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Abstract. We consider the problem of one-step ahead prediction for time series generated by an underlying
stationary stochastic process obeying the condition of absolute regularity, describing the mixing nature of process.
We make use of recent results from the theory of empirical processes, and adapt the uniform convergence framework
of Vapnik and Chervonenkis to the problem of time series prediction, obtaining finite sample bounds. Furthermore,
by allowing both the model complexity and memory size to be adaptively determined by the data, we derive
nonparametric rates of convergence through an extension of the method of structural risk minimization suggested by
Vapnik. All our results are derived for genetaj error measures, and apply to both exponentially and algebraically
mixing processes.
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1. Introduction

The problem of time series modeling and prediction has a long history, dating back to
the pioneering work of Yule in 1927 (Yule, 1927). Most of the work since then until the
1970s has been concerned with parametric approaches to the problem whereby a simple,
usually linear, model is fitted to the data (for a review of this approach, see for example the
text-book by Brockwell and Davis (1991)). While many appealing mathematical properties
of the parametric approach have been established, it has become clear over the years that
the limitations of the approach are rather severe, in their imposition of a rigid structure
on the process. One of the more productive solutions to this problem has been the extension
of the classic nonparametric methods to the case of time series (see, for exanmfe, Gy~
et al. (1989) and Bosq (1996) for a review). In this work we use the panametric modetio
refer to any model which imposes a spedifiomon the estimated function, which is exactly
known up to a finite number of parameters. Nonparametric models, on the the other hand,
do not impose any structural assumptions, and can model any (smooth) underlying process.
In this work we consider a third approach to the problem of time series prediction, which
although nonparametric in spirit, possesses many affinities with the parametric approach.

*This work was supported in part by a grant from the Israel Science Foundation. Support from the Ollendorff
center of the department of Electrical Engineering at the Technion is also acknowledged.
TPart of this work was done while the author was visiting the Isaac Newton Institute, Cambridge, England.
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The method is strongly related to the method of sieves, introduced by Grenander (1981)
and studied further by Geman and Hwang (1982). This type of approach had in fact been
introduced in the late 1970’s by Vapnik and titled by h8tructural Risk Minimization
(SRM) (Vapnik, 1982). The basic idea behind this approach, applied so far in the context
of independent data, is the construction of a sequence of models of increasing complexity,
where each model within the hierarchy is usually taken to be parametric. As the complexity
of the model increases, manifested by a growing complexity index, the model approximates
a very rich, nonparametric, class of functions. One of the seminal contributions of the work
by Vapnik and Chervonenkis (1971) was the establishment of upper bounds on the true
performance of estimators within each class, based on a natural complexity index, which
has come to be known as the VC dimension. These bounds contain two terms, the first
of which is the empirical error on the training data, the second being a complexity term
penalizing overly complex models. As can be expected, the empirical error decreases as the
complexity of the class increases, while the second, complexity term, naturally increases.
Thus, it was suggested in (Vapnik, 1982) that for each sample size one may obtain the best
trade-off between the two terms, thus achieving the optimal guaranteed performance bounds
for any sample size. Moreover, by tracking the optimal complexity for each sample size it
was shown that very large families of functions may be modeled in this fashion. The major
advantage of this type of approach is that on the one hand it is nonparametric in nature, in
that very large classes of functions may be modeled, while at the same time being adaptive.
By adaptive we refer to the following situation: assume that the function to be modeled in
fact belongs to the sequence of models under consideration. In that case, one would like
the estimation scheme to converge to the true model at a rate which is similar to the one
that would be attained had we known the true model in advance. In fact, exactly this type
of adaptivity has been demonstrated recently for the case of classification (Lugosi & Zeger,
1996), regression (Lugosi & Nobel, 1996) and data compression (Feder & Merhav, 1996).
We should also note that a similar approach based on the so-called index of resolvability
has been pursued by Barron and co-workers in a series of papers (Barron & Cover, 1991;
Barron, 1994), with similar results. The major advantage of these approaches is that while
being adaptive in the above sense, they can often be shown to achieve the minimax rates of
convergence in nhonparametric settings (Stone, 1982) under i.i.d. conditions, showing that
they are effective estimation schemes in this regime as well.

In this work we extend the SRM idea to the case of time series. This extension is not
entirely straightforward for several reasons. First, even within a single parametric model,
the problem of deriving robust finite sample bounds is exacerbated by the dependence
inherent in the process. Generalizing the basic tools of uniform convergence of empirical
measures utilized in the i.i.d. setting requires the introduction of new methods. In particular,
it should be clear that assumptions concerning the dependence structure of the process must
be taken into account, and quantified in a precise manner. Second, in opposition to the case
of regression, the dimension of the input vector is not fixed, as the process may possess a
very long memory. Thus, any universal prediction scheme must allow the prediction to be
based on potentially unlimited memory. By memory size we roughly refer to the number
of past values of the process, needed to achieve the optimal prediction error; this term will
be defined precisely in Section 2. Finally, the optimal balance between the complexity of
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the model and the memory size used for prediction must be determined. We observe that
our results bear strong affinities to the approach taken by Modha and Masry (1998), while
deviating from them in scope and methodology; see Remark 7 in Section 6 for a detailed
comparison. An additional related work is the one by Campi and Kumar (1998), which
deals with the problem of learning dynamical systems in a stationary environment. In this
case an input/output mapping of a fixed input dimension is learned, and estimation error
bounds are given for thie, loss.

Finally, before outlining the remainder of the paper, we comment on the relevance of
this work to Machine Learning. Clearly, many of the problems to which Machine Learning
techniques are applied are inherently temporal in nature. Some obvious examples are stock
market prediction, analysis of financial markets, monitoring and diagnosing complex control
systems and speech recognition, to name but a few. Until recently most of the theoretical
results within the PAC (Probably Approximately Correct) approach to learning have dealt
with situations in which time played no role. In fact, the problem of extending the PAC
framework to time series is the first ‘open problem’ mentioned in the recent monograph
of Vidyasagar (1996). One approach to incorporating temporal structure in order to form
better predictors, by more appropriate complexity regularization, is described in this work.
In particular, the optimal memory size that should be used in order to form a predictor is in
principle derivable from the procedure (see also (Modha & Masry, 1998)), given information
about the mixing nature of the time series (see Section 4 for a definition of mixing). It is
thus hoped that many of the successful Machine Learning approaches to modeling static
data will be extended to time series, with the benefit of a solid mathematical framework. If
precise knowledge of the mixing parameters is lacking, the procedure requires estimation
of these parameters. Unfortunately, as far as we are aware, there is no efficient practical
approach known at this stage for estimation of mixing parameters.

Another related and very fruitful line of recent research has been devoted to the so called
on-line approach to learning, where very few assumptions are made about the data (see
(Blum, 1996) for a recent survey). In the most extreme case, no assumptions whatsoever
are made, and an attempt is made to compare the performance of various on-line algo-
rithms to that of the best algorithm within some class. Prediction from expert advice and
competitiveness with some comparison class are two well-studied examples within this
broad field. While the assumptions in these latter approaches are very weak, it should be
noted that they address a different question from the one studied in this work. Here we
are concerned with establishing consistency and rates of convergence for general (off-line)
algorithms, under specific statistical assumptions about the data, while the on-line work is
usually concerned with comparing on-line performance to some other approach, for which
performance bounds are usually not given. In fact, one can use the on-line approach to study
how well these algorithms approximate the off-line algorithms studied here.

The remainder of the paper is organized as follows. In Section 2 we introduce the problem
of time series prediction in a general context, discussing the basic trade-off between approx-
imation and estimation. In Section 3 we present a brief review of some uniform convergence
results for the case of i.i.d. data, which will serve as a basis for the derivation of results in the
context of dependent data. Section 4 introduces the notion of mixing processes, and presents
several results, mainly due to Yu (1994), establishing uniform laws of large numbers for
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these processes. Section 5 then proceeds to consider the problem of prediction for scalar
mixing stochastic processes, restricting the results to a single model class. Utilizing the
results of Section 4, a particular estimator is shown to be consistent, and finite sample per-
formance bounds are derived. We then proceed in Section 6 to consider a hierarchy of model
classes as in the method of structural risk minimization, and present an algorithm which
adaptively determines, for each sample size, an optimal value for both the complexity of the
model and the memory size used. A short discussion and list of open questions concludes
the paper in Section 7. Some of the proofs have been relegated to the appendix. We comment
that in the sequel we will make use of the terms ‘loss’ and ‘error’ interchangeably.

2. The problem of time series prediction

Consider a stationary stochastic proc¥ss- {..., X_1, Xo, X1, ...}, whereX; is a real-
valued random variable such thatj| < B with probability 1, for some positive constant
B < oo. The problem of one-step prediction, in the expedtgdnorm sense, can then
be phrased as that of computingoeedictor function f (-) of the infinite past such that
E{|Xo — f(XZL)|P} is minimal, where we use the notatioff = (Xi, Xis1, ..., X),
j > i. Itis well known that for the special cage= 2, the optimal predictor is given by
the conditional mearg[ X, | X~1.]. While this solution, in principle, settles the issue of
optimal prediction, it does not settle the issue of actually computing the optimal predictor.
First of all, note that to compute the conditional mean, the probabilistic law generating the
stochastic proces¥ must be known. Furthermore, this computation is usually intractable
for non-trivial conditional densities. Finally, the requirement of knowing the full pést,
is of course rather stringent. In the cgse- 2, the problem is further exacerbated in that
there does not even exist a formal analytic solution as in the pase. In this work, we
consider the more practical situation, whefeie sub-sequenc¥) = (X1, Xz, ..., Xy)
is observed, and an optimal prediction is needed, conditioned on this data. Moreover, we
allow for a sequence of model classes, in each of which the prediction is based on a finite
number of past values. We denote this numbedbwnd refer to it as thenemory size
Since the process may in principle possess infinite memory, in order to achieve full generality
we may letd — oo in order to obtain the optimal predictor. Of course this can only be done
when the sample siZzd — oo, as the constraird < N must obviously be obeyed.

For each fixed value of the memory sidewe consider the problem of selecting an
empirical estimator from a class of functiofg p, : RY - R, |f|<Bfor f € Fqn, wheren
is a complexity index of the class. For exampleyay stand for the number of computational
nodes in the single hidden layer of a feedforward neural networkahitiputs, namely

n
Fan=1{f:f(x) :Zcia(aTx+bi)ci cR,a eRY b eRY,
i=1

whereo is some activation function. Other classes could include radial basis functions and
multi-variate splines with a variable number of knots, to name but a few.

Consider then an empirical predictcﬁa,n,N(Xi‘jé), i > N, for X; based on the finite
datavectob(lN and depending on thiedimensional vectoxi'jj, wherefAd,n,N € Fun. ltis
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possible to split the error incurred by this predictor into three terms, each possessing a rather
intuitive meaning. It is the competition between these terms which determines the optimal
solution, for afixedamount of data. First, define the loss of a predidtprR? — R as

L(fg) = E|X — fa(X[23)|". (1)

Observe that due to stationarity fq) is independent af. Let f; be the optimal predictor
of memory sized minimizing the loss (1), namely

p

’

B[~ (4D = inf B - ()

and denote the error incurred by this functionljy We say that predictor hdisite memory
if

L(fd) = L(1%)-

for somed < oo, namely, the minimal prediction error may be achieved by a finite memory
sized. Similarly, for the classFy » we denote byf | the optimal predictor within the class,
namely

p

’

B = tia(Xi0) " = inf E[X; = f(x)

denoting the resulting loss lty; .. We assume throughout the paper that exists, amount-
ing to acompactness assumption alsByt. If this assumption does not hold, we may simply
add an arbitrarily small term to the r.h.s. of the equation. Observd frated not in general
belong to the clas$y ,,, due to its limited expressive power. Furthermore, denotéjbw

an empirical estimator based on the finite dataXqétWe find it useful to express the error
as a sum of three terms, each of which possesses a clear intuitive meaning,

L(fann) = (L(fann) = L5,) + (Li, — LE) + L3 2

The third term L%, often referred to as the dynammass-specification errgiis related to

the error incurred in using a finite memory model (of memory digeo predict a process
with potentially infinite memory. We do not at present have any useful upper bounds for this
term, which is related to the rate of convergence in the martingale convergence theorem,
which to the best of our knowledge in unknown for the type of mixing processes we study in
this work. The second term in (2), is related to the so-calggroximation erroy given by

E{] f3(XI=h - fd*,n(Xi'jé)| P} to which it can be immediately related through the inequality
llalP — |b|P| < pla — b|jmaxa, b)|P~1. This term measures the excess error incurred by
selecting afunctiorf from a class of limited complexit§y ,,, while the optimal predictor of
memory sizel, namelyf, may be arbitrarily complex. Of course, in order to bound thisterm
we will have to make some regularity assumptions about the latter function. Finally, the first
term in (2) represents the so callestimation errorand is the only term which depends on
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the dataX}'. Similarly to the problem of regression for i.i.d. data, we expect that the approxi-
mation and estimation terms lead to conflicting demands on the choice of the the complexity,
n, of the functional classy . Clearly, in order to minimize the approximation error the
complexity should be made as large as possible. However, doing this will cause the estima-
tion error to increase, because of the larger freedom in choosing a specific funckignto
fit the data. However, in the case of time series there is an additional complication resulting
from the fact that the misspecification ertgf is minimized by choosing to be as large as
possible, while this has the effect of increasing both the approximation as well as the estima-
tion errors. We thus expect that some optimal valuesarfdn exist for each sample si2é.

Up to this point, we have not specified how to select the empirical estinfa,tpn. In
this work we follow the ideas of Vapnik & Chervonenkis (1971), which have been studied
extensively in the context of i.i.d observations, and restrict our selection to that function
which minimizes the empirical error, given by

N
I:N(f)=ﬁ D% = Xz ®)
i=d+1

Thus, fd n.N =argming x Cn(f). Again, we assume thatd nN €EXists. It is a simple
matter to modify this assumption by demanding thi@k n only minimize the empirical
error within some margin which is allowed to shrinklds— oco. For the sake of clarity we

do not proceed in this direction. For this function, it is easy to establish the following result
(see for example Lemma 8.2 in (Devroye,@Bfy, & Lugosi, 1996), the proof of which does
not depend on the independence property).

Lemma 2.1. Let fy, N be afunction inFy,, which minimizes the empirical error. Then

L(fann) — |nf L(f)<2 sup [L(f) — Cn(f)].
feFan

Itis obvious from Lemma 2.1 that the estimation error will vanish in the lixhit> oo if
some form of uniform law of large numbers can be established. The latter will depend on the
properties of the stochastic procégsas well as on the attributes of the functional spageg.
These issues will be addressed in Section 4. The main distinction here from the i.i.d. case,
of course, is that random variables appearing in the empirical drrarf), are no longer
independent. Itis therefore clear that some assumptions are needed regarding the stochastic
processX, in order that a uniform law of large numbers may be established. In any event, itis
obvious that the standard approach of using randomization and symmetrization asinthei.i.d
case (Pollard, 1984) will not work here. To circumvent this problem, two approaches have
been proposed. The first makes use of extensions of the Bernstein inequality to dependent
data (White, 1991; Modha & Masry, 1998). The second approach, to be pursued here, is
based on mapping the problem onto one characterized by an i.i.d. process (Yu, 1994), and
the utilization of the standard results for the latter case.

A comment is in order here concerning notation. Hatted variables will denote empiri-
cal estimates, while starred variables denote optimality with respect to the true (unknown)
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distribution. Moreover, lef (x) be a function defined over a domainThenL ,(Q) repre-
sents theQ-weightedL p, norm | f || o) = (/| f ()[PQ(x) dx)*/P, andl, represents the
empirical p'th order semi-normj f [|;, = (N~* SN (X)IP)YP, where{Xy, ..., Xy} is
a given set of points defined over the domgin

3. Uniform convergence results for independent processes

A powerful tool used in recent years to establish both consistency and rates of convergence
of empirical estimators, is provided by the theory of empirical processes (Pollard, 1984;
Vaart & Wellner, 1996). Unfortunately, most of the results in this field are geared towards
the case of memoryless processes, and are thus not directly suited to the study of time series.
In this section, we summarize some of the basic results concerning uniform convergence
for independent processes, and then present in $ettirecent result by Yu (1994) for
dependent processes, which we will make extensive use of in the sequel.

We begin with a result concerning the uniform convergence of empirical measures to
their expected value, for the case where the data is independent and identically distributed.
Let X € x € RY be a vector-valued random variable, drawn according to some probability
distribution P. ConsiderN independently drawn random variablg8' = {X, ..., X},
each drawn according 8. Let 7 : RY — R™ be a class of functions, and denote expecta-
tions with respect td® by E. Furthermore, lePy represent the empirical distribution, i.e.,
for any measurable sét C B(y),

1 N
Pu(X € A) =53 Ta(X),
i=1

wherel 5(+) is the indicator function for the s&§. Denote expectations with respectRQ
by Ey. Thus for any functiorf (-), En f = (1/N) ZiN:l f(Xi).

A major tool for discussing uniform convergence within functional classes is the so called
covering numbeof the class, which roughly measures how well the set can be covered by a
finite subset of functions, using some specified distance measure. Formally we have (Pollard
(1984)),

Definition 1 Let F be a class of real valued functions frgmto R, and denote by a
semi-norm onF. For eache > 0 define the covering numbg¥ (e, F, p) as the smallest
value ofm for which there exist functiongs, g, . . ., gm (Not necessarily i) such that
min; p(f, gj) < € forevery f € F. If no such finitem exists then\/ (e, F, p) = oc.

In the sequel we will make extensive use of empirical covering numberXYet {X,,
X2, ..., Xn} be points iny and denote the empirichl y distance by

1 N
lin(f o) = 55 D 1T ) — g%l
i=1
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Moreover, letF(XN) = {(f(Xy), f(X2),..., f(Xn)): f € F}. We denote the covering
number of 7 with respect to the semi-noria y by A(e, F(XN), I1n), which clearly
depends on the specific set of poifi¥§, X», ..., Xy} considered.

Since the functional classes considered here are in general uncountable, some conditions
are required in order to avoid measurability problems. Following common practice, we
assume throughout that all function classeg@menissiblén the sense specified in Pollard
(1984). We then have,

Lemma 3.1 (Pollard, 1984. LetF be a permissible class of real-valued non-negative
functions such that () < B forall f € F. Then

]P’{XN € xN: sup|Enf —Ef] >e}
feF

€ N Ne?
< 4E{N<1—6,]-‘(X ), I1,N>}exp{—w},

where the expectation is taken with respect to a sample of size N drawn independently at
random from the distribution P.

In most cases of interest for regression or time series analysis, one is actually interested
in working in the space of loss functions, as in Haussler (1992). ConsideNthandomly
drawn paird(Xi, Y}, (Xi, Y)) € (x, V),i =1, ..., N,where each pairis drawn according
tothedistributiorP (X, Y) (we avoid cluttering the notation usim y (-, -), as the particular
distribution will be clear from its argument). For eaéhe F, let¢;(x, y) : R4t — R*
be a non-negative function termed tbss functionand define théoss space. »

Lr={ti(x,y):xeR? yeR, feF}.

The covering numbers for the spacEand L+ can be easily related if a certain Lipschitz
condition is obeyed by the loss functiofig(x, y). In particular, assume that for al] x1, x,
and f

[€f (X1, ¥) — €1 (X2, | < 0l F (X)) — F (X

Then it can easily be shown (Vidyasagar, 1996, Sec. 7.1.3) that
N(e, Lr(ZM),11n) SN<%,}—(XN),|1,N), (4)

whereZN = {Z4,..., Zn} = {(X1, Ya), ..., (XN, Yn)). Note that the empirical semi-
normly y on the l.h.s. of (4) is taken with respect to bothand Y. In the case where
L (x,y) = |y — f(X)|P, it is easy to see that = p(2B)P~%, where we have used the
inequality||al® — |b|P| < pla — b||max(a, b)|P~1. Now, let us define

L(f) =E{: (X, Y)}, ®)



TIME SERIES PREDICTION AND MODEL SELECTION 13

Cn(f) =En{er(X, Y)). (6)
Using these definitions we may restate Lemma 3.1 in terms of loss functions as follows:
Lemma 3.2. LetF be a permissible class of bounded functigrig < B for f € 7 and

somel < B < oo. For the classCr consisting of loss function (x, y) = |y — f(X)|P,
f € F, |yl < B, there holds

feF

< aB{N(— — FxNy, | ex _N762
= 16p82p721 ( )$ 1,2N p 12&28)p )

wherezN = (x x )N, and the probability is taken with respect to the product measure on
zZN,

P{ZN e ZN:sup|Ln(f) = L(f)| > e}

Note that by using (4) we have written the covering number in Lemma 3.2 in ters of
rather thanC .

Finally, we recall a result from (Haussler, 1992), which allows for extra flexibility and
improved rates of convergence under certain conditions. We make use of this result in
Sections 5 and 6.

Lemma3.3(Haussler1992 Theorem2 LetF be apermissible class of real-valued non-
negative functions such that() < B forall f € 7, and assume > 0and0 < « < 1.
Then

|Enf —Ef]
PIXNeyN:isup—————— > ¢
{ X fE].E)ENf—I-]Ef—i—\)

2
< 4E{N(ﬂ, FXN, |1,N> } exp{— N }

8 16B

4. Uniform convergence results for mixing processes

Having presented in Section 3 the essential results for the case of independent samples, we
now proceed to discuss the main tools needed in the case of dependent sequences. Many
of the ideas as well as the notation of this section rely on the work of Yu (1994). First, it
should be clear that it will not be possible to obtain rates of convergence for uniform laws

of large numbers, unless some assumptions about the pié@ssstipulated. In this work,

we follow the widely used practice in the field of time-series analysis, and restrict ourselves

to the class ofmixing processes. These are processes for which the ‘future’ depends only
weakly on the ‘past’, in a sense that will now be made precise.
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Definition 2 Leto) = a(X'l) andoy, ., = o (X7}, be the sigma-algebras of events gen-
erated by the random variable('ﬁ = (X1, Xz, ..., X and Xp? o, = Xigms Xigmets -2,
respectively. The coefficient of absolute regularity, is given by

Bm = SUpE sup |P(B|ay) — P(B)|, (7

:
I>1  Beo,,

where the expectation is taken with respeeit@\ stochastic process is said to be absolutely
regular, org-mixing, if 8, — 0 asm — oo.

We note that there exist many other definitions of mixing (see Doukhan (1994) for an
extensive listing). The particular proof method we use, relying on the work of Yu (1994),
is based on thg-mixing coefficient. Similar results apply, of course, to processes with
stronger mixing conditions (see Doukhan (1994)). We note that Modha and Masry (1998)
have recently derived similar results in the context of the more gesmarakxing processes;
however, their results only apply to exponential mixing (see definition below). In this work,
we consider two types of processes for which the mixing coefficient decays to zero, namely
algebraicallymixing processes for whic, = O(m™"), r > 0, andexponentiallymixing
processes for whiclg, = O(exp{—bm‘}), b, ¥ > 0. Since we are concerned with finite
sample results, we will assume that the conditions can be phrased, for angy, as

Bm < bm (algebraic mixing)

. 8
Bm < b exp(—bm¥} (exponential mixing) ©)

for some finite non-negative constabt$h andb. We refer to the exponentsandx as the
mixing exponents. Note also that the usual i.i.d. process may be obtained from either the
exponentially or the algebraically mixing process, by taking the limit oo orr — oo,
respectively. We summarize the above notions in the following assumption, which will be
used throughout.

Assumption 4.1 The stationary3-mixing stochastic proces$ = {X;}*_ is compactly
supported|X;| < B for some O< B < co. Moreover, the mixing exponent is known.

Observe that, to the best of our knowledge, there is no practical method to determine
whether a process is mixing, unless it is Gaussian, Markov etc. Thus, Assumption 4.1,
stringent as itis, cannot be avoided at this point. This type of assumption is used both in the
work on nonparametric prediction (Gsfi'et al., 1989) and in the results using complexity
regularization, as in Modha & Masry (1998).

In order to motivate the mixing assumption, we recall two examples where exponential
mixing has been established. First, consider the standard ARMA process described by the
equation

p q
ij Xi_j = Zakfifka
20 k=0
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whereg; are i.i.d. mean-zero random variables. Under the conditions that the probability
distribution of¢; is absolutely continuous and that the zeros of the polynoR{@) =
Zi”zo biZ lie outside the unit circle, Mokkadem (1988) has shown that the process is
exponentiallyg-mixing. A further example is provided by Markov processes obeying the
so called Doeblin condition, which basically restricts the process from being trapped in sets
of small measure (see Rosenblatt (1971)); this assumption is, however, rather stringent.
As mentioned above, in this section we follow Yu (1994) in deriving uniform laws of large
numbers for mixing processes. While Yu’s work was mainly geared towards the asymptotic
regime, we will be concerned here with finite sample theory, and will need to modify her
results accordingly. Moreover, our results differ from hers when discussing specific assump-
tions about functional classes and their metric entropies. Finally, Yu's paper was concerned
with algebraically mixing processes for whicke 1, as a central limit theorem holds in the
caser > 1. Since we wish to derive finite sample bounds, we cannot make use of central
limit results. In this work we study both the exponential and the algebraic mixing cases.
Inthe remainder of this section, we outline the basic ideas in the construction of Yu (1994),
which serves as the main tool in the following sections. This construction is essential to
the proofs of Sections 5 and 6, and is thus expanded on. The basic idea in (Yu, 1994), as
in many related approaches, involves the construction ah@ependent-blockequence,
which is shown to be ‘close’ to the original process in a well-defined probabilistic sense.
We first motivate the construction. Divide the seque)(@binto 2un blocks, each of size
ayn. We assume thadyay = N, so as not to be concerned with the remainder terms, which
become insignificant as the sample size increases. The blocks are then numbered according
to their order in the block-sequence. For § < uy define

Hj ={i:2(j —Day+1<i < (2] — Dan},

. . . ©)
Tp={i:@2j-Dav+1=i=@2jan}

Denote the random variables corresponding to the blétkandT; by
XD =(Xi:i e Hj} and X9 ={X:i eTj).

The sequence of H-blocks is then denotedday = {XU)}’jﬂl. Now, construct a sequence
of independently distributed block& )}~ , whereE) = {£ :i € H;}, such that the se-
quence is independent ¥f' and each blocke')’ has the same distribution as the blo¢k’
from the original sequence; denote this sequencEy= {E(j)}’j‘ﬂl. Because the process
X is stationary, the block&) are not only independent but also identically distributed.
The basic idea in the construction of the independent block sequence is that one can show
thatitis ‘close’, in a well-defined sense to the original blocked sequggeMoreover, by
appropriately selecting the number of blocks,, depending on the mixing nature of the
sequence, one may relate properties of the original sequghde those of the independent
block sequenc&,, .

In accordance with Lemma 2.1, we observe that in order to bound the estimation error,
use must be made of uniform laws of large numbers. Now, from the construction above we
clearly have for a functional class: R +— R,
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.

ZZf(X)——EZf(X)

j=lieH; ieH;

)

where the summations have been split into a sum over the blocksj k un, followed

by a summation over the elements within each even or odd block.IMHérés taken with
respect to the original sequengX;, ..., Xy}. In order to simplify the notation, in the
sequel we omit the specific dependence of probabilities on their arguments, as this will be
clear from the context. Thus, instead®R{fXN € xN : -- .} we writeP{- - -}. Let

[(XD) = Zf(X) fr, (XD) = Zf(X)

ieH; i€T;

N

1
f(Xj) —Ef(X
fefN;m (X)

]P’{ sup

= sup|—
feF
UN

Zf(X)——EZf(X)

j=1i€T; €T

+

Z| -

Then usingN = 2unan, we easily conclude

1 N
P{ sup|— f(Xi) —Ef(X)| > ¢
{feJ’E N; I
1 MN .
<P{sup|— ) fu (XD)—Efy,| > ane
feF Nj—l
By M
+ P sup|— fr. (X)) —Ef,| > ane
feF HN; n (x) k N
1S (i)
<2P{ sup|— fr(XW) —Efy| > aneg. 10
feJB MN; H( ) H N (10)

At this point the problem has been fully expressed in terms of the blocked pr¥gess
defined over the blockgH;}. From the above construction, recall that the procggs

was defined to be block-wise independent, while possessing the same marginal distribution
as{Xa, } on each blockd;. Since uniform laws of large numbers for independent sequences
are available from the results quoted in Section 3, we need at this point to relate the results
for X,, to those for the sequen&,,. To do so, use is made of the following lemma from

Yu (1994), the proof of which relies on standard mixing inequalities, which may be found
in Doukhan (1994).

Lemma 4.1(Yy 1994 Lemma 4.1 Let the distributions of ¥, and E,, be Q andQ,
respectively. Then for any measurable function HR8#*N with bound M

|]EQh(XaN) _EQ (EHN)| < MunBay-
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Consider the block-independent sequeBgg and define

UN

~ - 1 O
B, f= R; fu, (2D),

i (") =Y f@&), j=12....n

iEHj

Similarly we letEf = Ef(2%). We use the tilde symbol to denote expectations with
respect to the independent block procEss. Recall that by constructiofz} are inde-
pendent and tha,tf~Hj| < ayBif | f| < B. Inthe remainder of the paper we use variables
with a tilde above them to denote guantities related to the block sequ&pcaVith this
notation and making use of (10) and Lemma 4.1 one obtains the following key result:

Lemma4.2(Yu 1994 Lemma4.2 Supposé :R +— Risapermissible class of bounded
functions | f| < B for f € 7. Then

IP’{ Sup|Enf —Ef| > e} < 2@{ suplE,, f —Ef| > aNe} + 2unBay - (11)
feF feF

Note that the result is slightly modified from Yu (1994), due to the different notation, and
the fact that we have assumed tiNi=2unan exactly, i.e., there is no remainder term.

Lemma 4.1 is the main result which will allow us in Section 6 to derive performance bounds
for time series prediction.

5. Error bounds for time series prediction

In order to make use of the results of Section 4, we first need to transform the problem
somewhat. We define a new vector-valued prokess|. .., X_1, Xg, X1, ...}, where

Xi = (Xi, Xi_1, ..., Xi_q) € RIL,
For this sequence thg&-mixing coefficients obey the inequality
Bn(X) < Bn-a(X). (12)
For any functionf : R — R, consider the loss functiofy : R%** — R*,
e (XIZg %) = [Xi = F(XZ9)[".
Inthis section, as well as Section 6, we revert to the notafignfor the functional classes
used for estimation, as our results depend explicitiydoand n. In the present section,

howeverd andn arefixed while they will be allowed to vary in Section 6. Keeping in mind
the definition ofX;, we may, with a slight abuse of notation, use the notatipfX;) for
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this function. As in Section 3, we will work within the loss spate,, = {¢+: f € Fqn}.
With view to the results in Section 4, we need to introduce a related class of functions.

Definition 3 Let Lz, , be a class of real-valued functions frédfY — R,D =d+ 1.
Foreachs € Lr,, andX = (X, Xz, ..., Xa,), X € RP, letf;(X) = 3™, £1(X). Then
defineLs,, = (£t : ¢t € Lz, }, wherel :R™P — R,

We now proceed to derive error bounds for prediction of mixing stochastic processes.
Recall that we seek upper bounds on the uniform deviations

)

We comment that in principle, we should use a sample sid¢ efd instead ofN, since
the firstd values do not appear in the empirical loss. Since we assum&thatd, we
will not be bothered with this mathematical detail, assuming throughout a sample size of
N. Furthermore, in this section we take both the memory diaad the complexity index
n to be fixed. The question of determinidgadaptively will be addressed in Section 6.
Using Lemma 4.2, with the transformatidnh— ¢ ¢, we immediately conclude that

IP{ sup |[Ln(f) — L(f)| > e}

féfdn

1
N—d Z 6 (X)) — Bt (Xap)

i=d+1

= IP’{ sup

feFan

IP’{ sup [Ln(f) — L(f)] > e}

feFan

. 1 &N -
<2PJ sup —ZZf(X(J))—EZf > ane [ + 2N Pay—d>
fe]—'d‘n MN j=l
where
f(XD) =D X =D X — (X125 |7, (13)
ieH; ieHj

and H; is defined in (9). Note that we have replaqm in Lemma 4.2 byBa,—q be-
cause eaclX; containsd + 1 lagged values of the procexs
Having transformed the problem to the block-independent process, we can use Lemma
3.1 with the transformatioiN — .y, noting that|¢ | < ay(2B)P, to obtain
MN

~{ sup Zﬁf (XD) —Efy >aNe}
feFin j=1
2

- _ - UNE
<4E{N (ane/16, cfd_n(aaN),lL,tN)}exp{—m}, (14)
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whereLy, (Bay) = {£¢(XD), ..., €1 (X¥W):{¢ € Lz, }, and we have used the semi-
norm

~ - o~ 1 UN L
Ilv.UvN(gf?Zg) = M_N Z ‘Zf(X(”) _(g(x(l))|'

j=1

The covering number in (14) is taken with respect to the loss dlass We now relate the
covering numbers of ,, andLx, .

Lemmab5.1. Foranye >0
N(E, zfd'n(EaN), I~1,MN) < ./\/(e/ZaN, ﬁfdAn(ZN), |l,N)~

Proof: The following sequence of inequalities holds:

- - - 1 MN L L
[ (Cr, g) = —— Y |€¢(XD) = £5(XD)]

MN T3
1 MN
== sz(X)—Zegm.)
HN 5237 | ien; ieh;
N
= ZZ €5 (Xi) — £g(X))
=lieH;

. Z €1 (Xi) — £g(Xi)|
MN
= ZaNll,N(Ef’ g),

where we have useld = 2unan. Settingly n (L5, £g) < €/2ay the result follows. O

Since the connection between the covering numbefs0f andFq , is known through
(4), we can summarize the results of this section in the following theorem.

Theorem 5.1. Let X = {..., X1, Xo, X1, ...} be a stationarys-mixing stochastic pro-
cesswith | Xi| < B, and letFy » be a class of bounded functigns: RY — [—B, B]. For
each sample size Net fAd,n,N be the function inFy » which minimizes the empirical error
(3),and ff, is the function inFy » minimizing the expected errgt). Then

P(L(fann) — L(f5,) > €}

e

<8EN (¢/64p(2B)P~t, Fyn(XM), I1n) exp{ T 12802B)2p

}+2uNﬂaNd. (15)
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Proof: The claim is established through a sequence of inequalities.

P{L(fann) — L(F*) > €} (21}»{ sup [Cn(f) = L(f)] > e/z}

feFan
® -~ - - ane
< Z]P{ sup [E,, ¢f —El¢| > L} + 2unPay—d
feFan 2

© an - - aZe?
S SE{N<_N1de,n(EaN)all,,uN>}exp{ ILN—N} +2MNﬁaNfd

32 ~ 128(ay(2B)P)?
() € N Un€E?
=< 8EN<&, ﬁfd,n(z ),ll,N> eXD{—W} + 20N Bay—d

Qern (€m0 expl - N Lo g
= 64p(28)p_17 d,n s TN 12&28)2') UN an—d

Step(a) makes use of Lemma 2.1, {h) we have used Lemma 4.2 and (12), dogrelies
on Lemma 3.1 and the observation that< ay (2B)P (see (31)). Step&l) and(e) use,
respectively, Lemma 5.1 and the inequality (4) wjte= p(2B)P~1, O

In order to guarantee that an estimafgr, n converge asymptotically to the optimal
estimatorinthe class, namefy ,, we introduce the following notion of (weak) consistency.

Definition 4 An estimatorfAd,n,N € Fa.n is weakly consistent if for every > 0,
P{IL(fgnn) — L(f§)] > €} — 0as N— co.

Note that in Definition 4 we require only convergence of the Ioséj,n,N), rather than of
the estimatorf},,n,N itself, as is more customary in the field of parametric statistics.

Up to this point we have not specifigg anday, and the result is therefore quite general.
In order to obtain weak consistency we require that that the r.h.s. of (15) converge to zero
for eache > 0. This immediately yields the following conditions @y (and thus also
onay through the condition&yun = N), which will be related to the mixing conditions
in (8).

Corollary 5.1. Under the conditions of TheoreBl, and the added requirement that
EN (e, Fan(XN),11n) < 00, Ye > 0, the following cboices ofy are sufficient to guar-
antee the weak consistency of the empirical minimizery:
pn = O(N*/AH) (exponential mixiny (16)
pn = O(NYI*9) 0 <s <r (algebraic mixing, (17)

where the notationg = ©(by) implies that there exist two finite positive constantard
C, such that gby < ay < cyby for all N larger than some

Proof: Consider first the case of exponential mixing. In this case, the r.h.s. of (15) clearly
converges to zero because of the finiteness of the covering number. The fastest rate of
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convergence is achieved by balancing the two terms in the equation, leading to the choice
un = O(N/A+9) In the case of algebraic mixing, the second term on the r.h.s. of (15) is
of the orderO(unay'), where we have usetl = o(ay), and dominates the first term for
largeN. Sinceunan = O(N), a sufficient condition to guarantee that this term converge

to zero is thapy = O(NYI9) 0<s<r, as was claimed. O

Remark 1 Strong consistency, i.eL,(fAd,n,N) — L(f§,) a.s.-P, can also be established
under appropriate conditions. In the case of exponential mixing, strong consistency may
immediately be established using Theorem 5.1 and the Borel-Cantelli Lemma. In the case
of algebraic mixing, the requirement thaty_; tnaa,—d < 00, together with the choice

un = NI+ 0<s<r, and the conditiol = o(ay) leads to strong consistency only if
O<s<(r —1)/2, implyingr > 1. We note that for > 1, Arcones and Yu (1994) have
proven a central limit theorem, which is of course stronger than mere consistency.

From Theorem 5.1 we may immediately obtain a result for the expected loss. However, in
order to do so, something must be assumed about the dependevice, 0y n(XN), 11.n)
one. We recall the definition of pseudo-dimension (Pollard, 1984).

Definition 5 Let (X, S) be a given set, and 16 C [0, B]* consist of functions fronX

to the closed interval [0B]. AsetS = {Xy, ..., Xn} is P-shattered byF if there exists a real
vectorc € [0, B]" such that, for every binary vectere {0, 1}", there exists a corresponding
function fo € F such that

foxi)>¢ ifg =1, andfo(xj) <¢ ifg=0.

The pseudo-dimension ¢f, denoted by Pdid), equals the largest integarsuch that
there exists a set of cardinality that is P-shattered byA. If no such value exists the
pseudo-dimension is infinite.

The pseudo-dimension becomes useful due to the following result of Haussler and Long
(1995), which relates it to the covering number.

Lemma 5.2(Haussler 1995 Corollary 3). For any set X any probability measure P on
X, any setF of P-measurable functions taking values in the intef@alB] with pseudo-
dimensiorPdim(F), and anye > 0,

2e B\ PUImF)
N(e, F,l1n(P)) < e(Pdim(F) + 1)<T) .
A special case of Lemma 3.1 occurs wheR (P) is the empirical; y semi-norm, which

is used to define the covering numbers. We make the following assumption concerning the
functional spacery .

Assumption 5.1 The functional spacefy, possesses a finite pseudo-dimension
Pdlrr(fd.n).
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An immediate consequence of the assumption is that the covering niNtbeFy ,(XN),

I1.n) may be bounded from above by a term of the fdtgy,e "P4™ e Many examples of
classes with finite pseudo-dimension are known. Two recently studied examples are neural
networks with the standard sigmoidal activation function (Karpinksi & Macintyre, 1997)

or with piecewise polynomial activation functions (Goldberg & Jerrum, 1995). In the latter
case, rather tight bounds on the pseudo-dimension have recently been derived in (Bartlett
etal., 1998).

Remark 2 We have made Assumption 5.1 for convenience. It is known that there are
situations where the pseudo-dimension is not the optimal quantity for computing upper
bounds for the covering number (Lee et al., 1996; Lugosi & Zeger, 1995). However, in
all these cases one obtains covering number bounds which behaw@ (k&) for some
generalized dimensioD. If this is the case, replace the pseudo-dimension by the dimension
D, and all the results below follow. Note, however, that in some cBsawy depend on

€, and a more careful analysis is needed using the so-called fat-shattering dimension as
is discussed in Batrtlett et al. (1996). Furthermore, there are specific situations where the
pseudo-dimension yields nearly optimal bounds for the estimation error, since in that case
the pseudo-dimension is essentially equivalent to another combinatorial dimension, called
the fat-shattering dimension, which gives nearly matching lower bounds on estimation error
(see Bartlett et al. (1996)).

Corollary 5.2. Under the conditions of Theoret1, and the added requirement that
Pdim(Fy4n) < oo, there exists a finite value of B Np, such that for all N> Ng

EL(fann) — L(f5)

32v508)P \/ 1PdiM(Fy ) log sun + 109 K.
- N

+ 4(2B)Pun Pay—d- (18)

The proof of Corollary 5.2 is a special case of Theorem 6.1 given in Section 6, to which
we refer the reader for a proof. The explicit dependencl anay be obtained by plugging

in the values ofuy from Corollary 5.1. Under the conditions of Remark 1 one can easily
derive the following upper bound

1 «

N log N\ 2 T+«
EL(fynn) < L(ff0) + o((%) )

for the exponentially mixing case. These rates are similar to those obtained in Modha &
Masry (1998) for the case of exponentialtymixing processes. In the case of algebraic
mixing one obtains the same rate witheplacingx, where O< s < (r — 1)/2.

Remark 3 We observe that if one is willing to incur an extra multiplicative cost in (18),
one may in fact obtain faster rates of convergence based on Lemma 3.3, for general loss
functions, as already pointed out by Haussler in ((1992), Section 2.4). In this case one can
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show that the square root on the r.h.s. of (18) may be removed, at the price of multiplying
the termL (f*) by a factor8 > 1. One then obtains that

EL(fann) < BL(F5,) + o(('ogN>1+_”> B > 1).

N

It should be borne in mind, however, that this kind of result is not very helpful in situations
whereL (f§,) —L(f§) > 0, which may occur if the clas&y » doesnotcontain the optimal
predictor of memory sizd, as it leads to faster rates of convergence,roroptimalalue

of the loss sincg > 1. However, the main merit of this observation is in the nonparametric
situation discussed in Section 6.

Remark 4 Further improvement is possible in the case of quadratic loss, ngmeBin

(2). It has been observed by several authors (Barron & Cover, 1991; Lee et al., 1996; Lugosi
& Nobel, 1996) that in this case better bounds are available than those given by Corollary
5.2, in the special case where certain regularity (in particular, convexity) conditions are
obeyed by the class of functiodg . In the case of feedforward neural networks, Barron
(1993) and Lee et al. (1996) have proposed a constructive learning algorithm, for which
exact performance bounds have been established in Lee et al. (1996). In particular, the
square root in (18) may be eliminated giving rise to@@og un/un) cOnvergence rate,
instead of the rat®(,/Tog i /) implied by (18). In this case, unlike the case of general

p > 2, the approximation error term is unaffected, i#= 1, as opposed to the results
quoted in Remark 3. The main technical trick needed to establish this result has to do with
the use of the Bernstein-Craig inequality (Craig, 1933), rather than the standard Hoeffding
inequality (Hoeffding, 1963) used in the usual derivations of uniform laws of large numbers.
Unfortunately, this approach does not seem to work for more gebgrabrms, with which

we are concerned in this paper.

Finally, itis worth commenting on the ‘predictability’ of the sequence. When the sequence
is i.i.d., previous values do not tell us anything about the next value. However, in this case
the estimation error, which essentially measures the finite sample effects, decays at a rate
O(/TogN/N), which is much faster than the rate obtained above in the case of mixing
processes. In the latter case the ‘effective’ sample $iz€}+< (for exponential mixing;
similarly for algebraic mixing), is reduced due to the temporal correlations, leading to the
slower rates.

6. Structural risk minimization for time series

The results in Section 5 provide error bounds for estimators formed by minimizing the
empirical error over a fixed class of functions. It is clear that the complexity of the class of
functions plays a crucial role in the procedure. If the class is too rich, manifested by very
large covering numbers, clearly the estimation error term will be very large. On the other
hand, biasing the class of functions by restricting its complexity, leads to poor approxima-
tion rates. A well-known strategy for overcoming this dilemma is obtained by considering
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a hierarchy of functional classes with increasing complexity. For any given sample size, the
optimal trade-off between estimation and approximation can then be determined by balanc-
ing the two terms. Such a procedure was developed in the late seventies by Vapnik (1982),
and termed by himstructural risk minimizatiofSRM). Other more recent approaches, col-
lectively termed complexity regularization, have been extensively studied in recent years
e.g. (Lugosi & Zeger, 1996; Barron et al., 1996). It should be borne in mind, however, that
in the context of time series there is an added complexity, that does not exist in the case of
regression for i.i.d. data. Recall that the results derived in Section 5 assumed some fixed
lag vectord. In general the optimal value dfis unknown, and could in fact be infinite. In
order to achieve optimal performance in a nonparametric setting, it is crucial that the size of
the memory be chosen adaptively as well. This added complexity needs to be incorporated
into the SRM framework, if optimal performance in the face of unknown memory size is
to be achieved.

Let F4.n, d, n € N be a sequence of functions, and define

F=JU Fan.
d=1n=1

Keeping in mind the definition of the covering numhafge, F(XN), I ), utilized through-

outthe previous sections, we find it useful to define an upper bound on these numbers, which
does not depend on the specific data observed. The existence of this bound is guaranteed
by Lemma 5.2 and Assumption 5.1. For ahyn € N ande > 0 let

Ni(e, Fan) = sup N (e, Fan(X"M), 11n). (19)

XNeyN

We observe in passing that Lugosi and Nobel (1996) have recently considered situations
where the pseudo-dimension Pdify ) is unknown, and the covering number is estimated
empirically from the data. Although this line of research is potentially very useful, we do
not pursue it here, but rather assume that upper bounds on the pseudo-dimengigns of
are known, as is the case for various classes of functions such as neural networks, radial
basis functions etc. (see examples in Vidyasagar (1996)).

In line with the, by now classic, approach outlined in Vapnik (1982) we introduce a new
empirical function, which takes into account both the empirical error and the complexity
costs penalizing overly complex models (largand overly large memory sizB. Let

Cann(F) = Ln(F) + Agnn(e) + Ag.n. (20)

whereL y( f) is the empirical error (3) of the predictdr. We have introduced the ‘double-
hat’ notation, as ir_, to emphasize the two-level estimation process involved. The com-
plexity penaltiesA are given by,

Agnn(e) = \/'09N1(6,7:d.n) +cn (21)

1n/32(2B)?P
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_ &
Agn = Jin/32(2B)2P" (22)

The specific form and constants in these definitions are chosen with hindsight, so as to
achieve the optimal rates of convergence in Theorem 6.1 below. The constamsgc;
are positive constants obeying,-; e “ < 1 and similarly forc;. A possible choice is
¢y = 2logn + 1 andcy = 2logd + 1. The value ofun can be chosen in accordance with
Corollary 5.1.

Let fAd,n,N be the minimizer of the empirical lodsy ( f) within the class of functions
Fd.n, NAaMely

Cn(fann) = frpfin Cn(f).
d,n

We assume that the class&g, are compact, so that such a minimizer exists. Observe
that less stringent conditions, of the form(fynn) < Mintez,, Ln(f) + ey for an
appropriatecy may be used, but lead to the same results, and add little to the generality.
Further, IethN be the function iy minimizing the complexity penalized loss (20), namely

Lann(fy) = Tzl? Tzl? Lann(fann)- (23)

We now present the basic result establishing the consistency of the structural risk min-
imization approach for time series, together with upper bounds on its performance. As in

Section 5, we assume that the pseudo-dimension of each’Jass finite, motivating the
assumption:

Assumption 6.1 The covering number of each clags, can be bounded from above by
Nl(es fd,n) < Kd,nf_yd'n»

whereyy.n = Pdim(Fy.n) < oo for anyd andn.

We recall Remark 2, keeping in mind that in cases where the pseudo-dimension does not

provide a tight upper bound on the covering number we may repkagdy some other

generalized dimension, such as the fat-shattering dimension at an appropriate scale. This

modification does not affect the arguments below. Before presenting the main result of this

section, we make an assumption concerning the size of the mamory

Assumption 6.2 For each value oN, 0<d <a} ™ for some Gce<1, implying d=
o(ayn).

For eachd, let Ng be the (finite) value ofN, such that by Assumption 6 < ay/2 for
N > Np; such a value exists, since from Corollary 5] becomes arbitrarily large with
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increasingN. The following lemma, proved in the appendix, is crucial in establishing the
main result of this section.

Lemma6.1l. LetX ={..., X1, Xo, X1, ...} be a stationary3-mixing stochastic process
with | X;| < B, 0< B < co. Furthermorelet 74 , be a class of bounded functigrfs: RY —
[—B, B], and let AssumptioB.2 hold, implying that d < ay/2 for N larger than some
No. For each N IethN be the predictor selected according to the SRM condi&3). Let
€ > 0 be given and assume further tl22p(2B)P~te < Agnn(€) + Agn < t/4. Then
for N > Ny

IE”{ L(fy) — inf L(f)> t} < gg/nt?/12828)
feFan
+ 8N (1/256p(2B)P L, Fy n)e nt /204828 4 4DB)P L Bay 2.
We then have the main result of this section; the proof is given in the appendix.
Theorem6.1. LetX ={..., X1, Xo, X1, ...} be astationary3-mixing stochastic process
with | Xi| < B, and letFy , be a class of bounded functignk: RY — [—B, B]. Then for

N > Np, and given Assumptiadh2,the expected loss of the functiég, selected according
to the SRM principl€23),is upper bounded by

\/%Vd_nIOQIJ«N +10g Kgn + Cn n C2 }

EL f: <mini{ inf L(f)+c
(fn) d’n{f (Hh+a P T

€Fdn

+4(2B)P1nBay /2.

where g = 32v/2(2B)P and @ = (640+ 32,/c;)+/2(2B)P, and the constants,cand ¢
are defined in21) and(23), respectively.

Remark 5 Observe that similarly to Remark 3, better rates can be obtained at the price
of multiplying the approximation error term in Theorem 6.1 by a constant larger than 1. In
this case we obtain a bound of the form

; H H /Vd,nIOg/'LN
EL(f\) < min {ﬂfuerym L() +017}

+ 4(2B)P 1un Bay 2, (24)

whereg > 1, andc; andc;, are given constants. The proof of this result relies on Lemma
3.3, and is very similar to that given below for Theorem 6.1. We recall that the improved
rate is only relevant in the situation wheming ,, inf¢c 7, . L(f) — L(f%)) can be made

to vanish, which may not be the case in practical situations where the complexity of the
approximating class may be restricted to some finite valuesapfdn.

Remark 6 The results derived in 6.1 demonstrate that there is an almost optimal trade-
off between approximation and estimation, in the following sense. Evensifinf L ()
attained some minimal value for some finkigownvalues ofn andd (remaining constant
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for larger values), there would still be an additional loss incurred in the estimation, due
to the finiteness of the sample size. What Theorem 6.1 establishes is that the additional
loss resulting from the extra degrees of freedom resulting from the variable memory size
d and model complexity do not affect the performance. This result can be viewed as an
extension of existing results for i.i.d. data, both for the case of binary classification (Lugosi
& Zeger, 1996) and regression (Lugosi & Nobel, 1996).

Remark 7 We compare our results to those derived recently by Modha and Masry (1998).
These authors also considered the problem of time series prediction in the context of mixing
stochastic processes, deriving similar finite sample bounds in a nonparametric setting. We
observe that their results differ from ours in several important ways. First, the framework
used in Modha and Masry (1998) was based on Barron and Cover’s notion of the index
of resolvability (Barron & Cover, 1991), which entails rather different assumptions on the
covering numbers of the functional classes used for estimation. In particular, the compact-
ness of the parameter domain used by the estimator seems crucial for that approach. In the
context of the covering numbers used in this work, all that is needed is the finiteness of
the pseudo-dimension of the functional class, together with a boundedness condition on the
function, a much weaker condition in general than boundedness of parameters. Moreover,
the latter condition renders the establishment of approximation error bounds rather difficult.
The reader is referred to Vidyasagar (1996) for several examples of cases where the pseudo-
dimension is finite even though the parameters are unbounded. Second, our work holds for
generall , norms rather than the the, norm studied in Modha and Masry (1998). For

the casep = 2, we obtain the same rates under the further condition of convexity alluded

to in Remark 4. Third, the results established in this work hold for both exponential and
algebraic mixing stochastic processes, as opposed to the case of exponential mixing studied
in Modha and Masry (1998). However, our results relatg-toixing processes, a stronger
condition than the one used in Modha and Masry (1998). Two interesting open problems
remain, which have not yet been answered for either approach. First, the assumption of the
boundedness of the process is somewhat restrictive, especially as this assumption is not
required in the context of nonparametric time series prediction in general. Second, the de-
velopment of an adaptive method to determine the mixing coefficgrstsf importance if

a fully adaptive algorithm is required. There do not seem to exist at present any approaches
which address this issue satisfactorily.

Finally, we consider the nonparametric rates of convergence achieved within the adaptive
scheme proposed in the present section. We refer the reader to the bookerfiyeGal.
(1989) and Bosq (1996) for surveys of the field of nonparametric time series prediction. We
consider a typical result established ind@Bfyét al. (1989) (see Section 3.4) for compactly
supportedp-mixing processes. Singg-mixing implies 8-mixing, the result is applicable
in the context of this paper. Let

Ra) = E(Xi | X|=§ = x).

and denote byrRy N (X) @ nonparametric estimator fé (x) obtained using the Nadayara-
Watson kernel estimator with width and a sample of siz&l. Note thatRy(x) is only
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optimal as a predictor when using the quadratic loss. Assume furtheRgfratbelongs to

a Lipschitz space df times continuously differentiable functions over the compact domain
G, such that theik-th order derivatives are Lipschitz continuous of order 1. Then from
Theorem 3.4.4 and Remark 3.3.5 in@fj et al. (1989), we have that

SUP|Ry(X) — Ra.n(X)] = o(hk+1 + (mylogN /N hd)l/z) @s),

xeG

wheremy ~ (log N)Y* for exponentially mixing processes andy ~ n/+" for alge-
braically mixing processes with exponentSettingh to its optimal value, minimizing the
sum of the two terms we find that

N

xeG

k+1
k/(A+K)\ (kD +d
SUPIR4(X) — Ran ()] = O<<('09L) mw) @s),

for exponentially mixing processes and

r k+1
A+0/7 N\ o7 30D d
SUPIR(X) — Ren ()] < 0((%)” 2““”") @s).

xeG N

in the case of algebraic mixing.

Turning now to the results of this section, we need establish similar rates of convergence
in a nonparametric setting. Assume, for example, that the optimal predictor of memory
sized belongs to a Sobolev space consisting of functions with square integkabl&)-th
order derivatives. The reason for consideting 1 derivatives rather thanis related to our
wish to compare the results for Sobolev space to those for the Lipschitz space discussed
above. As is demonstrated in Section 2.9 of Devore & Lorentz (1993), the Lipschitz space
with k derivatives is isomorphic to the Sobolev space vith 1 integrable derivatives.
Furthermore, assume that the functional spggis such thatinfcz, , L(f) < cn™k+b/d
for any f in the Sobolev space. This type of result is well known for spline functions, and
has recently been demonstrated for neural networks (Mhaskar, 1996) and mixture of expert
architectures (Zeevi et al., 1998). Using the results of Theorem 6.1, and assuming that the
optimal memory sizel is known, as in the nonparametric setting above, we can compute
the value for the complexity indaxwhich yields fastest rates of convergence. Making use
of the values ofuy from Corollary 5.1 and Remark 1 we obtain, after some algebra, that

| N n_ k+1
0 TH7 2(k+D+qd
g ) ' , (25)

EL(fy) — L = o(

where L} is the error incurred by the optimal predictor of memory sizeand where

n equalss in the case of algebraic mixing ardfor exponential mixing (see Remark 1).
Observe thatthe results quoted above for the kernel method, are given in terms of the distance
|Ra(X) — Ry.n (X) |, rather than the error itself, as in (25). However, in the quadraticgase

2, for which the kernel method results are given, it is easy to establish (keeping in mind the
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boundedness of the variables) tHaRy n (X) — Y|?>— |Rg(X) = Y |2 < 4B|Ry.n (X) — Ry (X)],
implying similar rates of convergence for the error difference, as in (25). In the situation
where the improved rates (24) are used one may remove the factor of 2 multigkying)

in the denominator in (25); however, in this case the convergencegisjos > 1, rather
thanL.

In the derivation we have assumed that, = Pdim(Fy ) o« n% for some positive value
of g, which is a typical situation (see examples in Vidyasagar (1996)). For example, we have
recently shown (Bartlett, Maiorov, & Meir, 1998) thgit= 1+¢ (¢ > O arbitrarily small) for
feedforward neural networks composed of piecewise polynomial activation functions, while
Karpinski and Macintyre (1997) have establisttee: 4 for networks constructed using
the standard sigmoidal activation function. Note that in these two cases the approximation
errors have also been shown to be of the same order (Maiorov & Meir, 1999).

Furthermore, note the extra factof(1 + «) which multiplies the exponent, and leads
to slower rates of convergence, as compared to the nonparametric results, in the case of
exponential mixing. Note also that for this result to hold in the case of algebraic mixing we
needed to assume that- 1, in accordance with Remark 1. In summary then, we observe
that our results in the nonparametric situation are in general not as tight as those attained
by the classic kernel methods, a point also observed in Modha and Masry (1998). One of
the major open problems then in the field of nonparametric time series prediction through
adaptive model selection would be to achieve optimal (minimax) rates of convergence. Of
course it should be borne in mind that the approach has the great advantage of adaptivity,
in that parametric rates of convergence are achieved if the underlying structure is simple,
as discussed in Remark 6. Note that in the special pase2, faster nonparametric rates
are achieved under the special conditions discussed in Remark 4.

It should be kept in mind, however, that the above nonparametric rates of convergence
were derived under the assumption that the memorydsigdinite. In situations where the
memory size is unbounded, a cost must be added for using a finite vatLié'bfs point
is made explicit in (2), where the additional telrj is added, to take account of the loss
incurred by using a finite value of Unfortunately, in order to compute an upper bound on
this term, rates of convergence in the martingale convergence theorem would be needed; to
the best of our knowledge such results are unknown at present for mixing processes.

7. Concluding remarks

We have presented bounds on the error incurred in nonparametric time-series prediction by
sequences of parametric models, characterized by well-behaved metric entropies. This work
extends previous results which make more demanding assumptions concerning boundedness
of parameters and smoothness of the functions used for estimation. Our results were derived
within the framework of the structural risk minimization approach pioneered by Vapnik,
and were extended to the case of time-series by taking into account a complexity controlled
adaptive memory size, based on the mixing relationships assumed to hold for the underlying
stochastic process. The general approach has the potential advantage of achieving univer-
sal consistency and good rates of convergence in honparametric settings, while retaining
parametric rates of convergence in special situations. This adaptivity advantage has been
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established for absolutely regular mixing processes, and rates of convergence have been
established in cases where the memorydiadinite, but not necessarily known in advance.
There remain several issues, which need to be addressed in future work. First, the adaptive
algorithm, as well as the bounds rely heavily on a knowledge of the mixing nature of the
process. As mentioned in Section 4, no tools are currently available for establishing mixing
properties, which are therefore more of a theoretician’s dream than a practical tool. Second,
rates of convergence were derived only for the case where the optimal mematisdinée,
albeit unknown. It is a challenging problem to derive convergence rates in the general case
where the memory size may be infinite. Third, it is an open question to establish minimaxity
of the nonparametric rates of convergence derived in Section 6, similarly to the results in
the i.i.d. setting. Finally, and at a more technical level, we have assumed throughout that the
stochastic process and prediction functions are bounded, clearly an impractical assumption
in real life. We believe, however, that this assumption can be eliminated using the techniques
of van der Geer (1987), a topic which is currently being pursued.

Appendix

Proof of Lemma 6.1: We split the problem into two components.

2 . 2 o2 ~ t
P{L(fN) - fIEr);;nL(f) > t} < P{L(f) — min Lann(fann) > 5}
LA ~ . t
+P{ T'nn La.nn(fann) — fler]]-'zn L(f) > é}
=h+ (26)

We deal separately with each of the terms. tetndn be the values ofl andn which
minimize Cgnn(fann), i-€., fy = fg4 - Then

~ 2 ~ t
3= P{Lfn = CaanClinn = 5
N ~ ~ t
= HD{L(fd,ﬁ,N) — Ln(fgan) > > + Agan(e+ Ad,N}

. t
EIP’{ sup |[L(f) — Ln(F)| > —+AaﬁN(6)+AaN}
feFin 2 o ’

where we used the definition (20). We then have from the union bound that
N t
h =P maX( sup [L(f) = Ln(D)I > 5+ Agnn(e) + Ad,N>
dn \ fery, 2

N t
< ZP{ sup |[L(f) = Ln(P) > 5 +Ad,n,N(€)+Ad,N}-
d.n feFan 2
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Using the notationugnn = t + 2Aq.nn(€) + 2A4 N, We then have from the proof of
Theorem 5.1 and (19)

2
UNUg n N

W} + 21N Bay /2-

3 < SZN(ud,n,N/Mp(ZB)p*l, ]-'d,n)exp{ -
d,n

We note that we have replaced the tggq_4 appearing in 5.1 bg,, 2. This is allowed since
we assumed that < ay /2, andB, is monotonically non-increasing m. Substituting the
value ofug n,n and making use of the assumption n ne) + Ad,N > 32p(2B)P~1¢, we
then find

m
J < SZNl(e, Fd.n) exp{ —WI\E’)%U + 2A4gn.N(e) + 2Ad,N]2} + 2uNBay 2
d,n

<8 Ni(e, Fan) exp{ — #’“B)zp [t?+4A% () + 4A§,N]} + 21N Bay 2
d,n

pnt? ,
< SZ eXp{ eeEm cd} + 2unBay/2,

unt
<8expl— N 1o .
= eXp{ 128(28)2p}+ #nPay/2

where use has been made of the postulated summability properties of the seqaehges
and{e %}, and (21) and (22).

In order to conclude the proof we need to consider the second term in (26). Following
similar reasoning to that used above, and making use of the assumgtio.) + Ada.n <
t/4, we have:

A t
J = ]P){LN(fdﬁN) + Aa’ﬁ,N(e) + AdN — Lg,n > E}

~ ~ t
=PiLn(fgan) — Lan > Z}

. t
<P LN(fd*,n) - L(fc;k,n) > Z}

<P} sup [Cn(f) = L(f)] > 3}
feFan
punt?

-1
< 8N (t/256p(2B)P, fd«,n)exp{ 20482B)?P

} + zﬂNﬂaN/L

where again Theorem 5.1 has been used. The result then follows on combining the upper
bounds onJ; and J,. O
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Proof of Theorem 6.1:0ur proof follows some of the ideas in Lugosi and Nobel (1996),
with appropriate modifications. Obviously

EL(fy) = min{(EL(fy) = Li,) + Lia):
whereLg , = infrez, L (f). Using the notation
Tamn = L(fy) = Line
we have
ETgnn = E{L(fy) — Lj,)
- /OOOP{L(f‘N) — L5, > thdt

(2B)P A
§u+/ P{L(fy) — L§, > t}dt,
u

where we have used the fact that, — f(Xi‘:j)H’ < (2B)P, implying L(f) = E|X; —
f (Xi'jé)|p < (2B)P. Substituting the results of Lemma 6.1 and defirsirg1/256p(2B) P2,
we then obtain

unt?

(2B)P nt?
ETgnn = U—i—/ |:8€ 1282B)% 1 8N (at, Fgn)e 2048(23)2“] dt+4(2B)PunBay,2
u

<u-+ 16 exp{ — iU }
B VN /1282B)2P 1282B)2p
16N1(u/256p(2B)P~1, Fyn) p{ unNUu?

JIin/20482B)2 ©20482B)2p

where we have useff“exp(—gt?) dt < 2 exp—Bu?)//B.
Choosingu = 8Aq n.n(€) + 8A4.n and using the condition > 256p(2B)P~1e and the
choicee = 1/, /N, we obtain the following result after some algebra

Iyan logun + logKq n + co
MN

Elgnn < 32«/5(28)"\/

N (640+ 32,/c)+/2(2B)P
N

where use has been made of (21) and (22). The claim follows upon using the definition of
CynnN- O

+4(2B)P N Bay 2,
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