exists a finite value of N= N0, such that for all N> N0

EL( f̂d,n,N)− L
(

f ∗d,n
)

≤ 32
√

2(2B)p

√
1
2Pdim(Fd,n) logµN + log Kd,n

µN
+ 4(2B)pµNβaN−d. (18)

The proof of Corollary 5.2 is a special case of Theorem 6.1 given in Section 6, to which
we refer the reader for a proof. The explicit dependence onN may be obtained by plugging
in the values ofµN from Corollary 5.1. Under the conditions of Remark 1 one can easily
derive the following upper bound

EL( f̂d,n,N) ≤ L
(

f ∗d,n
)+ O

((
log N

N

) 1
2

κ
1+κ

)
,

for the exponentially mixing case. These rates are similar to those obtained in Modha &
Masry (1998) for the case of exponentiallyα-mixing processes. In the case of algebraic
mixing one obtains the same rate withs replacingκ, where 0< s< (r − 1)/2.

Remark 3. We observe that if one is willing to incur an extra multiplicative cost in (18),
one may in fact obtain faster rates of convergence based on Lemma 3.3, for general loss
functions, as already pointed out by Haussler in ((1992), Section 2.4). In this case one can
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show that the square root on the r.h.s. of (18) may be removed, at the price of multiplying
the termL( f ∗) by a factorβ > 1. One then obtains that

EL( f̂d,n,N) ≤ βL
(

f ∗d,n
)+ O

((
log N

N

) κ
1+κ

)
(β > 1).

It should be borne in mind, however, that this kind of result is not very helpful in situations
whereL( f ∗d,n)− L( f ∗d ) > 0, which may occur if the classFd,n doesnotcontain the optimal
predictor of memory sized, as it leads to faster rates of convergence, to anon-optimalvalue
of the loss sinceβ > 1. However, the main merit of this observation is in the nonparametric
situation discussed in Section 6.

Remark 4. Further improvement is possible in the case of quadratic loss, namelyp= 2 in
(1). It has been observed by several authors (Barron & Cover, 1991; Lee et al., 1996; Lugosi
& Nobel, 1996) that in this case better bounds are available than those given by Corollary
5.2, in the special case where certain regularity (in particular, convexity) conditions are
obeyed by the class of functionsFd,n. In the case of feedforward neural networks, Barron
(1993) and Lee et al. (1996) have proposed a constructive learning algorithm, for which
exact performance bounds have been established in Lee et al. (1996). In particular, the
square root in (18) may be eliminated giving rise to anO(logµN/µN) convergence rate,
instead of the rateO(

√
logµN/µN) implied by (18). In this case, unlike the case of general

p > 2, the approximation error term is unaffected, i.e.,β = 1, as opposed to the results
quoted in Remark 3. The main technical trick needed to establish this result has to do with
the use of the Bernstein-Craig inequality (Craig, 1933), rather than the standard Hoeffding
inequality (Hoeffding, 1963) used in the usual derivations of uniform laws of large numbers.
Unfortunately, this approach does not seem to work for more generalL p norms, with which
we are concerned in this paper.

Finally, it is worth commenting on the ‘predictability’ of the sequence. When the sequence
is i.i.d., previous values do not tell us anything about the next value. However, in this case
the estimation error, which essentially measures the finite sample effects, decays at a rate
O(
√

log N/N), which is much faster than the rate obtained above in the case of mixing
processes. In the latter case the ‘effective’ sample size,Nκ/(1+κ) (for exponential mixing;
similarly for algebraic mixing), is reduced due to the temporal correlations, leading to the
slower rates.

6. Structural risk minimization for time series

The results in Section 5 provide error bounds for estimators formed by minimizing the
empirical error over a fixed class of functions. It is clear that the complexity of the class of
functions plays a crucial role in the procedure. If the class is too rich, manifested by very
large covering numbers, clearly the estimation error term will be very large. On the other
hand, biasing the class of functions by restricting its complexity, leads to poor approxima-
tion rates. A well-known strategy for overcoming this dilemma is obtained by considering
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a hierarchy of functional classes with increasing complexity. For any given sample size, the
optimal trade-off between estimation and approximation can then be determined by balanc-
ing the two terms. Such a procedure was developed in the late seventies by Vapnik (1982),
and termed by himstructural risk minimization(SRM). Other more recent approaches, col-
lectively termed complexity regularization, have been extensively studied in recent years
e.g. (Lugosi & Zeger, 1996; Barron et al., 1996). It should be borne in mind, however, that
in the context of time series there is an added complexity, that does not exist in the case of
regression for i.i.d. data. Recall that the results derived in Section 5 assumed some fixed
lag vectord. In general the optimal value ofd is unknown, and could in fact be infinite. In
order to achieve optimal performance in a nonparametric setting, it is crucial that the size of
the memory be chosen adaptively as well. This added complexity needs to be incorporated
into the SRM framework, if optimal performance in the face of unknown memory size is
to be achieved.

LetFd,n, d, n ∈ N be a sequence of functions, and define

F =
∞⋃

d=1

∞⋃
n=1

Fd,n.

Keeping in mind the definition of the covering numbersN (ε,F(XN), l1,N), utilized through-
out the previous sections, we find it useful to define an upper bound on these numbers, which
does not depend on the specific data observed. The existence of this bound is guaranteed
by Lemma 5.2 and Assumption 5.1. For anyd, n ∈ N andε > 0 let

N1(ε,Fd,n) = sup
XN∈χN

N
(
ε,Fd,n(X

N), l1,N
)
. (19)

We observe in passing that Lugosi and Nobel (1996) have recently considered situations
where the pseudo-dimension Pdim(Fd,n) is unknown, and the covering number is estimated
empirically from the data. Although this line of research is potentially very useful, we do
not pursue it here, but rather assume that upper bounds on the pseudo-dimensions ofFd,n

are known, as is the case for various classes of functions such as neural networks, radial
basis functions etc. (see examples in Vidyasagar (1996)).

In line with the, by now classic, approach outlined in Vapnik (1982) we introduce a new
empirical function, which takes into account both the empirical error and the complexity
costs penalizing overly complex models (largen and overly large memory sized). Let

ˆ̂Ld,n,N( f ) = L̂ N( f )+1d,n,N(ε)+1d,N, (20)

whereL̂ N( f ) is the empirical error (3) of the predictorf . We have introduced the ‘double-
hat’ notation, as inˆ̂L, to emphasize the two-level estimation process involved. The com-
plexity penalties1 are given by,

1d,n,N(ε) =
√

logN1(ε,Fd,n)+ cn

µN/32(2B)2p
(21)
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1d,N =
√

c′d
µN/32(2B)2p

. (22)

The specific form and constants in these definitions are chosen with hindsight, so as to
achieve the optimal rates of convergence in Theorem 6.1 below. The constantscn andc′d
are positive constants obeying

∑∞
n=1 e−cn ≤ 1 and similarly forc′d. A possible choice is

cn = 2 logn+ 1 andc′d = 2 logd + 1. The value ofµN can be chosen in accordance with
Corollary 5.1.

Let f̂d,n,N be the minimizer of the empirical losŝL N( f ) within the class of functions
Fd,n, namely

L̂ N( f̂d,n,N) = min
f ∈Fd,n

L̂ N( f ).

We assume that the classesFd,n are compact, so that such a minimizer exists. Observe
that less stringent conditions, of the form̂L N( f̂d,n,N) ≤ min f ∈Fd,n L̂ N( f ) + εN for an
appropriateεN may be used, but lead to the same results, and add little to the generality.
Further, let ˆ̂f N be the function inFN minimizing the complexity penalized loss (20), namely

ˆ̂Ld,n,N(
ˆ̂f N) = min

d≥1
min
n≥1

ˆ̂Ld,n,N( f̂d,n,N). (23)

We now present the basic result establishing the consistency of the structural risk min-
imization approach for time series, together with upper bounds on its performance. As in
Section 5, we assume that the pseudo-dimension of each classFd,n is finite, motivating the
assumption:

Assumption 6.1. The covering number of each classFd,n can be bounded from above by

N1(ε,Fd,n) ≤ Kd,nε
−γd,n,

whereγd,n = Pdim(Fd,n) <∞ for anyd andn.

We recall Remark 2, keeping in mind that in cases where the pseudo-dimension does not
provide a tight upper bound on the covering number we may replaceγd,n by some other
generalized dimension, such as the fat-shattering dimension at an appropriate scale. This
modification does not affect the arguments below. Before presenting the main result of this
section, we make an assumption concerning the size of the memoryd.

Assumption 6.2. For each value ofN, 0≤ d≤a1−ε
N for some 0<ε<1, implying d=

o(aN).

For eachd, let N0 be the (finite) value ofN, such that by Assumption 6.2d < aN/2 for
N > N0; such a value exists, since from Corollary 5.1aN becomes arbitrarily large with
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increasingN. The following lemma, proved in the appendix, is crucial in establishing the
main result of this section.

Lemma 6.1. Let X̄ = {. . . , X1, X0, X1, . . .} be a stationaryβ-mixing stochastic process,
with |Xi | ≤ B, 0< B<∞. Furthermore, letFd,n be a class of bounded functions, f :Rd →
[−B, B], and let Assumption6.2 hold, implying that d≤ aN/2 for N larger than some
N0. For each N let ˆ̂f N be the predictor selected according to the SRM condition(23). Let
ε > 0 be given and assume further that32p(2B)p−1ε ≤ 1d,n,N(ε) + 1d,N ≤ t/4. Then
for N > N0

P
{

L( ˆ̂f N)− inf
f ∈Fd,n

L( f ) > t

}
≤ 8e−µNt2/128(2B)2p

+ 8N1
(
t/256p(2B)p−1,Fd,n

)
e−µNt2/2048(2B)2p + 4(2B)pµNβaN/2.

We then have the main result of this section; the proof is given in the appendix.

Theorem 6.1. Let X̄={. . . , X1, X0, X1, . . .}be a stationaryβ-mixing stochastic process,
with |Xi | ≤ B, and letFd,n be a class of bounded functions, f :Rd→ [−B, B]. Then, for
N> N0, and given Assumption6.2,the expected loss of the functionˆ̂fN, selected according
to the SRM principle(23), is upper bounded by

EL( ˆ̂f N) ≤ min
d,n

{
inf

f ∈Fd,n

L( f )+ c1

√
1
2γd,nlogµN + log Kd,n + cn

µN
+ c2√

µN

}
+ 4(2B)pµNβaN/2,

where c1 = 32
√

2(2B)p and c2 = (640+ 32
√

c′d)
√

2(2B)p, and the constants cn and c′d
are defined in(21)and(23), respectively.

Remark 5. Observe that similarly to Remark 3, better rates can be obtained at the price
of multiplying the approximation error term in Theorem 6.1 by a constant larger than 1. In
this case we obtain a bound of the form

EL( ˆ̂f N) ≤ min
d,n

{
β inf

f ∈Fd,n

L( f )+ c′1
γd,n logµN

µN

}
+ 4(2B)pµNβaN/2, (24)

whereβ > 1, andc′1 andc′2 are given constants. The proof of this result relies on Lemma
3.3, and is very similar to that given below for Theorem 6.1. We recall that the improved
rate is only relevant in the situation where(mind,n inf f ∈Fd,n L( f ) − L( f ∗∞)) can be made
to vanish, which may not be the case in practical situations where the complexity of the
approximating class may be restricted to some finite values ofd andn.

Remark 6. The results derived in 6.1 demonstrate that there is an almost optimal trade-
off between approximation and estimation, in the following sense. Even if inff ∈Fd,n L( f )
attained some minimal value for some finiteknownvalues ofn andd (remaining constant



TIME SERIES PREDICTION AND MODEL SELECTION 27

for larger values), there would still be an additional loss incurred in the estimation, due
to the finiteness of the sample size. What Theorem 6.1 establishes is that the additional
loss resulting from the extra degrees of freedom resulting from the variable memory size
d and model complexityn do not affect the performance. This result can be viewed as an
extension of existing results for i.i.d. data, both for the case of binary classification (Lugosi
& Zeger, 1996) and regression (Lugosi & Nobel, 1996).

Remark 7. We compare our results to those derived recently by Modha and Masry (1998).
These authors also considered the problem of time series prediction in the context of mixing
stochastic processes, deriving similar finite sample bounds in a nonparametric setting. We
observe that their results differ from ours in several important ways. First, the framework
used in Modha and Masry (1998) was based on Barron and Cover’s notion of the index
of resolvability (Barron & Cover, 1991), which entails rather different assumptions on the
covering numbers of the functional classes used for estimation. In particular, the compact-
ness of the parameter domain used by the estimator seems crucial for that approach. In the
context of the covering numbers used in this work, all that is needed is the finiteness of
the pseudo-dimension of the functional class, together with a boundedness condition on the
function, a much weaker condition in general than boundedness of parameters. Moreover,
the latter condition renders the establishment of approximation error bounds rather difficult.
The reader is referred to Vidyasagar (1996) for several examples of cases where the pseudo-
dimension is finite even though the parameters are unbounded. Second, our work holds for
generalL p norms rather than the theL2 norm studied in Modha and Masry (1998). For
the casep = 2, we obtain the same rates under the further condition of convexity alluded
to in Remark 4. Third, the results established in this work hold for both exponential and
algebraic mixing stochastic processes, as opposed to the case of exponential mixing studied
in Modha and Masry (1998). However, our results relate toβ-mixing processes, a stronger
condition than the one used in Modha and Masry (1998). Two interesting open problems
remain, which have not yet been answered for either approach. First, the assumption of the
boundedness of the process is somewhat restrictive, especially as this assumption is not
required in the context of nonparametric time series prediction in general. Second, the de-
velopment of an adaptive method to determine the mixing coefficientsβ is of importance if
a fully adaptive algorithm is required. There do not seem to exist at present any approaches
which address this issue satisfactorily.

Finally, we consider the nonparametric rates of convergence achieved within the adaptive
scheme proposed in the present section. We refer the reader to the books by Gy¨orfi et al.
(1989) and Bosq (1996) for surveys of the field of nonparametric time series prediction. We
consider a typical result established in Gy¨orfi et al. (1989) (see Section 3.4) for compactly
supportedφ-mixing processes. Sinceφ-mixing impliesβ-mixing, the result is applicable
in the context of this paper. Let

Rd(x) = E
(
Xi

∣∣ Xi−1
i−d = x

)
,

and denote byRd,N(x) a nonparametric estimator forRd(x) obtained using the Nadayara-
Watson kernel estimator with widthh and a sample of sizeN. Note thatRd(x) is only
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optimal as a predictor when using the quadratic loss. Assume further thatRd(x) belongs to
a Lipschitz space ofk times continuously differentiable functions over the compact domain
G, such that theirk-th order derivatives are Lipschitz continuous of order 1. Then from
Theorem 3.4.4 and Remark 3.3.5 in Gy¨orfi et al. (1989), we have that

sup
x∈G
|Rd(x)− Rd,N(x)| = O

(
hk+1+ (mN log N

/
Nhd

)1/2)
(a.s.),

wheremN ∼ (log N)1/κ for exponentially mixing processes andmN ∼ n1/(1+r ) for alge-
braically mixing processes with exponentr . Settingh to its optimal value, minimizing the
sum of the two terms we find that

sup
x∈G
|Rd(x)− Rd,N(x)| = O

((
(log N)κ/(1+κ)

N

) k+1
2(k+1)+d

)
(a.s.),

for exponentially mixing processes and

sup
x∈G
|Rd(x)− Rd,N(x)| ≤ O

((
(log N)(1+r )/r

N

) r
1+r

k+1
2(k+1)+d

)
(a.s.),

in the case of algebraic mixing.
Turning now to the results of this section, we need establish similar rates of convergence

in a nonparametric setting. Assume, for example, that the optimal predictor of memory
sized belongs to a Sobolev space consisting of functions with square integrable(k+ 1)-th
order derivatives. The reason for consideringk+ 1 derivatives rather thank is related to our
wish to compare the results for Sobolev space to those for the Lipschitz space discussed
above. As is demonstrated in Section 2.9 of Devore & Lorentz (1993), the Lipschitz space
with k derivatives is isomorphic to the Sobolev space withk+ 1 integrable derivatives.
Furthermore, assume that the functional spaceFd,n is such that inff ∈Fd,n L( f ) ≤ cn−(k+1)/d

for any f in the Sobolev space. This type of result is well known for spline functions, and
has recently been demonstrated for neural networks (Mhaskar, 1996) and mixture of expert
architectures (Zeevi et al., 1998). Using the results of Theorem 6.1, and assuming that the
optimal memory sized is known, as in the nonparametric setting above, we can compute
the value for the complexity indexn which yields fastest rates of convergence. Making use
of the values ofµN from Corollary 5.1 and Remark 1 we obtain, after some algebra, that

EL( ˆ̂fN )− L∗d = O

(
log N

N

) η

1+η
k+1

2(k+1)+qd
, (25)

where L∗d is the error incurred by the optimal predictor of memory sized, and where
η equalss in the case of algebraic mixing andκ for exponential mixing (see Remark 1).
Observe that the results quoted above for the kernel method, are given in terms of the distance
|Rd(x)−Rd,N(x)|, rather than the error itself, as in (25). However, in the quadratic casep =
2, for which the kernel method results are given, it is easy to establish (keeping in mind the
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boundedness of the variables) thatE|Rd,N(x)−Y|2−|Rd(x)−Y|2 ≤ 4B|Rd,N(x)−Rd(x)|,
implying similar rates of convergence for the error difference, as in (25). In the situation
where the improved rates (24) are used one may remove the factor of 2 multiplying(k+ 1)
in the denominator in (25); however, in this case the convergence is toβL∗d, β > 1, rather
thanL∗d.

In the derivation we have assumed thatγd,n = Pdim(Fd,n) ∝ nq for some positive value
of q, which is a typical situation (see examples in Vidyasagar (1996)). For example, we have
recently shown (Bartlett, Maiorov, & Meir, 1998) thatq = 1+ε (ε > 0 arbitrarily small) for
feedforward neural networks composed of piecewise polynomial activation functions, while
Karpinski and Macintyre (1997) have establishedq = 4 for networks constructed using
the standard sigmoidal activation function. Note that in these two cases the approximation
errors have also been shown to be of the same order (Maiorov & Meir, 1999).

Furthermore, note the extra factorκ/(1+ κ) which multiplies the exponent, and leads
to slower rates of convergence, as compared to the nonparametric results, in the case of
exponential mixing. Note also that for this result to hold in the case of algebraic mixing we
needed to assume thatr > 1, in accordance with Remark 1. In summary then, we observe
that our results in the nonparametric situation are in general not as tight as those attained
by the classic kernel methods, a point also observed in Modha and Masry (1998). One of
the major open problems then in the field of nonparametric time series prediction through
adaptive model selection would be to achieve optimal (minimax) rates of convergence. Of
course it should be borne in mind that the approach has the great advantage of adaptivity,
in that parametric rates of convergence are achieved if the underlying structure is simple,
as discussed in Remark 6. Note that in the special casep = 2, faster nonparametric rates
are achieved under the special conditions discussed in Remark 4.

It should be kept in mind, however, that the above nonparametric rates of convergence
were derived under the assumption that the memory sized is finite. In situations where the
memory size is unbounded, a cost must be added for using a finite value ofd. This point
is made explicit in (2), where the additional termL∗d is added, to take account of the loss
incurred by using a finite value ofd. Unfortunately, in order to compute an upper bound on
this term, rates of convergence in the martingale convergence theorem would be needed; to
the best of our knowledge such results are unknown at present for mixing processes.

7. Concluding remarks

We have presented bounds on the error incurred in nonparametric time-series prediction by
sequences of parametric models, characterized by well-behaved metric entropies. This work
extends previous results which make more demanding assumptions concerning boundedness
of parameters and smoothness of the functions used for estimation. Our results were derived
within the framework of the structural risk minimization approach pioneered by Vapnik,
and were extended to the case of time-series by taking into account a complexity controlled
adaptive memory size, based on the mixing relationships assumed to hold for the underlying
stochastic process. The general approach has the potential advantage of achieving univer-
sal consistency and good rates of convergence in nonparametric settings, while retaining
parametric rates of convergence in special situations. This adaptivity advantage has been
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established for absolutely regular mixing processes, and rates of convergence have been
established in cases where the memory sized is finite, but not necessarily known in advance.

There remain several issues, which need to be addressed in future work. First, the adaptive
algorithm, as well as the bounds rely heavily on a knowledge of the mixing nature of the
process. As mentioned in Section 4, no tools are currently available for establishing mixing
properties, which are therefore more of a theoretician’s dream than a practical tool. Second,
rates of convergence were derived only for the case where the optimal memory sized is finite,
albeit unknown. It is a challenging problem to derive convergence rates in the general case
where the memory size may be infinite. Third, it is an open question to establish minimaxity
of the nonparametric rates of convergence derived in Section 6, similarly to the results in
the i.i.d. setting. Finally, and at a more technical level, we have assumed throughout that the
stochastic process and prediction functions are bounded, clearly an impractical assumption
in real life. We believe, however, that this assumption can be eliminated using the techniques
of van der Geer (1987), a topic which is currently being pursued.

Appendix

Proof of Lemma 6.1:We split the problem into two components.

P
{

L( ˆ̂fN)− inf
f ∈Fd,n

L( f ) > t

}
< P

{
L( ˆ̂f )−min

d,n

ˆ̂Ld,n,N( f̂d,n,N) >
t

2

}
+P

{
min
d,n

ˆ̂Ld,n,N( f̂d,n,N)− inf
f ∈Fd,n

L( f ) >
t

2

}
≡ J1+ J2. (26)

We deal separately with each of the terms. Letd̂ and n̂ be the values ofd andn which
minimize ˆ̂Ld,n,N( f̂d,n,N), i.e., ˆ̂fN = f̂d̂,n̂,N . Then

J1 = P
{

L( f̂d̂,n̂,N)− ˆ̂Ld̂,n̂,N( f̂d̂,n̂,N) >
t

2

}
≤ P

{
L( f̂d̂,n̂,N)− L̂ N( f̂d̂,n̂,N) >

t

2
+1d̂,n̂,N(ε)+1d̂,N

}
≤ P

{
sup

f ∈Fd̂,n̂

|L( f )− L̂ N( f )| > t

2
+1d̂,n̂,N(ε)+1d̂,N

}

where we used the definition (20). We then have from the union bound that

J1 ≤ P
{

max
d,n

(
sup

f ∈Fd,n

|L( f )− L̂ N( f )| > t

2
+1d,n,N(ε)+1d,N

)}

≤
∑
d,n

P
{

sup
f ∈Fd,n

|L( f )− L̂ N( f )| > t

2
+1d,n,N(ε)+1d,N

}
.
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Using the notationud,n,N = t + 21d,n,N(ε) + 21d,N , we then have from the proof of
Theorem 5.1 and (19)

J1 ≤ 8
∑
d,n

N
(
ud,n,N

/
64p(2B)p−1,Fd,n

)
exp

{
− µNu2

d,n,N

128(2B)2p

}
+ 2µNβaN/2.

We note that we have replaced the termβaN−d appearing in 5.1 byβaN/2. This is allowed since
we assumed thatd ≤ aN/2 , andβm is monotonically non-increasing inm. Substituting the
value ofud,n,N and making use of the assumption1d,n,N(ε) + 1d,N > 32p(2B)p−1ε, we
then find

J1 ≤ 8
∑
d,n

N1
(
ε,Fd,n

)
exp

{
− µN

128(2B)2p
[t + 21d,n,N(ε)+ 21d,N ]2

}
+ 2µNβaN/2

≤ 8
∑
d,n

N1
(
ε,Fd,n

)
exp

{
− µN

128(2B)2p

[
t2+ 412

d,n,N(ε)+ 412
d,N

]}+ 2µNβaN/2

≤ 8
∑
d,n

exp

{
− µNt2

128(2B)2p
− cn − c′d

}
+ 2µNβaN/2,

≤ 8 exp

{
− µNt2

128(2B)2p

}
+ 2µNβaN/2.

where use has been made of the postulated summability properties of the sequences{e−c′d}
and{e−cn}, and (21) and (22).

In order to conclude the proof we need to consider the second term in (26). Following
similar reasoning to that used above, and making use of the assumption1d,n,N(ε)+1d,N ≤
t/4, we have:

J2 = P
{

L̂ N( f̂d̂,n̂,N)+1d̂,n̂,N(ε)+1d,N − L∗d,n >
t

2

}
≤ P

{
L̂ N( f̂d̂,n̂,N)− L∗d,n >

t

4

}
≤ P

{
L̂ N
(

f ∗d,n
)− L

(
f ∗d,n
)
>

t

4

}
≤ P

{
sup

f ∈Fd,n

|L̂ N( f )− L( f )| > t

4

}
≤ 8N1

(
t/256p(2B)p−1,Fd,n

)
exp

{
− µNt2

2048(2B)2p

}
+ 2µNβaN/2,

where again Theorem 5.1 has been used. The result then follows on combining the upper
bounds onJ1 andJ2. 2
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Proof of Theorem 6.1:Our proof follows some of the ideas in Lugosi and Nobel (1996),
with appropriate modifications. Obviously

EL( ˆ̂fN) = min
d,n

{(
EL( ˆ̂fN)− L∗d,n

)+ L∗d,n
}
,

whereL∗d,n = inf f ∈Fd,n L( f ). Using the notation

0d,n,N = L( ˆ̂fN)− L∗d,n,

we have

E0d,n,N = E
{
L( ˆ̂fN)− L∗d,n

}
=
∫ ∞

0
P
{
L( ˆ̂fN)− L∗d,n > t

}
dt

≤ u+
∫ (2B)p

u
P
{
L( ˆ̂fN)− L∗d,n > t

}
dt,

where we have used the fact that|Xi − f (Xi−1
i−d)|p ≤ (2B)p, implying L( f ) = E|Xi −

f (Xi−1
i−d)|p≤ (2B)p. Substituting the results of Lemma 6.1 and defininga= 1/256p(2B)p−1,

we then obtain

E0d,n,N ≤ u+
∫ (2B)p

u

[
8e
− µNt2

128(2B)2p + 8N1(at,Fd,n)e
− µNt2

2048(2B)2p

]
dt+ 4(2B)pµNβaN/2

≤ u+ 16√
µN/128(2B)2p

exp

{
− µNu2

128(2B)2p

}
+ 16N1(u/256p(2B)p−1,Fd,n)√

µN/2048(2B)2p
exp

{
− µNu2

2048(2B)2p

}
+ 4(2B)pµNβaN/2,

where we have used
∫∞

u exp(−βt2) dt ≤ 2 exp(−βu2)/
√
β.

Choosingu = 81d,n,N(ε)+ 81d,N and using the conditionu > 256p(2B)p−1ε and the
choiceε = 1/

√
µN , we obtain the following result after some algebra

E0d,n,N ≤ 32
√

2(2B)p

√
1
2γd,n logµN + logKd,n + cn

µN

+ (640+ 32
√

c′d)
√

2(2B)p

√
µN

+ 4(2B)pµNβaN/2,

where use has been made of (21) and (22). The claim follows upon using the definition of
0d,n,N . 2
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